1
|
Kantak KM. Adolescent-onset vs. adult-onset cocaine use: Impact on cognitive functioning in animal models and opportunities for translation. Pharmacol Biochem Behav 2020; 196:172994. [PMID: 32659242 DOI: 10.1016/j.pbb.2020.172994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
Animal models are poised to make key contributions to the study of cognitive deficits associated with chronic cocaine use in people. Advantages of animal models include use of a longitudinal experimental design that can control for drug use history and onset-age, sex, drug consumption, and abstinence duration. Twenty-two studies were reviewed (13 in adult male rats, 5 in adolescent vs. adult male rats, 3 in adult male monkeys, and 1 in adult female monkeys), and it was demonstrated repeatedly that male animals with adult-onset cocaine self-administration exposure had impairments in sustained attention, decision making, stimulus-reward learning, working memory, and cognitive flexibility, but not habit learning and spatial learning and memory. These findings have translational relevance because adult cocaine users exhibit a similar range of cognitive deficits. In the limited number of studies available, male rats self-administering cocaine during adolescence were less susceptible than adults to impairment in cognitive flexibility, stimulus-reward learning, and decision making, but were more susceptible than adults to impairment in working memory, a finding also reported in the few studies performed in early-onset cocaine users. These findings suggest that animal models can help fill an unmet need for investigating important but yet-to-be-fully-addressed research questions in people. Research priorities include further investigation of differences between adolescents and adults as well as between males and females following chronic cocaine self-administration. A comprehensive understanding of the broad range of cognitive consequences of chronic cocaine use and the role of developmental plasticity can be of value for improving neuropsychological recovery efforts.
Collapse
Affiliation(s)
- Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, United States of America.
| |
Collapse
|
2
|
Ibrahim C, Rubin-Kahana DS, Pushparaj A, Musiol M, Blumberger DM, Daskalakis ZJ, Zangen A, Le Foll B. The Insula: A Brain Stimulation Target for the Treatment of Addiction. Front Pharmacol 2019; 10:720. [PMID: 31312138 PMCID: PMC6614510 DOI: 10.3389/fphar.2019.00720] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Substance use disorders (SUDs) are a growing public health concern with only a limited number of approved treatments. However, even approved treatments are subject to limited efficacy with high long-term relapse rates. Current treatment approaches are typically a combination of pharmacotherapies and behavioral counselling. Growing evidence and technological advances suggest the potential of brain stimulation techniques for the treatment of SUDs. There are three main brain stimulation techniques that are outlined in this review: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS). The insula, a region of the cerebral cortex, is known to be involved in critical aspects underlying SUDs, such as interoception, decision making, anxiety, pain perception, cognition, mood, threat recognition, and conscious urges. This review focuses on both the preclinical and clinical evidence demonstrating the role of the insula in addiction, thereby demonstrating its promise as a target for brain stimulation. Future research should evaluate the optimal parameters for brain stimulation of the insula, through the use of relevant biomarkers and clinical outcomes for SUDs.
Collapse
Affiliation(s)
- Christine Ibrahim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Dafna S. Rubin-Kahana
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Abhiram Pushparaj
- Qunuba Sciences, Toronto, ON, Canada
- Ironstone Product Development, Toronto, ON, Canada
| | | | - Daniel M. Blumberger
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J. Daskalakis
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Abraham Zangen
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Addictions Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Alcohol Research and Treatment Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Davidson TL, Hargrave SL, Kearns DN, Clasen MM, Jones S, Wakeford AGP, Sample CH, Riley AL. Cocaine impairs serial-feature negative learning and blood-brain barrier integrity. Pharmacol Biochem Behav 2018; 170:56-63. [PMID: 29753886 DOI: 10.1016/j.pbb.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Previous research has shown that diets high in fat and sugar [a.k.a., Western diets (WD)] can impair performance of rats on hippocampal-dependent learning and memory problems, an effect that is accompanied by selective increases in hippocampal blood brain barrier (BBB) permeability. Based on these types of findings, it has been proposed that overeating of a WD (and its resulting obesity) may be, in part, a consequence of impairments in these anatomical substrates and cognitive processes. Given that drug use (and addiction) represents another behavioral excess, the present experiments assessed if similar outcomes might occur with drug exposure by evaluating the effects of cocaine administration on hippocampal-dependent memory and on the integrity of the BBB. Experiment 1 of the present series of studies found that systemic cocaine administration in rats also appears to have disruptive effects on the same hippocampal-dependent learning and memory mechanism that has been proposed to underlie the inhibition of food intake. Experiment 2 demonstrated that the same regimen of cocaine exposure that produced disruptions in learning and memory in Experiment 1 also produced increased BBB permeability in the hippocampus, but not in the striatum. Although the predominant focus of previous research investigating the etiologies of substance use and abuse has been on the brain circuits that underlie the motivational properties of drugs, the current investigation implicates the possible involvement of hippocampal memory systems in such behaviors. It is important to note that these positions are not mutually exclusive and that neuroadaptations in these two circuits might occur in parallel that generate dysregulated drug use in a manner similar to that of excessive eating.
Collapse
Affiliation(s)
- Terry L Davidson
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States.
| | - Sara L Hargrave
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - David N Kearns
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Matthew M Clasen
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Sabrina Jones
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Alison G P Wakeford
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Camille H Sample
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Anthony L Riley
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States.
| |
Collapse
|
4
|
Frazer KM, Richards Q, Keith DR. The long-term effects of cocaine use on cognitive functioning: A systematic critical review. Behav Brain Res 2018; 348:241-262. [PMID: 29673580 DOI: 10.1016/j.bbr.2018.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The predominant view of chronic cocaine use maintains that it causes a broad range of cognitive deficits. However, concerns about the possibly deleterious impact of cocaine on cognitive functioning have yet to be thoroughly vetted. This review addresses the impact of cocaine use on such cognitive domains as executive function, memory, language, and psychomotor speed. Additionally, relevant neuroimaging data is considered to understand the neural basis underlying cocaine-related effects on cognitive functioning. METHODS We searched PubMed, Google Scholar, and Embase using the search terms "cocaine and cognition," "cocaine and cognitive functioning," and "cocaine and cognitive deficits or impairment." To meet inclusion criteria we evaluated only cognitive and neuroimaging studies describing the long-term effects of cocaine on cognitive functioning published from 1999 to 2016. RESULTS The majority of studies reported statistically significant differences between cocaine users and non-drug-using controls in brain structures, blood-oxygen-level dependent signals, and brain metabolism. However, differences in cognitive performance were observed on a minority of measures. Additionally, the majority of studies were not compared against normative data. CONCLUSIONS The current evidence does not support the view that chronic cocaine use is associated with broad cognitive deficits. The view that cocaine users have broad cognitive deficits is inaccurate based upon current evidence, and the perpetuation of this view may have negative implications for treatment programs and development of public policies.
