1
|
Dannemiller KC, Conrad LA, Haines SR, Huang YJ, Marr LC, Siegel JA, Hassan S, King JC, Prussin AJ, Shamblin A, Perzanowski MS. Indoor bioaerosols and asthma: Overview, implications, and mitigation strategies. J Allergy Clin Immunol 2024:S0091-6749(24)01279-X. [PMID: 39613110 DOI: 10.1016/j.jaci.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Aerosolized particles with a biological origin are called bioaerosols. Bioaerosols from plants, animals, fungi, bacteria, and viruses are an important class of environmental exposures that are clinically relevant to asthma. However, there are important differences in the pathways by which various bioaerosols affect asthma. Additionally, differences in individual susceptibility to different bioaerosols affect exposure reduction and mitigation strategies. Strategies to reduce exposures to potential triggers of asthma are routinely considered as part of standard clinical care and asthma management guidelines. Ventilation standards in buildings may reduce bioaerosol exposure for everyone, but they are not necessarily designed specifically to protect patients with asthma. Direct measurement of a bioaerosol is not generally necessary for practical applications where the relevant source of the bioaerosol has been identified. Different types of bioaerosols can be controlled with similar strategies that prioritize source control (eg, reducing resuspension, integrated pest management, controlling moisture), and these can be supplemented by enhancing air filtration. The goal of this review is to summarize the latest information on bioaerosols, including allergens, fungi, bacteria, and viruses, that have been associated with adverse asthma outcomes and to discuss mitigation options.
Collapse
Affiliation(s)
- Karen C Dannemiller
- Civil, Environmental, and Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, Ohio; Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio; Sustainability Institute, College of Engineering, The Ohio State University, Columbus, Ohio.
| | - Laura A Conrad
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Sarah R Haines
- Department of Civil & Mineral Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario
| | - Yvonne J Huang
- Department of Medicine (Division of Pulmonary and Critical Care Medicine), University of Michigan, Ann Arbor, Mich; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Mich
| | - Linsey C Marr
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, Va
| | - Jeffrey A Siegel
- Department of Civil & Mineral Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario
| | - Sumaiya Hassan
- Department of Civil & Mineral Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario
| | - Jon C King
- Civil, Environmental, and Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, Ohio; Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio; Environmental Science Graduate Program, The Ohio State University, Columbus, Ohio
| | - Aaron J Prussin
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, Va
| | - Austin Shamblin
- Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio; Infectious Diseases Institute Genomic and Microbiology Solutions (IDI-GEMS), The Ohio State University, Columbus, Ohio
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
2
|
Kumar Chhetry BS, Tada T, Dewangan KN, Kumar P. Evaluation of dust and endotoxin exposure among rice mill workers in northeast India. Toxicon 2024; 248:108050. [PMID: 39068994 DOI: 10.1016/j.toxicon.2024.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Exposure to particulate matter and endotoxin can lead to acute and chronic respiratory problems in workers. A study was conducted to quantify particulate matter with an aerodynamic diameter of ≤10 μm (PM10) and endotoxin levels in rice mills in northeast India. Sixty-four PM10 dust samples were collected from eight rice mills at two locations: the feeding and polishing sections for two varieties of paddy: Ranjit and Hali. Endotoxin exposures were analyzed using the Limulus Amoebocyte Lysate (LAL) gel clot test. The results showed that the geometric mean of the 8-h time-weighted average (TWA) PM10 dust concentration and endotoxin level in the rice mills were 10.69 mg/m³ and 2.2 EU/m³, respectively. Dust and endotoxin exposure were higher in the feeding section than in the polishing section. Endotoxin exposure in the feeding section during the milling of the Hali variety of paddy was 56.0 % higher than the milling of the Ranjit variety. Additionally, endotoxin exposure during the milling of the Hali variety was 24.2 % higher than that of the milling of the Ranjit variety in the polishing section. The dust exposure in the rice mills was 194.5 % higher than the standards set up by the United States Environmental Protection Agency. However, the exposure to endotoxin in rice mills was approximately 40.10 times below the recommended limit of 90 EU/m3.
Collapse
Affiliation(s)
- B Surya Kumar Chhetry
- Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Itanagar, 791109, Arunachal Pradesh, India
| | - Tapi Tada
- Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Itanagar, 791109, Arunachal Pradesh, India
| | - K N Dewangan
- Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Itanagar, 791109, Arunachal Pradesh, India.
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India; College of Life Science & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Li Y, Schütte W, Dekeukeleire M, Janssen C, Boon N, Asselman J, Lebeer S, Spacova I, De Rijcke M. The immunostimulatory activity of sea spray aerosols: bacteria and endotoxins activate TLR4, TLR2/6, NF-κB and IRF in human cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171969. [PMID: 38547998 DOI: 10.1016/j.scitotenv.2024.171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Frequent exposure to sea spray aerosols (SSA) containing marine microorganisms and bioactive compounds may influence human health. However, little is known about potential immunostimulation by SSA exposure. This study focuses on the effects of marine bacteria and endotoxins in SSA on several receptors and transcription factors known to play a key role in the human innate immune system. SSA samples were collected in the field (Ostend, Belgium) or generated in the lab using a marine aerosol reference tank (MART). Samples were characterized by their sodium contents, total bacterial counts, and endotoxin concentrations. Human reporter cells were exposed to SSA to investigate the activation of toll-like receptor 4 (TLR4) in HEK-Blue hTLR4 cells and TLR2/6 in HEK-Blue hTLR2/6 cells, as well as the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRF) in THP1-Dual monocytes. These responses were then correlated to the total bacterial counts and endotoxin concentrations to explore dose-effect relationships. Field SSA contained from 3.0 × 103 to 6.0 × 105 bacteria/m3 air (averaging 2.0 ± 1.9 × 105 bacteria/m3 air) and an endotoxin concentration ranging from 7 to 1217 EU/m3 air (averaging 389 ± 434 EU/m3 air). In contrast, MART SSA exhibited elevated levels of total bacterial count (from 2.0 × 105 to 2.4 × 106, averaging 7.3 ± 5.5 × 105 cells/m3 air) and endotoxin concentration from 536 to 2191 (averaging 1310 ± 513 EU/m3 air). SSA samples differentially activated TLR4, TLR2/6, NF-κB and IRF. These immune responses correlated dose-dependently with the total bacterial counts, endotoxin levels, or both. This study sheds light on the immunostimulatory potential of SSA and its underlying mechanisms, highlighting the need for further research to deepen our understanding of the health implications of SSA exposure.
Collapse
Affiliation(s)
- Yunmeng Li
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400 Ostend, Belgium; Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Wyona Schütte
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400 Ostend, Belgium
| | - Max Dekeukeleire
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Colin Janssen
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Irina Spacova
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Maarten De Rijcke
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400 Ostend, Belgium.
| |
Collapse
|
4
|
Zhang L, Yao M. Ambient particle composition and toxicity in 31 major cities in China. FUNDAMENTAL RESEARCH 2024; 4:505-515. [PMID: 38933208 PMCID: PMC11197799 DOI: 10.1016/j.fmre.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Current assessment of air quality or control effectiveness is solely based on particulate matter (PM) mass levels, without considering their toxicity differences in terms of health benefits. Here, we collected a total of 465 automobile air conditioning filters from 31 major Chinese cities to study the composition and toxicity of PM at a national scale. Dithiothreitol assay showed that normalized PM toxicity (NIOG) in different Chinese cities varied greatly from the highest 4.99 × 10-3 for Changsha to the lowest 7.72 × 10-4 for Yinchuan. NIOG values were observed to have significant correlations with annual PM10 concentration (r = -0.416, p = 0.020) and some PM components (total fungi, SO4 2- and calcium element). The concentrations of different elements and water-soluble ions in PM also varied by several orders of magnitude for 31 cities in China. Endotoxin concentrations in PM analyzed using limulus amebocyte lysate assay ranged from 2.88 EU/mg PM (Hangzhou) to 62.82 EU/mg PM (Shijiazhuang) among 31 Chinese cities. Besides, real-time qPCR revealed 10∼100-fold differences in total bacterial and fungal levels among 31 Chinese cities. The concentrations of chemical (water soluble ions and trace elements) and biological (fungi, bacteria and endotoxin) components in PM were found to be significantly correlated with some meteorological factors and gaseous pollutants such as SO2. Our results have demonstrated that PM toxicity from 31 major cities varied greatly up to 6.5 times difference; and components such as fungi and SO4 2- in PM could play important roles in the observed PM toxicity. The city-specific air pollution control strategy that integrates toxicity factors should be enacted in order to maximize health and economic co-benefits. This work also provides a comprehensive view on the overall PM pollution situation in China.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Yu PR, Tseng CY, Hsu CC, Chen JH, Lin HH. In vitro and in vivo protective potential of quercetin-3-glucuronide against lipopolysaccharide-induced pulmonary injury through dual activation of nuclear factor-erythroid 2 related factor 2 and autophagy. Arch Toxicol 2024; 98:1415-1436. [PMID: 38436694 DOI: 10.1007/s00204-024-03691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
In vitro and in vivo models of lipopolysaccharide (LPS)-induced pulmonary injury, quercetin-3-glucuronide (Q3G) has been previously revealed the lung-protective potential via downregulation of inflammation, pyroptotic, and apoptotic cell death. However, the upstream signals mediating anti-pulmonary injury of Q3G have not yet been clarified. It has been reported that concerted dual activation of nuclear factor-erythroid 2 related factor 2 (Nrf2) and autophagy may prove to be a better treatment strategy in pulmonary injury. In this study, the effect of Q3G on antioxidant and autophagy were further investigated. Noncytotoxic doses of Q3G abolished the LPS-caused cell injury, and reactive oxygen species (ROS) generation with inductions in Nrf2-antioxidant signaling. Moreover, Q3G treatment repressed Nrf2 ubiquitination, and enhanced the association of Keap1 and p62 in the LPS-treated cells. Q3G also showed potential in inducing autophagy, as demonstrated by formation of acidic vesicular organelles (AVOs) and upregulation of autophagy factors. Next, the autolysosomes formation and cell survival were decreased by Q3G under pre-treatment with a lysosome inhibitor, chloroquine (CQ). Furthermore, mechanistic assays indicated that anti-pulmonary injury effects of Q3G might be mediated via Nrf2 signaling, as confirmed by the transfection of Nrf2 siRNA. Finally, Q3G significantly alleviated the development of pulmonary injury in vivo, which may result from inhibiting the LPS-induced lung dysfunction and edema. These findings emphasize a toxicological perspective, providing new insights into the mechanisms of Q3G's protective effects on LPS-induced pulmonary injury and highlighting its role in dual activating Nrf2 and autophagy pathways.
Collapse
Affiliation(s)
- Pei-Rong Yu
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City, 40201, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan
| | - Hui-Hsuan Lin
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan.
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung City, 40201, Taiwan.
| |
Collapse
|
6
|
Malmgren R, Välimaa H, Oksanen L, Sanmark E, Nikuri P, Heikkilä P, Hakala J, Ahola A, Yli-Urpo S, Palomäki V, Asmi E, Sofieva S, Rostedt A, Laitinen S, Romantschuk M, Sironen T, Atanasova N, Paju S, Lahdentausta-Suomalainen L. High-volume evacuation mitigates viral aerosol spread in dental procedures. Sci Rep 2023; 13:18984. [PMID: 37923796 PMCID: PMC10624893 DOI: 10.1038/s41598-023-46430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
Dental healthcare personnel (DHCP) are subjected to microbe-containing aerosols and splatters in their everyday work. Safer work conditions must be developed to ensure the functioning of the healthcare system. By simulating dental procedures, we aimed to compare the virus-containing aerosol generation of four common dental instruments, and high-volume evacuation (HVE) in their mitigation. Moreover, we combined the detection of infectious viruses with RT-qPCR to form a fuller view of virus-containing aerosol spread in dental procedures. The air-water syringe produced the highest number of aerosols. HVE greatly reduced aerosol concentrations during procedures. The air-water syringe spread infectious virus-containing aerosols throughout the room, while other instruments only did so to close proximity. Additionally, infectious viruses were detected on the face shields of DHCP. Virus genomes were detected throughout the room with all instruments, indicating that more resilient viruses might remain infectious and pose a health hazard. HVE reduced the spread of both infectious viruses and viral genomes, however, it did not fully prevent them. We recommend meticulous use of HVE, a well-fitting mask and face shields in dental procedures. We advise particular caution when operating with the air-water syringe. Due to limited repetitions, this study should be considered a proof-of-concept report.
