1
|
Heusinkveld HJ, Zwart EP, de Haan A, Braeuning A, Alarcan J, van der Ven LTM. The zebrafish embryo as a model for chemically-induced steatosis: A case study with three pesticides. Toxicology 2024; 508:153927. [PMID: 39151607 DOI: 10.1016/j.tox.2024.153927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
There is an increasing incidence and prevalence of fatty liver disease in the western world, with steatosis as the most prevalent variant. Known causes of steatosis include exposure to food-borne chemicals, and overconsumption of alcohol, carbohydrates and fat, and it is a well-known side effect of certain pharmaceuticals such as tetracycline, amiodarone and tamoxifen (drug-induced hepatic steatosis). Mechanistic knowledge on chemical-induced steatosis has greatly evolved and has been organized into adverse outcome pathways (AOPs) describing the chain of events from first molecular interaction of a substance with a biological system to the adverse outcome, intrahepatic lipid accumulation. In this study, three known steatosis-inducing pesticides (imazalil, clothianidin, and thiacloprid) were tested for their ability to induce hepatic triglyceride accumulation in the zebrafish (Danio rerio) embryo (ZFE) at 5 days post fertilization, both as single compounds and equipotent binary mixtures. The results indicate that the ZFE is very well applicable as a higher tier testing model to confirm effects in downstream key events in AOPs, that is, chemically-induced triglyceride accumulation in the whole organism and production of visible steatosis. Moreover, dose addition could be concluded for binary mixtures of substances with similar and with dissimilar modes of action.
Collapse
Affiliation(s)
- Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Edwin P Zwart
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Angela de Haan
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Jimmy Alarcan
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
2
|
Lee H, An G, Lim W, Song G. Flusilazole induced developmental toxicity, neurotoxicity, and cardiovascular toxicity via apoptosis and oxidative stress in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109993. [PMID: 39106914 DOI: 10.1016/j.cbpc.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Flusilazole is a well-known triazole fungicide applied to various crops and fruits worldwide. Flusilazole residues are frequently detected in the environment, and many researchers have reported the hazardous effects of flusilazole on non-target organisms; however, the developmental toxicity of flusilazole has not been fully elucidated. In this study, we investigated flusilazole-induced developmental defects in zebrafish, which are used in toxicology studies to assess the toxic effects of chemicals on aquatic species or vertebrates. We confirmed that flusilazole exposure affected the viability and hatching rate of zebrafish larvae, and resulted in morphological defects, reduced body length, diminished eye and head sizes, and inflated pericardial edema. Apoptosis, oxidative stress, and inflammation were also observed. These factors interrupted the normal organ formation during early developmental stages, and transgenic models were used to identify organ defects. We confirmed the effects of flusilazole on the nervous system using olig2:dsRed transgenic zebrafish, and on the cardiovascular system using cmlc2:dsRed and fli1:eGFP transgenic zebrafish. Our results demonstrate the developmental toxicity of flusilazole and its mechanisms in zebrafish as well as the detrimental effects of flusilazole.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Caioni G, Merola C, Perugini M, Angelozzi G, Amorena M, Benedetti E, Lucon-Xiccato T, Bertolucci C. Sodium valproate effects on the morphological and neurobehavioral phenotype of zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104500. [PMID: 38977114 DOI: 10.1016/j.etap.2024.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
The anticonvulsant sodium valproate (SV) is frequently administered as a medicament but bears several negative effects in case of exposure during development. We analyzed extensively these early development effects of using the zebrafish model. Zebrafish embryos were exposed as eggs to two sublethal concentrations of SV, 10 and 25 mg/L. A general embryo toxicity analysis revealed extended anomalies in the cardiovascular system, and in the craniofacial and the spinal skeleton, as well as high mortality, in the embryos exposed to SV. The teratogenic potential of SV was confirmed in hacthed larvae by morphometric and cartilage profile analysis. Last, neurobehavioral impairments due to SV were highlighted in subjects' activity, anxiety, response to stimulations, habituation learning, and daily synchronization of locomotor activity, overall mirroring typical phenotypes associated with autistic spectrum disorders. In conclusion, our results confirmed the presence of extended and multifaced impacts of exposure to SV during development.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy; Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Giovanni Angelozzi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Michele Amorena
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Guerrero-Limón G, Muller M. Exploring estrogen antagonism using CRISPR/Cas9 to generate specific mutants for each of the receptors. CHEMOSPHERE 2024; 364:143100. [PMID: 39159765 DOI: 10.1016/j.chemosphere.2024.143100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Endocrine disruptors are chemicals that have been in the spotlight for some time now. Their modulating action on endocrine signaling pathways made them a particularly interesting topic of research within the field of ecotoxicology. Traditionally, endocrine disrupting properties are studied using exposure to suspected chemicals. In recent years, a major breakthrough in biology has been the advent of targeted gene editing tools to directly assess the function of specific genes. Among these, the CRISPR/Cas9 method has accelerated progress across many disciplines in biology. This versatile tool allows to address antagonism differently, by directly inactivating the receptors targeted by endocrine disruptors. Here, we used the CRISPR/Cas9 method to knock out the different estrogen receptors in zebrafish and we assessed the potential effects this generates during development. We used a panel of biological tests generally used in zebrafish larvae to investigate exposure to compounds deemed as endocrine disrupting chemicals. We demonstrate that the absence of individual functional estrogen receptors (Esr1, Esr2b, or Gper1) does affect behavior, heart rate and overall development. Each mutant line was viable and could be grown to adulthood, the larvae tended to be morphologically grossly normal. A substantial fraction (70%) of the esr1 mutants presented severe craniofacial deformations, while the remaining 30% of esr1 mutants also had changes in behavior. esr2b mutants had significantly increased heart rate and significant impacts on craniofacial morphometrics. Finally, mutation of gper1 affected behavior, decreased standard length, and decreased bone mineralization as assessed in the opercle. Although the exact molecular mechanisms underlying these effects will require further investigations in the future, we added a new concept and new tools to explore and better understand the actions of the large group of endocrine disrupting chemicals found in our environment.
Collapse
Affiliation(s)
- Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium.
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
5
|
Shu X, Guo P, Zhang G, Zhang W, Hu H, Peng J, Xiong Y, Ma B, Lai W. Novel litchi-like Au-Ag nanospheres driven dual-readout lateral flow immunoassay for sensitive detection of pyrimethanil. Food Chem 2024; 450:139380. [PMID: 38640535 DOI: 10.1016/j.foodchem.2024.139380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Pyrimethanil (PYR) is a fungicide that is harmful to consumers when present in foods at concentrations greater than maximum permitted residue levels. High-performance immunoprobes and dual-readout strategy may be useful for constructing sensitive lateral flow immunoassay (LFIA). Herein, the prepared litchi-like Au-Ag bimetallic nanospheres (LBNPs) exhibited high mass extinction coefficients and fluorescence quenching constants. Benefiting from LBNPs and dual-readout mode, the limits of detection of LBNPs-CM-LFIA and LBNPs-FQ-LFIA for PYR were 0.957 and 0.713 ng mL-1, which were 2.54- and 3.41-fold lower than that of gold nanoparticles-based LFIA, respectively. The limits of quantitation of LBNPs-CM-LFIA and LBNPs-FQ-LFIA were 3.740 and 1.672 ng mL-1, respectively. LBNPs-LFIA was applied to detect PYR in cucumber and grape samples with satisfactory recovery (90%-111%). LBNPs-LFIA showed good agreement with LC-MS/MS for the detection of PYR in the samples. Accordingly, this sensitive and accurate dual-readout LFIA based on LBNPs can be effectively applied for food safety.
Collapse
Affiliation(s)
- Xinhui Shu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ping Guo
- Jiangxi General Institute of Testing and Certification, Nanchang 330029, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wei Zhang
- Jiangxi General Institute of Testing and Certification, Nanchang 330029, China
| | - Hong Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bingfeng Ma
- Jiangxi General Institute of Testing and Certification, Nanchang 330029, China.
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
6
|
Valcarce DG, Sellés-Egea A, Riesco MF, De Garnica MG, Martínez-Fernández B, Herráez MP, Robles V. Early stress exposure on zebrafish development: effects on survival, malformations and molecular alterations. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1545-1562. [PMID: 38743196 PMCID: PMC11286684 DOI: 10.1007/s10695-024-01355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
The effects of stress during early vertebrate development can be especially harmful. Avoiding stressors in fish larvae is essential to ensure the health of adult fish and their reproductive performance and overall production. We examined the consequences of direct exposure to successive acute stressors during early development, including their effects on miR-29a and its targets, survival, hatching and malformation rates, larval behaviour and cartilage and eye development. Our aim was to shed light on the pleiotropic effects of early-induced stress in this vertebrate model species. Our results showed that direct exposure to successive acute stressors during early development significantly upregulated miR-29a and downregulated essential collagen transcripts col2a1a, col6a2 and col11a1a, decreased survival and increased malformation rates (swim bladder, otoliths, cardiac oedema and ocular malformations), promoting higher rates of immobility in larvae. Our results revealed that stress in early stages can induce different eye tissular architecture and cranioencephalic cartilage development alterations. Our research contributes to the understanding of the impact of stressful conditions during the early stages of zebrafish development, serving as a valuable model for vertebrate research. This holds paramount significance in the fields of developmental biology and aquaculture and also highlights miR-29a as a potential molecular marker for assessing novel larval rearing programmes in teleost species.
