1
|
Ulu A, Akkurt Ş, Birhanlı E, Uçkun AA, Uçkun M, Yeşilada Ö, Ateş B. Fabrication, characterization, and application of laccase-immobilized membranes for acetamiprid and diuron degradation. Int J Biol Macromol 2024:136787. [PMID: 39454896 DOI: 10.1016/j.ijbiomac.2024.136787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Water and wastewater pollution by acetamiprid and diuron is considered a serious environmental problem. In this study, chitosan (CHS), a naturally occurring bioadsorbent considered ecologically harmless to remove these micropollutants, was developed as a possible carrier to immobilize laccase (Lac) from Trametes trogii. Polyethylene glycol methyl ether (PEGME) was chosen for blending CHS, so a hybrid biocatalyst-based Lac/CHS-PEGME membrane was prepared. The prepared CHS-PEGME and Lac/CHS-PEGME membranes were characterized by Fourier-transformed-infrared (FTIR) spectroscopy, scanning-electron-microscopy (SEM), and X-ray-diffraction (XRD). Pesticide degradation tests with Lac/CHS-PEGME were performed at different contact times and initial concentrations. Acetamiprid degradation was most effective (84 %) at the 12th hour, at an initial concentration of 0.1 mg/L, while diuron degradation was most effective (65 %) at an initial concentration of 6 mg/L and a contact time of 16th hour. Under optimum conditions, the reusability of Lac/CHS-PEGME was found to be 8 cycles for acetamiprid and 5 cycles for diuron. From these results, it is understood that acetamiprid is degraded more quickly and effectively than diuron. Adsorption process data were well fitted to the Langmuir isotherm model and the pseudo-first-order kinetic model. These findings showed that using Lac/CHS-PEGME was a practical and environmentally friendly method for acetamiprid and diuron degradation.
Collapse
Affiliation(s)
- Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkiye
| | - Şeyma Akkurt
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye
| | - Emre Birhanlı
- Department of Biology, Faculty of Science and Literature, İnönü University, 44280 Malatya, Turkiye
| | - Aysel Alkan Uçkun
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye.
| | - Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye
| | - Özfer Yeşilada
- Department of Biology, Faculty of Science and Literature, İnönü University, 44280 Malatya, Turkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkiye
| |
Collapse
|
2
|
Orou-Seko A, Chirawurah D, Gnimatin JP, Pèlèbè EOR, Aputere Ndago J, Pwatirah D, Adokiya MN. Protocol for pesticide residue monitoring and risk assessment on water, sediment, and fish: A case study of two selected reservoirs in Ghana. Heliyon 2024; 10:e37251. [PMID: 39290279 PMCID: PMC11407082 DOI: 10.1016/j.heliyon.2024.e37251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Background Africa is experiencing a significant surge in the use of pesticides on farms. Though the use of pesticide products on farms is increasing rapidly, the ability to monitor and regulate the practice has not kept pace. Despite their potential significance, the health and environmental impacts of the growing pesticide usage in developing nations remain inadequately comprehended and recorded. Objective This paper presents a research protocol for a study that seeks to provide criteria for future monitoring of pesticide residues in aquatic environments and food sources. This study aims to evaluate pesticide utilisation methods and the potential hazards of pesticide residues in aquatic ecosystems. Additionally, the study seeks to assess the human health risks linked to pesticide applications. Methods This study will employ a quantitative approach and cross-sectional design. It will utilise a combination of survey and the collection of biological and environmental samples. Our methodology consists of four distinct steps. These outline the processes for studying pesticide residue in environmental and fish samples. Additionally, we plan to employ mathematical algorithms to evaluate the ecological and health risks associated with these pesticide residues. Conclusion This study is an effort to monitor and assess the hazards to the environment and human well-being associated with the increasing utilisation of pesticides. It also aims to gather relevant data on pesticide utilisation practices that contribute to the contamination of aquatic ecosystems. It will specifically focus on determining the concentration of pesticide residues in both biological and environmental samples. Additionally, the study will assess the ecological and health risks associated with these pesticide residues. This will enable the incorporation of organised research efforts and coordinated pesticide surveillance operations for toxicovigilance.
Collapse
Affiliation(s)
- Abdou Orou-Seko
- Department of Environmental and Occupational Health, University for Development Studies, Tamale, Ghana
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology, University of Parakou, Parakou, Benin
| | - Dennis Chirawurah
- Department of Environmental and Occupational Health, University for Development Studies, Tamale, Ghana
| | - Jean-Pierre Gnimatin
- Department of Social and Behavioral Change, University for Development Studies, Tamale, Ghana
| | - Edéya Orobiyi Rodrigue Pèlèbè
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology, University of Parakou, Parakou, Benin
- Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana
| | - Joyce Aputere Ndago
- Department of Social and Behavioral Change, University for Development Studies, Tamale, Ghana
| | | | - Martin Nyaaba Adokiya
- Department of Epidemiology, Biostatistics and Disease Control, University for Development Studies, Tamale, Ghana
| |
Collapse
|
3
|
Phogat A, Singh J, Sheoran R, Hasanpuri A, Chaudhary A, Bhardwaj S, Antil S, Kumar V, Prakash C, Malik V. Berberine Attenuates Acetamiprid Exposure-Induced Mitochondrial Dysfunction and Apoptosis in Rats via Regulating the Antioxidant Defense System. J Xenobiot 2024; 14:1079-1092. [PMID: 39189176 PMCID: PMC11348026 DOI: 10.3390/jox14030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Acetamiprid (ACMP) is a neonicotinoid insecticide that poses a significant threat to the environment and mankind. Oxidative stress and mitochondrial dysfunction are considered prime contributors to ACMP-induced toxic effects. Meanwhile, berberine (BBR) a natural plant alkaloid, is a topic of interest because of its therapeutic and prophylactic actions. Therefore, this study evaluated the effects of BBR on ACMP-mediated alterations in mitochondrial functions and apoptosis in rat liver tissue. Male Wistar rats were divided into four groups: (I) control, (II) BBR-treated, (III) ACMP-exposed, and (IV) BBR+ACMP co-treated groups. The doses of BBR (150 mg/kg b.wt) and ACMP (1/10 of LD50, i.e., 21.7 mg/kg b.wt) were given intragastrically for 21 consecutive days. The results showed that the administration of ACMP diminished mitochondrial complex activity, downregulated complex I (ND1 and ND2) and complex IV (COX1 and COX4) subunit mRNA expression, depleted the antioxidant defense system, and induced apoptosis in rat liver. BBR pre-treatment significantly attenuated ACMP-induced mitochondrial dysfunction by maintaining mitochondrial complex activity and upregulating ND1, ND2, COX1, and COX4 mRNA expression. BBR reversed ACMP-mediated apoptosis by diminishing Bax and caspase-3 and increasing the Bcl-2 protein level. BBR also improved the mitochondrial antioxidant defense system by upregulating mRNA expression of PGC-1α, MnSOD, and UCP-2 in rat liver tissue. This study is the first to evaluate the protective potential of BBR against pesticide-induced mitochondrial dysfunction in liver tissue. In conclusion, BBR offers protection against ACMP-induced impairment in mitochondrial functions by maintaining the antioxidant level and modulating the apoptotic cascade.