Collapse
Affiliation(s)
- Rasmus Malmgren
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland.
| | - Hanna Välimaa
- Department of Virology, University of Helsinki, Haartmanninkatu 3, 00014, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
- Meilahti Vaccine Research Center MeVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Annankatu 32, 00029, Helsinki, Finland
| | - Lotta Oksanen
- Faculty of Medicine, University of Helsinki, Haartmaninkatu 4, 00014, Helsinki, Finland
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029, Helsinki, Finland
| | - Enni Sanmark
- Faculty of Medicine, University of Helsinki, Haartmaninkatu 4, 00014, Helsinki, Finland
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029, Helsinki, Finland
| | - Petra Nikuri
- Helsinki University Hospital, 00029, Helsinki, Finland
| | - Paavo Heikkilä
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland
| | - Jani Hakala
- VTT Technical Research Centre of Finland, Visiokatu 4, 33101, Tampere, Finland
| | - Aleksi Ahola
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
| | - Simeoni Yli-Urpo
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
| | - Ville Palomäki
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
| | - Eija Asmi
- Atmospheric Composition Research, Finnish Meteorological Institute, Erik Palménin Aukio 1, 00560, Helsinki, Finland
| | - Svetlana Sofieva
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland
- Atmospheric Composition Research, Finnish Meteorological Institute, Erik Palménin Aukio 1, 00560, Helsinki, Finland
| | - Antti Rostedt
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland
| | - Sirpa Laitinen
- Occupational Safety, Finnish Institute of Occupational Health, Neulaniementie 4, 70210, Kupio, Finland
| | - Martin Romantschuk
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Haartmanninkatu 3, 00014, Helsinki, Finland
- Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, 00014, Helsinki, Finland
| | - Nina Atanasova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland
- Atmospheric Composition Research, Finnish Meteorological Institute, Erik Palménin Aukio 1, 00560, Helsinki, Finland
| | - Susanna Paju
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
| | - Laura Lahdentausta-Suomalainen
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
| |
Collapse
|
7
|
Agarwal V, Yue Y, Zhang X, Feng X, Tao Y, Wang J. Spatial and temporal distribution of endotoxins, antibiotic resistance genes and mobile genetic elements in the air of a dairy farm in Germany. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122404. [PMID: 37625772 DOI: 10.1016/j.envpol.2023.122404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Antimicrobial resistance (AMR) is a serious issue that is continuously growing and spreading, leading to a dwindling number of effective treatments for infections that were easily treatable with antibiotics in the past. Animal farms are a major hotspot for AMR, where antimicrobials are often overused, misused, and abused, in addition to overcrowding of animals. In this study, we investigated the risk of AMR transmission from a farm to nearby residential areas by examining the overall occurrence of endotoxins, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) in the air of a cattle farm. We assessed various factors, including the season and year, day and nighttime, and different locations within the farm building and its vicinity. The most abundant ARGs detected were tetW, aadA1, and sul2, genes that encode for resistances towards antibiotics commonly used in veterinary medicine. While there was a clear concentration gradient for endotoxin from the middle of the farm building to the outside areas, the abundance of ARGs and MGEs was relatively uniform among all locations within the farm and its vicinity. This suggests that endotoxins preferentially accumulated in the coarse particle fraction, which deposited quickly, as opposed to the ARGs and MGEs, which might concentrate in the fine particle fraction and remain longer in the aerosol phase. The occurrence of the same genes found in the air samples and in the manure indicated that ARGs and MGEs in the air mostly originated from the cows, continuously being released from the manure to the air. Although our atmospheric dispersion model indicated a relatively low risk for nearby residential areas, farm workers might be at greater risk of getting infected with resistant bacteria and experiencing overall respiratory tract issues due to continuous exposure to elevated concentrations of endotoxins, ARGs and MGEs in the air of the farm.
Collapse
Affiliation(s)
- V Agarwal
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Y Yue
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - X Zhang
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - X Feng
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Y Tao
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - J Wang
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland.
| |
Collapse
|
8
|
Shen J, Zhao W, Cheng J, Cheng J, Zhao L, Dai C, Fu Y, Li B, Chen Z, Shi D, Li H, Deng Y. Lipopolysaccharide accelerates tryptophan degradation in the ovary and the derivative kynurenine disturbs hormone biosynthesis and reproductive performance. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131988. [PMID: 37418963 DOI: 10.1016/j.jhazmat.2023.131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Lipopolysaccharide (LPS), also known as endotoxin, is a component of the outer membrane of gram-negative bacteria. LPS is released into the surrounding environment during bacterial death and lysis. Due to its chemical and thermal stability, LPS can be detected anywhere and easily exposed to humans and animals. Previous studies have shown that LPS causes hormonal imbalances, ovarian failure, and infertility in mammals. However, the potential mechanisms remain unclear. In this study, we investigated the effects and mechanisms of LPS on tryptophan degradation, both in vivo and in vitro. The effects of kynurenine, a tryptophan derivative, on granulosa cell function and reproductive performance were explored. Results showed that p38, NF-κB, and JNK signaling pathways were involved in LPS-induced Ido1 expressions and kynurenine accumulation. Furthermore, the kynurenine decreased estradiol production, but increased granulosa cell proliferation. In vivo, experiments showed that kynurenine decreased estradiol and FSH production and inhibited ovulation and corpus luteum formation. Additionally, pregnancy and offspring survival rates decreased considerably after kynurenine treatment. Our findings suggest that kynurenine accumulation disrupts hormone secretion, ovulation, corpus luteal formation, and reproductive performance in mammals.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weimin Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinhua Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chaohui Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanfeng Fu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bixia Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Poopedi E, Singh T, Gomba A. Potential Exposure to Respiratory and Enteric Bacterial Pathogens among Wastewater Treatment Plant Workers, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4338. [PMID: 36901349 PMCID: PMC10002314 DOI: 10.3390/ijerph20054338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Wastewater handling has been associated with an increased risk of developing adverse health effects, including respiratory and gastrointestinal illnesses. However, there is a paucity of information in the literature, and occupational health risks are not well quantified. Grab influent samples were analysed using Illumina Miseq 16S amplicon sequencing to assess potential worker exposure to bacterial pathogens occurring in five municipal wastewater treatment plants (WWTPs). The most predominant phyla were Bacteroidota, Campilobacterota, Proteobacteria, Firmicutes, and Desulfobacterota, accounting for 85.4% of the total bacterial community. Taxonomic analysis showed a relatively low diversity of bacterial composition of the predominant genera across all WWTPs, indicating a high degree of bacterial community stability in the influent source. Pathogenic bacterial genera of human health concern included Mycobacterium, Coxiella, Escherichia/Shigella, Arcobacter, Acinetobacter, Streptococcus, Treponema, and Aeromonas. Furthermore, WHO-listed inherently resistant opportunistic bacterial genera were identified. These results suggest that WWTP workers may be occupationally exposed to several bacterial genera classified as hazardous biological agents for humans. Therefore, there is a need for comprehensive risk assessments to ascertain the actual risks and health outcomes among WWTP workers and inform effective intervention strategies to reduce worker exposure.
Collapse
Affiliation(s)
- Evida Poopedi
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg 2000, South Africa
- Department of Clinical Microbiology and Infectious Diseases, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Tanusha Singh
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg 2000, South Africa
- Department of Clinical Microbiology and Infectious Diseases, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Environmental Health, University of Johannesburg, Doornfontein 2028, South Africa
| | - Annancietar Gomba
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg 2000, South Africa
| |
Collapse
|
10
|
Kiss P, de Rooij MMT, Koppelman GH, Boer J, Vonk JM, Vermeulen R, Hogerwerf L, Sterk HAM, Huss A, Smit LAM, Gehring U. Residential exposure to livestock farms and lung function in adolescence - The PIAMA birth cohort study. ENVIRONMENTAL RESEARCH 2023; 219:115134. [PMID: 36563981 DOI: 10.1016/j.envres.2022.115134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND There is a growing interest in the impact of air pollution from livestock farming on respiratory health. Studies in adults suggest adverse effects of livestock farm emissions on lung function, but so far, studies involving children and adolescents are lacking. OBJECTIVES To study the association of residential proximity to livestock farms and modelled particulate matter ≤10 μm (PM10) from livestock farms with lung function in adolescence. METHODS We performed a cross-sectional study among 715 participants of the Dutch prospective PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort study. Relationships of different indicators of residential livestock farming exposure (distance to farms, distance-weighted number of farms, cattle, pigs, poultry, horses and goats within 3 km; modelled atmospheric PM10 concentrations from livestock farms) with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) at age 16 were assessed by linear regression taking into account potential confounders. Associations were expressed per interquartile range increase in exposure. RESULTS Higher exposure to livestock farming was consistently associated with a lower FEV1, but not with FVC among participants living in less urbanized municipalities (<1500 addresses/km2, N = 402). Shorter distances of homes to livestock farms were associated with a 1.4% (0.2%; 2.7%) lower FEV1. Larger numbers of farms within 3 km and higher concentrations of PM10 from livestock farming were associated with a 1.8% (0.8%, 2.9%) and 0.9% (0.4%,1.5%) lower FEV1, respectively. CONCLUSIONS Our findings suggest that higher exposure to livestock farming is associated with a lower FEV1 in adolescents. Replication and more research on the etiologic agents involved in these associations and the underlying mechanisms is needed.
Collapse
Affiliation(s)
- Pauline Kiss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Jolanda Boer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lenny Hogerwerf
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hendrika A M Sterk
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
De Jong WH, Geertsma RE, Borchard G. Regulatory safety evaluation of nanomedical products: key issues to refine. Drug Deliv Transl Res 2022; 12:2042-2047. [PMID: 35908133 PMCID: PMC9358921 DOI: 10.1007/s13346-022-01208-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 12/17/2022]
Abstract
Nanotechnologies enable great opportunities for the development and use of innovative (nano)medicines. As is common for scientific and technical developments, recognized safety evaluation methods for regulatory purposes are lagging behind. The specific properties responsible for the desired functioning also hamper the safety evaluation of such products. Pharmacokinetics determination of the active pharmaceutical ingredient as well as the nanomaterial component is crucial. Due to their particulate nature, nanomedicines, similar to all nanomaterials, are primarily removed from the circulation by phagocytizing cells that are part of the immune system. Therefore, the immune system can be potentially a specific target for adverse effects of nanomedicines, and thus needs special attention during the safety evaluation. This DDTR special issue on the results of the REFINE project on a regulatory science framework for nanomedical products presents a highly valuable body of knowledge needed to address regulatory challenges and gaps in currently available testing methods for the safety evaluation of nanomedicines.