Collapse
Affiliation(s)
- David G Valcarce
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Alba Sellés-Egea
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Marta F Riesco
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | | | | | - María Paz Herráez
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Vanesa Robles
- Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain.
| |
Collapse
|
7
|
Verma SK, Nandi A, Sinha A, Patel P, Mohanty S, Jha E, Jena S, Kumari P, Ghosh A, Jerman I, Chouhan RS, Dutt A, Samal SK, Mishra YK, Varma RS, Panda PK, Kaushik NK, Singh D, Suar M. The posterity of Zebrafish in paradigm of in vivo molecular toxicological profiling. Biomed Pharmacother 2024; 171:116160. [PMID: 38237351 DOI: 10.1016/j.biopha.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The aggrandised advancement in utility of advanced day-to-day materials and nanomaterials has raised serious concern on their biocompatibility with human and other biotic members. In last few decades, understanding of toxicity of these materials has been given the centre stage of research using many in vitro and in vivo models. Zebrafish (Danio rerio), a freshwater fish and a member of the minnow family has garnered much attention due to its distinct features, which make it an important and frequently used animal model in various fields of embryology and toxicological studies. Given that fertilization and development of zebrafish eggs take place externally, they serve as an excellent model organism for studying early developmental stages. Moreover, zebrafish possess a comparable genetic composition to humans and share almost 70% of their genes with mammals. This particular model organism has become increasingly popular, especially for developmental research. Moreover, it serves as a link between in vitro studies and in vivo analysis in mammals. It is an appealing choice for vertebrate research, when employing high-throughput methods, due to their small size, swift development, and relatively affordable laboratory setup. This small vertebrate has enhanced comprehension of pathobiology and drug toxicity. This review emphasizes on the recent developments in toxicity screening and assays, and the new insights gained about the toxicity of drugs through these assays. Specifically, the cardio, neural, and, hepatic toxicology studies inferred by applications of nanoparticles have been highlighted.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | | | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Snehasmita Jena
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Puja Kumari
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno 61137, Czech Republic
| | - Aishee Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| |
Collapse
|
8
|
Raman R, Antony M, Nivelle R, Lavergne A, Zappia J, Guerrero-Limón G, Caetano da Silva C, Kumari P, Sojan JM, Degueldre C, Bahri MA, Ostertag A, Collet C, Cohen-Solal M, Plenevaux A, Henrotin Y, Renn J, Muller M. The Osteoblast Transcriptome in Developing Zebrafish Reveals Key Roles for Extracellular Matrix Proteins Col10a1a and Fbln1 in Skeletal Development and Homeostasis. Biomolecules 2024; 14:139. [PMID: 38397376 PMCID: PMC10886564 DOI: 10.3390/biom14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Mishal Antony
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Renaud Nivelle
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Arnaud Lavergne
- GIGA Genomics Platform, B34, GIGA Institute, University of Liège, 4000 Liège, Belgium;
| | - Jérémie Zappia
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium (Y.H.)
| | - Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Caroline Caetano da Silva
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Priyanka Kumari
- Laboratory of Pharmaceutical and Analytical Chemistry, Department of Pharmacy, CIRM, Sart Tilman, 4000 Liège, Belgium;
| | - Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Christian Degueldre
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Mohamed Ali Bahri
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Agnes Ostertag
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Corinne Collet
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
- UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, F-75019 Paris, France
| | - Martine Cohen-Solal
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Alain Plenevaux
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium (Y.H.)
| | - Jörg Renn
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| |
Collapse
|
9
|
Karaman GE, Ünal İ, Beler M, Üstündağ FD, Cansız D, Üstündağ ÜV, Emekli-Alturfan E, Akyüz S. Toothpastes for children and their detergent contents affect molecular mechanisms of odontogenesis in zebrafish embryos. Drug Chem Toxicol 2024; 47:15-25. [PMID: 36444776 DOI: 10.1080/01480545.2022.2150208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/29/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022]
Abstract
We aimed to evaluate how different types of toothpaste (TP) for children affected molecular mechanisms of odontogenesis in zebrafish embryos. Commercially available TPs were selected according to their detergent contents as the cocamidopropyl betaine (CAPB) containing TP (TP1) and sodium lauryl sulfate (SLS) containing TP (TP2). TP3 contained no detergent. Effects of SLS, and CAPB alone were also examined. TP and detergent concentrations affecting development were determined as 750 mg/L and 4 mg/L, respectively. Embryos were exposed to TP1, TP2, TP3, SLS, CAPB, and embryo medium (control) for 72 h post fertilization. Acetylcholinesterase (AChE) activity and oxidant-antioxidant parameters were analyzed spectrophotometrically. Expressions of tooth development genes were evaluated by reverse transcription PCR (RT-PCR). Intraocular distance, lower jaw, and ceratohyal cartilage length were displayed using Alcian Blue staining. axin2 and wnt10a expressions increased in SLS and TP2 groups. igf2a and eve1 expressions decreased in all groups except TP3. nrOb1 expression decreased in TP1, SLS, and CAPB groups. Oxidant-antioxidant balance was disturbed in all groups except TP3, evidenced by increased lipid peroxidation, nitric oxide. SLS, and CAPB groups were more affected in terms of AChE, glutathione-S-transferase, and superoxide dismutase; perturbations were observed in cartilage structures. Altered expression of tooth development gene axin2 correlated with wnt10a, and with changes in cartilage structures in SLS and TP2 groups. TP3 group presented no disruptions in oxidant-antioxidant balance. Our study shows the availability of externally developing zebrafish embryos in examining the effects of TP' contents on embryogenesis.
Collapse
Affiliation(s)
- Gözde Ece Karaman
- Department of Paediatric Dentistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Merih Beler
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Fümet Duygu Üstündağ
- Department of Biophysics, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Derya Cansız
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ünsal Veli Üstündağ
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Serap Akyüz
- Department of Paediatric Dentistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
10
|
Beler M, Ünal İ, Cansız D, Emekli-Alturfan E. Alcian Blue Staining for Chondrocranium Development in Zebrafish. Methods Mol Biol 2024; 2753:447-457. [PMID: 38285358 DOI: 10.1007/978-1-0716-3625-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Craniofacial abnormalities are one of the most frequent birth malformations in humans, affecting around one in every thousand live births. The zebrafish (Danio rerio), a model organism that has seen increased usage in toxicological research in recent years, is ideal for assessing the effects of various chemicals on bone and cartilage structures. Chondrogenesis developed in zebrafish embryos by embryonic day 2, and supporting cartilage components are apparent at hatching (72 h post-fertilization). Individual cartilage may be observed using Alcian Blue staining as early as 2 days post-fertilization (dpf). The preferential binding of Alcian Blue causes the staining of zebrafish cartilage to acidic glycoproteins in an acidic solution (pH 2.2). In 72-120 hpf embryos, the cranial skeleton is easily visible after cartilage staining using Alcian Blue. Various cranial lengths and structures can be determined by measuring specific distances and angles to optimize the quantitative analysis of cranial malformations in zebrafish after exposure to various toxic agents. This chapter explains the Alcian Blue staining procedure to identify craniofacial cartilaginous structures in zebrafish embryos.
Collapse
Affiliation(s)
- Merih Beler
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Derya Cansız
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey.
| |
Collapse
|
11
|
Shankar P, Villeneuve DL. AOP Report: Aryl Hydrocarbon Receptor Activation Leads to Early-Life Stage Mortality via Sox9 Repression-Induced Craniofacial and Cardiac Malformations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2063-2077. [PMID: 37341548 PMCID: PMC10772968 DOI: 10.1002/etc.5699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
The aryl hydrocarbon receptors (Ahrs) are evolutionarily conserved ligand-dependent transcription factors that are activated by structurally diverse endogenous compounds as well as environmental chemicals such as polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons. Activation of the Ahr leads to several transcriptional changes that can cause developmental toxicity resulting in mortality. Evidence was assembled and evaluated for two novel adverse outcome pathways (AOPs) which describe how Ahr activation (molecular initiating event) can lead to early-life stage mortality (adverse outcome), via either SOX9-mediated craniofacial malformations (AOP 455) or cardiovascular toxicity (AOP 456). Using a key event relationship (KER)-by-KER approach, we collected evidence using both a narrative search and a systematic review based on detailed search terms. Weight of evidence for each KER was assessed to inform overall confidence of the AOPs. The AOPs link to previous descriptions of Ahr activation and connect them to two novel key events (KEs), increase in slincR expression, a newly characterized long noncoding RNA with regulatory functions, and suppression of SOX9, a critical transcription factor implicated in chondrogenesis and cardiac development. In general, confidence levels for KERs ranged between medium and strong, with few inconsistencies, as well as several opportunities for future research identified. While the majority of KEs have only been demonstrated in zebrafish with 2,3,7,8-tetrachlorodibenzo-p-dioxin as an Ahr activator, evidence suggests that the two AOPs likely apply to most vertebrates and many Ahr-activating chemicals. Addition of the AOPs into the AOP-Wiki (https://aopwiki.org/) helps expand the growing Ahr-related AOP network to 19 individual AOPs, of which six are endorsed or in progress and the remaining 13 relatively underdeveloped. Environ Toxicol Chem 2023;42:2063-2077. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Prarthana Shankar
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
- University of Wisconsin Madison Sea Grant Fellow at Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Daniel L. Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| |
Collapse
|
12
|
Ahkin Chin Tai JK, Horzmann KA, Jenkins TL, Akoro IN, Stradtman S, Aryal UK, Freeman JL. Adverse developmental impacts in progeny of zebrafish exposed to the agricultural herbicide atrazine during embryogenesis. ENVIRONMENT INTERNATIONAL 2023; 180:108213. [PMID: 37774458 PMCID: PMC10613503 DOI: 10.1016/j.envint.2023.108213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Atrazine (ATZ) is an herbicide commonly used on crops in the Midwestern US and other select global regions. The US Environmental Protection Agency ATZ regulatory limit is 3 parts per billion (ppb; µg/L), but this limit is often exceeded. ATZ has a long half-life, is a common contaminant of drinking water sources, and is indicated as an endocrine disrupting chemical in multiple species. The zebrafish was used to test the hypothesis that an embryonic parental ATZ exposure alters protein levels leading to modifications in morphology and behavior in developing progeny. Zebrafish embryos (F1) were collected from adults (F0) exposed to 0, 0.3, 3, or 30 ppb ATZ during embryogenesis. Differential proteomics, morphology, and behavior assays were completed with offspring aged 120 or 144 h with no additional chemical treatment. Proteomic analysis identified differential expression of proteins associated with neurological development and disease; and organ and organismal morphology, development, and injury, specifically the skeletomuscular system. Head length and ratio of head length to total length was significantly increased in the F1 of 0.3 and 30 ppb ATZ groups (p < 0.05). Based on molecular pathway alterations, further craniofacial morphology assessment found decreased distance for cartilaginous structures, decreased surface area and distance between saccular otoliths, and a more posteriorly positioned notochord (p < 0.05), indicating delayed ossification and skeletal growth. The visual motor response assay showed hyperactivity in progeny of the 30 ppb treatment group for distance moved and of the 0.3 and 30 ppb treatment groups for time spent moving (p < 0.05). Due to the changes in saccular otoliths, an acoustic startle assay was completed and showed decreased response in the 0.3 and 30 ppb treatments (p < 0.05). These findings suggest that a single embryonic parental exposure alters cellular pathways in their progeny that lead to perturbations in craniofacial development and behavior.