Collapse
Affiliation(s)
- Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India;
| | - Reena Sheoran
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Arun Hasanpuri
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Aakash Chaudhary
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Shakti Bhardwaj
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Sandeep Antil
- Department of Zoology, ANDC College, University of Delhi, New Delhi 110019, India;
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India;
| | - Chandra Prakash
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| |
Collapse
|
4
|
Sakr M, Adly MS, Gar Alalm M, Mahanna H. Effective removal of acetamiprid and eosin Y by adsorption on pristine and modified MIL-101(Fe). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41221-41245. [PMID: 38847950 PMCID: PMC11190010 DOI: 10.1007/s11356-024-33821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
In this work, the efficacy of two metal-organic frameworks (MIL-101(Fe) and NH2-MIL-101(Fe)) in eliminating acetamiprid (ATP) insecticide and eosin Y (EY) dye from aqueous solution is tested. An analysis was conducted on the developed nanocomposite's optical, morphological, and structural characteristics. The adsorption isotherm, kinetics, thermodynamics, reusability, and mechanisms for ATP and EY dye removal were assessed. NH2-MIL-101(Fe) adsorbed 76% and 90% of ATP pesticide and EY dye, respectively after 10 to 15 min in optimum conditions. For both adsorbents, with regard to explaining the isotherm data, the Langmuir model offered the most accurate description. Moreover, the adsorption of ATP and EY dye is described by the pseudo-second-order kinetic model. The maximum adsorption capacities of ATP and EY dye on MIL-101(Fe) were 57.6 and 48.9 mg/g compared to 70.5 and 97.8 mg/g using NH2-MIL-101(Fe). The greatest amount of ATP and EY dye clearance was obtained at a neutral medium for both adsorbents. The results of this investigation demonstrate the effectiveness of MIL-101(Fe) and NH2-MIL-101(Fe) as effective substances in the adsorption process for removing pesticides and dyes from aqueous solution.
Collapse
Affiliation(s)
- Mohamed Sakr
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mina Shawky Adly
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Gar Alalm
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| | - Hani Mahanna
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
de Araujo GF, do Espírito Santo DG, Júnior SFS, Correia FV, Saggioro EM. Toxicological approaches as tool to assess the effects of a mixture of photocatalytic degradation products originated from the unregulated neonicotinoid acetamiprid employing a terrestrial organism (Eisenia andrei). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167271. [PMID: 37777123 DOI: 10.1016/j.scitotenv.2023.167271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Acetamiprid (ACT) has been detected in several water sources in Latin America. The presence of its degradation products in the environment is not negligible and transformation products (TPs) significantly contribute to environmental health risks. Although advanced oxidative processes are promising for the treatment of this neocotinoid, effects of these are still unknown. In this context, the effects of a mixture of photocatalytic degradation products resulting from an ACT treatment for 90 min employing TiO2/UV on cytotoxicity and oxidative stress parameters in Eisenia andrei earthworms in acute and chronic experiments using typical Latin American soil were assessed. Acute contact tests were performed (72 h) using a filter paper moistened with an ACT solution and a chronic test was performed using Oxisoil (200 g) moistened with an ACT solution for 45 days. Catalase (CAT) and glutathione-S-transferase (GST) activities, reduced glutathione (GSH) levels and cytotoxicity (cellular eleocyte and amoebocyte assessments) were investigated. Over 75 % of ACT was degraded within the first 15 min of treatment, with levels below the limit of detection after 60 min. The acute test revealed greater cytotoxic effects associated with the effluents treated for T0 and T15 min, with decreased cell density noted after 48 h of exposure, in addition to CAT induction (in all treatments) and GST induction following T0, T15 and T90 min exposures. Concerning the chronic assay, decreases in cell density (T0, T15, T60 and T90 min) and viability (T0, T60 and T90 min) were observed after 45 days, in addition to induced CAT activity following T0, T15 and T60 exposures and GST induction following the T60 min exposure. Reduced glutathione levels were unaltered, comprising the least sensitive biomarker among the investigated parameters to the treated effluent exposures. The mixture of ACT degradation products can cause toxic effects to non-target organisms, despite parent compound degradation, alerting for the need for ecotoxicological tests to prove decreased effluent toxicity, in addition to the improvement of degradation techniques.