Collapse
Affiliation(s)
- Wim H De Jong
- Formerly (retired) National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Robert E Geertsma
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
12
|
Rasuli L, Dehghani MH, Aghaei M, Mahvi AH, Mubarak NM, Karri RR. Occurrence and fate of bacterial endotoxins in the environment (air, water, wastewater) and remediation technologies: An overview. CHEMOSPHERE 2022; 303:135089. [PMID: 35623438 DOI: 10.1016/j.chemosphere.2022.135089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 12/07/2022]
Abstract
Endotoxins as the outer membrane of most Gram-Negative Bacteria (GNB) and typical toxic biochemical produced by microorganisms are identified as one of the emerging pollutants. These microbial by-products are harmful compounds that can be present in various environments including air, water, soil, and other ecosystems which was discussed in detail in this review. Environmental and occupational exposure caused by endotoxin occurs in water and wastewater treatment plants, industrial plants, farming, waste recovery, and composting facilities. Even though the health risk related to endotoxin injection in intravenous and dialysis are well identified, the harmful effects of ingestion, inhalation, and other way of exposure are not well quantified and there is insufficient information on the potential health risks of endotoxins exposure in water environments, and another exposures. Because of limited studies, the outbreaks of diseases related to endotoxins in the various source of exposure not been well documented. Endotoxin removal from different environments are investigated in this review. The results of various studies have shown that conventional treatment methods have been unable to remove endotoxins from water and wastewater, therefore, monitoring the effectiveness of these processes in controlling this contaminant and also using the appropriate removal method is essential. However, management of water and wastewater treatment processes and the use of advanced processes such as Advanced Oxidation Processes (AOPs) can be effective in monitoring and reducing endotoxin levels during water and wastewater treatment. One of the limitations of endotoxin monitoring is the lack of sufficient information to develop monitoring levels. In addition, the lack of guidelinesand methods of controlling them at high levels may cause irreparable disaster.
Collapse
Affiliation(s)
- Leila Rasuli
- Qazvin University of Medical Science, Qazvin, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
13
|
Dominguez EC, Phandthong R, Nguyen M, Ulu A, Guardado S, Sveiven S, Talbot P, Nordgren TM. Aspirin-Triggered Resolvin D1 Reduces Chronic Dust-Induced Lung Pathology without Altering Susceptibility to Dust-Enhanced Carcinogenesis. Cancers (Basel) 2022; 14:1900. [PMID: 35454807 PMCID: PMC9032113 DOI: 10.3390/cancers14081900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with increased risk being associated with unresolved or chronic inflammation. Agricultural and livestock workers endure significant exposure to agricultural dusts on a routine basis; however, the chronic inflammatory and carcinogenic effects of these dust exposure is unclear. We have developed a chronic dust exposure model of lung carcinogenesis in which mice were intranasally challenged three times a week for 24 weeks, using an aqueous dust extract (HDE) made from dust collected in swine confinement facilities. We also treated mice with the omega-3-fatty acid lipid mediator, aspirin-triggered resolvin D1 (AT-RvD1) to provide a novel therapeutic strategy for mitigating the inflammatory and carcinogenic effects of HDE. Exposure to HDE resulted in significant immune cell influx into the lungs, enhanced lung tumorigenesis, severe tissue pathogenesis, and a pro-inflammatory and carcinogenic gene signature, relative to saline-exposed mice. AT-RvD1 treatment mitigated the dust-induced inflammatory response but did not protect against HDE + NNK-enhanced tumorigenesis. Our data suggest that chronic HDE exposure induces a significant inflammatory and pro-carcinogenic response, whereas treatment with AT-RvD1 dampens the inflammatory responses, providing a strong argument for the therapeutic use of AT-RvD1 to mitigate chronic inflammation.
Collapse
Affiliation(s)
- Edward C. Dominguez
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA; (E.C.D.); (P.T.)
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA;
| | - Matthew Nguyen
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
| | - Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
| | - Stephanie Guardado
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
| | - Stefanie Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
| | - Prue Talbot
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA; (E.C.D.); (P.T.)
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA;
| | - Tara M. Nordgren
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA; (E.C.D.); (P.T.)
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; (M.N.); (A.U.); (S.G.); (S.S.)
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Mucci N, Tommasi E, Chiarelli A, Lulli LG, Traversini V, Galea RP, Arcangeli G. WORKbiota: A Systematic Review about the Effects of Occupational Exposure on Microbiota and Workers' Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1043. [PMID: 35162072 PMCID: PMC8834335 DOI: 10.3390/ijerph19031043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
The characterization of human microbiota and the impact of its modifications on the health of individuals represent a current topic of great interest for the world scientific community. Scientific evidence is emerging regarding the role that microbiota has in the onset of important chronic illnesses. Since individuals spend most of their life at work, occupational exposures may have an impact on the organism's microbiota. The purpose of this review is to explore the influence that different occupational exposures have on human microbiota in order to set a new basis for workers' health protection and disease prevention. The literature search was performed in PubMed, Cochrane, and Scopus. A total of 5818 references emerged from the online search, and 31 articles were included in the systematic review (26 original articles and 5 reviews). Exposure to biological agents (in particular direct contact with animals) was the most occupational risk factor studied, and it was found involved in modifications of the microbiota of workers. Changes in microbiota were also found in workers exposed to chemical agents or subjected to work-related stress and altered dietary habits caused by specific microclimate characteristics or long trips. Two studies evaluated the role of microbiota changes on the development of occupational lung diseases. Occupational factors can interface with the biological rhythms of the bacteria of the microbiota and can contribute to its modifications and to the possible development of diseases. Future studies are needed to better understand the role of the microbiota and its connection with occupational exposure to promote projects for the prevention and protection of global health.
Collapse
Affiliation(s)
- Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Eleonora Tommasi
- Postgraduate Medical Training Programme in Cardiology, University of Perugia, 1 Piazza dell’Università, 06123 Perugia, Italy;
| | - Annarita Chiarelli
- Occupational Medicine Unit, Careggi University Hospital, 50134 Florence, Italy;
| | | | - Veronica Traversini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Raymond Paul Galea
- Faculty of Medicine & Surgery, University of Malta, MSD 2090 Msida, Malta;
- The Malta Postgraduate Medical Training Programme, Mater Dei Hospital Msida, MSD 2090 Msida, Malta
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| |
Collapse
|
15
|
Klar S, Poether DC, Reinert J, Hüttig N, Linsel G, Jäckel U. Application of impedance measurement to investigate in vitro inhalation toxicity of bacteria. J Occup Med Toxicol 2021; 16:32. [PMID: 34384434 PMCID: PMC8359036 DOI: 10.1186/s12995-021-00317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Workers of agriculture and intensive life stock farming are exposed to highly contaminated workplaces. Bioaerosol exposures are suspected to trigger respiratory health effects of the workers. So far, risk evaluation of bioaerosols has been assessed through the infectivity of comprising biological agents that is classified in Europe by four risk groups according to the criteria of Directive 2000/54EC of the European Parliament. However, this directive additionally requires the risk assessment of allergenic and toxigenic effects without further elaboration. The aim of our study was to establish an in vitro screening system that is able to measure inhalative toxic effects of bacteria and their metabolites. METHODS In this study, we analyzed three bacterial toxins and five culture supernatants of selected bacteria with known toxicity as model agents exposed to the lung epithelial cell line NuLi-1. We used electrical cell-substrate impedance sensing (ECIS) method to monitor real-time cell changes and the viability test Prestoblue™. RESULTS We confirmed concentration dependent cytotoxic effects of the selected toxins in NuLi-1 cells over a period of up to 48 h. Each toxin resulted in a different but specific impedance profile over time according to their mode of action, whereas viability assay showed the metabolic activity of the cells at a chosen time point without revealing any information on their mode of action. Furthermore, dose-response-relationships were monitored. Tested model bacteria (Streptoccous pneumoniae, Acinetobacter radioresistens, Aerococcus viridans, Aeromonas hydrophila) reacted according to their expected toxicity except one bacterium (Enterococcus faecalis). The established assays revealed the concentration dependent onset and intensity of bacterial cytotoxicity and the viability of the cells at 24 h and 48 h exposure. CONCLUSION Impedance measurement and the viability assay Prestoblue™ in combination are suitable as sensitive screening methods to analyze toxic potential of bacteria and can therefor support the risk assessment of workplaces in terms of the directive 2000/54/EC.
Collapse
Affiliation(s)
- Stefanie Klar
- Federal Institute for Occupational Safety and Health, Nöldnerstraße 40-42, 10317, Berlin, Germany.
| | - Dierk-Christoph Poether
- Federal Institute for Occupational Safety and Health, Nöldnerstraße 40-42, 10317, Berlin, Germany
| | - Jessica Reinert
- Federal Institute for Occupational Safety and Health, Nöldnerstraße 40-42, 10317, Berlin, Germany
| | - Nicole Hüttig
- Federal Institute for Occupational Safety and Health, Nöldnerstraße 40-42, 10317, Berlin, Germany
| | - Gunter Linsel
- Federal Institute for Occupational Safety and Health, Nöldnerstraße 40-42, 10317, Berlin, Germany
| | - Udo Jäckel
- Federal Institute for Occupational Safety and Health, Nöldnerstraße 40-42, 10317, Berlin, Germany
| |
Collapse
|
16
|
Rasmussen PU, Phan HUT, Frederiksen MW, Madsen AM. A characterization of bioaerosols in biowaste pretreatment plants in relation to occupational health. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:237-248. [PMID: 34171828 DOI: 10.1016/j.wasman.2021.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Occupational exposure to microorganisms can be associated with adverse health outcomes. In this study, we assessed exposure to bioaerosols in two biowaste pretreatment plants in Denmark, which differed in location (city or countryside) and how they were built ('closed-off processes' or 'open processes'). Bioaerosol exposures were characterized by microbial concentrations in personal, stationary, sedimented dust, and hand samples, and their size distribution was assessed. Furthermore, species were identified by matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF MS), and inhalable dust, endotoxin, biofilm production, the total inflammatory potential, and fungicide resistance to four fungicides (amphotericin B, caspofungin acetate, itraconazole, voriconazole) were determined. Bacterial and fungal concentrations were on average (GM) in the order of 104 cfu/m3, but ranged from 102 to 108 cfu/m3. Several species which may cause health problems were identified. Personal endotoxin exposures were on average 28 EU/m3, but both personal and stationary samples ranged from 0.6 to 2035 EU/m3. Bioaerosols had the potential to form biofilms and to induce inflammation as measured in a human cell line. Exposures were higher in the plants that outdoor reference values. Higher exposures were found in the 'open process' plant, such as in microbial concentrations, species richness, endotoxin, biofilm production, and the total inflammatory potential. Six out of 28 tested Aspergillus fumigatus isolates were resistant to fungicides (amphotericin B and voriconazole). In conclusion, there is a high exposure to bioaerosols during work in biowaste pretreatment plants, however, results also suggests that how the plant is built and functions may affect the exposures.