Collapse
Affiliation(s)
| | - Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Thomas L Jenkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Isabelle N Akoro
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Sydney Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
13
|
Yuan W, Hu Y, Lu C, Zhang J, Liu Y, Li X, Jia K, Huang Y, Li Z, Chen X, Wang F, Yi X, Che X, Xiong H, Cheng B, Ma J, Zhao Y, Lu H. Propineb induced notochord deformity, craniofacial malformation, and osteoporosis in zebrafish through dysregulated reactive oxygen species generation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106596. [PMID: 37290275 DOI: 10.1016/j.aquatox.2023.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Dithiocarbamate (DTC) fungicides are contaminants that are ubiquitous in the environment. Exposure to DTC fungicides has been associated with a variety of teratogenic developmental effects. Propineb, a member of DTCs, was evaluated for the toxicological effects on notochord and craniofacial development, osteogenesis in zebrafish model. Embryos at 6 hours post-fertilization (hpf) were exposed to propineb at dosages of 1 and 4 μM. Morphological parameters were evaluated at exposure times of 24, 48, 72, and 120 hpf after propineb exposure. The survival and hatching rates as well as body length decreased at 1 and 4 μmol/L groups. Besides, transgenic zebrafish exposed to propineb showed abnormal vacuole biogenesis in notochord cells at the early stage of development. The expression of collagen type 2 alpha 1a (col2a1a), sonic hedgehog (shh), and heat shock protein family B member 11 (hspb11) measured by quantitative PCR and in situ hybridization experiment of col8a1a gene have consolidated the proposal process. Besides, Alcian blue, calcein, and alizarin red staining profiles displayed craniofacial malformations and osteoporosis were induced following propineb exposure. PPB exposure induced the changes in oxidative stress and reactive oxygen species inhibitor alleviated the deformities of PPB. Collectively, our data suggested that propineb exposure triggered bone abnormalities in different phenotypes of zebrafish. Therefore, propineb is a potential toxicant of high priority concern for aquatic organisms.
Collapse
Affiliation(s)
- Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ying Hu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jun Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, Jiangsu, China
| | - Ye Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xinran Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zekun Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaomei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Fei Wang
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaokun Yi
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaofang Che
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Haibin Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yan Zhao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009, Jiangxi, China..
| |
Collapse
|
14
|
Paz D, Pinales BE, Castellanos BS, Perez I, Gil CB, Madrigal LJ, Reyes-Nava NG, Castro VL, Sloan JL, Quintana AM. Abnormal chondrocyte development in a zebrafish model of cblC syndrome restored by an MMACHC cobalamin binding mutant. Differentiation 2023; 131:74-81. [PMID: 37167860 PMCID: PMC11373873 DOI: 10.1016/j.diff.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described. Mouse models of Mmachc deletion are embryonic lethal but cause severe craniofacial phenotypes such as facial clefts. MMACHC encodes an enzyme required for cobalamin processing and variants in this gene result in the accumulation of two metabolites: methylmalonic acid (MMA) and homocysteine (HC). Interestingly, other inborn errors of cobalamin metabolism, such as cblX syndrome, are associated with mild facial phenotypes. However, the presence and severity of MMA and HC accumulation in cblX syndrome is not consistent with the presence or absence of facial phenotypes. Thus, the mechanisms by which mutations in MMACHC cause craniofacial defects are yet to be completely elucidated. Here we have characterized the craniofacial phenotypes in a zebrafish model of cblC (hg13) and performed restoration experiments with either a wildtype or a cobalamin binding deficient MMACHC protein. Homozygous mutants did not display gross morphological defects in facial development but did have abnormal chondrocyte nuclear organization and an increase in the average number of neighboring cell contacts, both phenotypes were fully penetrant. Abnormal chondrocyte nuclear organization was not associated with defects in the localization of neural crest specific markers, sox10 (RFP transgene) or barx1. Both nuclear angles and the number of neighboring cell contacts were fully restored by wildtype MMACHC and a cobalamin binding deficient variant of the MMACHC protein. Collectively, these data suggest that mutation of MMACHC causes mild to moderate craniofacial phenotypes that are independent of cobalamin binding.
Collapse
Affiliation(s)
- David Paz
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Briana E Pinales
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Barbara S Castellanos
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Isaiah Perez
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Claudia B Gil
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Lourdes Jimenez Madrigal
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Victoria L Castro
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Jennifer L Sloan
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
15
|
Merola C, Caioni G, Cimini A, Perugini M, Benedetti E. Sodium valproate exposure influences the expression of pparg in the zebrafish model. Birth Defects Res 2023; 115:658-667. [PMID: 36786327 DOI: 10.1002/bdr2.2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Valproic acid (VPA) is an anti-epileptic drug used alone or in combination with other medications to treat seizures, mania, and bipolar disorder. VPA recognized as a teratogenic chemical can cause severe birth defects mainly affecting the brain and spinal cord when administered during pregnancy. However, the potential mechanisms of developmental toxicity are still less studied, and in the present study, the influence of VPA exposure was evaluated on zebrafish early-life stages. Zebrafish were exposed to two sublethal concentrations of sodium valproate (SV) (0.06 mM and 0.15 mM) from 24 hours post-fertilization (hpf) to 96 hpf and the SV teratogenic potential was investigated through morphometric analysis of zebrafish larvae combined with the evaluation of cartilage profile. Moreover, the effect of SV on the transcription level of pparg was also performed. The results of the study showed the teratogenic potential of SV, which disrupts the morphometric signature of the head and body. The marked distortion of cartilage structures was paralleled to a malformation of telencephalon and optic tectum in both concentrations suggesting a high teratogen effect of SV on the brain. These data were further confirmed by the increased expression of pparg in the zebrafish head. Overall, the present study confirms the teratogenic activity of SV in the zebrafish model and, for the first time, points out the potential protective role of pparg in the SV dose-dependent toxicity.
Collapse
Affiliation(s)
- Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
16
|
Yan R, Ding J, Yang Q, Zhang X, Han J, Jin T, Shi S, Wang X, Zheng Y, Li H, Zhang H, An Y. Lead acetate induces cartilage defects and bone loss in zebrafish embryos by disrupting the GH/IGF-1 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114666. [PMID: 36812871 DOI: 10.1016/j.ecoenv.2023.114666] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Skeletal system toxicity due to lead exposure has attracted extensive attention in recent years, but few studies focus on the skeletal toxicity of lead in the early life stages of zebrafish. The endocrine system, especially the GH/IGF-1 axis, plays an important role in bone development and bone health of zebrafish in the early life. In the present study, we investigated whether lead acetate (PbAc) affected the GH/IGF-1 axis, thereby causing skeletal toxicity in zebrafish embryos. Zebrafish embryos were exposed to lead PbAc between 2 and 120 h post fertilization (hpf). At 120 hpf, we measured developmental indices, such as survival, deformity, heart rate, and body length, and assessed skeletal development by Alcian Blue and Alizarin Red staining and the expression levels of bone-related genes. The levels of GH and IGF-1 and the expression levels of GH/IGF-1 axis-related genes were also detected. Our data showed that the LC50 of PbAc for 120 h was 41 mg/L. Compared with the control group (0 mg/L PbAc), after PbAc exposure, the deformity rate increased, the heart rate decreased, and the body length was shortened at various time periods, in the 20-mg/L group at 120 hpf, the deformity rate increased by 50 fold, the heart rate decreased by 34%, and the body length shortened by 17%. PbAc altered cartilage structures and exacerbated bone loss in zebrafish embryos; in addition, PbAc exposure down-regulated the expression of chondrocyte (sox9a, sox9b), osteoblast (bmp2, runx2) and bone mineralization-related genes (sparc, bglap), and up-regulated the expression of osteoclast marker genes (rankl, mcsf). The GH level increased and the IGF-1 level declined significantly. The GH/IGF-1 axis related genes (ghra, ghrb, igf1ra, igf1rb, igf2r, igfbp2a, igfbp3, igfbp5b) were all decreased. These results suggested that PbAc inhibited the differentiation and maturation of osteoblasts and cartilage matrix, promoted the formation of osteoclasts, and ultimately induced cartilage defects and bone loss by disrupting the GH/IGF-1 axis.
Collapse
Affiliation(s)
- Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Jie Ding
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Xiaoyun Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Junyu Han
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Tingxu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Shudi Shi
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Xirui Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Yu Zheng
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| | - Heran Li
- Microwants International LTD, 999077, Hong Kong, China.
| | - Hengdong Zhang
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China; Jiangsu Preventive Medicine Association, Nanjing 210009, China.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translation-al Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
17
|
de Prisco N, Ford C, Elrod ND, Lee W, Tang LC, Huang KL, Lin A, Ji P, Jonnakuti VS, Boyle L, Cabaj M, Botta S, Õunap K, Reinson K, Wojcik MH, Rosenfeld JA, Bi W, Tveten K, Prescott T, Gerstner T, Schroeder A, Fong CT, George-Abraham JK, Buchanan CA, Hanson-Khan A, Bernstein JA, Nella AA, Chung WK, Brandt V, Jovanovic M, Targoff KL, Yalamanchili HK, Wagner EJ, Gennarino VA. Alternative polyadenylation alters protein dosage by switching between intronic and 3'UTR sites. SCIENCE ADVANCES 2023; 9:eade4814. [PMID: 36800428 PMCID: PMC9937581 DOI: 10.1126/sciadv.ade4814] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3' untranslated region (3'UTR), introns, or exons. Most studies focus on APA within the 3'UTR; however, here, we show that CPSF6 insufficiency alters protein levels and causes a developmental syndrome by deregulating APA throughout the transcript. In neonatal humans and zebrafish larvae, CPSF6 insufficiency shifts poly(A) site usage between the 3'UTR and internal sites in a pathway-specific manner. Genes associated with neuronal function undergo mostly intronic APA, reducing their expression, while genes associated with heart and skeletal function mostly undergo 3'UTR APA and are up-regulated. This suggests that, under healthy conditions, cells toggle between internal and 3'UTR APA to modulate protein expression.