Collapse
Affiliation(s)
- Gabriel Farias de Araujo
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Danielli Gundes do Espírito Santo
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Sidney Fernandes Sales Júnior
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil
| | - Fábio Veríssimo Correia
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil; UNIRIO, Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, 22290-20 Rio de Janeiro, Brazil; Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210 Rio de Janeiro, RJ, Brazil; Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, 21040-360 Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Phogat A, Singh J, Malik V, Kumar V. Neuroprotective potential of berberine against acetamiprid induced toxicity in rats: Implication of oxidative stress, mitochondrial alterations, and structural changes in brain regions. J Biochem Mol Toxicol 2023; 37:e23434. [PMID: 37350525 DOI: 10.1002/jbt.23434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Acetamiprid (ACMP) is an extensively used neonicotinoid pesticide to control sucking and chewing insects and is known to cause nontarget toxicity. The present study aimed to evaluate the ameliorative potential of berberine (BBR)-a polyphenolic alkaloid- on ACMP-induced oxidative stress, mitochondrial dysfunctioning, and structural changes in different rat brain regions. The male Wistar rats were divided into four groups, that is, control, BBR-treated (150 mg/kg b.wt), ACMP-exposed (21.7 mg/kg b.wt) and BBR + ACMP co-treated; and were dosed intragastrically for 21 consecutive days. Results of the biochemical analysis showed that BBR significantly ameliorated ACMP-induced oxidative stress by decreasing lipid peroxidation and protein oxidation along with a marked increase in endogenous antioxidants and lowered AChE activity in rat brain regions. Inside mitochondria, BBR significantly attenuated the toxic effects of ACMP by increasing the activity of mitochondrial complexes. Findings of polymerase chain reaction also demonstrated the modulatory effects of BBR against ACMP-mediated downregulation of ND1, ND2, COX1, and COX4 subunits of mitochondrial complexes. The histopathological and ultrastructural examination also validated the biochemical and transcriptional alterations following toxicity of ACMP exposure and the protective potential of BBR against ACMP-induced neurotoxicity. Thus, the present study indicates the promising ameliorative potential of BBR against ACMP-induced neurotoxicity via its antioxidative and modulatory activities.
Collapse
Affiliation(s)
- Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
7
|
Phogat A, Singh J, Kumar V, Malik V. Berberine mitigates acetamiprid-induced hepatotoxicity and inflammation via regulating endogenous antioxidants and NF-κB/TNF-α signaling in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87412-87423. [PMID: 37421530 DOI: 10.1007/s11356-023-28279-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
Acetamiprid is a neonicotinoid insecticide used on a large scale and has been reported for oxidative stress-mediated toxicity and physiological alterations in mammals. The plant-derived natural antioxidant berberine (BBR) possesses protective potential against inflammation, structural changes, and cellular toxicity. The current study aimed to investigate the toxic effects of acetamiprid exposure and the antioxidative and anti-inflammatory efficacy of BBR in rat liver tissue. The results showed that intragastric exposure of acetamiprid (21.7 mg/kg b.wt, i.e., 1/10 of LD50) for 21 days significantly elicited oxidative stress as evidenced by lipid peroxidation, protein oxidation, and depletion of endogenous antioxidants. Furthermore, acetamiprid exposure elevated NF-κB, TNF-α, IL-1β, IL-6, and IL-12 expression and caused structural alterations in liver tissue. Biochemical results showed that 2-h pre-treatment of BBR (150 mg/kg b.wt; 21 days) reduced damage to lipids and proteins, replenished GSH, enhanced SOD and catalase activities, and offered antioxidative effects against acetamiprid toxicity. Also, BBR suppressed inflammation by regulating NF-κB/TNF-α signaling in hepatic tissue of acetamiprid-intoxicated rats. Histopathological examination confirmed the hepatoprotective effects of BBR. Our findings indicate that BBR might be a potential ameliorative agent against oxidative stress-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
8
|
Elango D, Kayalvizhi N, Jayanthi P. Effects of a Neonicotinoid on Indigenous Earthworm Perionyx excavatus Biochemical and Histopathological Alterations. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:93. [PMID: 37160455 DOI: 10.1007/s00128-023-03731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Acetamiprid is a broad-spectrum insecticide, belonging to the neonicotinoid compounds group, which has been extensively applied throughout the globe. Recently, indiscriminate use of these compounds was reported to cause fatal impacts on non-targeted soil organisms. Hence, the present study aimed to examine the impact of acetamiprid on Indian indigenous earthworm, Perionyx excavatus. Acute toxicity revealed an LC50 concentration of 0.25 µg/cm2 for filter paper test/72 h and 400 µg/kg for artificial soil test/14 days. Oxidative stress (ROS) and various biomarkers including superoxide dismutase, catalase, glutathione S-transferase, malondialdehyde content and DNA damage were measured. The results of the biomarker responses confirmed the acetamiprid exposure can cause toxicity to P. excavatus. In addition, cell density (20 × 102 cell mL/mg) and cell viability (40%) were significantly (p < 0.05) reduced. Further, the ecotoxicological assessment made through this study can be utilized as good evidence to toxicity of neonicotinoids to non-targeted indigenous organisms.
Collapse
Affiliation(s)
- Duraisamy Elango
- Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636011, India
| | | | - Palaniyappan Jayanthi
- Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636011, India.