Collapse
Affiliation(s)
- Pil U Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Hoang U T Phan
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
17
|
Hannon G, Prina-Mello A. Endotoxin contamination of engineered nanomaterials: Overcoming the hurdles associated with endotoxin testing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1738. [PMID: 34254460 DOI: 10.1002/wnan.1738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022]
Abstract
Nanomaterials are highly susceptible to endotoxin contamination due their large surface-to-volume ratios and endotoxins propensity to associate readily to hydrophobic and cationic surfaces. Additionally, the stability of endotoxin ensures it cannot be removed efficiently through conventional sterilization techniques such as autoclaving and ionizing radiation. In recent times, the true significance of this hurdle has come to light with multiple reports from the United States Nanotechnology Characterization Laboratory, in particular, along with our own experiences of endotoxin testing from multiple Horizon 2020-funded projects which highlight the importance of this issue for the clinical translation of nanomaterials. Herein, we provide an overview on the topic of endotoxin contamination of nanomaterials intended for biomedical applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Dublin, Ireland.,Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Dublin, Ireland.,Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
van Leenen K, Jouret J, Demeyer P, Vermeir P, Leenknecht D, Van Driessche L, De Cremer L, Masmeijer C, Boyen F, Deprez P, Cox E, Devriendt B, Pardon B. Particulate matter and airborne endotoxin concentration in calf barns and their association with lung consolidation, inflammation, and infection. J Dairy Sci 2021; 104:5932-5947. [PMID: 33612235 DOI: 10.3168/jds.2020-18981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/12/2020] [Indexed: 11/19/2022]
Abstract
Agricultural operations are important sources of organic dust containing particulate matter (PM) and endotoxins, which have possible negative health consequences for both humans and animals. Dust concentrations and composition in calf barns, as well as the potential health effects for these animals, are scarcely documented. The objective of this study was to measure PM fractions and endotoxin concentrations in calf barns and study their associations with lung consolidation, respiratory tract inflammation, and infection in group-housed calves. In this cross-sectional study, samples from 24 dairy farms and 23 beef farms were collected in Belgium from January to April 2017. PM1.0, PM2.5 and PM10 (defined as particulate matter passing through a size-selective inlet with a 50% efficiency cut-off at a 1.0-μm, 2.5-μm, and 10-μm aerodynamic diameter, respectively) were sampled during a 24-h period using a Grimm aerosol spectrometer (Grimm Aerosol Technik Ainring GmbH & Co. KG). Endotoxin concentration was measured in the PM10 fraction. Thoracic ultrasonography was performed and broncho-alveolar lavage fluid was collected for cytology and bacteriology. Average PM concentrations were 16.3 µg/m3 (standard deviation, SD: 17.1; range: 0.20-771), 25.0 µg/m3 (SD: 25.3; range: 0.50-144.9), and 70.3 µg/m3 (SD: 54.5; range: 1.6-251.2) for PM1.0, PM2.5, and PM10, respectively. Mean endotoxin in the PM10 fraction was 4.2 endotoxin units (EU)/µg (SD: 5.50; range: 0.03-30.3). Concentrations in air were 205.7 EU/m3 (SD: 197.5; range: 2.32-901.0). Lung consolidations with a depth of ≥1, ≥3, and ≥6 cm were present in 43.1% (146/339), 27.4% (93/339), and 15.3% (52/339) of the calves, respectively. Exposure to fine (PM1.0) PM fractions was associated with increased odds of lung consolidations of ≥1 cm (odds ratio, OR: 3.3; confidence interval (CI): 1.5-7.1), ≥3 cm (OR: 2.8; CI: 1.2-7.1), and ≥6 cm (OR: 12.3; CI: 1.2-125.0). The odds of having lung consolidations of ≥1 cm (OR: 13.9; CI: 3.4-58.8) and ≥3 cm (OR: 6.7; 1.7-27.0) were higher when endotoxin concentrations in the dust mass exceeded 8.5 EU/µg. Broncho-alveolar lavage fluid neutrophil percentage was positively associated with PM10 concentration, and epithelial cell percentage was negatively associated with this fraction. Concentration of PM2.5 was positively associated with epithelial cell percentage and isolation of Pasteurella multocida. Although concentrations of fine dust are lower in calf barns than in poultry and pig housings, in this study they were associated with pneumonia in calves. Dust control strategies for reducing fine dust fractions in calf barns may benefit human and animal respiratory health.
Collapse
Affiliation(s)
- K van Leenen
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - J Jouret
- Belgian Center for Occupational Hygiene, Tramstraat 59, 9052 Zwijnaarde, Belgium
| | - P Demeyer
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester van Gansberghelaan 115 Bus1, 9820 Merelbeke, Belgium
| | - P Vermeir
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - D Leenknecht
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - L Van Driessche
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - L De Cremer
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - C Masmeijer
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - F Boyen
- Laboratory for Veterinary Bacteriology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - P Deprez
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - E Cox
- Laboratory for Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - B Devriendt
- Laboratory for Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - B Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
19
|
Degois J, Simon X, Clerc F, Bontemps C, Leblond P, Duquenne P. One-year follow-up of microbial diversity in bioaerosols emitted in a waste sorting plant in France. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:257-268. [PMID: 33310602 DOI: 10.1016/j.wasman.2020.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Bioaerosols emitted in waste sorting plants (WSP) can induce some adverse health effects on the workers such as rhinitis, asthma and hypersensitivity pneumonitis. The composition of these bioaerosols is scarcely known and most of the time assessed using culture-dependent methods. Due to the well-known limitations of cultural methods, these biodiversity measurements underestimate the actual microbial taxon richness. The aim of the study was to assess the airborne microbial biodiversity by using a sequencing method in a French waste sorting plant (WSP) for one year and to investigate the main factors of variability of this biodiversity. Static sampling was performed in five areas in the plant and compared to an indoor reference (IR), using closed-face cassettes (10 L.min-1) with polycarbonate membranes, every month for one year. Environmental data was measured (temperature, relative humidity). After DNA extraction, microbial biodiversity was assessed by means of sequencing. Bacterial genera Staphylococcus, Streptococcus, Prevotella, Lactococcus, Lactobacillus, Pseudomonas and fungal genera Wallemia, Cladosporium, Debaryomyces, Penicillium, Alternaria were the most predominant airborne microorganisms. Microbial biodiversity was different in the plant compared to the IR and seemed to be influenced by the season.
Collapse
Affiliation(s)
- Jodelle Degois
- Department of pollutant metrology, Institut National de Recherche et de Sécurité (INRS), Vandœuvre-lès-Nancy 54500, France
| | - Xavier Simon
- Department of pollutant metrology, Institut National de Recherche et de Sécurité (INRS), Vandœuvre-lès-Nancy 54500, France
| | - Frédéric Clerc
- Department of pollutant metrology, Institut National de Recherche et de Sécurité (INRS), Vandœuvre-lès-Nancy 54500, France
| | - Cyril Bontemps
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Philippe Duquenne
- Department of process engineering, Institut National de Recherche et de Sécurité (INRS), Vandœuvre-lès-Nancy 54500, France.
| |
Collapse
|
20
|
Nair AT. Bioaerosols in the landfill environment: an overview of microbial diversity and potential health hazards. AEROBIOLOGIA 2021; 37:185-203. [PMID: 33558785 PMCID: PMC7860158 DOI: 10.1007/s10453-021-09693-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
Landfilling is one of the indispensable parts of solid waste management in various countries. Solid waste disposed of in landfill sites provides nutrients for the proliferation of pathogenic microbes which are aerosolized into the atmosphere due to the local meteorology and various waste disposal activities. Bioaerosols released from landfill sites can create health issues for employees and adjoining public. The present study offers an overview of the microbial diversity reported in the air samples collected from various landfill sites worldwide. This paper also discusses other aspects, including effect of meteorological conditions on the bioaerosol concentrations, sampling techniques, bioaerosol exposure and potential health impacts. Analysis of literature concluded that landfill air is dominated by microbial dust or various pathogenic microbes like Enterobacteriaceae, Staphylococcus aureus, Clostridium perfringens, Acinetobacter calcoaceticus and Aspergillus fumigatus. The bioaerosols present in the landfill environment are of respirable sizes and can penetrate deep into lower respiratory systems and trigger respiratory symptoms and chronic pulmonary diseases. Most studies reported higher bioaerosol concentrations in spring and summer as higher temperature and relative humidity provide a favourable environment for survival and multiplication of microbes. Landfill workers involved in solid waste disposal activities are at the highest risk of exposure to these bioaerosols due to their proximity to solid waste and as they practise minimum personal safety and hygiene measures during working hours. Workers are recommended to use personal protective equipment and practise hygiene to reduce the impact of occupational exposure to bioaerosols.
Collapse
Affiliation(s)
- Abhilash T. Nair
- Department of Applied Sciences and Humanities, National Institute of Foundry and Forge Technology (NIFFT), Hatia, Ranchi, Jharkhand 834003 India
| |
Collapse
|
21
|
Bucsella B, Hoffmann A, Zollinger M, Stephan F, Pattky M, Daumke R, Heiligtag FJ, Frank B, Bassas-Galia M, Zinn M, Kalman F. Novel RP-HPLC based assay for selective and sensitive endotoxin quantification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4621-4634. [PMID: 32924034 DOI: 10.1039/d0ay00872a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The paper presents a novel instrumental analytical endotoxin quantification assay. It uses common analytical laboratory equipment (HPLC-FLD) and allows quantifying endotoxins (ETs) in different matrices from about 109 EU per mL down to about 40 EU per mL (RSE based). Test results are obtained in concentration units (e.g. ng ET per mL), which can then be converted to commonly used endotoxin units (EU per mL) in case of known pyrogenic activity. During endotoxin hydrolysis, the endotoxin specific rare sugar acid KDO is obtained quantitatively. After that, KDO is stoichiometrically reacted with DMB, which results in a highly fluorescent derivative. The mixture is separated using RP-HPLC followed by KDO-DMB quantification with a fluorescence detector. Based on the KDO content, the endotoxin content in the sample is calculated. The developed assay is economic and has a small error. Its applicability was demonstrated in applied research. ETs were quantified in purified bacterial biopolymers, which were produced by Gram-negative bacteria. Results were compared to LAL results obtained for the same samples. A high correlation was found between the results of both methods. Further, the new assay was utilized with high success during the development of novel endotoxin specific depth filters, which allow efficient, economic and sustainable ET removal during DSP. Those examples demonstrate that the new assay has the potential to complement the animal-based biological LAL pyrogenic quantification tests, which are accepted today by the major health authorities worldwide for the release of commercial pharmaceutical products.
Collapse
Affiliation(s)
- Blanka Bucsella
- University of Zürich, Department of Chemistry, Winterthurerstr. 190, Zürich, CH-8057, Switzerland and HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Anika Hoffmann
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Mathieu Zollinger
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Fabio Stephan
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and Lonza AG, Quality Control Biopharma, Rottenstrasse 6, CH-3930 Visp, Switzerland
| | - Martin Pattky
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and Lonza AG, Quality Control Biopharma, Rottenstrasse 6, CH-3930 Visp, Switzerland
| | - Ralph Daumke
- FILTROX AG, Moosmühlestr. 6, CH-9001 St. Gallen, Switzerland
| | | | - Brian Frank
- FILTROX AG, Moosmühlestr. 6, CH-9001 St. Gallen, Switzerland
| | - Mònica Bassas-Galia
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and FILTROX AG, Moosmühlestr. 6, CH-9001 St. Gallen, Switzerland and Acrostak AG, Stegackerstrasse 14, 8409 Winterthur, Switzerland
| | - Manfred Zinn
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Franka Kalman
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and Acrostak AG, Stegackerstrasse 14, 8409 Winterthur, Switzerland
| |
Collapse
|
22
|
Liebers V, Brüning T, Raulf M. Occupational endotoxin exposure and health effects. Arch Toxicol 2020; 94:3629-3644. [DOI: 10.1007/s00204-020-02905-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
23
|
Workplace Biological Risk Assessment: Review of Existing and Description of a Comprehensive Approach. ATMOSPHERE 2020. [DOI: 10.3390/atmos11070741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological risks potentially affect workers in multiple occupational sectors through their exposure to pathogenic agents. These risks must be carefully assessed to prevent adverse health effects. This article identifies and critically analyzes approaches that manage the qualitative evaluation of biological risk (EvBR) as part of occupational health and safety prevention, for which no standard method yet exists. Bibliographic and computing references were searched to identify qualitative EvBR approaches, which were then analyzed based on defined criteria, such as the risks studied and the type of assessment. Approaches proposing the most representative types of assessment were analyzed. EvBR approaches in an occupational setting were identified in 32 sources. “Workstation analysis” combined with “assessment by risk level” were the most common approaches. The predominant risk descriptors (RDs) were defined in a characterized and quantifiable way, and a variety of hazard levels and exposure indices were created. Overall, the risk was determined by summing or multiplying the hazard level and exposure indicators. The results confirmed that no methodological consensus currently exists regarding the EvBR and no approach has yet been described that integrates all the parameters to allow for a full assessment of biological risk. Based on the detailed analysis of the existing data, the present paper proposes a general approach.