Collapse
Affiliation(s)
- Kirsten M Frazer
- Department of Psychology, Columbia University, 1190 Amsterdam Ave., New York, NY 10027, USA.
| | - Qwynten Richards
- Department of Psychology, Columbia University, 1190 Amsterdam Ave., New York, NY 10027, USA
| | - Diana R Keith
- Department of Psychiatry, University of Vermont Medical Center, 1 South Prospect Street, Burlington, VT 05401, USA
| |
Collapse
|
5
|
Fole A, Miguéns M, Morales L, González-Martín C, Ambrosio E, Del Olmo N. Lewis and Fischer 344 rats as a model for genetic differences in spatial learning and memory: Cocaine effects. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:49-57. [PMID: 28263897 DOI: 10.1016/j.pnpbp.2017.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 01/31/2023]
Abstract
Lewis (LEW) and Fischer 344 (F344) rats are considered a model of genetic vulnerability to drug addiction. We previously showed important differences in spatial learning and memory between them, but in contrast with previous experiments demonstrating cocaine-induced enhanced learning in Morris water maze (MWM) highly demanding tasks, the eight-arm radial maze (RAM) performance was not modified either in LEW or F344 rats after chronic cocaine treatment. In the present work, chronically cocaine-treated LEW and F344 adult rats have been evaluated in learning and memory performance using the Y-maze, two RAM protocols that differ in difficulty, and a reversal protocol that tests cognitive flexibility. After one of the RAM protocols, we quantified dendritic spine density in hippocampal CA1 neurons and compared it to animals treated with cocaine but not submitted to RAM. LEW cocaine treated rats showed a better performance in the Y maze than their saline counterparts, an effect that was not evident in the F344 strain. F344 rats significantly took more time to learn the RAM task and made a greater number of errors than LEW animals in both protocols tested, whereas cocaine treatment induced deleterious effects in learning and memory in the highly difficult protocol. Moreover, hippocampal spine density was cocaine-modulated in LEW animals whereas no effects were found in F344 rats. We propose that differences in addictive-like behavior between LEW and F344 rats could be related to differences in hippocampal learning and memory processes that could be on the basis of individual vulnerability to cocaine addiction.
Collapse
Affiliation(s)
- Alberto Fole
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain
| | - Miguel Miguéns
- Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Spain
| | - Lidia Morales
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain
| | - Carmen González-Martín
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Spain
| | - Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Spain.
| |
Collapse
|
6
|
Seip-Cammack KM, Shapiro ML. Behavioral flexibility and response selection are impaired after limited exposure to oxycodone. Learn Mem 2014; 21:686-95. [PMID: 25403457 PMCID: PMC4236414 DOI: 10.1101/lm.036251.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/08/2014] [Indexed: 12/14/2022]
Abstract
Behavioral flexibility allows individuals to adapt to situations in which rewards and goals change. Potentially addictive drugs may impair flexible decision-making by altering brain mechanisms that compute reward expectancies, thereby facilitating maladaptive drug use. To investigate this hypothesis, we tested the effects of oxycodone exposure on rats in two complementary learning and memory tasks that engage distinct learning strategies and neural circuits. Rats were trained first in either a spatial or a body-turn discrimination on a radial maze. After initial training, rats were given oxycodone or vehicle injections in their home cages for 5 d. Reversal learning was tested 36 h after the final drug exposure. We hypothesized that if oxycodone impaired behavioral flexibility, then drug-exposed rats should learn reversals more slowly than controls. Oxycodone exposure impaired spatial reversal learning when reward contingencies changed rapidly, but not when they changed slowly. During rapid reversals, oxycodone-exposed rats required more trials to reach criterion, made more perseverative errors, and were more likely to make errors after correct responses than controls. Oxycodone impaired body-turn reversal learning in similar patterns. Limited exposure to oxycodone reduced behavioral flexibility when rats were tested in a drug-free state, suggesting that impaired decision-making is an enduring consequence of oxycodone exposure.
Collapse
Affiliation(s)
- Katharine M Seip-Cammack
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Matthew L Shapiro
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
7
|
Campanac E, Hoffman DA. Repeated cocaine exposure increases fast-spiking interneuron excitability in the rat medial prefrontal cortex. J Neurophysiol 2013; 109:2781-92. [PMID: 23486201 DOI: 10.1152/jn.00596.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The medial prefrontal cortex plays a key role in cocaine addiction. However, how chronic cocaine exposure affects cortical networks remains unclear. Most studies have focused on layer 5 pyramidal neurons (the circuit output), while the response of local GABAergic interneurons to cocaine remains poorly understood. Here, we recorded from fast-spiking interneurons (FS-IN) after repeated cocaine exposure and found altered membrane excitability. After cocaine withdrawal, FS-IN showed an increase in the number of spikes evoked by positive current injection, increased input resistance, and decreased hyperpolarization-activated current. We also observed a reduction in miniature excitatory postsynaptic currents, whereas miniature inhibitory postsynaptic current activity was unaffected. We show that, in animals with cocaine history, dopamine receptor D(2) activation is less effective in increasing FS-IN intrinsic excitability. Interestingly, these alterations are only observed 1 wk or more after the last cocaine exposure. This suggests that the dampening of D(2)-receptor-mediated response may be a compensatory mechanism to rein down the excitability of FS-IN.
Collapse
Affiliation(s)
- Emilie Campanac
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-3715, USA.