| |
Collapse
|
9
|
Elango D, Siddharthan N, Alaqeel SI, Subash V, Manikandan V, Almansour AI, Kayalvizhi N, Jayanthi P. Biodegradation of neonicotinoid insecticide acetamiprid by earthworm gut bacteria Brucella intermedium PDB13 and its ecotoxicity. Microbiol Res 2023; 268:127278. [PMID: 36565686 DOI: 10.1016/j.micres.2022.127278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Extensive use of neonicotinoid insecticides in recent decade had contaminated water and soil systems and poses serious environmental and health risk. Microbial degradation of toxic contaminants in the environment has been established as a sustainable tool towards its remediation. Under this context, the present study focused on the biodegradation of neonicotinoid insecticide acetamiprid, by bacterial strain Brucella intermedia PDB13 isolated from the gut of the acetamiprid exposed earthworms. To enhance acetamiprid biodegradation, suitable parameters such as pH, temperature, inoculum size and acetamiprid concentration range were optimised using Response Surface Methodology (RSM). The experimental results showed that the Brucella intermedium PDB13 can tolerate and degrade relatively high concentrations of acetamiprid (50 - 350 mg L-1). The results confirmed that maximum degradation of about 89.72% was achieved under optimized conditions. Further, confirmation of acetamiprid biodegradation was assessed through the occurrence of its degraded metabolites through HPLC, FTIR, and LCMS analysis. Based on this analysis, possible acetamiprid biodegradation pathway by Brucella intermedia PDB13 was proposed. Additionally, cytotoxicity, earthworm acute toxicity, and zebrafish embryo toxicity studies were also performed to assess the toxicity variations between the parent compound and its metabolites. The acetamiprid treated group resulted in cytotoxic effects apparently, with the increase in aberrant cells frequency (22.5 ± 3.3), when compared with its metabolites (2.3 ± 4.3) and control (1.9 ± 5.6) respectively. All these results evidently reported the degradation potential of Brucella intermedia PDB13, thereby establishing the scope for further advanced biodegradation studies towards mitigating the pesticide pollution.
Collapse
Affiliation(s)
- Duraisamy Elango
- Department of Environmental Science, Periyar University, Salem 636011, Tamil Nadu, India
| | | | - Shatha Ibrahim Alaqeel
- Department of Chemistry, College of Science, King Saud University, (034), Riyadh 11495, Saudi Arabia
| | - Velu Subash
- Department of Environmental Science, Periyar University, Salem 636011, Tamil Nadu, India
| | - Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621 Hwaragno Nowon-gu, Seoul, South Korea
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Palaniyappan Jayanthi
- Department of Environmental Science, Periyar University, Salem 636011, Tamil Nadu, India.
| |
Collapse
|
10
|
El-Garawani IM, Khallaf EA, Alne-na-ei AA, Elgendy RG, Sobhy HM, Khairallah A, Hathout HMR, Malhat F, Nofal AE. The Effect of Neonicotinoids Exposure on Oreochromis niloticus Histopathological Alterations and Genotoxicity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1001-1009. [PMID: 36117203 PMCID: PMC9684291 DOI: 10.1007/s00128-022-03611-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/08/2022] [Indexed: 06/03/2023]
Abstract
This study aimed to examine the side effects of selected neonicotinoids (Acetamiprid, Aceta, and Imidacloprid, Imid) on Oreochromis niloticus juveniles. The acute toxicity, Probit method, revealed an LC50 of 195.81 and 150.76 ppm for Aceta/96 h and Imid/72 h respectively. The fish were divided into three groups that were exposed, for 21 days (n = 5/replicate), to 1/10 of the LC50 of either neonicotinoids, however, the third was an unexposed control group. Results of erythrocytic micronucleus (MN), and nuclear abnormalities (NA) showed that Aceta and Imid exposure caused a significant (p < 0.05) increase in MN by ~ 2.2 and ~ 10 folds, respectively relative to control. NAs occurred at the order of kidney-shaped > budding > binucleated in Aceta, however, budding > binucleated > kidney-shaped was noticed in the Imid group. Histopathological changes in gills, liver, and muscles were observed significantly in both exposed groups with more severity in the Imid group. Collectively, Aceta and Imid have potential genotoxicity and histopathological alterations in O. niloticus.
Collapse
Affiliation(s)
- Islam M. El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| | - Elsayed A. Khallaf
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| | - Alaa A. Alne-na-ei
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| | - Rehab G. Elgendy
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| | - Hassan M. Sobhy
- Department of Natural Resources, Faculty of African Postgraduate Studies, Cairo University, Giza, 12613 Egypt
| | - Adel Khairallah
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| | - Heba M. R. Hathout
- Department of Natural Resources, Faculty of African Postgraduate Studies, Cairo University, Giza, 12613 Egypt
| | - Farag Malhat
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agriculture Research Center, Dokki, Giza, 12618 Egypt
| | - Amany E. Nofal
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| |
Collapse
|
11
|
Guedegba NL, Ben Ammar I, Houndji A, Toko II, Van De Merckt L, Agbohessi PT, Mandiki SNM, Scippo ML, Kestemont P. Integrated biomarker response to assess the effects of pesticide residues on Nile Tilapia in aquatic ecosystems contaminated by cotton-field effluents. CHEMOSPHERE 2022; 305:135407. [PMID: 35732206 DOI: 10.1016/j.chemosphere.2022.135407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
An in-situ study combined with an integrated biomarker response was used to evaluate the impact of agricultural effluents in the physiological responses of Nile tilapia reared in cages and enclosures of water reservoirs in North Benin. Fish were distributed in fish farming systems at two sites: Songhai located outside the cotton basin and Batran located in the most productive commune. They were sampled for blood and organs before (BST), during (DST) and after (AST) pesticide treatment. Pesticide residues were analysed in water, sediments and fish muscles. Several biomarkers were investigated related to the immune (peroxidase, lysozyme and complement activities, superoxide anion production) and reproductive (sex steroids and vitellogenin levels) responses as well as neurotoxicity (cholinesterase activity) and tissue alterations. Biomarkers were assessed and analysed via the integrated biomarker response (IBR). The results showed that Batran water reservoir was a more harmful ecosystem for fish than Songhai one, especially by depressing some immune and reproductive functions in relation to a higher-level of pesticide contamination. They also demonstrated that the contact of fish to sediments in enclosures aggravated the pesticide burden on fish. Therefore, using males as bioindicators would improve the sensitivity of the used biomarkers since males seemed more affected than females especially due to pesticide estrogenic induction impacting their reproductive system.