Collapse
|
24
|
Barone TL, Lee T, Cauda EG, Mazzella AL, Stach R, Mizaikoff B. Segregation of respirable dust for chemical and toxicological analyses. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 76:134-144. [PMID: 32552564 DOI: 10.1080/19338244.2020.1779018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Respirable dust can pass beyond ciliated airways of the respiratory tract and influence adverse health effects. Health effects can be studied using samples generated from bulk dust segregation. Because previous segregation methods diverge from size-selection criteria of the international convention for respirable particles (ICRP), a method was developed to approximate the ICRP. The method was compared to an ideal sampler by measuring the sample collection bias. The comparison shows that the uncertainty due to the bias was 0.10 based on European Standard EN13205:2014 criteria, which indicates that the segregator effectively follows the ICRP. Respirable particle size distributions were confirmed by an aerodynamic particle sizer and by computer-controlled scanning electron microscopy. Consequently, a systematic way to generate respirable powders for health effects studies and chemical analyses was developed.
Collapse
Affiliation(s)
- Teresa L Barone
- Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, PA, USA
| | - Taekhee Lee
- Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, PA, USA
| | - Emanuele G Cauda
- Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, PA, USA
| | - Andrew L Mazzella
- Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, PA, USA
| | - Robert Stach
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Recent evidence suggests that environmental exposures change the adult human microbiome. Here, we review recent evidence on the impact of the work microbiome and work-related chemical, metal and particulate exposures on the human microbiome. RECENT FINDINGS Prior literature on occupational microbial exposures has focused mainly on the respiratory effects of endotoxin, but a recent study suggests that not all endotoxin is the same; endotoxin from some species is proinflammatory, whereas endotoxin from other species is anti-inflammatory. Work with animals can change the adult human microbiome, likely through colonization. Early studies in military personnel and animal models of gulf war illness show that military exposures change the gut microbiome and increase gut permeability. Heavy metal and particulate matter exposure, which are often elevated in occupational settings, also change the gut microbiome. SUMMARY An emerging body of literature shows that work-related exposures can change the human microbiome. The health effects of these changes are currently not well studied. If work exposures lead to disease through alterations in the human microbiome, exposure cessation without addressing changes to the human microbiome may be ineffective for disease prevention and treatment.
Collapse
|
26
|
Relationships between Exposure to Bioaerosols, Moldy Surface and Symptoms in French Mold-Damaged Homes. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Air quality in homes is a major concern in Europe, where people spend most of their time indoors. According to the World Health Organization, numerous houses are subject to dampness that can lead to mold growth, with associated health and economic consequences. Our goal was to characterize the human exposure to bioaerosols in French mold-damaged houses but also to study the effects of these bioaerosols as suffered by the inhabitants of these houses. A global approach including both field study and laboratory experimentation was used to investigate 48 mold-damaged homes. Among a wide fungal diversity, 101 viable species, Aspergillus versicolor, Penicillium chrysogenum and P. crustosum were observed as recurrent species and could be used as microbial indicators of indoor air quality. Statistical analyses highlighted a relationship between the concentrations of these recurrent molds and the levels of surface contamination by molds in homes. Fever, cough, dyspnea, flu-like symptoms were observed with several fungal strains (A. versicolor, P. chrysogenum and P. crustosum) or in relation to moldy odor. Relationships between particles of 2 to 15 µm diameter and headaches and dizziness were also observed. In our study, we identified a cutaneous effect (itching) in relationship to the airborne concentration of A. versicolor.
Collapse
|
27
|
Juel Holst G, Pørneki A, Lindgreen J, Thuesen B, Bønløkke J, Hyvärinen A, Elholm G, Østergaard K, Loft S, Brooks C, Douwes J, Linneberg A, Sigsgaard T. Household dampness and microbial exposure related to allergy and respiratory health in Danish adults. Eur Clin Respir J 2020; 7:1706235. [PMID: 32128077 PMCID: PMC7034447 DOI: 10.1080/20018525.2019.1706235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/11/2019] [Indexed: 11/03/2022] Open
Abstract
Background: Indoor dampness has consistently been associated with respiratory symptoms and exacerbations. The causal mechanisms may involve increased microbial exposures. However, the evidence regarding the influence of indoor microbial exposures under damp- and non-damp conditions on the risk of asthma and allergy has been inconclusive. Objective: The aim of this study was to investigate the association between dampness and microbial exposure with allergy and respiratory health in Danish adults using a cross-sectional design. Methods: From 1,866 participants of the Health2006 cohort, we selected three non-overlapping groups: 196 at random, 107 with confirmed atopy, and 99 without atopy. Bedroom dust was sampled using electrostatic dust fall collectors and analysed for endotoxin, β-(1,3)-D-glucan, 19 microbial species or groups, and total fungal load. Household moisture-related problems and asthma were self-reported by questionnaire. Atopy was determined by skin-prick-testing and lung function was measured by spirometry. Results: Household moisture damage was positively associated with asthma outcomes, although this was statistically significant only in atopics for self-reported asthma (odds ratio (OR) 3.52; 95%CI 1.01-12.7). Mould odor was positively associated with wheezing (OR 6.05; 95%CI 1.19-30.7) in atopics. Inconsistent associations were found for individual microbial exposures and health outcomes. Inverse associations were observed between microbial diversity and rhinitis in the random sample and both doctor-diagnosed and self-reported asthma in non-atopics. Conclusions: In conclusion, our findings suggest that household moisture damage may increase the risk of asthma and wheeze with mould odor in atopics. In addition, asthma and allergy may be affected by the indoor microbial composition in urban domestic environments. Further studies are needed to identify and understand the causal agents and underlying mechanisms behind the potential effects of environmental microbial exposure on human health.
Collapse
Affiliation(s)
- G Juel Holst
- Section of Environment, Occupation and Health, Aarhus University, Aarhus, Denmark
| | | | | | - B Thuesen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region of Denmark, Denmark
| | - J Bønløkke
- Department of Occupational and Environmental Medicine, Danish Ramazzini Centre, Aalborg University Hospital, Aalborg, Denmark
| | - A Hyvärinen
- Environment and Health Unit, National Institute for Health and Welfare - THL, Kuopio, Finland
| | - G Elholm
- Section of Environment, Occupation and Health, Aarhus University, Aarhus, Denmark
| | - K Østergaard
- Section of Environment, Occupation and Health, Aarhus University, Aarhus, Denmark
| | - S Loft
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - C Brooks
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - J Douwes
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - A Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region of Denmark, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T Sigsgaard
- Section of Environment, Occupation and Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Simons A, Bertron A, Aubert JE, Roux C, Roques C. Characterization of the microbiome associated with in situ earthen materials. ENVIRONMENTAL MICROBIOME 2020; 15:4. [PMID: 33902730 PMCID: PMC8066951 DOI: 10.1186/s40793-019-0350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/07/2019] [Indexed: 06/12/2023]
Abstract
BACKGROUND The current increase in public awareness of environmental risks is giving rise to a growth of interest in the microbiological safety of buildings. In particular, microbial proliferation on construction materials can be responsible for the degradation of indoor air quality that can increase health-risk to occupants. Raw earth materials are still widely used throughout the world and, in some cases, are linked to heritage habitats, as in the southwest of France. Moreover, these building materials are currently the subject of renewed interest for ecological and economic reasons. However, the microbial status of earthen materials raises major concerns: could the microbiome associated with such natural materials cause disease in building occupants? Very few analyses have been performed on the microbial communities present on these supports. Characterizing the raw earth material microbiome is also important for a better evaluation and understanding of the susceptibility of such materials to microbial development. This study presents the distribution of in situ bacterial and fungal communities on different raw earth materials used in construction. Various buildings were sampled in France and the microbial communities present were characterized by amplicon high-throughput sequencing (bacterial 16S rRNA gene and fungal ITS1 region). Bacterial culture isolates were identified at the species level by MALDI-TOF mass spectrometry. RESULTS The major fungal and bacterial genera identified were mainly associated with conventional outdoor and indoor environmental communities, and no specific harmful bacterial species were detected on earthen materials. However, contrary to expectations, few human-associated genera were detected in dwellings. We found lower microbial alpha-diversity in earthen material than is usually found in soil, suggesting a loss of diversity during the use of these materials in buildings. Interestingly enough, the main features influencing microbial communities were building history and room use, rather than material composition. CONCLUSIONS These results constitute a first in-depth analysis of microbial communities present on earthen materials in situ and may be considered as a first referential to investigate microbial communities on such materials according to environmental conditions and their potential health impact. The bacterial and fungal flora detected were similar to those found in conventional habitats and are thought to be mainly impacted by specific events in the building's life, such as water damage.
Collapse
Affiliation(s)
- Alexis Simons
- Laboratoire de Génie Chimique, Université de Toulouse, UMR 5503 UPS - CNRS - INPT, Toulouse, France.
- Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse, UPS - INSA, Toulouse, France.
| | - Alexandra Bertron
- Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse, UPS - INSA, Toulouse, France
| | - Jean-Emmanuel Aubert
- Laboratoire Matériaux et Durabilité des Constructions, Université de Toulouse, UPS - INSA, Toulouse, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UMR 5546 UPS - CNRS, Castanet-Tolosan, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, UMR 5503 UPS - CNRS - INPT, Toulouse, France
| |
Collapse
|
29
|
Abstract
Biological high-risk pollutants (HRPs) have become a serious threat to human health worldwide, and wastewater is one of the major sources of them in a natural environment. Despite the long history of wastewater research, comprehensive understanding of the role and behavior of HRPs during wastewater treatment is still limited owing to the complexity of the community. In recent decades, the rapid development of molecular tools, especially the wide application of next generation sequencing technologies, helps to unravel the community composition, structure, and dynamic variation in wastewater. Overall, this chapter mainly focuses on biological HRPs, including bacteria, viruses, protozoa, helminth, biotoxins, antibiotic resistance genes and antibiotic resistant bacteria in wastewater. The characteristics, classification, fates, functions, and health implications of these HRPs are introduced in detail. Moreover, the biogeography of HRPs is a research hotspot in recent years, and available information is also summarized in this chapter. Finally, we also propose the future research needs of HRPs in wastewater after the comprehensive summary of the existing research reports. This chapter is wished to be helpful for beginners to quickly understand the biological HRPs in wastewater.
Collapse
|
30
|
Impact of luminal and systemic endotoxin exposure on gut function, immune response and performance of chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Mbareche H, Morawska L, Duchaine C. On the interpretation of bioaerosol exposure measurements and impacts on health. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:789-804. [PMID: 30821643 DOI: 10.1080/10962247.2019.1587552] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bioaerosols are recognized as one of the main transmission routes for infectious diseases and are responsible for other various types of health effects through inhalation and potential ingestion. Associating exposure with bioaerosol and health problems is challenging, and adequate exposure monitoring is a top priority for aerosol scientists. The multiple factors affecting bioaerosol content, the variability in the focus of each bioaerosol exposure study, and the variations in experimental design and the standardization of methods make bioaerosol exposure studies very difficult. Therefore, the health impacts of bioaerosol exposure are still poorly understood. This paper presents a brief description of a state-of-the-art development in bioaerosol exposure studies supported by studies on several related subjects. The main objective of this paper is to propose new considerations for bioaerosol exposure guidelines and the development of tools and study designs to better interpret bioaerosol data. The principal observations and findings are the discrepancy of the applicable methods in bioaerosol studies that makes result comparison impossible. Furthermore, the silo mentality helps in creating a bigger gap in the knowledge accumulated about bioaerosol exposure. Innovative and original ideas are presented for aerosol scientists and health scientists to consider and discuss. Although many examples cited herein are from occupational exposure, the discussion has relevance to any human environment. This work gives concrete suggestions for how to design a full bioaerosol study that includes all of the key elements necessary to help understand the real impacts of bioaerosol exposure in the short term. The creation of the proposed bioaerosol public database could give crucial information to control the public health. Implications: How can we move toward a bioaerosol exposure guidelines? The creation of the bioaerosol public database will help accumulate information for long-term association studies and help determine specific exposure biomarkers to bioaerosols. The implementation of such work will lead to a deeper understanding and more efficient utilization of bioaerosol studies to prevent public health hazards.