Collapse
Affiliation(s)
- Nicola de Prisco
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Caitlin Ford
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathan D. Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Winston Lee
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ai Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, WC67+HC Dongcheng, Beijing, China
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Venkata S. Jonnakuti
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Lia Boyle
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Maximilian Cabaj
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Salvatore Botta
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Katrin Õunap
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Monica H. Wojcik
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Thorsten Gerstner
- Department of Child Neurology and Rehabilitation and Department of Pediatrics, Hospital of Southern Norway, Arendal, Norway
| | - Audrey Schroeder
- Division of Medical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Chin-To Fong
- Department of Pediatrics and of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jaya K. George-Abraham
- Dell Children’s Medical Group, Austin, TX, USA
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | - Andrea Hanson-Khan
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
- Department of Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Jonathan A. Bernstein
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Aikaterini A. Nella
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Wendy K. Chung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Vicky Brandt
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kimara L. Targoff
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hari Krishna Yalamanchili
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Tenorio-Chávez P, Elizalde-Velázquez GA, Gómez-Oliván LM, Hernández-Navarro MD. Chronic intake of an enriched diet with spirulina (Arthrospira maxima) alleviates the embryotoxic effects produced by realistic concentrations of tetracycline in Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159731. [PMID: 36356765 DOI: 10.1016/j.scitotenv.2022.159731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Tetracycline (TC) is one of the most consumed antibiotics worldwide. Due to its high consumption, recent studies have reported its presence in aquatic environments and have assessed its effects on fish, algae, and daphniids. However, in most of those works, authors have tested TC toxicity at concentrations higher than the ones reported in the water matrix. Herein, we aimed to assess the likely embryotoxic and oxidative damage induced by environmentally relevant concentrations of TC in embryos of Danio rerio. Moreover, we seek to determine whether or not an enriched diet with spirulina can alleviate the embryotoxic damage produced by TC. Our findings indicated that TC at concentrations of 50 to 500 ng/L induced pericardial edema, tail deformities, and absence of head and fin in embryos after 96 h of exposure. Moreover, this antibiotic prompted the death of embryos in a concentration-dependent manner. According to our integrated biomarker response index, TC induced oxidative damage on Danio rerio embryos, as star plots showed a tendency to lipoperoxidation, hydroperoxides, and protein carbonyl content. Spirulina reduced the toxicity of TC by diminishing the levels of oxidative damage biomarkers, which resulted in a decrease in the rate of death and malformed embryos. Overall, TC at concentrations of ng/L prompted oxidative stress and embryotoxicity in the early life stages of Danio rerio; nonetheless, the algae spirulina was able to reduce the severity of those effects.
Collapse
Affiliation(s)
- Paulina Tenorio-Chávez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
19
|
Paz D, Pinales BE, Castellanos BS, Perez I, Gil CB, Madrigal LJ, Reyes-Nava NG, Castro VL, Sloan JL, Quintana AM. Abnormal chondrocyte intercalation in a zebrafish model of cblC syndrome restored by an MMACHC cobalamin binding mutant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524982. [PMID: 36711998 PMCID: PMC9882310 DOI: 10.1101/2023.01.20.524982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described. Mouse models of Mmachc deletion are embryonic lethal but cause severe craniofacial phenotypes such as facial clefts. MMACHC encodes an enzyme required for cobalamin processing and variants in this gene result in the accumulation of two metabolites: methylmalonic acid (MMA) and homocysteine (HC). Interestingly, other inborn errors of cobalamin metabolism, such as cblX syndrome, are associated with mild facial phenotypes. However, the presence and severity of MMA and HC accumulation in cblX syndrome is not consistent with the presence or absence of facial phenotypes. Thus, the mechanisms by which mutation of MMACHC cause craniofacial defects have not been completely elucidated. Here we have characterized the craniofacial phenotypes in a zebrafish model of cblC ( hg13 ) and performed restoration experiments with either wildtype or a cobalamin binding deficient MMACHC protein. Homozygous mutants did not display gross morphological defects in facial development, but did have abnormal chondrocyte intercalation, which was fully penetrant. Abnormal chondrocyte intercalation was not associated with defects in the expression/localization of neural crest specific markers, sox10 or barx1 . Most importantly, chondrocyte organization was fully restored by wildtype MMACHC and a cobalamin binding deficient variant of MMACHC protein. Collectively, these data suggest that mutation of MMACHC causes mild to moderate craniofacial phenotypes that are independent of cobalamin binding.
Collapse
Affiliation(s)
- David Paz
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Briana E Pinales
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Barbara S Castellanos
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Isaiah Perez
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Claudia B Gil
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Lourdes Jimenez Madrigal
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Victoria L Castro
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Jennifer L Sloan
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| |
Collapse
|
20
|
Torres-Pérez JV, Anagianni S, Mech AM, Havelange W, García-González J, Fraser SE, Vallortigara G, Brennan CH. baz1b loss-of-function in zebrafish produces phenotypic alterations consistent with the domestication syndrome. iScience 2023; 26:105704. [PMID: 36582821 PMCID: PMC9793288 DOI: 10.1016/j.isci.2022.105704] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
BAZ1B is a ubiquitously expressed nuclear protein with roles in chromatin remodeling, DNA replication and repair, and transcription. Reduced BAZ1B expression disrupts neuronal and neural crest development. Variation in the activity of BAZ1B has been proposed to underly morphological and behavioral aspects of domestication through disruption of neural crest development. Knockdown of baz1b in Xenopus embryos and Baz1b loss-of-function (LoF) in mice leads to craniofacial defects consistent with this hypothesis. We generated baz1b LoF zebrafish using CRISPR/Cas9 gene editing to test the hypothesis that baz1b regulates behavioral phenotypes associated with domestication in addition to craniofacial features. Zebrafish with baz1b LoF show mild underdevelopment at larval stages and distinctive craniofacial features later in life. Mutant zebrafish show reduced anxiety-associated phenotypes and an altered ontogeny of social behaviors. Thus, in zebrafish, developmental deficits in baz1b recapitulate both morphological and behavioral phenotypes associated with the domestication syndrome in other species.
Collapse
Affiliation(s)
- Jose V. Torres-Pérez
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Departament de Biologia Cel·lular, Biologia Funcional i Antropologia física, Fac. de CC. Biològiques, Universitat de València, C/ Dr. Moliner 50, Burjassot, València 46100, Spain
| | - Sofia Anagianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Aleksandra M. Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - William Havelange
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Judit García-González
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Scott E. Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | | | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
21
|
Anagnostopoulos C, Anastassiadou M, Castoldi AF, Cavelier A, Coja T, Crivellente F, Dujardin B, Hart A, Hooghe W, Jarrah S, Machera K, Menegola E, Metruccio F, Sieke C, Mohimont L. Retrospective cumulative dietary risk assessment of craniofacial alterations by residues of pesticides. EFSA J 2022; 20:e07550. [PMID: 36237417 PMCID: PMC9536188 DOI: 10.2903/j.efsa.2022.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
EFSA established cumulative assessment groups and conducted retrospective cumulative risk assessments for two types of craniofacial alterations (alterations due to abnormal skeletal development, head soft tissue alterations and brain neural tube defects) for 14 European populations of women in childbearing age. Cumulative acute exposure calculations were performed by probabilistic modelling using monitoring data collected by Member States in 2017, 2018 and 2019. A rigorous uncertainty analysis was performed using expert knowledge elicitation. Considering all sources of uncertainty, their dependencies and differences between populations, it was concluded with varying degrees of certainty that the MOET resulting from cumulative exposure is above 100 for the two types of craniofacial alterations. The threshold for regulatory consideration established by risk managers is therefore not exceeded. Considering the severity of the effects under consideration, it was also assessed whether the MOET is above 500. This was the case with varying levels of certainty for the head soft tissue alterations and brain neural tube defects. However, for the alterations due to abnormal skeletal development, it was found about as likely as not that the MOET is above 500 in most populations. For two populations, it was even found more likely that the MOET is below 500. These results were discussed in the light of the conservatism of the methodological approach.
Collapse
|
22
|
Battistoni M, Metruccio F, Di Renzo F, Bacchetta R, Menegola E. Predictive assays for craniofacial malformations: evaluation in Xenopus laevis embryos exposed to triadimefon. Arch Toxicol 2022; 96:2815-2824. [PMID: 35748892 PMCID: PMC9352603 DOI: 10.1007/s00204-022-03327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022]
Abstract
Craniofacial defects are one of the most frequent abnormalities at birth, but their experimental evaluation in animal models requires complex procedures. The aim of the present work is the comparison of different methodologies to identify dose- and stage-related craniofacial malformations in Xenopus laevis assay (R-FETAX, where the full cartilage evaluation, including flat mount technique, is the gold standard for skeletal defect detection). Different methods (external morphological evaluation of fresh samples, deglutition test, whole mount cartilage evaluation and Meckel-palatoquadrate angle measurements) were applied. Triadimefon (FON) was selected as the causative molecule as it is known to induce craniofacial defects in different animal models, including the amphibian X. laevis.FON exposure (0-31.25 μM) was scheduled to cover the whole 6-day test (from gastrula to free swimming tadpole stage) or each crucial developmental phases: gastrula, neurula, early morphogenesis, late morphogenesis, tadpole. Dose-dependent effects (fusions among craniofacial cartilages) were evident for groups exposed during the morphogenetic periods (neurula, early morphogenesis, late morphogenesis); gastrula was insensitive to the tested concentrations, tadpole group showed malformations only at 31.25 μM. The overall NOAEL was set at 3.9 μM. Results were evaluated applying benchmark dose (BMD) approach. The comparison of relative potencies from different methods showed deglutition as the only assay comparable with the gold standard (cartilage full evaluation).In conclusion, we suggest deglutition test as a reliable method for a rapid screening of craniofacial abnormalities in the alternative model X. laevis. This is a rapid, inexpensive and vital test allowing to preserve samples for the application of further morphological or molecular investigations.
Collapse
Affiliation(s)
- Maria Battistoni
- Department of Physics Aldo Pontremoli, Università Degli Studi Di Milano, via Celoria, 16-20133 Milan, Italy
| | - Francesca Metruccio
- Department of Biomedical and Clinical Sciences, ICPS, ASST Fatebenefratelli Sacco, Università degli studi di Milano, Via GB Grassi, 74- 20159 Milan, Italy
| | - Francesca Di Renzo
- Department of Environmental Science and Policy, Università Degli Studi Di Milano, via Celoria, 26-20133 Milan, Italy
| | - Renato Bacchetta
- Department of Environmental Science and Policy, Università Degli Studi Di Milano, via Celoria, 26-20133 Milan, Italy
| | - Elena Menegola
- Department of Environmental Science and Policy, Università Degli Studi Di Milano, via Celoria, 26-20133 Milan, Italy
| |
Collapse
|
23
|
Acetaminophen Disrupts the Development of Pharyngeal Arch-Derived Cartilage and Muscle in Zebrafish. J Dev Biol 2022; 10:jdb10030030. [PMID: 35893125 PMCID: PMC9326545 DOI: 10.3390/jdb10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Acetaminophen is a common analgesic, but its potential effects on early embryonic development are not well understood. Previous studies using zebrafish (Danio rerio) have described the effects of acetaminophen on liver development and physiology, and a few have described gross physiological and morphological defects. Using a high but non-embryonic lethal dose of acetaminophen, we probed for defects in zebrafish craniofacial cartilage development. Strikingly, acetaminophen treatment caused severe craniofacial cartilage defects, primarily affecting both the presence and morphology of pharyngeal arch-derived cartilages of the viscerocranium. Delaying acetaminophen treatment restored developing cartilages in an order correlated with their corresponding pharyngeal arches, suggesting that acetaminophen may target pharyngeal arch development. Craniofacial cartilages are derived from cranial neural crest cells; however, many neural crest cells were still seen along their expected migration paths, and most remaining cartilage precursors expressed the neural crest markers sox9a and sox10, then eventually col2a1 (type II collagen). Therefore, the defects are not primarily due to an early breakdown of neural crest or cartilage differentiation. Instead, apoptosis is increased around the developing pharyngeal arches prior to chondrogenesis, further suggesting that acetaminophen may target pharyngeal arch development. Many craniofacial muscles, which develop in close proximity to the affected cartilages, were also absent in treated larvae. Taken together, these results suggest that high amounts of acetaminophen can disrupt multiple aspects of craniofacial development in zebrafish.