Collapse
Affiliation(s)
- Nicresse Léa Guedegba
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium; Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Imen Ben Ammar
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Alexis Houndji
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium; Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Ibrahim Imorou Toko
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Lara Van De Merckt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Prudencio Tachégnon Agbohessi
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Fundamental and Applied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, bât. B43bis, 10 Avenue de Cureghem, Sart-Tilman, B-4000, Liège, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
12
|
Miyashiro CS, Hamoudi S. Aqueous Acetamiprid Degradation Using Combined Ultrasonication and Photocatalysis Under Visible Light. WATER, AIR, AND SOIL POLLUTION 2022; 233:401. [PMID: 36168646 PMCID: PMC9508044 DOI: 10.1007/s11270-022-05867-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Acetamiprid (ACE), a neonicotinoid pesticide widely used in pest control, was found in high concentrations in soils, rivers, and lakes. In the present study, ACE degradation was investigated using visible light driven photocatalysis over nitrogen-graphene oxide (N-GO) and palladium-graphene oxide (Pd-GO)-doped ZnO photocatalysts combined with ultrasonication implemented either as a pretreatment (sonolysis) or operated simultaneously with photocatalysis (sonophocatalysis). The effectiveness of the two ACE degradation processes was determined separately. The sonolysis pretreatment allowed reaching almost 40% acetamiprid conversion within 30 min of reaction. Pursuing with the photodegradation reaction in the presence of N-GO-ZnO and Pd-GO-ZnO resulted in a maximum conversion of 98% of ACE within 5 h. As for the sonophotocatalysis process, the reaction time was shortened from 5 to 2 h with 100% acetamiprid conversion. In addition, the photocatalysts were shown to keep their activity even after 5 sonophotocatalytic cycles, thus proving their reusability. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11270-022-05867-4.
Collapse
Affiliation(s)
- Carolina Sayury Miyashiro
- Department of Soil Sciences & Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr’Eau, Université Laval, Québec, G1V 0A6 Canada
| | - Safia Hamoudi
- Department of Soil Sciences & Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr’Eau, Université Laval, Québec, G1V 0A6 Canada
| |
Collapse
|
13
|
Palladium and Graphene Oxide Doped ZnO for Aqueous Acetamiprid Degradation under Visible Light. Catalysts 2022. [DOI: 10.3390/catal12070709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acetamiprid is a neonicotinoid insecticide widely used in pest control. In recent years, it has been considered as a contaminant in groundwater, lakes, and rivers. Photocatalysis under visible light radiation proved to be an effective process for getting rid of several organic pollutants. In the present work, photodegradation of aqueous acetamiprid was investigated over bare zinc oxide (ZnO) photocatalyst as well as ZnO doped with either palladium or palladium combined with graphene oxide. Both ZnO and doped-ZnO were synthesized via a microwave-assisted hydrothermal procedure. The obtained photocatalysts were characterized using different techniques. After 5 h of reaction at ambient temperature under visible light irradiation, acetamiprid conversions attained ca. 38, 82, and 98% in the presence of bare ZnO, Pd-doped ZnO and Pd-GO-doped ZnO photocatalysts, respectively, thus demonstrating the positive effect of Pd- and GO-doping on the photocatalytic activity of ZnO. In addition, Pd-GO-doped ZnO was shown to keep its activity even when it is recycled five times, thus proving its stability in the reaction medium.
Collapse
|
14
|
Adsorption Kinetics of Imidacloprid, Acetamiprid and Methomyl Pesticides in Aqueous Solution onto Eucalyptus Woodchip Derived Biochar. MINERALS 2022. [DOI: 10.3390/min12050528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This work reports the application of a biochar (BC) derived from eucalyptus wood chips to remove pesticides (imidacloprid, acetamiprid and methomyl) from water. The pseudo-second order kinetic adsorption model is the best fit describing the adsorption of pesticides on BC. Furthermore, the Langmuir model correlated well with the adsorption isotherm data for acetamiprid and methomyl, while the Freundlich model was selected to explain the adsorption of imidacloprid on BC. The maximum adsorption capacities for methomyl, imidacloprid and acetamiprid on the BC material are 32.42, 14.75 and 4.87 mg g−1, respectively. The highest adsorption capacity of methomyl on the BC surface could be the result of multilayer adsorption suggested by the adsorption isotherm studies, with imidacloprid (or acetamiprid) monolayer being adsorbed on the BC surface. The structure, functional groups of pesticides, including their polarity, all played an important role contributing to the performance of biochar sorbent. Preferable interactions between the studied pesticides and the BC surface may include π-π interactions and hydrogen bonding. The steric aromatic entity in adsorbed imidacloprid and acetamiprid on the BC surface may hinder the possibility of other pesticide molecules approaching the available sorption sites on the surface.
Collapse
|
15
|
Behavioural Responses and Mortality of Mozambique Tilapia Oreochromis mossambicus to Three Commonly Used Macadamia Plantation Pesticides. WATER 2022. [DOI: 10.3390/w14081257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The use of pesticides in agricultural systems may have deleterious effects on surrounding environments. Aquatic systems are no exception and are increasingly polluted through the leaching of pesticides from agricultural activities. However, the pesticide pollution effects on key aquatic species have not been studied in many regions. In southern Africa, increasing pesticide use associated with macadamia tree Macadamia integrifolia farming presents a growing risk to surrounding aquatic ecosystems. This study assessed behavioural responses of an important and widely-distributed freshwater fish, Mozambique tilapia Oreochromis mossambicus, following exposure to three commonly used macadamia pesticides (i.e., Karate Zeon 10 CS, Mulan 20 SP, Pyrinex 250 CS) at different concentrations (0.7–200 µL, 0.3–1000 mg, and 0.7–8750 µL, respectively) over 24 h. Behavioural responses, i.e., swimming erratically, surfacing, vertical positioning, loss of equilibrium, being motionless and mortality were observed after pesticides exposure. Lethal dose 50 (LD50) values of Karate Zeon 10 CS, Mulan 20 SP and Pyrinex 250 CS were 2.1 µL (per water litre dilution—WLD), 5.2 mg (WLD) and 21.5 µL (WLD), respectively. These concentrations are therefore expressed as a maximal threshold usage in the environment around macadamia farms and a minimum distance of the plantations to water systems should be considered. Further studies should examine effects on other fish species and aquatic invertebrates to inform on pesticide pollution threats and mitigation plans for the region.