| | | |
Collapse
|
8
|
Gould RW, Gage HD, Nader MA. Effects of chronic cocaine self-administration on cognition and cerebral glucose utilization in Rhesus monkeys. Biol Psychiatry 2012; 72:856-63. [PMID: 22672928 PMCID: PMC3440537 DOI: 10.1016/j.biopsych.2012.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic cocaine use is associated with neurobiological and cognitive deficits that persist into abstinence, hindering success of behavioral treatment strategies and perhaps increasing likelihood of relapse. The effects of current cocaine use and abstinence on neurobiology and cognition are not well characterized. METHODS Adult male rhesus monkeys with an extensive cocaine self-administration history (∼ 5 years) and age-matched control animals (n = 4/group) performed cognitive tasks in morning sessions and self-administered cocaine or food in afternoon sessions. Positron emission tomography and [(18)F]-fluorodeoxyglucose were employed to assess cerebral metabolic rates of glucose utilization during cognitive testing. RESULTS Cocaine-experienced monkeys required significantly more trials and committed more errors on reversal learning and multidimensional discriminations, compared with control animals. Cocaine-naive, but not cocaine-experienced, monkeys showed greater metabolic rates of glucose utilization during a multidimensional discrimination task in the caudate nucleus, hippocampus, anterior and posterior cingulate, and regions associated with attention, error detection, memory, and reward. Using a delayed match-to-sample task, there were no differences in baseline working memory performance between groups. High-dose cocaine self-administration disrupted delayed match-to-sample performance but tolerance developed. Acute abstinence from cocaine did not affect performance, but by day 30 of abstinence, accuracy increased significantly, while performance of cocaine-naive monkeys was unchanged. CONCLUSIONS These data document direct effects of cocaine self-administration on cognition and neurobiological sequelae underlying cognitive deficits. Improvements in working memory can occur in abstinence, albeit across an extended period critical for treatment seekers, suggesting pharmacotherapies designed to enhance cognition may improve success of current behavioral modification strategies.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - H. Donald Gage
- Department of Radiology Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
- Department of Radiology Wake Forest University School of Medicine, Winston-Salem, NC 27157
- Corresponding author: Michael A. Nader, Ph.D. Department of Physiology & Pharmacology Wake Forest University School of Medicine Medical Center Blvd., 546 NRC Winston-Salem, NC 27157-1083 PH: 336-713-7172, FAX: 336-713-7180
| |
Collapse
|
9
|
Weed M, Adams RJ, Hienz RD, Meulendyke KA, Linde ME, Clements JE, Mankowski JL, Zink MC. SIV/macaque model of HIV infection in cocaine users: minimal effects of cocaine on behavior, virus replication, and CNS inflammation. J Neuroimmune Pharmacol 2012; 7:401-11. [PMID: 21626125 PMCID: PMC3183126 DOI: 10.1007/s11481-011-9281-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
Abstract
Studies of the effects of drugs of abuse on HIV immune status, disease progression, and neuroAIDS have produced conflicting data and have not definitively shown whether this combination promotes cognitive impairment or disease progression. Using a consistent SIV-macaque model, we investigated the effects of cocaine on behavior, virologic parameters, and CNS inflammation. Macaques received either vehicle or chronic administration of behaviorally active doses of cocaine (1.7 or 3.2 mg/kg/day). Chronic cocaine administration reduced CD8+ T cell counts during acute and late stage infection but had no effect on CD4+ T cell counts. Low-dose cocaine-treated animals had lower CSF vRNA levels late in infection, but cocaine did not alter plasma viral load or vRNA or protein in brain. There were no differences in CSF CCL-2 or interleukin (IL)-6 levels or severity of encephalitis in cocaine-treated as compared to vehicle-treated macaques. There were no differences in brain inflammation or neurodegeneration markers, as determined by interferon (IFN)-β, MxA, CCL2, IL-6, TNFα, IFNγ, and indolamine 2,3-deoxygenase mRNA levels. APP levels also were not altered. The executive function of inhibitory control was not impaired in cocaine-treated or control animals following SIV infection. However, animals receiving 3.2 mg/kg/day cocaine performed more slowly in a bimanual motor test. Thus, chronic administration of cocaine produced only minor changes in behavior, encephalitis severity, CNS inflammation/neurodegeneration, and virus replication in SIV-infected pigtailed macaques, suggesting that cocaine would have only modest effects on the progression of neuroAIDS in HIV-infected individuals.
Collapse
Affiliation(s)
- Michael Weed
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lucantonio F, Stalnaker TA, Shaham Y, Niv Y, Schoenbaum G. The impact of orbitofrontal dysfunction on cocaine addiction. Nat Neurosci 2012; 15:358-66. [PMID: 22267164 PMCID: PMC3701259 DOI: 10.1038/nn.3014] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cocaine addiction is characterized by poor judgment and maladaptive decision-making. Here we review evidence implicating the orbitofrontal cortex in such behavior. This evidence suggests that cocaine-induced changes in orbitofrontal cortex disrupt the representation of states and transition functions that form the basis of flexible and adaptive 'model-based' behavioral control. By impairing this function, cocaine exposure leads to an overemphasis on less flexible, maladaptive 'model-free' control systems. We propose that such an effect accounts for the complex pattern of maladaptive behaviors associated with cocaine addiction.
Collapse
Affiliation(s)
- Federica Lucantonio
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
11
|
Izquierdo A, Jentsch JD. Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology (Berl) 2012; 219:607-20. [PMID: 22134477 PMCID: PMC3249486 DOI: 10.1007/s00213-011-2579-7] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/04/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Our ability to measure the cognitive components of complex decision-making across species has greatly facilitated our understanding of its neurobiological mechanisms. One task in particular, reversal learning, has proven valuable in assessing the inhibitory processes that are central to executive control. Reversal learning measures the ability to actively suppress reward-related responding and to disengage from ongoing behavior, phenomena that are biologically and descriptively related to impulsivity and compulsivity. Consequently, reversal learning could index vulnerability for disorders characterized by impulsivity such as proclivity for initial substance abuse as well as the compulsive aspects of dependence. OBJECTIVE Though we describe common variants and similar tasks, we pay particular attention to discrimination reversal learning, its supporting neural circuitry, neuropharmacology and genetic determinants. We also review the utility of this task in measuring impulsivity and compulsivity in addictions. METHODS We restrict our review to instrumental, reward-related reversal learning studies as they are most germane to addiction. CONCLUSION The research reviewed here suggests that discrimination reversal learning may be used as a diagnostic tool for investigating the neural mechanisms that mediate impulsive and compulsive aspects of pathological reward-seeking and -taking behaviors. Two interrelated mechanisms are posited for the neuroadaptations in addiction that often translate to poor reversal learning: frontocorticostriatal circuitry dysregulation and poor dopamine (D2 receptor) modulation of this circuitry. These data suggest new approaches to targeting inhibitory control mechanisms in addictions.
Collapse
Affiliation(s)
- Alicia Izquierdo
- Department of Psychology, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA.
| | | |
Collapse
|
12
|
Effects of chronic cocaine administration on spatial learning and hippocampal spine density in two genetically different strains of rats. Neurobiol Learn Mem 2011; 95:491-7. [DOI: 10.1016/j.nlm.2011.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 02/03/2011] [Accepted: 02/22/2011] [Indexed: 12/31/2022]
|
13
|
Cognitive enhancers for facilitating drug cue extinction: insights from animal models. Pharmacol Biochem Behav 2011; 99:229-44. [PMID: 21295059 DOI: 10.1016/j.pbb.2011.01.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/23/2010] [Accepted: 01/24/2011] [Indexed: 12/30/2022]
Abstract
Given the success of cue exposure (extinction) therapy combined with a cognitive enhancer for reducing anxiety, it is anticipated that this approach will prove more efficacious than exposure therapy alone in preventing relapse in individuals with substance use disorders. Several factors may undermine the efficacy of exposure therapy for substance use disorders, but we suspect that neurocognitive impairments associated with chronic drug use are an important contributing factor. Numerous insights on these issues are gained from research using animal models of addiction. In this review, the relationship between brain sites whose learning, memory and executive functions are impaired by chronic drug use and brain sites that are important for effective drug cue extinction learning is explored first. This is followed by an overview of animal research showing improved treatment outcome for drug addiction (e.g. alcohol, amphetamine, cocaine, heroin) when explicit extinction training is conducted in combination with acute dosing of a cognitive-enhancing drug. The mechanism by which cognitive enhancers are thought to exert their benefits is by facilitating consolidation of drug cue extinction memory after activation of glutamatergic receptors. Based on the encouraging work in animals, factors that may be important for the treatment of drug addiction are considered.