Collapse
|
24
|
Lempereur S, Machado E, Licata F, Simion M, Buzer L, Robineau I, Hémon J, Banerjee P, De Crozé N, Léonard M, Affaticati P, Talbot H, Joly JS. ZeBraInspector, a platform for the automated segmentation and analysis of body and brain volumes in whole 5 days post-fertilization zebrafish following simultaneous visualization with identical orientations. Dev Biol 2022; 490:86-99. [PMID: 35841952 DOI: 10.1016/j.ydbio.2022.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
In recent years, the zebrafish has become a well-established laboratory model. We describe here the ZeBraInspector (ZBI) platform for high-content 3D imaging (HCI) of 5 days post-fertilization zebrafish eleuthero-embryos (EEs). This platform includes a mounting method based on 3D-printed stamps to create a grid of wells in an agarose cast, facilitating batch acquisitions with a fast-confocal laser scanning microscope. We describe reference labeling in cleared fish with a fluorescent lipophilic dye. Based on this labeling, the ZBI software registers. EE 3D images, making it possible to visualize numerous identically oriented EEs on a single screen, and to compare their morphologies and any fluorescent patterns at a glance. High-resolution 2D snapshots can be extracted. ZBI software is therefore useful for diverse high-content analyses (HCAs). Following automated segmentation of the lipophilic dye signal, the ZBI software performs volumetric analyses on whole EEs and their nervous system white matter. Through two examples, we illustrate the power of these analyses for obtaining statistically significant results from a small number of samples: the characterization of a phenotype associated with a neurodevelopmental mutation, and of the defects caused by treatments with a toxic anti-cancer compound.
Collapse
Affiliation(s)
- Sylvain Lempereur
- LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454, Marne-la-Vallée, France; Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France.
| | - Elodie Machado
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Fabrice Licata
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Matthieu Simion
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Lilian Buzer
- LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454, Marne-la-Vallée, France
| | - Isabelle Robineau
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Julien Hémon
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Payel Banerjee
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Marc Léonard
- L'Oréal, Research & Innovation, Aulnay sous Bois, France
| | - Pierre Affaticati
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France
| | - Hugues Talbot
- LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454, Marne-la-Vallée, France; Université Paris-Saclay, Centrale Supélec, INRIA, 91190, Gif-sur-Yvette, France
| | - Jean-Stéphane Joly
- Tefor Paris-Saclay, UMS 2010, CNRS, INRAE, Université Paris-Saclay, Gif sur Yvette, France.
| |
Collapse
|
25
|
Huang T, Zhao Y, He J, Cheng H, Martyniuk CJ. Endocrine disruption by azole fungicides in fish: A review of the evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153412. [PMID: 35090921 DOI: 10.1016/j.scitotenv.2022.153412] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Azole fungicides are widely used chemicals in agriculture and medicine. Their antifungal activity involves inhibition of steroid biosynthesis via inhibition of several cytochrome p450 enzymes. Evidence is accumulating in fish species to suggest azole fungicides perturb multiple hormone signaling pathways. The objective of this review was to comprehensively review data for azole-mediated impacts on the teleost endocrine system. We emphasize aspects of azole-induced endocrine disruption in several fish species, with special focus on the hypothalamic-pituitary-gonadal (HPG), hypothalamus-pituitary-thyroid (HPT) and hypothalamic-pituitary-adrenal (HPA) axis. Histopathological, physiological, and molecular data suggest azole fungicides at environmentally relevant concentrations and above are endocrine disruptors in fish. Endocrine disruption has been well documented for some azoles (e.g., difenconazole, fadrozole, ketoconazole, tebuconazole, triadimefon), but there are little data for others (e.g., cyproconazole, expoxiconazole, imidazole, metoconazole, nocodazole) in fish, revealing a knowledge gap in our understanding of azole toxicity. Based upon literature, computational analyses of transcriptome responses revealed progesterone-mediated oocyte maturation, insulin signaling pathway, adrenergic signaling, and metabolism of angiotensinogen may be processes disrupted by azoles. However, hormonal regulation of the sympathetic nervous system and the cardiovascular system in response to azole exposure has yet to be investigated in fish. Recommendations for studies moving forward include focus on non-steroid endocrine pathways, mechanisms of neuroendocrine disruption, and transgenerational effects of azoles on fish. This critical review identifies knowledge gaps and future directions for environmental studies focused on the effects of azoles in aquatic species.
Collapse
Affiliation(s)
- Tao Huang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Hongguang Cheng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, USA.
| |
Collapse
|
26
|
Van Der Ven LT, Van Ommeren P, Zwart EP, Gremmer ER, Hodemaekers HM, Heusinkveld HJ, van Klaveren JD, Rorije E. Dose Addition in the Induction of Craniofacial Malformations in Zebrafish Embryos Exposed to a Complex Mixture of Food-Relevant Chemicals with Dissimilar Modes of Action. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:47003. [PMID: 35394809 PMCID: PMC8992969 DOI: 10.1289/ehp9888] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Humans are exposed to combinations of chemicals. In cumulative risk assessment (CRA), regulatory bodies such as the European Food Safety Authority consider dose addition as a default and sufficiently conservative approach. The principle of dose addition was confirmed previously for inducing craniofacial malformations in zebrafish embryos in binary mixtures of chemicals with either similar or dissimilar modes of action (MOAs). OBJECTIVES In this study, we explored a workflow to select and experimentally test multiple compounds as a complex mixture with each of the compounds at or below its no observed adverse effect level (NOAEL), in the same zebrafish embryo model. METHODS Selection of candidate compounds that potentially induce craniofacial malformations was done using in silico methods-structural similarity, molecular docking, and quantitative structure-activity relationships-applied to a database of chemicals relevant for oral exposure in humans via food (EuroMix inventory, n = 1,598 ). A final subselection was made manually to represent different regulatory fields (e.g., food additives, industrial chemicals, plant protection products), different chemical families, and different MOAs. RESULTS A final selection of eight compounds was examined in the zebrafish embryo model, and craniofacial malformations were observed in embryos exposed to each of the compounds, thus confirming the developmental toxicity as predicted by the in silico methods. When exposed to a mixture of the eight compounds, each at its NOAEL, substantial craniofacial malformations were observed; according to a dose-response analysis, even embryos exposed to a 7-fold dilution of this mixture still exhibited a slight abnormal phenotype. The cumulative effect of the compounds in the mixture was in accordance with dose addition (added doses of the individual compounds after adjustment for relative potencies), despite different MOAs of the compounds involved. DISCUSSION This case study of a complex mixture inducing craniofacial malformations in zebrafish embryos shows that dose addition can adequately predicted the cumulative effect of a mixture of multiple substances at low doses, irrespective of the (expected) MOA. The applied workflow may be useful as an approach for CRA in general. https://doi.org/10.1289/EHP9888.
Collapse
Affiliation(s)
- Leo T.M. Van Der Ven
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | - Paul Van Ommeren
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | - Edwin P. Zwart
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | - Eric R. Gremmer
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | - Hennie M. Hodemaekers
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | - Harm J. Heusinkveld
- Centre for Health Protection, Dutch National Institute of Public Health and Environment (RIVM), Bilthoven, Netherlands
| | | | - Emiel Rorije
- Centre for Safety of Substances and Products, RIVM, Bilthoven, Netherlands
| |
Collapse
|
27
|
Adachi Y, Higuchi A, Wakai E, Shiromizu T, Koiwa J, Nishimura Y. Involvement of homeobox transcription factor Mohawk in palatogenesis. Congenit Anom (Kyoto) 2022; 62:27-37. [PMID: 34816492 DOI: 10.1111/cga.12451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/05/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Palatogenesis is affected by many factors, including gene polymorphisms and exposure to toxic chemicals during sensitive developmental periods. Cleft palate is one of the most common congenital anomalies, and ongoing efforts to elucidate the molecular mechanisms underlying palatogenesis are providing useful insights to reduce the risk of this disorder. To identify novel potential regulators of palatogenesis, we analyzed public transcriptome datasets from a mouse model of cleft palate caused by selective deletion of transforming growth factor-β (TGFβ) receptor type 2 in cranial neural crest cells. We identified the homeobox transcription factor Mohawk (Mkx) as a gene downregulated in the maxilla of TGFβ knockout mice compared with wild-type mice. To examine the role of mkx in palatogenesis, we used CRISPR/Cas9 editing to generate zebrafish with impaired expression of mkxa and mkxb, the zebrafish homologs of Mkx. We found that mkx crispants expressed reduced levels of gli1, a critical transcription factor in the Sonic hedgehog (SHH) signaling pathway that plays an important role in the regulation of palatogenesis. Furthermore, we found that mkxa-/- zebrafish were more susceptible than mkxa+/+ zebrafish to the deleterious effects of cyclopamine, an inhibitor of SHH signaling, on upper jaw development. These results suggest that Mkx may be involved in palatogenesis regulated by TGFβ and SHH signaling, and that impairment in Mkx function may be related to the etiology of cleft palate.