Collapse
|
16
|
Hathout HMR, Sobhy HM, Abou-Ghanima S, El-Garawani IM. Ameliorative role of ascorbic acid on the oxidative stress and genotoxicity induced by acetamiprid in Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55089-55101. [PMID: 34121161 DOI: 10.1007/s11356-021-14856-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
On juveniles of Oreochromis niloticus, the protective potential of ascorbic acid (Asc) against oxidative stress and genotoxicity induced by acetamiprid (Aceta) sub-lethal concentrations was investigated in this study. Fishes were divided into six groups and exposed to either Asc (50 ppm), 10 and 20 ppm Aceta, 10 ppm (Aceta)+Asc, 20 ppm (Aceta)+Asc, or the unexposed control group. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and their transcripts were assessed. DNA damage in erythrocytes, hepatocytes, and gill cells, in addition to the mitotic index (MI), and the existence of erythrocytic nuclear abnormalities (ENAs) were performed. The results showed that concentrations of Aceta (10 and 20 ppm) induced oxidative stress by altering the antioxidant enzyme activities and transcripts. There were genotoxic effects of Aceta exposure showed by the significant (P < 0.05) increase in DNA-damaged cells and ENA, meanwhile a decrease in MI. Co-exposure with Asc showed significant alleviations of oxidative status and genotoxicity. Thus, results suggest that Asc-combined exposure could be the effective treatment against Aceta-induced oxidative stress accompanied with genotoxicity in O. niloticus.
Collapse
Affiliation(s)
- Heba M R Hathout
- Department of Natural Resources, Faculty of African Post Graduate Studies, Cairo University, Cairo, 12613, Egypt
| | - Hassan M Sobhy
- Department of Natural Resources, Faculty of African Post Graduate Studies, Cairo University, Cairo, 12613, Egypt
| | | | - Islam M El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
| |
Collapse
|
17
|
Douny C, Zoumenou YMBG, Aïna M, Toko II, Igout A, Guedegba L, Chabi SK, Kestemont P, Scippo ML. Contamination of Water, Sediment and Fish with Residues of Pesticides Used in Cotton Production in Northern Benin. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:367-385. [PMID: 34518919 DOI: 10.1007/s00244-021-00888-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
In Northern Benin, insecticides are used for cotton production. These insecticides can be easily transferred to water ponds close to cotton fields. To monitor insecticides levels in water, sediments and fish samples from water ponds, a GC-MS analytical method was developed to detect residues of endosulfan, DDT and its parent compounds, isomers of HCH, pyrethroids and chlorpyrifos. In addition, the influence of storage conditions of water sample on pesticides determination performance has been studied. The limits of quantification were between 0.16 and 0.32 µg/L in water, 0.5 and 1 μg/kg in sediment and 1 and 2 μg/kg in fish. Twenty samples of water, twenty of sediments and forty of fish were taken in four different water reservoirs at five different times. Alpha-endosulfan, lambda-cyhalothrin and permethrin were identified in sediment while p,p'-DDE, α- and β-HCH, chlorpyrifos, lambda-cyhalothrin and permethrin were detected in fish. Only organochlorines were determined in water because of the lack of recovery of pyrethroids from water stored in glass. Concentrations of insecticide residues in sediment for all water ponds ranged from non-detected to 101 µg/kg and from non-detected to 36 µg/kg in fish. Preliminary risk assessment for consumers of the North of Benin showed that the Estimated Daily Intakes were lower than the Acceptable Daily Intakes and Acute Reference Doses for all consumers. However, as one fish can be contaminated by five pesticide residues at the same time, it is not possible to exclude a risk for the consumer due to his exposure to mixtures of pesticides.
Collapse
Affiliation(s)
- Caroline Douny
- Laboratory of Food Analysis, Department of Food Science, FARAH-Veterinary Public Health, University of Liège, Liège, Belgium.
| | - Y M Berny's G Zoumenou
- Laboratory of Food Analysis, Department of Food Science, FARAH-Veterinary Public Health, University of Liège, Liège, Belgium
- Laboratoire des Sciences et Techniques de l'Eau, Ecole Polytechnique d'Abomey-Calavi, Université d'Abomey-Calavi, Godomey, Benin
| | - Martin Aïna
- Laboratoire des Sciences et Techniques de l'Eau, Ecole Polytechnique d'Abomey-Calavi, Université d'Abomey-Calavi, Godomey, Benin
| | - Ibrahim Imorou Toko
- Laboratoire de Recherche en Aquaculture et Écotoxicologie Aquatique (LaRAEAq), Faculté d'Agronomie, Université de Parakou, Parakou, Benin
| | - Ahmed Igout
- Department of Biomedical and Preclinical Sciences, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Léa Guedegba
- Unit of Research in Environmental and Evolutionary Biology, Laboratory of Ecophysiology and Ecotoxicology, University of Namur, Namur, Belgium
| | - Sika K Chabi
- Laboratoire de Contrôle et de Sécurité Sanitaire Des Aliments (LCSSA), Cotonou, Benin
| | - Patrick Kestemont
- Unit of Research in Environmental and Evolutionary Biology, Laboratory of Ecophysiology and Ecotoxicology, University of Namur, Namur, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Science, FARAH-Veterinary Public Health, University of Liège, Liège, Belgium
| |
Collapse
|
18
|
Guedegba NL, Imorou Toko I, Ben Ammar I, François L, Oreins N, Palluel O, Mandiki SNM, Jauniaux T, Porcher JM, Scippo ML, Kestemont P. Chronic effects of a binary insecticide Acer 35 EC on Nile tilapia Oreochromis niloticus through a multi-biomarker approach. CHEMOSPHERE 2021; 273:128530. [PMID: 33268085 DOI: 10.1016/j.chemosphere.2020.128530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
Acer 35 EC is a widely used insecticide (a binary mixture of lambda-cyhalothrin and acetamiprid) in pest control in many West African countries, particularly in the cotton culture in north Benin. The aim of this study was to investigate the chronic effects of Acer 35 EC on Nile tilapia Oreochromis niloticus juveniles using a multi-biomarker approach under laboratory conditions. For this purpose, fish were exposed to sublethal concentrations of Acer 35 EC (0, 1 and 10% of LC50- 96 h value). After 28 and 56 days of exposure, several biomarkers were measured in males and females including enzymatic activities related to detoxification and oxidative stress, neurotoxicity and immune responses, sex steroid hormones (testosterone, 17β-estradiol and 11-keto-testosterone) and histological alterations of liver, kidney and gonads. An Integrated Biomarker Response (IBR) was then calculated. The results showed a reduction of cholinesterase activity in muscles, and intercellular superoxide anion production in both sexes. Female steroidogenesis and gametogenesis were affected, especially testosterone levels and oocyte growth. More alterations were observed in liver after exposure to Acer 35 EC. In both sexes, IBR values were higher after 56 days than after 28 days of exposure. In conclusion, based on a large set of biomarkers and IBR values, the chronic exposure to low doses of insecticide Acer 35 EC seems to impair different physiological functions in Nile tilapia juveniles on a time-dependent manner, with a stronger impact on females than on males.