Collapse
|
14
|
Nic Dhonnchadha BÁ, Szalay JJ, Achat-Mendes C, Platt DM, Otto MW, Spealman RD, Kantak KM. D-cycloserine deters reacquisition of cocaine self-administration by augmenting extinction learning. Neuropsychopharmacology 2010; 35:357-67. [PMID: 19741593 PMCID: PMC2928163 DOI: 10.1038/npp.2009.139] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Augmentation of cue exposure (extinction) therapy with cognitive-enhancing pharmacotherapy may offer an effective strategy to combat cocaine relapse. To investigate this possibility at the preclinical level, rats and squirrel monkeys were trained to self-administer cocaine paired with a brief visual cue. Lever pressing was subsequently extinguished by withholding cocaine injections while maintaining response-contingent presentations of the cue. The glycine partial agonist D-cycloserine (DCS; 15 and 30 mg/kg in rats, 3 and 10 mg/kg in monkeys) was evaluated for its effects on the rate of extinction and subsequent reacquisition of cocaine self-administration. Compared with vehicle, pretreatment with 30 mg/kg DCS 0.5 h before extinction training reduced the number of responses and latency to reach the extinction criterion in rats, but neither dose of DCS altered these measures in monkeys. In both species, pretreatment with the higher dose of DCS before extinction training significantly attenuated reacquisition of cocaine self-administration compared with either extinction training in the absence of DCS or DCS in the absence of explicit extinction. Furthermore, treatment with 30 mg/kg DCS accompanied by brief handling (a stress induction) immediately after but not 6 h after extinction training attenuated reacquisition of cocaine self-administration in rats. No adverse effects of 10 mg/kg DCS were evident in quantitative observational studies in monkeys. The results suggest that DCS augmented consolidation of extinction learning to deter reacquisition of cocaine self-administration in rats and monkeys. The results suggest that DCS combined with exposure therapy may constitute a rational strategy for the clinical management of cocaine relapse.
Collapse
Affiliation(s)
| | | | - Cindy Achat-Mendes
- Division of Behavioral Biology, New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | - Donna M Platt
- Division of Behavioral Biology, New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | - Michael W Otto
- Department of Psychology, Boston University, Boston, MA, USA
| | - Roger D Spealman
- Division of Behavioral Biology, New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | - Kathleen M Kantak
- Department of Psychology, Boston University, Boston, MA, USA,Department of Psychology, Boston University, 64 Cummington Street, Boston, MA 02215, USA. Tel: 617 353 9201; Fax: 617 353 2894; E-mail:
| |
Collapse
|
15
|
Harvey RC, Dembro KA, Rajagopalan K, Mutebi MM, Kantak KM. Effects of self-administered cocaine in adolescent and adult male rats on orbitofrontal cortex-related neurocognitive functioning. Psychopharmacology (Berl) 2009; 206:61-71. [PMID: 19513699 PMCID: PMC2902997 DOI: 10.1007/s00213-009-1579-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/24/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Deficits in amygdala-related stimulus-reward learning are produced following 18 drug-free days of cocaine self-administration or its passive delivery in rats exposed during adulthood. No deficits in stimulus-reward learning are produced by cocaine exposure initiated during adolescence. OBJECTIVES To determine if age of initiating cocaine exposure differentially affects behavioral functioning of an additional memory system linked to cocaine addiction, the orbitofrontal cortex. MATERIALS AND METHODS A yoked-triad design (n = 8) was used. One rat controlled cocaine delivery and the other two passively received cocaine or saline. Rats controlling drug delivery (1.0 mg/kg) self-administered cocaine from either P37-P59 or P77-P99, and then underwent 18 drug-free days (P60-P77 vs. P100-P117). Rats next were tested for acquisition of odor-delayed win-shift behavior conducted over 15 sessions (P78-P96 vs. P118-P136). RESULTS Cocaine self-administration did not differ between adults and adolescents. During the test phase of the odor-delayed win-shift task (relatively difficult task demands), rats from both drug-onset ages showed learning deficits. Rats with cocaine self-administration experience committed more errors and had longer session latencies compared to rats passively receiving saline or cocaine. Rats with adolescent-onset cocaine self-administration experience showed an additional learning deficit by requiring more sessions to reach criterion levels for task acquisition compared to same-aged passive saline controls or rats with adult-onset cocaine self-administration experience. Rats passively receiving cocaine did not differ from the passive saline control from either age group. CONCLUSIONS Rats with adolescent-onset cocaine self-administration experience were more impaired in an orbitofrontal cortex-related learning task than rats with adult-onset cocaine self-administration experience.
Collapse
|
16
|
Kantak KM, Mashhoon Y, Silverman DN, Janes AC, Goodrich CM. Role of the orbitofrontal cortex and dorsal striatum in regulating the dose-related effects of self-administered cocaine. Behav Brain Res 2009; 201:128-36. [PMID: 19428626 DOI: 10.1016/j.bbr.2009.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 11/25/2022]
Abstract
Little is known regarding which neural systems regulate dose-related changes in responses maintained by self-administered cocaine. This empirical question is important because elucidating neural systems engaged in this process could provide clues for effectively treating cocaine addiction. It has been suggested that different cocaine doses represent reinforcers of differing magnitudes, implicating the dorsal striatum or orbitofrontal cortex as important. Rats were trained to self-administer 1.0 mg/kg cocaine under a fixed-interval based second-order schedule. Next, cocaine unit doses (0.1-3.0 mg/kg) were each non-systematically available for a 5-day block of sessions. Tests (1h) were conducted on day 3 (vehicle) and day 5 (100 microg lidocaine) of each block. Lidocaine inactivation of the lateral dorsal striatum had no effect on dose-related responding or cocaine intake. In contrast, when doses along the ascending limb were available for self-administration, lidocaine inactivation of the lateral orbitofrontal cortex caused reductions in responding and cocaine intake, resulting in overall flattening of dose-response curves. This included reductions during the entire 1-h test sessions and during the interval immediately following the first cocaine infusion of test sessions. Lidocaine inactivation of the lateral orbitofrontal cortex did not alter responding during the first cocaine-free interval of test sessions, but increased the latency to the first infusion. Collectively, the findings suggest that when the amount of experience with different cocaine unit doses is limited to a few sessions, the lateral orbitofrontal cortex regulates the dose-related effects of self-administered cocaine, likely by processing information pertaining to the reinforcing value of each unit dose.
Collapse
|
17
|
Robbins TW, Ersche KD, Everitt BJ. Drug addiction and the memory systems of the brain. Ann N Y Acad Sci 2008; 1141:1-21. [PMID: 18991949 DOI: 10.1196/annals.1441.020] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We review drug addiction from the perspective of the hypothesis that drugs of abuse interact with distinct brain memory systems. We focus on emotional and procedural forms of memory, encompassing Pavlovian and instrumental conditioning, both for action-outcome and for stimulus-response associations. Neural structures encompassed by these systems include the amygdala, hippocampus, nucleus accumbens, and dorsal striatum. Additional influences emanate from the anterior cingulate and prefrontal cortex, which are implicated in the encoding and retrieval of drug-related memories that lead to drug craving and drug use. Finally, we consider the ancillary point that chronic abuse of many drugs may impact directly on neural memory systems via neuroadaptive and neurotoxic effects that lead to cognitive impairments in which memory dysfunction is prominent.