Collapse
Affiliation(s)
- Hamza Mbareche
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| | - Lidia Morawska
- c School of Chemistry, Physics, and Mechanical Engineering, Department of Environmental Technologies , Queensland University of Technology , Brisbane , Queensland , Australia
| | - Caroline Duchaine
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| |
Collapse
|
32
|
Asgedom AA, Bråtveit M, Moen BE. High Prevalence of Respiratory Symptoms among Particleboard Workers in Ethiopia: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2158. [PMID: 31216746 PMCID: PMC6617153 DOI: 10.3390/ijerph16122158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Work in the wood industry might be associated with respiratory health problems. The production of particleboard used for furniture making and construction is increasing in many countries, and cause dust, endotoxin and formaldehyde exposure of the workers. The aim of the study was to assess the prevalence of respiratory symptoms and to measure lung function among Ethiopian particleboard workers using Eucalyptus trees as the raw material. In total 147 workers, 74 from particleboard production and 73 controls, participated in the study. Mean wood dust in the particleboard factories was measured to be above recommended limit values. Particleboard workers had a mean age of 28 years and the controls were 25 years. They had been working for 4 and 2 years, respectively. Lung function test was done using spirometry following American Thoracic Society (ATS) recommendations. Respiratory symptoms were collected using a standard questionnaire of ATS. Particleboard workers had higher prevalence of wheezing, cough, cough with sputum production, phlegm, and shortness of breath compared to controls. Lung function status was similar in the two groups. The symptoms might be related to the work in the factories. Longitudinal studies are recommended to explore the chronic impact of work in particleboard factories on respiratory health.
Collapse
Affiliation(s)
- Akeza Awealom Asgedom
- Center for International Health, Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway.
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, P.O. Box 150461, Ethiopia.
| | - Magne Bråtveit
- Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway.
| | - Bente Elisabeth Moen
- Center for International Health, Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway.
| |
Collapse
|
33
|
Xue J, Zhang J, Qiao J, Lu Y. Effects of chlorination and combined UV/Cl 2 treatment on endotoxin activity and inhalation toxicity of lipopolysaccharide, gram-negative bacteria and reclaimed water. WATER RESEARCH 2019; 155:124-130. [PMID: 30836264 DOI: 10.1016/j.watres.2019.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Disinfection processes were applied in reclaimed water plant to eliminate pathogens and control the related health risk during water reuse. However, extra problems might emerge such as the released free endotoxins from the ruptured cell wall of gram-negative bacteria. Endotoxins can induce lung inflammatory responses after inhalation, which has been neglected in the water quality regulation, and the removal of endotoxin was not under consideration in the process of reclamation. In the present study, two well-known disinfection processes, chlorination and combined UV/chlorine (UV/Cl2), were performed to test the removal efficiency of endotoxin activity, as well as the inflammation inducing ability. In the pure LPS solution, UV/Cl2 treatment significantly reduced both endotoxin activity and lung inflammation responses with better oxidizability of the generated hydroxyl radical. However, its performance on bacteria liquid and real secondary effluent was more complicated. The cell wall-bound LPS have lower endotoxin activities and inflammation inducing ability. Immediately after the cell wall was destroyed, the bound LPS were released to the solution to be free LPS, which dramatically increased both the endotoxin activity and inflammation inducing ability of the water. When these free endotoxins were continuously oxidized, the endotoxin activity and inflammatory response decreased again but not to the background level. Therefore, the inflammation inducing ability of reclaimed water could not be removed efficiently. These results suggest that in spite of its high oxidability, UV/Cl2 treatment is not capable of removing the endotoxin-based toxicity, and other technologies are necessary to control endotoxin levels in reclaimed water.
Collapse
Affiliation(s)
- Jinling Xue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinshan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Chengdu Environmental Investment Group Co., LTD, China
| | - Juan Qiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
34
|
Giannakou C, Aimonen K, Bloois LV, Catalán J, Geertsma RE, Gremmer ER, de Jong WH, Keizers PHJ, Schwillens PLWJ, Vandebriel RJ, Park MVDZ. Sensitive method for endotoxin determination in nanomedicinal product samples. Nanomedicine (Lond) 2019; 14:1231-1246. [DOI: 10.2217/nnm-2018-0339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Nanomaterials and nanomedicinal products tend to interfere with various commonly used assays, including regulatory required endotoxin detection methods for medicines. We developed a method to quantify endotoxin levels that is compatible with nanomaterials and nanomedicinal products. Materials & methods: The method is based on measuring endotoxin indirectly via 3-hydroxylated fatty acids of lipid-A, using Ultra High Performance Liquid Chromatography coupled with mass spectrometry. The outcome was related to results of the commonly used Limulus Amebocyte Lysate method. Results: The ultra high performance liquid chromatography coupled with mass spectrometry method has clear advantages compared with other endotoxin determination assays; particularly the absence of nanospecific interference. Conclusion: The method is sensitive, straightforward and accurate in determining and quantifying endotoxin in nanomedicinal product samples.
Collapse
Affiliation(s)
- Christina Giannakou
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Kukka Aimonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Julia Catalán
- Finnish Institute of Occupational Health, Helsinki, Finland
- University of Zaragoza, Zaragoza, Spain
| | - Robert E Geertsma
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Eric R Gremmer
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Wim H de Jong
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Peter HJ Keizers
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Paul LWJ Schwillens
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob J Vandebriel
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Margriet VDZ Park
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
35
|
Cyprowski M, Ławniczek-Wałczyk A, Gołofit-Szymczak M, Frączek K, Kozdrój J, Górny RL. Bacterial aerosols in a municipal landfill environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:288-296. [PMID: 30640097 DOI: 10.1016/j.scitotenv.2018.12.356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/12/2018] [Accepted: 12/23/2018] [Indexed: 05/21/2023]
Abstract
Landfills collecting substantial amounts of municipal waste support multiplication of different bacteria mainly due to organic matter contained in the deposited materials. With time, they may become active emission sources of these microorganisms. Taking into account both occupational and public health and safety, there is an indisputable necessity to monitor the level of air contamination caused by both bacterial cells and their components (e.g., endotoxins). In this study, the concentrations of total viable bacteria (TVB), and Gram-negative bacteria (GNB), as well as their particle size distributions and concentrations of GNB endotoxins were assessed at various locations within the landfill area. The concentrations of TVB and GNB in the air samples changed depending on the season, location (i.e. active sector versus surroundings) and landfill activity level (i.e. exploitation or standstill periods). Higher abundances of endotoxins were found during the standstill period, and they were significantly correlated with organic dust concentrations. The microbial particle size distribution was associated with the landfill operational state, being predominated by fine below 4.7 μm and coarse fractions above 7.0 μm within the active sector during exploitation and standstill periods, respectively. These results supported by a spatial distribution of bacterial aerosol indicate a clear impact of operated landfill on microbiological air quality within the occupied location and nearby areas. Considering health and safety of landfill workers and neighboring residents, who can be exposed to airborne microbial pollutants, repeated bioaerosol monitoring need to be established. It should facilitate both a special planning within the landfill area and undertaking preventive actions in its near and distant surroundings.
Collapse
Affiliation(s)
- Marcin Cyprowski
- Biohazard Laboratory, Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland.
| | - Anna Ławniczek-Wałczyk
- Biohazard Laboratory, Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Małgorzata Gołofit-Szymczak
- Biohazard Laboratory, Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Krzysztof Frączek
- Department of Microbiology, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Jacek Kozdrój
- Faculty of Biotechnology, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland
| | - Rafał L Górny
- Biohazard Laboratory, Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| |
Collapse
|
36
|
Jackie J, Lau WK, Feng HT, Li SFY. Detection of Endotoxins: From Inferring the Responses of Biological Hosts to the Direct Chemical Analysis of Lipopolysaccharides. Crit Rev Anal Chem 2019; 49:126-137. [DOI: 10.1080/10408347.2018.1479958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jackie Jackie
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Shimadzu (Asia Pacific) Pte Ltd, Singapore, Singapore
| | - Wai Khin Lau
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Hua-Tao Feng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Morakinyo OM, Mokgobu MI, Mukhola MS, Godobedzha T. Biological Composition of Respirable Particulate Matter in an Industrial Vicinity in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E629. [PMID: 30795513 PMCID: PMC6406656 DOI: 10.3390/ijerph16040629] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/15/2023]
Abstract
There is a growing concern that exposure to particulate matter of aerodynamic diameter of less than 2.5 µm (PM2.5) with biological composition (bioaerosols) may play a key role in the prevalence of adverse health outcomes in humans. This study determined the bacterial and fungal concentrations in PM2.5 and their inhalation health risks in an industrial vicinity in South Africa. Samples of PM2.5 collected on a 47-mm glass fiber filter during winter and summer months were analysed for bacterial and fungal content using standard methods. The health risks from inhalation of bioaerosols were done by estimating the age-specific dose rate. The concentration of bacteria (168⁻378 CFU/m³) was higher than fungi (58⁻155 CFU/m³). Bacterial and fungal concentrations in PM2.5 were lower in winter than in the summer season. Bacteria identified in summer were similar to those identified in winter: Staphylococcus sp., Bacillus sp., Micrococcus sp., Flavobacterium sp., Klebsiella sp. and Pseudomonas sp. Moreover, the fungal floras identified include Cladosporium spp., Aspergillus spp., Penicillium spp., Fusarium spp. and Alternaria spp. Children inhaled a higher dose of bacterial and fungal aerosols than adults. Bacteria and fungi are part of the bioaerosol components of PM2.5. Bioaerosol exposure may present additional health risks for children.
Collapse
Affiliation(s)
- Oyewale Mayowa Morakinyo
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria.
| | - Matlou Ingrid Mokgobu
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Murembiwa Stanley Mukhola
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Tshifhiwa Godobedzha
- Air Quality Management, Environment and Agriculture Management Department, City of Tshwane Municipality Private Bag 440, Pretoria 0001, South Africa.
| |
Collapse
|
38
|
Sánchez-Arias M, Riojas-Rodríguez H, Catalán-Vázquez M, Terrazas-Meraz MA, Rosas I, Espinosa-García AC, Santos-Luna R, Siebe C. Socio-environmental assessment of a landfill using a mixed study design: A case study from México. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 85:42-59. [PMID: 30803597 DOI: 10.1016/j.wasman.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/30/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Municipal solid waste management is a challenge for local authorities since mismanagement leads to environmental damage and social discontent. The objective of this study was to assess in an integrated manner the socio-environmental situation of a municipal landfill from México, using a design of mixed methods, which considered a quantitative evaluation of physicochemical and microbiological variables measured in leachates, surface and groundwater samples, soil and air, and a qualitative evaluation by in-depth interviews with the near-by inhabitants about their perception of the impacts of the landfill. The results show that leachates polluted the soil and surface water in a radius of up to 500 m from the landfill, but did not reach the groundwater, while the mean concentrations of PM10, Mn, and Ni measured in air samples at the landfill of 146 µg m-3, 0.12 µg m-3, 0.10 µg m-3, respectively, in the dry season and of Mn and Ni of 0.13 µg m-3 and 0.11 µg m-3, respectively, in the rainy season, surpassed permissible limits. From the residents perspective the landfill pollutes soil, water and air and it contributes to vehicle traffic and noise, promotes harmful fauna and disturbs the esthetic view. Air measurements coincide with social perception and in general, the applied mixed study design helped to assess in an integrated manner the socio-environmental concerns and to give advice to improve the current management of the landfill.