Collapse
Affiliation(s)
- Nicresse Léa Guedegba
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life-Earth-Environment (ILEE), University of Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium; Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61, Parakou, Benin.
| | - Ibrahim Imorou Toko
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61, Parakou, Benin.
| | - Imen Ben Ammar
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life-Earth-Environment (ILEE), University of Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium.
| | - Loïc François
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life-Earth-Environment (ILEE), University of Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium.
| | - Noëlle Oreins
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life-Earth-Environment (ILEE), University of Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium.
| | - Olivier Palluel
- Institut National de L'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life-Earth-Environment (ILEE), University of Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium.
| | - Thierry Jauniaux
- Department of General Pathology, Faculty of Veterinary Medicine, University of Liège, Belgium.
| | - Jean-Marc Porcher
- Institut National de L'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Fundamental and Applied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, 10 Avenue de Cureghem, Sart-Tilman, B-4000, Liège, Belgium.
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life-Earth-Environment (ILEE), University of Namur, 61 Rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
19
|
|
20
|
Selahle SK, Waleng NJ, Mpupa A, Nomngongo PN. Magnetic Solid Phase Extraction Based on Nanostructured Magnetic Porous Porphyrin Organic Polymer for Simultaneous Extraction and Preconcentration of Neonicotinoid Insecticides From Surface Water. Front Chem 2020; 8:555847. [PMID: 33195047 PMCID: PMC7525214 DOI: 10.3389/fchem.2020.555847] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/17/2020] [Indexed: 12/07/2022] Open
Abstract
In this study, a magnetic porphyrin-based porous organic polymer (MP-POP) nanocomposite was successfully synthesized according previous studies and applied as an adsorbent for simultaneous extraction and preconcentration of four neonicotinoid insecticides from surface river water. The MP-POP was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS), N2-adsorption/desorption analysis, Fourier Transform infrared spectroscopy (FTIR). The neonicotinoid insecticides were quantified using high performance chromatography coupled with diode array detector (HPLC-DAD). The MP-POP shown to have a high surface area, highly porous structure and strong affinity toward the investigated analytes. The adsorption capacities were 99.0, 85.5, 90.0, and 79.4 mg g-1 for acetamiprid, clothiandin, thiacloprid and imidacloprid, respectively. The influential parameters affecting the magmatic μ-solid phase extraction (M-μ-SPE) procedure were investigated using fractional factorial design and surface response methodology (RSM). Under optimum conditions, the method exhibited relatively low limit of detection in the range of 1.3-3.2 ng L-1, limit of quantification in the range of 4.3-11 ng L-1 and wide linearity (up to 600 μg L-1). The intraday and interday precision, expressed as the relative standard deviation (RSD) were <5%. The percentage recoveries for the four target analytes ranged from 91 to 99.3% for the spiked river water samples. The method was applied for determination of neonicotinoids in river water samples and concentrations ranged from 0 to 190 ng L-1.
Collapse
Affiliation(s)
- Shirley K. Selahle
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Doornfontein, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chairs Initiative Chair: Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - Ngwako J. Waleng
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Doornfontein, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chairs Initiative Chair: Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - Anele Mpupa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Doornfontein, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chairs Initiative Chair: Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - Philiswa N. Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Doornfontein, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chairs Initiative Chair: Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
21
|
Abdelfatah RM, Mahmoud HM, Elsayed MA, Hegazy AM. Resolution of the spectra of acetamiprid, flutolanil and etofenprox residues for their analysis in tomato fruits. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118444. [PMID: 32413719 DOI: 10.1016/j.saa.2020.118444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
This study involves spectroscopic analysis of pesticide residues extracted from tomato, one of the most freshly eaten fruit all over the world. In Egypt, tomato can be protected against pests infection by concomitantly spraying three pesticides namely, acetamiprid (AC), flutolanil (FL) and etofenprox (ET). The three pesticides have been simply and efficiently extracted from the fruits and analyzed by applying the following methods: Differential dual wavelength method, where AC, FL and ET were determined by amplitudes subtraction at 264.8-277 nm, 229-241 nm and 225.6 and 243 nm, respectively after obtaining their first derivative spectra. Modified ratio difference method, where the difference in amplitude values at 261.2 and 241 nm, 273.4 and 236.8 nm and 269.8 and 232 nm was used for determination of AC, FL and ET, respectively. The third method includes recording the amplitudes at 284, 293 and 224 nm for AC, FL and ET, respectively, after mean centering of their spectra. The linear ranges were 1-11, 0.2-2.5 and 0.2-2.5 μg mL-1 for AC, FL and ET, respectively. The methods were proven to be green regarding the Eco-Scale calculations. The methods were efficiently applied for determination of AC, FL and ET in their commercial forms and field trials, where the residues were approximately equal to or below their specified maximum residue limits.