Collapse
Affiliation(s)
- T W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
18
|
Briand LA, Flagel SB, Garcia-Fuster MJ, Watson SJ, Akil H, Sarter M, Robinson TE. Persistent alterations in cognitive function and prefrontal dopamine D2 receptors following extended, but not limited, access to self-administered cocaine. Neuropsychopharmacology 2008; 33:2969-80. [PMID: 18305460 PMCID: PMC3092154 DOI: 10.1038/npp.2008.18] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Drug addicts have deficits in frontocortical function and cognition even long after the discontinuation of drug use. It is not clear, however, whether the cognitive deficits are a consequence of drug use, or are present prior to drug use, and thus are a potential predisposing factor for addiction. To determine if self-administration of cocaine is capable of producing long-lasting alterations in cognition, rats were allowed access to cocaine for either 1 h/day (short access, ShA) or 6 h/day (long access, LgA) for 3 weeks. Between 1 and 30 days after the last self-administration session, we examined performance on a cognitively demanding test of sustained attention that requires an intact medial prefrontal cortex. The expression levels of dopamine D1 and D2 receptor mRNA and D2 protein in the prefrontal cortex were also examined. Early after discontinuation of drug use, LgA (but not ShA) animals were markedly impaired on the sustained attention task. Although the LgA animals improved over time, they continued to show a persistent pattern of performance deficits indicative of a disruption of cognitive flexibility up to 30 days after the discontinuation of drug use. This was accompanied by a significant decrease in DA D2 (but not D1) mRNA in the medial and orbital prefrontal cortex, and D2 receptor protein in the medial prefrontal cortex of LgA (but not ShA) animals. These findings establish that repeated cocaine use is capable of producing persistent alterations in the prefrontal cortex and in cognitive function, and illustrate the usefulness of extended access self-administration procedures for studying the neurobiology of addiction.
Collapse
MESH Headings
- Animals
- Cocaine/pharmacology
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Cognition Disorders/chemically induced
- Cognition Disorders/metabolism
- Cognition Disorders/physiopathology
- Disease Models, Animal
- Dopamine/metabolism
- Dopamine Uptake Inhibitors/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neural Pathways/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/physiopathology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Self Administration
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
| | - Shelly B. Flagel
- Molecular and Behavioral Neuroscience Institute, The University of Michigan
| | | | - Stanley J. Watson
- Neuroscience Program, The University of Michigan
- Molecular and Behavioral Neuroscience Institute, The University of Michigan
| | - Huda Akil
- Neuroscience Program, The University of Michigan
- Molecular and Behavioral Neuroscience Institute, The University of Michigan
| | - Martin Sarter
- Neuroscience Program, The University of Michigan
- Department of Psychology, The University of Michigan
| | - Terry E. Robinson
- Neuroscience Program, The University of Michigan
- Department of Psychology, The University of Michigan
| |
Collapse
|
19
|
Di Pietro NC, Mashhoon Y, Heaney C, Yager LM, Kantak KM. Role of dopamine D1 receptors in the prefrontal dorsal agranular insular cortex in mediating cocaine self-administration in rats. Psychopharmacology (Berl) 2008; 200:81-91. [PMID: 18584153 PMCID: PMC2587221 DOI: 10.1007/s00213-008-1149-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/22/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Orbital/insular areas of the prefrontal cortex (PFC) are implicated in cocaine addiction. However, the role of dopamine D1 receptors in mediating cocaine self-administration in these sub-regions remains unknown. OBJECTIVES To define the role of the dorsal agranular insular (AId) sub-region of the PFC, we investigated the effects of D1 receptor manipulation on self-administration behavior maintained by cocaine and cocaine-related stimuli. MATERIALS AND METHODS Rats were trained to lever press for cocaine (1 mg/kg) under a fixed-interval 5-min (fixed-ratio 5:S) second-order schedule of reinforcement in the presence of conditioned light cues and contextual sound cues. Intra-AId infusions of vehicle, the D1-like receptor agonist SKF 81297 (0.1, 0.2, 0.4 microg/side) or the D1-like receptor antagonist SCH 23390 (1.0, 2.0, 4.0 microg/side), were administered prior to 1-h self-administration test sessions. Food-maintained responding under a second-order schedule was examined in separate rats to determine if pretreatment with D1 ligands produced general impairments in responding. RESULTS Infusion of SKF 81297 (0.2 and 0.4 microg/side) reduced active lever responses during the first 30 min of 1-h test sessions, but did not influence cocaine intake. Infusion of 4.0 microg/side SCH 23390 reduced active lever responses and cocaine intake throughout the 1-h test sessions. Additionally, this dose of SCH 23390 disrupted food-maintained responding and intake. CONCLUSIONS D1 receptor agonists and antagonists in the AId have diverse consequences and time courses of action. D1 receptor stimulation in the AId may reduce the motivating influence of cocaine-related stimuli on responding whereas D1 receptor blockade in this PFC sub-region produces global disruptions in behavior.
Collapse
|
20
|
Briand LA, Gross JP, Robinson TE. Impaired object recognition following prolonged withdrawal from extended-access cocaine self-administration. Neuroscience 2008; 155:1-6. [PMID: 18590801 DOI: 10.1016/j.neuroscience.2008.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 10/22/2022]
Abstract
Cocaine addicts have a number of cognitive deficits that persist following prolonged abstinence. These include impairments in executive functions dependent on the prefrontal cortex, as well as deficits on learning and memory tasks sensitive to hippocampal function. Recent preclinical studies using non-human animals have demonstrated that cocaine treatment can produce persistent deficits in executive functions, but there is relatively little evidence that treatment with cocaine produces persistent deficits in performance on hippocampal-dependent tasks. We recently demonstrated that extended (but not limited) access to self-administered cocaine is especially effective in producing persistent deficits on a test of cognitive vigilance, and therefore, we used this procedure to examine the effects of limited or extended access to cocaine self-administration on recognition memory performance, which is sensitive to hippocampal function. We found that extended access to cocaine produced deficits in recognition memory in rats that persisted for at least 2 weeks after the cessation of drug use. We conclude that the deficits in learning and memory observed in cocaine addicts may be at least in part due to repeated drug use, rather than just due to a pre-existing condition, and that in studying the neural basis of such deficits procedures involving extended access to self-administered cocaine may be especially useful.
Collapse
Affiliation(s)
- L A Briand
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
21
|
Kalivas PW. Cocaine and amphetamine-like psychostimulants: neurocircuitry and glutamate neuroplasticity. DIALOGUES IN CLINICAL NEUROSCIENCE 2008. [PMID: 18286799 PMCID: PMC3202508 DOI: 10.31887/dcns.2007.9.4/pkalivas] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although the pharmacology of amphetamine-like psychostimulants at dopamine transporters is well understood, addiction to this class of drugs has proven difficult to deal with. The reason for this disconnection is that while the molecular mechanism of amphetamine action is critical to reinforce drug use, it is only the first step in a sequence of widespread neuroplastic events in brain circuitry. This review outlines the affect of psychostimulants on mesocorticolimbic dopamine projections that mediate their reinforcing effect, and how this action ultimately leads to enduring pathological neuroplasticity in glutamatergic projections from the prefrontal cortex to the nucleus accumbens. Molecular neuroadaptations induced by psychostimulant abuse are described in glutamate neurotransmission, and from this information potential pharmacotherapeutic targets are identified, based upon reversing or countermanding psychostimulant-induced neuroplasticity.