Collapse
Affiliation(s)
- Yuka Adachi
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Aina Higuchi
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Eri Wakai
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Junko Koiwa
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
28
|
Alarcan J, de Sousa G, Katsanou ES, Spyropoulou A, Batakis P, Machera K, Rahmani R, Lampen A, Braeuning A, Lichtenstein D. Investigating the in vitro steatotic mixture effects of similarly and dissimilarly acting test compounds using an adverse outcome pathway-based approach. Arch Toxicol 2021; 96:211-229. [PMID: 34778935 PMCID: PMC8748329 DOI: 10.1007/s00204-021-03182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Within the EuroMix project, we have previously developed an adverse outcome pathway (AOP)-based in vitro assay toolbox to investigate the combined effects of liver steatosis-inducing compounds in human HepaRG hepatocarcinoma cells. In this study, we applied the toolbox to further investigate mixture effects of combinations, featuring either similarly acting or dissimilarly acting substances. The valproic acid structural analogs 2-propylheptanoic acid (PHP) and 2-propylhexanoic acid (PHX) were chosen for establishing mixtures of similarly acting substances, while a combination with the pesticidal active substance clothianidin (CTD) was chosen for establishing mixtures of dissimilarly acting compounds. We first determined relative potency factors (RPFs) for each compound based on triglyceride accumulation results. Thereafter, equipotent mixtures were tested for nuclear receptor activation in transfected HepG2 cells, while gene expression and triglyceride accumulation were investigated in HepaRG cells, following the proposed AOP for liver steatosis. Dose addition was observed for all combinations and endpoints tested, indicating the validity of the additivity assumption also in the case of the tested mixtures of dissimilarly acting substances. Gene expression results indicate that the existing steatosis AOP can still be refined with respect to the early key event (KE) of gene expression, in order to reflect the diversity of molecular mechanisms underlying the adverse outcome.
Collapse
Affiliation(s)
- Jimmy Alarcan
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Georges de Sousa
- Institut Sophia Agrobiotech, Université Côte d'Azur-INRAE-CNRS, 06903, Sophia Antipolis, France
| | | | | | | | | | - Roger Rahmani
- Institut Sophia Agrobiotech, Université Côte d'Azur-INRAE-CNRS, 06903, Sophia Antipolis, France
| | - Alfonso Lampen
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Dajana Lichtenstein
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
29
|
Huang W, Wu T, Au WW, Wu K. Impact of environmental chemicals on craniofacial skeletal development: Insights from investigations using zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117541. [PMID: 34118758 DOI: 10.1016/j.envpol.2021.117541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Craniofacial skeletal anomalies are among the most common structural birth defects around the world. Various studies using human populations and experimental animals have shown that genetic and environmental factors play significant roles in the causation and progression of these anomalies. Environmental factors, such as teratogens and toxin mixtures, induce craniofacial anomalies are gaining heightened attention. Among experimental investigations, the use of the zebrafish (Danio rerio) has been increasing. A major reason for the increased use is that the zebrafish boast a simple craniofacial structure, and facial morphogenesis is readily observed due to external fertilization and transparent embryo, making it a valuable platform to screen and identify environmental factors involved in the etiology of craniofacial skeletal malformation. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements, nanoparticles, persistent organic pollutants, pesticides and pharmaceutical formulations on craniofacial skeletal development in zebrafish embryos. The collected data provide a better understanding for induction of craniofacial skeletal anomalies and for development of better prevention strategies.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Techonology, 540142, Tirgu Mures, Romania
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou, 515041, Guangdong, China.
| |
Collapse
|
30
|
Díaz-Martín RD, Carvajal-Peraza A, Yáñez-Rivera B, Betancourt-Lozano M. Short exposure to glyphosate induces locomotor, craniofacial, and bone disorders in zebrafish (Danio rerio) embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103700. [PMID: 34237469 DOI: 10.1016/j.etap.2021.103700] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate [N-(phosphonomethyl)glycine] is the active ingredient in widely used broad-spectrum herbicides. Even though the toxicity mechanism of this herbicide in vertebrates is poorly understood, evidence suggests that glyphosate is an endocrine disruptor capable of producing morphological anomalies as well as cardiotoxic and neurotoxic effects. We used the zebrafish model to assess the effects of early life glyphosate exposure on the development of cartilage and bone tissues and organismal responses. We found functional alterations, including a reduction in the cardiac rate, significant changes in the spontaneous tail movement pattern, and defects in craniofacial development. These effects were concomitant with alterations in the level of the estrogen receptor alpha osteopontin and bone sialoprotein. We also found that embryos exposed to glyphosate presented spine deformities as adults. These developmental alterations are likely induced by changes in protein levels related to bone and cartilage formation.
Collapse
Affiliation(s)
- Rubén D Díaz-Martín
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa 82100, Mexico
| | - Ana Carvajal-Peraza
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa 82100, Mexico
| | - Beatriz Yáñez-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa 82100, Mexico; Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Ciudad de México, 03940, Mexico
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa 82100, Mexico.
| |
Collapse
|
31
|
Wang D, Wang X, Huang H, Wang H. Triclosan regulates alternative splicing events of nerve-related genes through RNA-binding protein CELF2 to induce zebrafish neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125414. [PMID: 33621777 DOI: 10.1016/j.jhazmat.2021.125414] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Herein, we demonstrated that triclosan (TCS) induced neurotoxicity mediated by pre-mRNA alternative splicing (AS). TCS exposure resulted in a series of phenotypic malformations, abnormal locomotor behavior, circadian rhythm disorder and inhibited AChE activity. High throughput mRNA sequencing revealed that TCS regulated the AS events of nerve-related genes. Meanwhile, abnormal expression was observed in marker genes related to nerve cell migration, axon guidance and myelination. The expression of mitochondrial apoptosis activator bcl2l11 was significantly increased under TCS exposure. Interestingly, CELF2 as one of the important RNA-binding proteins was closely related to the AS events, and its mRNA and protein expression levels were significantly increased in zebrafish brain under acute or chronic TCS exposure. Functional knock-down and over-expression of celf2 confirmed that TCS led to nervous system injury and developmental defects through the CELF2-mediated AS events of genes (mbpa, mef2d, u2af2b and matn3b). Histopathological injury, phenotypic malformation, abnormal locomotor behavior and changes in neuromarkers all confirmed the biological functions of CELF2 in zebrafish brain. These findings demonstrate that TCS might regulate some of the AS events of nerve-related genes through upregulating the expression of CELF2. Thus, CELF2 may serve as a target for the prevention, diagnosis and treatment of contaminant-induced neurological diseases.
Collapse
Affiliation(s)
- Danting Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
32
|
An adverse outcome pathway on the disruption of retinoic acid metabolism leading to developmental craniofacial defects. Toxicology 2021; 458:152843. [PMID: 34186166 DOI: 10.1016/j.tox.2021.152843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
Adverse outcome pathway (AOP) is a conceptual framework that links a molecular initiating event (MIE) via intermediate key events (KEs) with adverse effects (adverse outcomes, AO) relevant for risk assessment, through defined KE relationships (KERs). The aim of the present work is to describe a linear AOP, supported by experimental data, for skeletal craniofacial defects as the AO. This AO was selected in view of its relative high incidence in humans and the suspected relation to chemical exposure. We focused on inhibition of CYP26, a retinoic acid (RA) metabolizing enzyme, as MIE, based on robust previously published data. Conazoles were selected as representative stressors. Intermediate KEs are RA disbalance, aberrant HOX gene expression, disrupted specification, migration, and differentiation of neural crest cells, and branchial arch dysmorphology. We described the biological basis of the postulated events and conducted weight of evidence (WoE) assessments. The biological plausibility and the overall empirical evidence were assessed as high and moderate, respectively, the latter taking into consideration the moderate evidence for concordance of dose-response and temporal relationships. Finally, the essentiality assessment of the KEs, considered as high, supported the robustness of the presented AOP. This AOP, which appears of relevance to humans, thus contributes to mechanistic underpinning of selected test methods, thereby supporting their application in integrated new approach test methodologies and strategies and application in a regulatory context.
Collapse
|
33
|
Atzei A, Jense I, Zwart EP, Legradi J, Venhuis BJ, van der Ven LT, Heusinkveld HJ, Hessel EV. Developmental Neurotoxicity of Environmentally Relevant Pharmaceuticals and Mixtures Thereof in a Zebrafish Embryo Behavioural Test. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136717. [PMID: 34206423 PMCID: PMC8297305 DOI: 10.3390/ijerph18136717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
Humans are exposed daily to complex mixtures of chemical substances via food intake, inhalation, and dermal contact. Developmental neurotoxicity is an understudied area and entails one of the most complex areas in toxicology. Animal studies for developmental neurotoxicity (DNT) are hardly performed in the context of regular hazard studies, as they are costly and time consuming and provide only limited information as to human relevance. There is a need for a combination of in vitro and in silico tests for the assessment of chemically induced DNT in humans. The zebrafish (Danio rerio) embryo (ZFE) provides a powerful model to study DNT because it shows fast neurodevelopment with a large resemblance to the higher vertebrate, including the human system. One of the suitable readouts for DNT testing in the zebrafish is neurobehaviour (stimulus-provoked locomotion) since this provides integrated information on the functionality and status of the entire nervous system of the embryo. In the current study, environmentally relevant pharmaceuticals and their mixtures were investigated using the zebrafish light-dark transition test. Zebrafish embryos were exposed to three neuroactive compounds of concern, carbamazepine (CBZ), fluoxetine (FLX), and venlafaxine (VNX), as well as their main metabolites, carbamazepine 10,11-epoxide (CBZ 10,11E), norfluoxetine (norFLX), and desvenlafaxine (desVNX). All the studied compounds, except CBZ 10,11E, dose-dependently inhibited zebrafish locomotor activity, providing a distinct behavioural phenotype. Mixture experiments with these pharmaceuticals identified that dose addition was confirmed for all the studied binary mixtures (CBZ-FLX, CBZ-VNX, and VNX-FLX), thereby supporting the zebrafish embryo as a model for studying the cumulative effect of chemical mixtures in DNT. This study shows that pharmaceuticals and a mixture thereof affect locomotor activity in zebrafish. The test is directly applicable in environmental risk assessment; however, further studies are required to assess the relevance of these findings for developmental neurotoxicity in humans.