Collapse
Affiliation(s)
- M Sánchez-Arias
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100. Cuernavaca, Morelos, Mexico
| | - H Riojas-Rodríguez
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100. Cuernavaca, Morelos, Mexico.
| | - M Catalán-Vázquez
- Departamento de Investigación en Epidemiología Clínica, Instituto Nacional de Enfermedades Respiratorias, Calz. Tlalpan No. 4502, CP. 14080. Ciudad de México, Mexico
| | - M A Terrazas-Meraz
- Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP. 62209. Cuernavaca, Morelos, Mexico
| | - I Rosas
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, CP. 04510. Ciudad de México, Mexico
| | - A C Espinosa-García
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, CP. 04510. Ciudad de México, Mexico
| | - R Santos-Luna
- Subdirección de Geografía Médica y Geomática, Instituto Nacional de Salud Pública, Av. Universidad 655, CP. 62100. Cuernavaca, Morelos, Mexico
| | - C Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, CP. 04510, Ciudad de México, Mexico
| |
Collapse
|
39
|
Adaptation to Occupational Exposure to Moderate Endotoxin Concentrations: A Study in Sewage Treatment Plants in Germany. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30284691 DOI: 10.1007/5584_2018_261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Acute or chronic inhalation of endotoxin may lead to changes of lung function and inflammatory markers in the airways. Adaptation to workplace exposure may be possible. In this study, we investigated the possible difference in inflammatory markers assessed in nasal lavage fluid (NALF) in chronical exposure compared to voluntary subjects exposed acutely to endotoxin. We sought to define the variability of inflammatory markers in NALF and the dose-related changes after moderate exposure in naïve subjects. Endotoxin exposure (4-1039 EU/m3) resulted from routine work during one shift in sewage treatment plants. Subjects were matched to pairs (8 workers escorted by 10 students). Inflammatory markers were investigated before, directly after, and 16 h after the shift end. Additional NALF samples were collected in students without any specific exposure after 3 days. In NALF, total cell count, and interleukin (IL)-8 and IL-1β concentrations were significantly higher in workers than in students at all times pointing to workplace-related long-lasting exposure resulting in adaptation. However, concentration of inflammatory markers without specific exposure in students showed a great variability, covering the whole range of values recorded in the workers. The findings of this study make us to recommend a repeated assessment of inflammatory markers in healthy volunteers before the investigation of exposure-related changes and a sample size adequate for statistical analysis.
Collapse
|
40
|
Sources of Airborne Endotoxins in Ambient Air and Exposure of Nearby Communities—A Review. ATMOSPHERE 2018. [DOI: 10.3390/atmos9100375] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endotoxin is a bioaerosol component that is known to cause respiratory effects in exposed populations. To date, most research focused on occupational exposure, whilst much less is known about the impact of emissions from industrial operations on downwind endotoxin concentrations. A review of the literature was undertaken, identifying studies that reported endotoxin concentrations in both ambient environments and around sources with high endotoxin emissions. Ambient endotoxin concentrations in both rural and urban areas are generally below 10 endotoxin units (EU) m−3; however, around significant sources such as compost facilities, farms, and wastewater treatment plants, endotoxin concentrations regularly exceeded 100 EU m−3. However, this is affected by a range of factors including sampling approach, equipment, and duration. Reported downwind measurements of endotoxin demonstrate that endotoxin concentrations can remain above upwind concentrations. The evaluation of reported data is complicated due to a wide range of different parameters including sampling approaches, temperature, and site activity, demonstrating the need for a standardised methodology and improved guidance. Thorough characterisation of ambient endotoxin levels and modelling of endotoxin from pollution sources is needed to help inform future policy and support a robust health-based risk assessment process.
Collapse
|
41
|
Khan MS, Coulibaly S, Abe M, Furukawa N, Kubo Y, Nakaoji Y, Kawase Y, Matsumoto T, Hasei T, Deguchi Y, Nagaoka H, Yamagishi N, Watanabe M, Honda N, Wakabayashi K, Watanabe T. Seasonal Fluctuation of Endotoxin and Protein Concentrations in Outdoor Air in Sasebo, Japan. Biol Pharm Bull 2018; 41:115-122. [PMID: 29311473 DOI: 10.1248/bpb.b17-00745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the levels of endotoxin, which is a major component of outer membrane of Gram-negative bacteria, and protein in the atmosphere in Sasebo, Japan, we measured these biological materials in fine (aerodynamic diameter ≤2.5 µm) and coarse (≥2.5 µm) particles collected for 81 weeks (September 2014 to May 2016). The monthly concentrations (i.e., the mean value of weekly concentrations for each month) of endotoxin were higher in coarse particles than in fine particles. Fluctuations in monthly endotoxin concentrations were large in both fine (0.0005-0.0208 EU/m3) and coarse (0.0032-0.1164 EU/m3) particles. Furthermore, the endotoxin concentrations in coarse particles were highest in October 2014 and 2015 as well as September 2014 (0.0407-0.1164 EU/m3). However, the monthly protein concentrations were higher in fine particles than in coarse particles. Compared to the endotoxin concentrations, the fluctuations in the monthly protein concentrations were smaller in both coarse and fine particles. To our knowledge, this study is the first to report long-term atmospheric concentrations of endotoxin and protein in Japan. Since the endotoxin concentrations in coarse particles were positively associated with the concentrations of Na+ and Cl-, it suggests the involvement of Gram-negative bacteria from seawater to the endotoxin levels in the atmosphere. For fine particles, the protein concentrations were positively associated with the concentrations of particles, NO3- and SO42-. These results suggest that combustion of organic materials, such as biomass burning, may be a contributor to atmospheric protein during this study period.
Collapse
Affiliation(s)
| | | | - Maho Abe
- Department of Public Health, Kyoto Pharmaceutical University
| | - Nami Furukawa
- Department of Public Health, Kyoto Pharmaceutical University
| | - Yuuki Kubo
- Department of Public Health, Kyoto Pharmaceutical University
| | - Yusuke Nakaoji
- Department of Public Health, Kyoto Pharmaceutical University
| | - Yumi Kawase
- Department of Public Health, Kyoto Pharmaceutical University
| | | | - Tomohiro Hasei
- Department of Public Health, Kyoto Pharmaceutical University
| | - Yuya Deguchi
- Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Hiroaki Nagaoka
- Faculty of Pharmaceutical Sciences, Nagasaki International University
| | | | - Masanari Watanabe
- Department of Respiratory Medicine and Rheumatology, Tottori University Faculty of Medicine
| | - Naoko Honda
- Department of Public Health, Kyoto Pharmaceutical University.,Department of Food and Nutrition, Faculty of Human Health, Sonoda Women's University
| | - Keiji Wakabayashi
- Department of Public Health, Kyoto Pharmaceutical University.,Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka
| | | |
Collapse
|
42
|
Xue J, Zhang J, Wu QY, Lu Y. Sub-chronic inhalation of reclaimed water-induced fibrotic lesion in a mouse model. WATER RESEARCH 2018; 139:240-251. [PMID: 29655095 DOI: 10.1016/j.watres.2018.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
When reclaimed water is used as municipal miscellaneous water, acute exposure of the generated aerosol with high levels of endotoxins can cause severe inflammation in the lungs. However, the potential risks of long-term inhalation of reclaimed water remains unclear. To identify the adverse effects of sub-chronic reclaimed water inhalation and explain the underlying mechanisms, a mouse model of 12-week sub-chronic exposure was established, and wastewater before a membrane bioreactor (MBR, positive control) and the MBR effluent (reclaimed water, which met the quality standard of urban use and was currently used for landscape irrigation) were tested in this study. The exposure dose was set to approach the real working scenarios. Lung lavage and histology were analyzed. Obvious epithelial cell apoptosis in the bronchi was observed, along with the accumulation of myofibroblasts and the collagen deposition both in main bronchi and terminal bronchioles. All these symptoms were persistent after 4 weeks of recovery. Inflammation and induced bronchus-associated lymphoid tissues (iBALT) were also observed but diminished after recovery indicating inflammation may not be the direct cause of the symptom. Furthermore, two fibrogenic cytokines (TNF-α and TGF-β) were constantly high in the lung during the study. They might be the biomarkers of lung damage after the inhalation of reclaimed water. Adaptive immune responses were also detected as elevated levels of IgG and IgA, but not for IgE. Inhalation of reclaimed water causes sustained fibrotic lesions in the lungs, which suggests potential health risks during urban application where aerosols generated.
Collapse
Affiliation(s)
- Jinling Xue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinshan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
43
|
Park WM, Park DU, Hwang SH. Factors affecting ambient endotoxin and particulate matter concentrations around air vents of subway stations in South Korea. CHEMOSPHERE 2018; 205:45-51. [PMID: 29679788 DOI: 10.1016/j.chemosphere.2018.04.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Levels of airborne endotoxins and particulate matter less than 10 μm and 2.5 μm in diameter (PM) were measured in the air vents of subway stations in Seoul, South Korea, and factors affecting both pollutants were analyzed. The measurements were completed from March 2016 to February 2017 for eight air vents situated at the ground level around the subway stations. A total of 166 air samples were collected and analyzed using the kinetic limulus amebocyte lysate assay. Endotoxin levels ranged from not detected to 1.986 EU m-3, with a mean of 0.227 EU m-3. The results showed significantly different PM levels from the measurements reported by AIRKOREA as part of the comprehensive air quality index. This can be attributed to different sampling sites in the same area. Endotoxin levels tended to be higher in fall compared to summer. Airborne bacteria levels showed a pattern similar to the endotoxin levels, but no significant association was reported between them. The levels of endotoxins around air vents with a glass cover and streets that allowed smoking were significantly higher than those not containing a walled barrier and streets in which smoking was prohibited. Multivariate regression analysis showed that the factors affecting endotoxin levels comprised air vents with a glass cover (coefficient = 0.106, p = 0.014) and season (coefficient = 0.062, p < 0.0001). Therefore, installing barriers on the air vents and prohibiting smoking in streets to which the vents open may be effective ways to lessen exposure to airborne endotoxin levels around air vents.
Collapse
Affiliation(s)
- Wha Me Park
- The Institute for Occupational Health, Yonsei University College of Medicine, South Korea; Graduate School of Public Health, Yonsei University, South Korea
| | - Dong Uk Park
- Department of Environmental Health, Korea National Open University, South Korea
| | - Sung Ho Hwang
- National Cancer Control Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea.
| |
Collapse
|
44
|
Marchand G, Gardette M, Nguyen K, Amano V, Neesham-Grenon E, Debia M. Assessment of Workers' Exposure to Grain Dust and Bioaerosols During the Loading of Vessels' Hold: An Example at a Port in the Province of Québec. Ann Work Expo Health 2018. [PMID: 28637341 DOI: 10.1093/annweh/wxx045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Longshoremen are exposed to large amounts of grain dust while loading of grain into the holds of vessels. Grain dust inhalation has been linked to respiratory diseases such as chronic bronchitis, hypersensitivity, pneumonitis, and toxic pneumonitis. Our objective was to characterize the exposure of longshoremen to inhalable and total dust, endotoxins, and cultivable bacteria and fungi during the loading of grain in a vessel's hold at the Port of Montreal in order to assess the potential health risks. Sampling campaigns were conducted during the loading of two different types of grain (wheat and corn). Environmental samples of microorganisms (bacteria, fungus, and actinomycetes) were taken near the top opening of the ship's holds while personal breathing zone measurements of dust and endotoxins were sampled during the worker's 5-hour shifts. Our study show that all measurements are above the recommendations with concentration going up to 390 mg m-3 of total dust, 89 mg m-3 of inhalable fraction, 550 000 EU m-3 of endotoxins, 20 000 CFU m-3 of bacteria, 61 000 CFU m-3 of fungus and 2500 CFU m-3 of actinomycetes. In conclusion, longshoremen are exposed to very high levels of dust and of microorganisms and their components during grain loading work. Protective equipment needs to be enforced for all workers during such tasks in order to reduce their exposure.