Collapse
Affiliation(s)
- Peter W Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
22
|
Schoenbaum G, Shaham Y. The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol Psychiatry 2008; 63:256-62. [PMID: 17719014 PMCID: PMC2246020 DOI: 10.1016/j.biopsych.2007.06.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/01/2007] [Accepted: 06/02/2007] [Indexed: 11/24/2022]
Abstract
Studies using brain imaging methods have shown that neuronal activity in the orbitofrontal cortex, a brain area thought to promote the ability to control behavior according to likely outcomes or consequences, is altered in drug addicts. These human imaging findings have led to the hypothesis that core features of addiction like compulsive drug use and drug relapse are mediated in part by drug-induced changes in orbitofrontal function. Here, we discuss results from laboratory studies using rats and monkeys on the effect of drug exposure on orbitofrontal-mediated learning tasks and on neuronal structure and activity in orbitofrontal cortex. We also discuss results from studies on the role of the orbitofrontal cortex in drug self-administration and relapse. Our main conclusion is that although there is clear evidence that drug exposure impairs orbitofrontal-dependent learning tasks and alters neuronal activity in orbitofrontal cortex, the precise role these changes play in compulsive drug use and relapse has not yet been established.
Collapse
Affiliation(s)
- Geoffrey Schoenbaum
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
23
|
Featherstone RE, Rizos Z, Kapur S, Fletcher PJ. A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory. Behav Brain Res 2008; 189:170-9. [PMID: 18299157 DOI: 10.1016/j.bbr.2007.12.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/11/2007] [Accepted: 12/27/2007] [Indexed: 11/26/2022]
Abstract
Exposure to an intermittent, escalating dose of amphetamine induces a sensitized state that, both behaviourally and neurochemically, mirrors several features linked to the positive symptoms of schizophrenia. Increasingly it is being realized that cognitive deficits are a core component of schizophrenia; therefore we sought to assess the effects of inducing an amphetamine-sensitized state on memory (working and long-term) and cognitive flexibility, two cognitive domains impaired in schizophrenia. Rats were exposed to a sensitizing regimen of amphetamine (1-5 mg/kg; three times per week for 5 weeks; escalating at 1mg/kg per week) or saline. In experiment 1, animals were tested on an operant delayed non-match to position task (working memory). Experiment 2 used a standard fixed-platform location water maze task (long-term memory), while experiment 3 used a variable-platform location water maze task (long-term memory and working memory). Amphetamine-sensitized animals were not impaired on any of these tasks. In experiment 4, animals were assessed on a strategy selection task in which they were first required to learn to locate a food reward using a particular learning strategy (place or response) then to learn to shift to an alternate learning strategy (response or place). Amphetamine-sensitized animals were not impaired on this task. In the final experiment animals were found to be impaired in performance of the extra-dimensional shift component of an attentional set-shifting task. These results suggest that while amphetamine sensitization does not produce memory impairments similar to those seen in schizophrenia, it does produce strong impairments in set-shifting, suggesting changes in prefrontal function similar to those seen in schizophrenia.
Collapse
Affiliation(s)
- Robert E Featherstone
- Section of Biopsychology, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8.
| | | | | | | |
Collapse
|
24
|
Del Olmo N, Higuera-Matas A, Miguéns M, García-Lecumberri C, Ambrosio E. Cocaine self-administration improves performance in a highly demanding water maze task. Psychopharmacology (Berl) 2007; 195:19-25. [PMID: 17641875 DOI: 10.1007/s00213-007-0873-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 06/22/2007] [Indexed: 01/23/2023]
Abstract
RATIONALE Long-term potentiation (LTP) is considered to be a cellular substrate of learning and memory. Indeed, the involvement of LTP-like mechanisms in spatial learning has consistently been demonstrated in the Morris water maze test. We have previously shown that hippocampal LTP in Lewis rats was modulated by cocaine self-administration, although the performance of cocaine-self-administered rats in the Morris water maze was not altered. OBJECTIVE Given that the ease of the task previously used could have masked any possible effects of the cocaine-induced LTP enhancement on spatial learning, a new and more difficult water maze task was devised to address this issue. MATERIALS AND METHODS Animals self-administered cocaine (1 mg/kg) or saline under a fixed ratio 1 schedule of reinforcement for 22 days. Spatial learning was assessed in a difficult water maze task (four sessions, two trials per session with a 90-min intertrial interval), and spatial memory was also evaluated 48 h after training (a 90-s test). Additionally, reversal learning and perseverance were also studied. RESULTS There was a reduced latency in finding the hidden platform during training, as well as improved memory of the platform location in cocaine-self-administered rats with respect to animals that self-administered saline. No differences were observed in reversal learning or perseverance between groups. CONCLUSIONS Our data suggest that cocaine self-administration facilitates learning and memory in the water maze test only when animals are submitted to highly demanding tasks, involving working memory or consolidation-like processes during the intertrial interval.
Collapse
Affiliation(s)
- N Del Olmo
- Departamento Psicobiología, Facultad de Psicología, UNED, C/ Juan del Rosal no 10, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Kerstetter KA, Kantak KM. Differential effects of self-administered cocaine in adolescent and adult rats on stimulus-reward learning. Psychopharmacology (Berl) 2007; 194:403-11. [PMID: 17609932 DOI: 10.1007/s00213-007-0852-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 06/03/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE Adult cocaine addicts, abstinent at the time of testing, show a variety of neurocognitive impairments. Less clear is whether there are differences in the degree of impairment if cocaine use is initiated during adolescence rather than adulthood. OBJECTIVES Using a preclinical model, we evaluated if stimulus-reward learning was impacted differently in rats exposed to cocaine during adolescence (beginning on postnatal day 37) vs adulthood (beginning on postnatal days 74-79) and then tested after a drug-free period. MATERIALS AND METHODS A yoked-triad design of intravenous cocaine self-administration in adult (n = 8 triads) and adolescent (n = 8 triads) rats was used. Sets of three animals either contingently self-administered cocaine or received cocaine or saline in a noncontingent manner. Rats self-administering 1-mg/kg doses of cocaine responded under a fixed-ratio 5, timeout 20-s schedule of reinforcement. After 18 2-h drug or saline sessions, all rats (now adults) began the drug-free period in their home environments. Testing in a stimulus-reward learning task (conditioned cue preference) began 19 days later. RESULTS Self-administration behavior was similar in adolescent and adult rats. Lever responses were not significantly different, and both age groups averaged approximately 20 infusions per session. Rats contingently self-administering cocaine or passively exposed to cocaine during adulthood showed stimulus-reward learning deficits in the conditioned cue preference task. Rats exposed to contingent or noncontingent cocaine during adolescence had normal learning, showing strong preferences for a Froot Loops-paired cue. CONCLUSIONS These findings suggest that adolescents are insensitive to cocaine-induced impairment of learning related to amygdala memory system functioning.