Collapse
Affiliation(s)
- Rehab M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Egypt.
| | - Hamada M Mahmoud
- Department of Environmental Sciences and Industrial Development, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Egypt; Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Mohamed A Elsayed
- Department of analytical Chemistry, Faculty of Pharmacy, Fayoum University, Egypt
| | - Amira M Hegazy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Egypt
| |
Collapse
|
22
|
Houndji MAB, Imorou Toko I, Guedegba L, Yacouto E, Agbohessi PT, Mandiki SNM, Scippo ML, Kestemont P. Joint toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on African catfish ( Clarias gariepinus) juveniles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:669-676. [PMID: 32396780 DOI: 10.1080/03601234.2020.1763712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study was designed to evaluate the acute toxicity of acetamiprid (neonicotinoid) and lambda-cyhalothrin (pyrethroid), individually and mixtures (Act-LCh mixture and Acer 35 EC®, 15 g/L of acetamiprid and 20 g/L of lambda-cyhalothrin) in African catfish juveniles (3.35 ± 0.75 g). The tests were conducted in the laboratory under semi-static conditions according to OECD Guideline 203. Mixture toxicity effects as a function of lethal concentrations were assessed using the additive index (AI) method. Acetamiprid with 96 h-LC50 = 265.7 ppm can be considered to be nontoxic for this species. However, lambda-cyhalothrin was highly toxic to C. gariepinus with 96 h-LC50 = 0.00083 ppm. Acer 35 EC® was less toxic (96 h-LC50 = 0.21 ppm) than the Act-LCh mixture (96 h-LC50 = 0.043 ppm). Marked changes indicating nervous system damage were also recorded. An antagonistic effect was shown for lethal concentrations leading to 5 to 15% mortality in 96 hours (96 h-LC5-15) while an additive effect was obtained for the 96 h-LC20-50. The results indicate that ecological risk assessment of these molecules in aquatic environments should consider their contamination levels. Moreover, particular attention to behavior changes related to their neurotoxicity is recommended for additional monitoring of the negative effects of these insecticides.
Collapse
Affiliation(s)
- Mahugnon A B Houndji
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), Department of Animal Production, Faculty of Agronomy, University of Parakou, Parakou, Benin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Ibrahim Imorou Toko
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), Department of Animal Production, Faculty of Agronomy, University of Parakou, Parakou, Benin
| | - Léa Guedegba
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), Department of Animal Production, Faculty of Agronomy, University of Parakou, Parakou, Benin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Edith Yacouto
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), Department of Animal Production, Faculty of Agronomy, University of Parakou, Parakou, Benin
| | - Prudencio T Agbohessi
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), Department of Animal Production, Faculty of Agronomy, University of Parakou, Parakou, Benin
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Science, Fundamental and Applied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, Liège, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| |
Collapse
|
23
|
Guedegba NL, Imorou Toko I, Agbohessi PT, Zoumenou B, Douny C, Mandiki SNM, Schiffers B, Scippo ML, Kestemont P. Comparative acute toxicity of two phytosanitary molecules, lambda-cyhalothrin and acetamiprid, on Nile Tilapia ( Oreochromis Niloticus) juveniles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:580-589. [PMID: 31266377 DOI: 10.1080/03601234.2019.1616986] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study aimed to compare the toxicity for fish of two active ingredients (lambda-cyhalothrin-20 g L-1, a pyrethroid, and acetamiprid-15 g L-1, a neonicotinoid) which are components of a commercial insecticide (Acer 35 EC) used in cotton crop in many West African countries. The juveniles of Oreochromis niloticus (4.01 ± 0.34 g, mean body weight) were exposed for 96 h to increasing concentrations of active ingredients (lambda-cyhalothrin and acetamiprid) or a mixture similar to Acer 35 EC (composed by 20 g of chemical compound lambda-cyhalothrin and 15 g of acetamiprid dissolved in 1 L of acetone). The experiments were carried out under controlled conditions in aquaria according to OECD Guidelines. During the experiments, the behavioral responses (loss of balance, color change, hyperactivity, etc.) that usually precede death were observed in exposed fish. Mortalities were recorded in each aquarium and the LC50-96h of each chemical was determined. The LC50-96h obtained were respectively 0.1268, 0.0029, 182.9 and 0.5685 ppm for Acer 35 EC, lambda-cyhalothrin, acetamiprid and mixture. All insecticides used in this study had profound impact on Nile tilapia behavior which may confirm the neurotoxicity of each single active compound as well as of their mixture.
Collapse
Affiliation(s)
- Nicresse L Guedegba
- a Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur , Namur , Belgium
- b Faculty of Agronomy , Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou , Parakou , Benin
| | - Ibrahim Imorou Toko
- b Faculty of Agronomy , Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou , Parakou , Benin
| | - Prudencio T Agbohessi
- b Faculty of Agronomy , Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou , Parakou , Benin
| | - Berny's Zoumenou
- d Laboratory of Food Analysis, Fundamental and Applied Research for Animals & Health (FARAH) , Veterinary Public Health, University of Liège , Liège , Belgium
| | - Caroline Douny
- d Laboratory of Food Analysis, Fundamental and Applied Research for Animals & Health (FARAH) , Veterinary Public Health, University of Liège , Liège , Belgium
| | - Syaghalirwa N M Mandiki
- a Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur , Namur , Belgium
| | - Bruno Schiffers
- c Pesticide Science Laboratory , Gembloux Agro-Bio Tech (ULiège) , Gembloux , Belgium
| | - Marie-Louise Scippo
- d Laboratory of Food Analysis, Fundamental and Applied Research for Animals & Health (FARAH) , Veterinary Public Health, University of Liège , Liège , Belgium
| | - Patrick Kestemont
- a Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur , Namur , Belgium
| |
Collapse
|