Collapse
Affiliation(s)
- Alessandro Atzei
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Ingrid Jense
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Edwin P. Zwart
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Jessica Legradi
- Environment & Health, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Bastiaan J. Venhuis
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Leo T.M. van der Ven
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Harm J. Heusinkveld
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
- Correspondence:
| | - Ellen V.S. Hessel
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| |
Collapse
|
34
|
Koch BEV, Spaink HP, Meijer AH. A quantitative in vivo assay for craniofacial developmental toxicity of histone deacetylases. Toxicol Lett 2021; 342:20-25. [PMID: 33581288 DOI: 10.1016/j.toxlet.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Many bony features of the face develop from endochondral ossification of preexisting collagen-rich cartilage structures. The proper development of these cartilage structures is essential to the morphological formation of the face. The developmental programs governing the formation of the pre-bone facial cartilages are sensitive to chemical compounds that disturb histone acetylation patterns and chromatin structure. We have taken advantage of this fact to develop a quantitative morphological assay of craniofacial developmental toxicity based on the distortion and deterioration of facial cartilage structures in zebrafish larvae upon exposure to increasing concentrations of several well-described histone deacetylase inhibitors. In this assay, we measure the angle formed by the developing ceratohyal bone as a precise, sensitive and quantitative proxy for the overall developmental status of facial cartilages. Using the well-established developmental toxicant and histone deacetylase-inhibiting compound valproic acid along with 12 structurally related compounds, we demonstrate the applicability of the ceratohyal angle assay to investigate structure-activity relationships.
Collapse
Affiliation(s)
- Bjørn E V Koch
- Institute of Biology Leiden, Leiden University, the Netherlands
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, the Netherlands
| | | |
Collapse
|
35
|
Huang W, Wang X, Zheng S, Wu R, Liu C, Wu K. Effect of bisphenol A on craniofacial cartilage development in zebrafish (Danio rerio) embryos: A morphological study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111991. [PMID: 33548570 DOI: 10.1016/j.ecoenv.2021.111991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical, is present in everyday-used consumables and common household products. Although the side effects of BPA have been sufficiently explored, little is known the effects of environmentally relevant low levels of BPA on chondrogenesis in skeletal development. Here we used a morphological approach to investigate whether exposure to BPA (0, 0.0038, 0.05, 0.1, 1.0 μM) could affect craniofacial cartilage development of zebrafish embryo. Furthermore, we sought to determine receptor-mediated BPA induced chondrogenesis toxicity by co-exposing developing embryos to BPA and various inhibitors. Low-dose BPA affected heart rate and induced body and head elongation of larvae. Quantitative morphometric and histopathological analysis revealed that BPA exposure changed the angle and length of craniofacial cartilage elements and disrupted chondrocytes. BPA induced pharyngeal cartilage defects via multiple cellular pathways, including estrogen receptor, androgen receptor, and estrogen-related receptors. Our findings demonstrate that BPA alters the normal development of cartilage and craniofacial structures in zebrafish embryos. Furthermore, in this study we find multiple cellular pathways mediating the effects of BPA-induced craniofacial chondrogenesis toxicity. Further experiments will allow for establishing a connection between BPA and increased risk of congenital malformation of the facial cranium in BPA-exposed populations.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xin Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou 515041, Guangdong, China.
| |
Collapse
|
36
|
Raterman ST, Metz JR, Wagener FADTG, Von den Hoff JW. Zebrafish Models of Craniofacial Malformations: Interactions of Environmental Factors. Front Cell Dev Biol 2020; 8:600926. [PMID: 33304906 PMCID: PMC7701217 DOI: 10.3389/fcell.2020.600926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
The zebrafish is an appealing model organism for investigating the genetic (G) and environmental (E) factors, as well as their interactions (GxE), which contribute to craniofacial malformations. Here, we review zebrafish studies on environmental factors involved in the etiology of craniofacial malformations in humans including maternal smoking, alcohol consumption, nutrition and drug use. As an example, we focus on the (cleft) palate, for which the zebrafish ethmoid plate is a good model. This review highlights the importance of investigating ExE interactions and discusses the variable effects of exposure to environmental factors on craniofacial development depending on dosage, exposure time and developmental stage. Zebrafish also promise to be a good tool to study novel craniofacial teratogens and toxin mixtures. Lastly, we discuss the handful of studies on gene–alcohol interactions using mutant sensitivity screens and reverse genetic techniques. We expect that studies addressing complex interactions (ExE and GxE) in craniofacial malformations will increase in the coming years. These are likely to uncover currently unknown mechanisms with implications for the prevention of craniofacial malformations. The zebrafish appears to be an excellent complementary model with high translational value to study these complex interactions.
Collapse
Affiliation(s)
- S T Raterman
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - J R Metz
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes W Von den Hoff
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
37
|
Fanti F, Merola C, Vremere A, Oliva E, Perugini M, Amorena M, Compagnone D, Sergi M. Quantitative analysis of oxysterols in zebrafish embryos by HPLC-MS/MS. Talanta 2020; 220:121393. [DOI: 10.1016/j.talanta.2020.121393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023]
|
38
|
Merola C, Lai O, Conte A, Crescenzo G, Torelli T, Alloro M, Perugini M. Toxicological assessment and developmental abnormalities induced by butylparaben and ethylparaben exposure in zebrafish early-life stages. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103504. [PMID: 32980526 DOI: 10.1016/j.etap.2020.103504] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Toxicological effects of butylparaben (BuP) and ethylparaben (EtP) on zebrafish (Danio rerio) early-life stages are not well established. The present study evaluated, using zebrafish embryos and larvae, the toxicity of BuP and EtP through benchmark dose (BMD) approach. BuP was more toxic than EtP to zebrafish larvae. In fact, Lethal Concentration 50 (LC50) values at 96 h post-fertilization (hpf) for BuP and EtP were 2.34 mg/L and 20.86 mg/L, respectively. Indeed, BMD confidence interval (lower bound (BMDL) - upper bound (BMDU) was 0.91-1.92 mg/L for BuP and 10.8-17.4 mg/L for EtP. Zebrafish embryos exposed to 1 mg/L, 2.5 mg/L of BuP and 5 mg/L, 10 mg/L, 20 mg/L, 30 mg/L of EtP showed several developmental abnormalities and teratological effects compared to negative control. Exposed zebrafish developed reduced heartbeat, reduction in blood circulation, blood stasis, pericardial edema, deformed notochord and misshaped yolk sac. Embryos exposed to the highest concentrations of the chemicals (2.5 mg/L of BuP, 10 mg/L, 20 mg/L and 30 mg/L of EtP) showed the developmental abnormalities at 48 hpf while those treated with 1 mg/L of BuP and 10 mg/L of EtP reported behavioral changes at 72 hpf, including trembling of head, pectoral fins and spinal cord. This research identified the lethal and sublethal effects of BuP and EtP in zebrafish early-life stages and could be helpful to elucidate the developmental pathways of toxicity of parabens.
Collapse
Affiliation(s)
- C Merola
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100, Teramo, Italy
| | - O Lai
- Department of Veterinary Medicine, University of Bari, S.P. per Casamassima, Km 3, 70010, Valenzano (Bari), Italy
| | - A Conte
- Istituto Zooprofilattico Sperimentale "G. Caporale", via Campo Boario, 64100, Teramo, Italy
| | - G Crescenzo
- Department of Veterinary Medicine, University of Bari, S.P. per Casamassima, Km 3, 70010, Valenzano (Bari), Italy
| | - T Torelli
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100, Teramo, Italy
| | - M Alloro
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100, Teramo, Italy
| | - M Perugini
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100, Teramo, Italy.
| |
Collapse
|
39
|
Meng Y, Zhong K, Xiao J, Huang Y, Wei Y, Tang L, Chen S, Wu J, Ma J, Cao Z, Liao X, Lu H. Exposure to pyrimethanil induces developmental toxicity and cardiotoxicity in zebrafish. CHEMOSPHERE 2020; 255:126889. [PMID: 32388256 DOI: 10.1016/j.chemosphere.2020.126889] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 05/27/2023]
Abstract
Pyrimethanil is a broad-spectrum fungicide commonly used in the prevention and treatment of Botrytis cinerea. However, little information is available in the literature to show the toxicity of Pyrimethanil to cardiac development. In this study, we used an experimental animal model to explore the developmental and cardiac toxicity of Pyrimethanil in aquatic vertebrates; we exposed zebrafish embryos to Pyrimethanil at concentrations of 2, 4, and 6 mg/L from 5.5 to 72 h post fertilisation. We found that Pyrimethanil caused a decrease in the hatching rate, heart rate, and survival rate of zebrafish embryos. Pyrimethanil exposure also resulted in pericardial and yolk sac edema, spinal deformity, and heart loop failure. Moreover, Pyrimethanil increased reactive oxygen stress levels and heightened the activity of superoxide dismutase and catalase. Alterations were induced in the transcription of apoptosis-related genes (p53, Bax, Bcl2, Casp 9, and Casp6l1) and heart development-related genes (Tbx2b, Gata4, Myh6, Vmhc, Nppa, Bmp2b, Bpm 4, and Bpm 10). Our data showed that the activation of Wnt signalling by BML-284 could partially rescue the malformed phenotype caused by Pyrimethanil. Our results provide new evidence for Pyrimethanil's toxicity and the danger of its residues in the environment and agricultural products.
Collapse
Affiliation(s)
- Yunlong Meng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Lin Tang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Suping Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Juan Wu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
40
|
Heusinkveld HJ, Schoonen WG, Hodemaekers HM, Nugraha A, Sirks JJ, Veenma V, Sujan C, Pennings JL, Wackers PF, Palazzolo L, Eberini I, Rorije E, van der Ven LT. Distinguishing mode of action of compounds inducing craniofacial malformations in zebrafish embryos to support dose-response modeling in combined exposures. Reprod Toxicol 2020; 96:114-127. [DOI: 10.1016/j.reprotox.2020.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
|
41
|
Defining embryonic developmental effects of chemical mixtures using the embryonic stem cell test. Food Chem Toxicol 2020; 140:111284. [DOI: 10.1016/j.fct.2020.111284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
|
42
|
Lichtenstein D, Luckert C, Alarcan J, de Sousa G, Gioutlakis M, Katsanou ES, Konstantinidou P, Machera K, Milani ES, Peijnenburg A, Rahmani R, Rijkers D, Spyropoulou A, Stamou M, Stoopen G, Sturla SJ, Wollscheid B, Zucchini-Pascal N, Braeuning A, Lampen A. An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro. Food Chem Toxicol 2020; 139:111283. [DOI: 10.1016/j.fct.2020.111283] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/29/2022]
|
43
|
Braeuning A, Mentz A, Schmidt FF, Albaum SP, Planatscher H, Kalinowski J, Joos TO, Poetz O, Lichtenstein D. RNA-protein correlation of liver toxicity markers in HepaRG cells. EXCLI JOURNAL 2020; 19:135-153. [PMID: 32194361 PMCID: PMC7068204 DOI: 10.17179/excli2019-2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
Abstract
The liver is a main target organ for the toxicity of many different compounds. While in general, in vivo testing is still routinely used for assessing the hepatotoxic potential of test chemicals, the use of in vitro models offers advantages with regard to throughput, consumption of resources, and animal welfare aspects. Using the human hepatoma cell line HepaRG, we performed a comparative evaluation of a panel of hepatotoxicity marker mRNAs and proteins after exposure of the cells to 30 different pesticidal active compounds comprising herbizides, fungicides, insecticides, and others. The panel of hepatotoxicity markers included nuclear receptor target genes, key players of fatty acid and bile acid metabolism-related pathways, as well as recently identified biomarkers of drug-induced liver injury. Moreover, marker genes and proteins were identified, for example, S100P, ANXA10, CYP1A1, and CYP7A1. These markers respond with high sensitivity to stimulation with chemically diverse test compounds already at non-cytotoxic concentrations. The potency of the test compounds, determined as an overall parameter of their ability to deregulate marker expression in vitro, was very similar between the mRNA and protein levels. Thus, this study does not only characterize the response of human liver cells to 30 different pesticides but also demonstrates that hepatotoxicity testing in human HepaRG cells yields well comparable results at the mRNA and protein levels. Furthermore, robust hepatotoxicity marker genes and proteins were identified in HepaRG cells.