Collapse
Affiliation(s)
- Geneviève Marchand
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), 505 Boul de Maisonneuve Ouest, Montréal, QC H3A 3C2, Canada.,Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Marie Gardette
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Kiet Nguyen
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Valérie Amano
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Eve Neesham-Grenon
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Maximilien Debia
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| |
Collapse
|
45
|
Lee MK, Carnes MU, Butz N, Azcarate-Peril MA, Richards M, Umbach DM, Thorne PS, Beane Freeman LE, Peddada SD, London SJ. Exposures Related to House Dust Microbiota in a U.S. Farming Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:067001. [PMID: 29863827 PMCID: PMC6084882 DOI: 10.1289/ehp3145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Environmental factors can influence the house dust microbiota, which may impact health outcomes. Little is known about how farming exposures impact the indoor microbiota. OBJECTIVE We aimed to identify exposures related to bacterial communities in house dust in a U.S. farming population. METHODS We used 16S rRNA amplicon sequencing to characterize bacterial communities in vacuumed dust samples from the bedrooms of a subset of 879 households of farmers and farmers' spouses enrolled in the Agricultural Lung Health Study (ALHS), a case-control study of asthma nested within the Agricultural Health Study (AHS) in North Carolina and Iowa. Information on current farming (past 12 mo), including both crop and animal farming, and other potential microbial sources was obtained via questionnaires. We used linear regression to evaluate associations between exposures and bacterial diversity within each sample, analysis of similarity (ANOSIM), and permutational multivariate analysis of variance (PERMANOVA) to identify exposures related to diversity between samples, and analysis of composition of microbiome to examine whether exposures related to diversity were also related to differential abundance of specific operational taxonomic units (OTUs). RESULTS Current farming was positively associated with bacterial diversity in house dust, with or without adjustment for nonfarm exposures related to diversity, including presence of indoor pets, home condition, and season of dust collection. Many taxa exhibited differential abundance related to farming. Some taxa in the phyla Chloroflexi and Verrucomicrobia were associated [false discovery rate (FDR)<0.05] with farming but not with other nonfarm factors. Many taxa correlated with the concentration of house dust of endotoxin, commonly studied as a general marker of exposure to the farming environment. CONCLUSIONS In this farming population, house dust microbiota differed by current farming status. Understanding the determinants of the indoor microbiota is the first step toward understanding potential relationships with health outcomes. https://doi.org/10.1289/EHP3145.
Collapse
Affiliation(s)
- Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Megan U Carnes
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Natasha Butz
- Dept. of Medicine and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - M Andrea Azcarate-Peril
- Dept. of Medicine and Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Dept. of Health and Human Services, Rockville, Maryland, USA
| | - Shyamal D Peddada
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept. of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
46
|
Boucher M, Blais Lecours P, Létourneau V, Veillette M, Duchaine C, Marsolais D. Organic components of airborne dust influence the magnitude and kinetics of dendritic cell activation. Toxicol In Vitro 2018; 50:391-398. [PMID: 29709566 DOI: 10.1016/j.tiv.2018.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 01/25/2023]
Abstract
Bioaerosol exposure in highly contaminated occupational settings is associated with an increased risk of disease. Yet, few determinants allow for accurate prediction of the immunopathogenic potential of complex bioaerosols. Since dendritic cells are instrumental to the initiation of immunopathological reactions, we studied how dendritic cell activation was modified in response to individual agents, combined microbial agents, or air sample eluates from highly contaminated environmental settings. We found that combinations of agents accelerated and enhanced the activation of in vitro-generated murine bone marrow-derived dendritic cell cultures, when compared to individual agents. We also determined that endotoxins are not sufficient to predict the potential of air samples to induce bone marrow-derived dendritic cell activation, especially when endotoxin levels are low. Importantly, bone marrow-derived dendritic cell activation stratified samples from three environmental settings (swine barns, dairy barns, and wastewater treatment plants) according to their air quality status. As a whole, these results support the notion that the interplay between bioaerosol components impacts on their ability to activate dendritic cells and that bone marrow-derived dendritic cell cultures are promising tools to study the immunomodulatory impact of air samples and their components.
Collapse
Affiliation(s)
- Magali Boucher
- Centre de recherche, l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, Canada
| | - Pascale Blais Lecours
- Centre de recherche, l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, Canada
| | - Valérie Létourneau
- Centre de recherche, l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, Canada
| | - Marc Veillette
- Centre de recherche, l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, Canada
| | - Caroline Duchaine
- Centre de recherche, l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, Canada; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada
| | - David Marsolais
- Centre de recherche, l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 chemin Sainte-Foy, Québec, QC, Canada; Département de médecine, Faculté de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
47
|
Oh MJ, Choi HD, Ha SK, Choi I, Park HY. Immunomodulatory effects of polysaccharide fraction isolated from Fagopyrum esculentum on innate immune system. Biochem Biophys Res Commun 2018; 496:1210-1216. [DOI: 10.1016/j.bbrc.2018.01.172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
|
48
|
House Dust Endotoxin Levels Are Associated with Adult Asthma in a U.S. Farming Population. Ann Am Thorac Soc 2018; 14:324-331. [PMID: 27977294 DOI: 10.1513/annalsats.201611-861oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
RATIONALE Endotoxin initiates a proinflammatory response from the innate immune system. Studies in children suggest that endotoxin exposure from house dust may be an important risk factor for asthma, but few studies have been conducted in adult populations. OBJECTIVES To investigate the association of house dust endotoxin levels with asthma and related phenotypes (wheeze, atopy, and pulmonary function) in a large U.S. farming population. METHODS Dust was collected from the bedrooms (n = 2,485) of participants enrolled in a case-control study of current asthma (927 cases) nested within the Agricultural Health Study. Dust endotoxin was measured by Limulus amebocyte lysate assay. Outcomes were measured by questionnaire, spirometry, and blood draw. We evaluated associations using linear and logistic regression. MEASUREMENTS AND MAIN RESULTS Endotoxin was significantly associated with current asthma (odds ratio [OR], 1.30; 95% confidence interval [CI], 1.14-1.47), and this relationship was modified by early-life farm exposure (born on a farm: OR, 1.18; 95% CI, 1.02-1.37; not born on a farm: OR, 1.67; 95% CI, 1.26-2.20; Interaction P = 0.05). Significant positive associations were seen with both atopic and nonatopic asthma. Endotoxin was not related to either atopy or wheeze. Higher endotoxin was related to lower FEV1/FVC in asthma cases only (Interaction P = 0.01). For asthma, there was suggestive evidence of a gene-by-environment interaction for the CD14 variant rs2569190 (Interaction P = 0.16) but not for the TLR4 variants rs4986790 and rs4986791. CONCLUSIONS House dust endotoxin was associated with current atopic and nonatopic asthma in a U.S. farming population. The degree of the association with asthma depended on early-life farm exposures. Furthermore, endotoxin was associated with lower pulmonary function in patients with asthma.
Collapse
|
49
|
de Rooij MMT, Heederik DJJ, van Nunen EJHM, van Schothorst IJ, Maassen CBM, Hoek G, Wouters IM. Spatial Variation of Endotoxin Concentrations Measured in Ambient PM 10 in a Livestock-Dense Area: Implementation of a Land-Use Regression Approach. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:017003. [PMID: 29329101 PMCID: PMC6014694 DOI: 10.1289/ehp2252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Results from studies on residential health effects of livestock farming are inconsistent, potentially due to simple exposure proxies used (e.g., livestock density). Accuracy of these proxies compared with measured exposure concentrations is unknown. OBJECTIVES We aimed to assess spatial variation of endotoxin in PM10 (particulate matter ≤10μm) at residential level in a livestock-dense area, compare simple livestock exposure proxies to measured endotoxin concentrations, and evaluate whether land-use regression (LUR) can be used to explain spatial variation of endotoxin. METHODS The study area (3,000 km2) was located in Netherlands. Ambient PM10 was collected at 61 residential sites representing a variety of surrounding livestock-related characteristics. Three to four 2-wk averaged samples were collected at each site. A local reference site was used for temporal variation adjustment. Samples were analyzed for PM10 mass by weighing and for endotoxin by using the limulus amebocyte lysate assay. Three LUR models were developed, first a model based on general livestock-related GIS predictors only, followed by models that also considered species-specific predictors and farm type-specific predictors. RESULTS Variation in concentrations measured between sites was substantial for endotoxin and more limited for PM10 (coefficient of variation: 43%, 8%, respectively); spatial patterns differed considerably. Simple exposure proxies were associated with endotoxin concentrations although spatial variation explained was modest (R2<26%). LUR models using a combination of animal-specific livestock-related characteristics performed markedly better, with up to 64% explained spatial variation. CONCLUSION The considerable spatial variation of ambient endotoxin concentrations measured in a livestock-dense area can largely be explained by LUR modeling based on livestock-related characteristics. Application of endotoxin LUR models seems promising for residential exposure estimation within health studies. https://doi.org/10.1289/EHP2252.
Collapse
Affiliation(s)
- Myrna M T de Rooij
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Dick J J Heederik
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Erik J H M van Nunen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Isabella J van Schothorst
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Catharina B M Maassen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gerard Hoek
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Inge M Wouters
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
50
|
Brągoszewska E, Pastuszka JS. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). AEROBIOLOGIA 2018; 34:241-255. [PMID: 29773927 PMCID: PMC5945727 DOI: 10.1007/s10453-018-9510-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 02/13/2018] [Indexed: 05/04/2023]
Abstract
Numerous studies have focused on occupational and indoor environments because people spend more than 90% of their time in them. Nevertheless, air is the main source of bacteria in indoors, and outdoor exposure is also crucial. Worldwide studies have indicated that bacterial concentrations vary among different types of outdoor environments, with considerable seasonal variations as well. Conducting comprehensive monitoring of atmospheric aerosol concentrations is very important not only for environmental management but also for the assessment of the health impacts of air pollution. To our knowledge, this is the first study to present outdoor and seasonal changes of bioaerosol data regarding an urban area of Poland. This study aimed to characterize culturable bacteria populations present in outdoor air in Gliwice, Upper Silesia Region, Poland, over the course of four seasons (spring, summer, autumn and winter) through quantification and identification procedures. In this study, the samples of bioaerosol were collected using a six-stage Andersen cascade impactor (with aerodynamic cut-off diameters of 7.0, 4.7, 3.3, 2.1, 1.1 and 0.65 μm). Results showed that the concentration of airborne bacteria ranged from 4 CFU m-3, measured on one winter day, to a maximum equal to 669 CFU m-3 on a spring day. The average size of culturable bacterial aerosol over the study period was 199 CFU m-3. The maximal seasonally averaged concentration was found in the spring season and reached 306 CFU m-3, and the minimal seasonally averaged concentration was found in the winter 49 CFU m-3. The most prevalent bacteria found outdoors were gram-positive rods that form endospores. Statistically, the most important meteorological factors related to the viability of airborne bacteria were temperature and UV radiation. These results may contribute to the promotion and implementation of preventative public health programmes and the formulation of recommendations aimed at providing healthier outdoor environments.
Collapse
Affiliation(s)
- Ewa Brągoszewska
- Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., 44-100 Gliwice, Poland
| | - Józef S. Pastuszka
- Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., 44-100 Gliwice, Poland
| |
Collapse
|