1
|
Pan TY, Pan YJ, Tsai SJ, Tsai CW, Yang FY. Focused Ultrasound Stimulates the Prefrontal Cortex and Prevents MK-801-Induced Psychiatric Symptoms of Schizophrenia in Rats. Schizophr Bull 2024; 50:120-131. [PMID: 37301986 PMCID: PMC10754174 DOI: 10.1093/schbul/sbad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND HYPOTHESIS Treatment of schizophrenia remains a major challenge. Recent studies have focused on glutamatergic signaling hypoactivity through N-methyl-D-aspartate (NMDA) receptors. Low-intensity pulsed ultrasound (LIPUS) improves behavioral deficits and ameliorates neuropathology in dizocilpine (MK-801)-treated rats. The aim of this study was to investigate the efficacy of LIPUS against psychiatric symptoms and anxiety-like behaviors. STUDY DESIGN Rats assigned to 4 groups were pretreated with or without LIPUS for 5 days. The open field and prepulse inhibition tests were performed after saline or MK-801 (0.3 mg/kg) administration. Then, the neuroprotective effects of LIPUS on the MK-801-treated rats were evaluated using western blotting and immunohistochemical staining. STUDY RESULTS LIPUS stimulation of the prefrontal cortex (PFC) prevented deficits in locomotor activity and sensorimotor gating and improved anxiety-like behavior. MK-801 downregulated the expression of NR1, the NMDA receptor, in rat medial PFC (mPFC). NR1 expression was significantly higher in animals receiving LIPUS pretreatment compared to those receiving only MK-801. In contrast, a significant increase in c-Fos-positive cells in the mPFC and ventral tegmental area was observed in the MK-801-treated rats compared to those receiving only saline; this change was suppressed by pretreatment with LIPUS. CONCLUSIONS This study provides new evidence for the role of LIPUS stimulation in regulating the NMDA receptor and modulating c-Fos activity, which makes it a potentially valuable antipsychotic treatment for schizophrenia.
Collapse
Affiliation(s)
- Tsung-Yu Pan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Pan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Che-Wen Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Ni RJ, Wang YY, Gao TH, Wang QR, Wei JX, Zhao LS, Ma YR, Ma XH, Li T. Depletion of microglia with PLX3397 attenuates MK-801-induced hyperactivity associated with regulating inflammation-related genes in the brain. Zool Res 2023; 44:543-555. [PMID: 37147908 PMCID: PMC10236309 DOI: 10.24272/j.issn.2095-8137.2022.389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
Acute administration of MK-801 (dizocilpine), an N-methyl-D-aspartate receptor (NMDAR) antagonist, can establish animal models of psychiatric disorders. However, the roles of microglia and inflammation-related genes in these animal models of psychiatric disorders remain unknown. Here, we found rapid elimination of microglia in the prefrontal cortex (PFC) and hippocampus (HPC) of mice following administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor PLX3397 (pexidartinib) in drinking water. Single administration of MK-801 induced hyperactivity in the open-field test (OFT). Importantly, PLX3397-induced depletion of microglia prevented the hyperactivity and schizophrenia-like behaviors induced by MK-801. However, neither repopulation of microglia nor inhibition of microglial activation by minocycline affected MK-801-induced hyperactivity. Importantly, microglial density in the PFC and HPC was significantly correlated with behavioral changes. In addition, common and distinct glutamate-, GABA-, and inflammation-related gene (116 genes) expression patterns were observed in the brains of PLX3397- and/or MK-801-treated mice. Moreover, 10 common inflammation-related genes ( CD68, CD163, CD206, TMEM119, CSF3R, CX3CR1, TREM2, CD11b, CSF1R, and F4/80) with very strong correlations were identified in the brain using hierarchical clustering analysis. Further correlation analysis demonstrated that the behavioral changes in the OFT were most significantly associated with the expression of inflammation-related genes ( NLRP3, CD163, CD206, F4/80, TMEM119, and TMEM176a), but not glutamate- or GABA-related genes in PLX3397- and MK-801-treated mice. Thus, our results suggest that microglial depletion via a CSF1R/c-Kit kinase inhibitor can ameliorate the hyperactivity induced by an NMDAR antagonist, which is associated with modulation of immune-related genes in the brain.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Yi-Yan Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Tian-Hao Gao
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Qi-Run Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Jin-Xue Wei
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Lian-Sheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Yang-Rui Ma
- Golden Apple Jincheng NO.1 Secondary School, Chengdu, Sichuan 610213, China
| | - Xiao-Hong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China. E-mail:
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310014, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510799, China. E-mail:
| |
Collapse
|
3
|
Layton ME, Kern JC, Hartingh TJ, Shipe WD, Raheem I, Kandebo M, Hayes RP, Huszar S, Eddins D, Ma B, Fuerst J, Wollenberg GK, Li J, Fritzen J, McGaughey GB, Uslaner JM, Smith SM, Coleman PJ, Cox CD. Discovery of MK-8189, a Highly Potent and Selective PDE10A Inhibitor for the Treatment of Schizophrenia. J Med Chem 2023; 66:1157-1171. [PMID: 36624931 PMCID: PMC9884086 DOI: 10.1021/acs.jmedchem.2c01521] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 01/11/2023]