Collapse
Affiliation(s)
- Kerry A Kerstetter
- Laboratory of Behavioral Neuroscience, Department of Psychology, Boston University, 64 Cummington St., Boston, MA 02215, USA
| | | |
Collapse
|
26
|
Mendez IA, Montgomery KS, LaSarge CL, Simon NW, Bizon JL, Setlow B. Long-term effects of prior cocaine exposure on Morris water maze performance. Neurobiol Learn Mem 2007; 89:185-91. [PMID: 17904876 PMCID: PMC2258220 DOI: 10.1016/j.nlm.2007.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/27/2007] [Accepted: 08/15/2007] [Indexed: 11/16/2022]
Abstract
Cocaine addiction is associated with long-term cognitive alterations including deficits on tests of declarative/spatial learning and memory. To determine the extent to which cocaine exposure plays a causative role in these deficits, adult male Long-Evans rats were given daily injections of cocaine (30 mg/kg/day x 14 days) or saline vehicle. Three months later, rats were trained for 6 sessions on a Morris water maze protocol adapted from Gallagher, Burwell, and Burchinal [Gallagher, M., Burwell, R., & Burchinal, M. (1993). Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behavioral Neuroscience, 107, 618-626]. Rats given prior cocaine exposure performed similarly to controls on training trials, but searched farther from the platform location on probe trials interpolated throughout the training sessions and showed increased thigmotaxis. The results demonstrate that a regimen of cocaine exposure can impair Morris water maze performance as long as 3 months after exposure. Although the impairments were not consistent with major deficits in spatial learning and memory, they may have resulted from cocaine-induced increases in stress responsiveness and/or anxiety. Increased stress and anxiety would be expected to increase thigmotaxis as well as cause impairments in searching for the platform location, possibly through actions on ventral striatal dopamine signaling.
Collapse
Affiliation(s)
- Ian A. Mendez
- Department of Psychology, Texas A&M University, College Station, TX 77843−4235
| | | | - Candi L. LaSarge
- Department of Psychology, Texas A&M University, College Station, TX 77843−4235
| | - Nicholas W. Simon
- Department of Psychology, Texas A&M University, College Station, TX 77843−4235
| | - Jennifer L. Bizon
- Department of Psychology, Texas A&M University, College Station, TX 77843−4235
- Faculty of Neuroscience, Texas A&M University, College Station, TX 77843−4235
| | - Barry Setlow
- Department of Psychology, Texas A&M University, College Station, TX 77843−4235
- Faculty of Neuroscience, Texas A&M University, College Station, TX 77843−4235
- Corresponding author: Barry Setlow, Ph.D. Behavioral and Cellular Neuroscience Program Department of Psychology Texas A&M University College Station, TX 77843−4235 Telephone: (979) 845−2507 Fax: (979) 845−4727
| |
Collapse
|
27
|
Di Pietro NC, Black YD, Kantak KM. Context-dependent prefrontal cortex regulation of cocaine self-administration and reinstatement behaviors in rats. Eur J Neurosci 2007; 24:3285-98. [PMID: 17156389 DOI: 10.1111/j.1460-9568.2006.05193.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Evidence of stimulus attribute-specificity within the prefrontal cortex (PFC) suggests that different prefrontal subregions may contribute to cocaine addiction in functionally distinct ways. Thus, the present study examined the effects of lidocaine-induced inactivation of two distinct PFC subregions, the prelimbic (PL) or dorsal agranular insular (AId) cortices, on drug-seeking and drug-taking behaviors under cocaine maintenance and reinstatement testing conditions in rats trained to self-administer 1 mg/kg cocaine under a second-order schedule of drug delivery. Throughout maintenance and reinstatement phases, rats were exposed to conditioned light cues and contextual odor or sound cues. Results showed that PL inactivation during maintenance test sessions significantly reduced drug-seeking and drug-taking behaviors, and disrupted patterns of responding in rats exposed to light-sound, but not light-odor, cues. Moreover, lidocaine-induced inactivation of the PL significantly attenuated drug-seeking behavior during cue-induced and cocaine prime-induced reinstatement in rats exposed to light-sound cues only. In contrast, AId inactivation significantly attenuated cue-induced reinstatement of drug-seeking behavior in rats exposed to light-odor cues only. Drug-seeking and drug-taking behaviors in these rats were not disrupted during maintenance and cocaine prime-induced reinstatement testing regardless of the type of contextual cues used. Together, these data suggest that PL and AId subregions play separate yet overlapping roles in regulating cocaine addiction in rats in ways that are dependent on the presence or absence of cocaine and on the types of contextual cues present in the cocaine self-administration environment.
Collapse
Affiliation(s)
- Nina C Di Pietro
- Laboratory of Behavioral Neuroscience, Department of Psychology and Program in Neuroscience, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
28
|
Kantak KM, Goodrich CM, Uribe V. Influence of sex, estrous cycle, and drug-onset age on cocaine self-administration in rats (Rattus norvegicus). Exp Clin Psychopharmacol 2007; 15:37-47. [PMID: 17295583 DOI: 10.1037/1064-1297.15.1.37] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The influence of sex, phase of the estrous cycle, and age of drug onset on cocaine self-administration was examined. Adult male, adult female, and adolescent male rats (Rattus norvegicus) were evaluated using low fixed-ratio (FR) schedules of drug delivery with a single fixed cocaine unit dose or a range of cocaine unit doses with a single FR schedule. Sex differences in adults were observed for mg/kg consumption of the 3.0-mg/kg unit dose, with consumption being significantly less in estrus females than in males. Over the estrous cycle, mg/kg consumption of this unit dose was significantly less during estrus than during metestrus-diestrus. Differences due to age of drug onset were also observed, with mg/kg consumption of the 3.0-mg/kg unit dose being significantly less in adolescent males than adult males or adult females during metestrus-diestrus. In contrast, these various groups did not have significantly different mg/kg intakes of cocaine unit doses <3.0 mg/kg, nor did they significantly differ in the rates and patterns of responding and number of infusions earned as a function of FR schedule or unit dose of cocaine available. The role of sex, estrus cycle, and drug-onset age on cocaine self-administration appears to be minimal under these experimental conditions. Experimental conditions that favor no sex or age differences in cocaine intake (1.0-mg/kg unit dose and low FR) may be useful for evaluating potential sex or age differences in the consequences of cocaine self-administration more reliably, as cocaine intake would not be an uncontrolled factor.