Collapse
Affiliation(s)
- Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Almut Mentz
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | | | - Stefan P. Albaum
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Thomas O. Joos
- Signatope GmbH, Reutlingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen,Germany
| | - Oliver Poetz
- Signatope GmbH, Reutlingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen,Germany
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| |
Collapse
|
44
|
Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res 2020; 112:584-632. [PMID: 31926062 DOI: 10.1002/bdr2.1644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Manuel J Aybar
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
45
|
Zoupa M, Zwart EP, Gremmer ER, Nugraha A, Compeer S, Slob W, van der Ven LTM. Dose addition in chemical mixtures inducing craniofacial malformations in zebrafish (Danio rerio) embryos. Food Chem Toxicol 2020; 137:111117. [PMID: 31927004 DOI: 10.1016/j.fct.2020.111117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
A challenge in cumulative risk assessment is to model hazard of mixtures. EFSA proposed to only combine chemicals linked to a defined endpoint, in so-called cumulative assessment groups, and use the dose-addition model as a default to predict combined effects. We investigated the effect of binary mixtures of compounds known to cause craniofacial malformations, by assessing the effect in the head skeleton (M-PQ angle) in 120hpf zebrafish embryos. We combined chemicals with similar mode of action (MOA), i.e. the triazoles cyproconazole, triadimefon and flusilazole; next, reference compounds cyproconazole or triadimefon were combined with dissimilar acting compounds, TCDD, thiram, VPA, prochloraz, fenpropimorph, PFOS, or endosulfan. These mixtures were designed as (near) equipotent combinations of the contributing compounds, in a range of cumulative concentrations. Dose-addition was assessed by evaluation of the overlap of responses of each of the 14 tested binary mixtures with those of the single compounds. All 10 test compounds induced an increase of the M-PQ angle, with varying potency and specificity. Mixture responses as predicted by dose-addition did not deviate from the observed responses, supporting dose-addition as a valid assumption for mixture risk assessment. Importantly, dose-addition was found irrespective of MOA of contributing chemicals.
Collapse
Affiliation(s)
- Maria Zoupa
- Laboratory of Toxicological Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Attika, 44561, Greece
| | - Edwin P Zwart
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Eric R Gremmer
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ananditya Nugraha
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sharon Compeer
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wout Slob
- Department of Food Safety, Center for Food, Prevention and Care, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Leo T M van der Ven
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
46
|
Gomes-Silva G, Pereira BB, Liu K, Chen B, Santos VSV, de Menezes GHT, Pires LP, Santos BMT, Oliveira DM, Machado PHA, de Oliveira Júnior RJ, de Oliveira AMM, Plath M. Using native and invasive livebearing fishes (Poeciliidae, Teleostei) for the integrated biological assessment of pollution in urban streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134336. [PMID: 31783440 DOI: 10.1016/j.scitotenv.2019.134336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Invasive species are increasingly replacing native species, especially in anthropogenically transformed or polluted habitats. This opens the possibility to use invasive species as indicator taxa for the biological assessment of pollution. Integrated biological assessment, however, additionally relies on the application of multiple approaches to quantify physiological or cytogenetic responses to pollution within the same focal species. This is challenging when species are restricted to either polluted or unpolluted sites. Here, we make use of a small group of neotropical livebearing fishes (family Poeciliidae) for the integrated biological assessment of water quality. Comparing urban and suburban stream sections that receive varying degrees of pollution from industrial and domestic waste waters in and around the Brazilian city of Uberlândia, we demonstrate that two members of this family may indeed serve as indicators of water pollution levels. The native species Phalloceros caudimaculatus appears to be replaced by invasive guppies (Poecilia reticulata) at heavily polluted sites. Nevertheless, we demonstrate that both species could be used for the assessment of bioaccumulation of heavy metals (Pb, Cu, and Cr). Ambient (sediment) concentrations predicted concentrations in somatic tissue across species (R2-values between 0.74 and 0.96). Moreover, we used cytogenetic methods to provide an estimate of genotoxic effects of water pollution and found pollution levels (multiple variables, condensed into principal components) to predict the occurrence of nuclear abnormalities (e.g., frequencies of micro-nucleated cells) across species (R2 between 0.69 and 0.83). The occurrence of poeciliid fishes in urban and polluted environments renders this family a prime group of focal organisms for biological water quality monitoring and assessment. Both species could be used interchangeably to assess genotoxic effects of water pollution, which may facilitate future comparative analyses over extensive geographic scales, as members of the family Poeciliidae have become invasive in tropical and subtropical regions worldwide.
Collapse
Affiliation(s)
- Guilherme Gomes-Silva
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Boscolli Barbosa Pereira
- Institute of Geography, Universidade Federal de Uberlândia, Uberlândia, Brazil; Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Kai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Bojian Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | | | | | - Luís Paulo Pires
- Institute of Biology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | | | | | | | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China; Shaanxi Key Laboratory for Molecular Biology in Agriculture, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
47
|
Toxic Effects of Paclobutrazol on Developing Organs at Different Exposure Times in Zebrafish. TOXICS 2019; 7:toxics7040062. [PMID: 31817812 PMCID: PMC6958485 DOI: 10.3390/toxics7040062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/27/2023]
Abstract
To enhance crop productivity and economic profit, farmers often use pesticides that modulate plant growth and prevent disease. However, contamination of ecosystems with agricultural pesticides may impair the health of resident biota. Paclobutrazol (PBZ), an aromatic-containing triazole, is widely applied to many crops in order to promote flowering and fruit setting, while also regulating plant growth and preventing fungus-related diseases. Due to its high mobility, high stability and potential for bioaccumulation, the risks of PBZ to the health of organisms and ecological systems have become a serious concern. In previous studies, we documented the toxicity of PBZ on developing heart, eyes, liver, pancreas and intestine of zebrafish. In this study, we sought to further understand the developmental stage-specific impacts of PBZ on digestive organs and other tissues. Zebrafish were exposed to PBZ beginning at different embryonic stages, and the toxic effects on organs were evaluated at 120 hpf (hours post-fertilization) by in situ hybridization staining with tissue-specific marker genes, such as liver, intestine and pancreas. Unsurprisingly, early-stage embryos exhibited higher sensitivity to PBZ-induced death and developmental hypoplasia of digestive organs. Interestingly, the developing liver and pancreas were more sensitive to PBZ than intestine when embryos were exposed at early stages, but these tissues showed lower sensitivity at later stages. Our delineation of the differential toxic effects of PBZ on developing organs at different exposure timings can serve as a powerful reference for further studies into the mechanisms of PBZ organ toxicity.
Collapse
|
48
|
Cronin MT, Madden JC, Yang C, Worth AP. Unlocking the potential of in silico chemical safety assessment - A report on a cross-sector symposium on current opportunities and future challenges. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 10:38-43. [PMID: 31218266 PMCID: PMC6559213 DOI: 10.1016/j.comtox.2018.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
In silico chemical safety assessment can support the evaluation of hazard and risk following potential exposure to a substance. A symposium identified a number of opportunities and challenges to implement in silico methods, such as quantitative structure-activity relationships (QSARs) and read-across, to assess the potential harm of a substance in a variety of exposure scenarios, e.g. pharmaceuticals, personal care products, and industrial chemicals. To initiate the process of in silico safety assessment, clear and unambiguous problem formulation is required to provide the context for these methods. These approaches must be built on data of defined quality, while acknowledging the possibility of novel data resources tapping into on-going progress with data sharing. Models need to be developed that cover appropriate toxicity and kinetic endpoints, and that are documented appropriately with defined uncertainties. The application and implementation of in silico models in chemical safety requires a flexible technological framework that enables the integration of multiple strands of data and evidence. The findings of the symposium allowed for the identification of priorities to progress in silico chemical safety assessment towards the animal-free assessment of chemicals.
Collapse
Affiliation(s)
- Mark T.D. Cronin
- Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Judith C. Madden
- Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Chihae Yang
- Molecular Networks GmbH, Neumeyerstraße 28, 90411 Nürnberg, Germany
| | - Andrew P. Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
49
|
Proteasomal inhibition attenuates craniofacial malformations in a zebrafish model of Treacher Collins Syndrome. Biochem Pharmacol 2019; 163:362-370. [PMID: 30849304 DOI: 10.1016/j.bcp.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Treacher Collins Syndrome (TCS) is a congenital disease characterized by defects in the craniofacial skeleton and absence of mental alterations. Recently we modelled TCS in zebrafish (Danio rerio) embryos through the microinjection of Morpholino® oligonucleotides blocking the translation of the ortholog of the main causative gene (TCOF1). We showed that Cnbp, a key cytoprotective protein involved in normal rostral head development, was detected in lower levels (without changes in its mRNA expression) in TCS-like embryos. As previous reports suggested that Cnbp is degraded through the proteasomal pathway, we tested whether proteasome inhibitors (MG132 and Bortezomib (Velcade®, Millennium laboratories)) were able to ameliorate cranial skeleton malformations in TCS. Here we show that treatment with both proteasome inhibitors produced a robust craniofacial cartilage phenotype recovery. This recovery seems to be consequence of a decreased degradation of Cnbp in TCS-like embryos. Critical TCS manifestations, such as neuroepithelial cell death and cell redox imbalance were attenuated. Thus, proteasome inhibitors may offer an opportunity for TCS molecular and phenotypic manifestation's prevention. Although further development of new safe inhibitors compatible with administration during pregnancy is required, our results encourage this therapeutic approach.
Collapse
|