Collapse
Affiliation(s)
- Kathleen M Kantak
- Laboratory of Behavioral Neuroscience, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
29
|
Wood SC, Fay J, Sage JR, Anagnostaras SG. Cocaine and Pavlovian fear conditioning: dose-effect analysis. Behav Brain Res 2006; 176:244-50. [PMID: 17098299 PMCID: PMC1822737 DOI: 10.1016/j.bbr.2006.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 10/05/2006] [Accepted: 10/07/2006] [Indexed: 11/22/2022]
Abstract
Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1-15mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15mg/kg) displayed significantly less contextual and cued memory, compared to saline control animals. Conversely, mice pre-treated with a very low dose of cocaine (0.1mg/kg) showed significantly enhanced fear memory for both context and tone, compared to controls. These results were not due to cocaine's anesthetic effects, as shock reactivity was unaffected by cocaine. The data suggest that despite cocaine's reputation as a performance-enhancing and anxiogenic drug, this effect is seen only at very low doses, whereas a moderate dose disrupts hippocampus and amygdala-dependent fear conditioning.
Collapse
Affiliation(s)
- Suzanne C Wood
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive 0109, LaJolla, CA 92093-0109, United States.
| | | | | | | |
Collapse
|
30
|
Stalnaker TA, Roesch MR, Franz TM, Burke KA, Schoenbaum G. Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making. Eur J Neurosci 2006; 24:2643-53. [PMID: 17100852 PMCID: PMC2391072 DOI: 10.1111/j.1460-9568.2006.05128.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent evidence has linked exposure to addictive drugs to an inability to employ information about adverse consequences, or outcomes, to control behavior. For instance, addicts and drug-experienced animals fail to adapt their behavior to avoid adverse outcomes in gambling and reversal tasks or after changes in the value of expected rewards. These deficits are similar to those caused by damage to the orbitofrontal cortex, suggesting that addictive drugs may cause long-lasting changes in the representation of outcome associations in a circuit that includes the orbitofrontal cortex. Here we test this hypothesis by recording from orbitofrontal neurons in a discrimination task in rats previously exposed to cocaine (30 mg/kg i.p. for 14 days). We found that orbitofrontal neurons recorded in cocaine-experienced rats failed to signal the adverse outcome at the time a decision was made in the task. The loss of this signal was associated with abnormal changes in response latencies on aversive trials. Furthermore, upon reversal of the cue-outcome associations, orbitofrontal neurons in cocaine-treated rats with enduring reversal impairments failed to reverse their cue-selectivity, while orbitofrontal neurons in cocaine-treated rats with normal performance showed an increase in the plasticity of cue-selective firing after reversal. These results provide direct neurophysiological evidence that exposure to cocaine can cause behaviorally relevant changes in the processing of associative information in a circuit that includes the orbitofrontal cortex.
Collapse
Affiliation(s)
- Thomas A Stalnaker
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2 S251, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
31
|
Del Olmo N, Higuera-Matas A, Miguéns M, García-Lecumberri C, Borcel E, Solís JM, Ambrosio E. Hippocampal Synaptic Plasticity and Water Maze Learning in Cocaine Self-Administered Rats. Ann N Y Acad Sci 2006; 1074:427-37. [PMID: 17105941 DOI: 10.1196/annals.1369.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously, we have shown that long-term potentiation (LTP) in hippocampus of Lewis rats was significantly modulated by cocaine self-administration. Using a single train of high-frequency stimulation of 100 Hz for 1s (HFS), we found an enhancement of LTP after cocaine self-administration that was maintained even during the extinction of this behavior. However, the effects of cocaine self-administration on a hippocampal-dependent spatial learning task were unknown. Therefore, in the present study our first objective was to analyze if cocaine self-administration might affect the performance in a hippocampus-dependent task, such as the Morris water maze test. Male adult Lewis (LEW) rats self-administered cocaine (1 mg/kg/injection) or saline (0.9% NaCl) for 3 weeks. Three hours after finishing the last self-administration session, animals were submitted to Morris water maze training for 3 consecutives days. A memory test was carried out 24 h after the last training session. No significant differences were found in escape latencies and time spent in the quadrant where the platform was located during training. Given that we did not find any cocaine effect on this spatial learning task, our second objective was to estimate indirectly if brain cocaine levels have failed to modulate LTP in animals that were performing the water maze trials. To this end, we tested if cocaine application to hippocampal slices of naïve subjects was able to evoke LTP. The results indicated that cocaine produced an enhanced LTP in these hippocampal slices. Taking together, the results of the present study suggest that hippocampal LTP-like processes generated after cocaine self-administration are not related to spatial learning hippocampal-dependent tasks, such as the water maze test.
Collapse
Affiliation(s)
- N Del Olmo
- Fac. Psicología, Dpto. Psicobiología, UNED, C/ Juan del Rosal n10, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Burke KA, Franz TM, Gugsa N, Schoenbaum G. Prior cocaine exposure disrupts extinction of fear conditioning. Learn Mem 2006; 13:416-21. [PMID: 16847305 PMCID: PMC2442772 DOI: 10.1101/lm.216206] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we tested cocaine-treated rats in a fear conditioning, inflation, and extinction task, known to depend on medial prefrontal cortex and amygdala. Cocaine-treated rats conditioned and inflated similar to saline controls but displayed slower extinction learning. These results support the hypothesis that control processes in the medial prefrontal cortex are impaired by cocaine exposure.
Collapse
Affiliation(s)
- Kathryn A. Burke
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21230, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21230, USA
| | - Theresa M. Franz
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21230, USA
| | - Nishan Gugsa
- Department of Psychology, University of Maryland, Baltimore County, Maryland 21230, USA
| | - Geoffrey Schoenbaum
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21230, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21230, USA
- Department of Psychology, University of Maryland, Baltimore County, Maryland 21230, USA
- Corresponding author. E-mail ; fax (410) 706-2512
| |
Collapse
|
33
|
Eisch AJ, Harburg GC. Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology. Hippocampus 2006; 16:271-86. [PMID: 16411230 DOI: 10.1002/hipo.20161] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Once thought to produce global, nonspecific brain injury, drugs of abuse are now known to produce selective neuro-adaptations in particular brain regions. These neuro-adaptations are being closely examined for clues to the development, maintenance, and treatment of addiction. The hippocampus is an area of particular interest, as it is central to many aspects of the addictive process, including relapse to drug taking. A recently appreciated hippocampal neuro-adaptation produced by drugs as diverse as opiates and psychostimulants is decreased neurogenesis in the sub-granular zone (SGZ). While the role of adult-generated neurons is not clear, their functional integration into hippocampal circuitry raises the possibility that decreased adult SGZ neurogenesis may alter hippocampal function in such a way as to maintain addictive behavior or contribute to relapse. Here, we review the impact of opiates and psychostimulants on the different stages of cell development in the adult brain, as well as the different stages of the addictive process. We discuss how examination of drug-induced alterations of adult neurogenesis advances our understanding of the complex mechanisms by which opiates and psychostimulants affect brain function while also opening avenues for novel ways of assessing the functional role of adult-generated neurons. In addition, we highlight key discrepancies in the field and underscore the necessity to move "beyond BrdU"--beyond merely counting new hippocampal cells labeled with the S phase marker bromodeoxyuridine--so as to probe mechanistic questions about how drug-induced alterations in adult hippocampal neurogenesis occur and what the functional ramifications of alterations in neurogenesis are for addiction.
Collapse
Affiliation(s)
- Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA.
| | | |
Collapse
|