Abstract
PDE10A is an important regulator of striatal signaling that, when inhibited, can normalize dysfunctional activity. Given the involvement of dysfunctional striatal activity with schizophrenia, PDE10A inhibition represents a potentially novel means for its treatment. With the goal of developing PDE10A inhibitors, early optimization of a fragment hit through rational design led to a series of potent pyrimidine PDE10A inhibitors that required further improvements in physicochemical properties, off-target activities, and pharmacokinetics. Herein we describe the discovery of an isomeric pyrimidine series that addresses the liabilities seen with earlier compounds and resulted in the invention of compound 18 (MK-8189), which is currently in Phase 2b clinical development for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Mark E. Layton
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jeffrey C. Kern
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Timothy J. Hartingh
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - William D. Shipe
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Izzat Raheem
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Monika Kandebo
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Robert P. Hayes
- Structural
Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Sarah Huszar
- In
Vivo Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Donnie Eddins
- In
Vivo Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Bennett Ma
- Pharmacokinetics, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Joy Fuerst
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - Gordon K. Wollenberg
- Nonclinical
Drug Safety, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jing Li
- Discovery
Process Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jeff Fritzen
- Discovery
Process Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Georgia B. McGaughey
- Chemistry
Modeling and Informatics, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - Jason M. Uslaner
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Sean M. Smith
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Paul J. Coleman
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christopher D. Cox
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
4
|
Schnider M, Jenni R, Ramain J, Camporesi S, Golay P, Alameda L, Conus P, Do KQ, Steullet P. Time of exposure to social defeat stress during childhood and adolescence and redox dysregulation on long-lasting behavioral changes, a translational study. Transl Psychiatry 2022; 12:413. [PMID: 36163247 PMCID: PMC9512907 DOI: 10.1038/s41398-022-02183-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Traumatic events during childhood/early adolescence can cause long-lasting physiological and behavioral changes with increasing risk for psychiatric conditions including psychosis. Genetic factors and trauma (and their type, degree of repetition, time of occurrence) are believed to influence how traumatic experiences affect an individual. Here, we compared long-lasting behavioral effects of repeated social defeat stress (SD) applied during either peripuberty or late adolescence in adult male WT and Gclm-KO mice, a model of redox dysregulation relevant to schizophrenia. As SD disrupts redox homeostasis and causes oxidative stress, we hypothesized that KO mice would be particularly vulnerable to such stress. We first found that peripubertal and late adolescent SD led to different behavioral outcomes. Peripubertal SD induced anxiety-like behavior in anxiogenic environments, potentiated startle reflex, and increased sensitivity to the NMDA-receptor antagonist, MK-801. In contrast, late adolescent SD led to increased exploration in novel environments. Second, the long-lasting impact of peripubertal but not late adolescent SD differed in KO and WT mice. Peripubertal SD increased anxiety-like behavior in anxiogenic environments and MK-801-sensitivity mostly in KO mice, while it increased startle reflex in WT mice. These suggest that a redox dysregulation during peripuberty interacts with SD to remodel the trajectory of brain maturation, but does not play a significant role during later SD. As peripubertal SD induced persisting anxiety- and fear-related behaviors in male mice, we then investigated anxiety in a cohort of 89 early psychosis male patients for whom we had information about past abuse and clinical assessment during the first year of psychosis. We found that a first exposure to physical/sexual abuse (analogous to SD) before age 12, but not after, was associated with higher anxiety at 6-12 months after psychosis onset. This supports that childhood/peripuberty is a vulnerable period during which physical/sexual abuse in males has wide and long-lasting consequences.
Collapse
Affiliation(s)
- Mirko Schnider
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Julie Ramain
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Sara Camporesi
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Philippe Golay
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Luis Alameda
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), 1008, Prilly-Lausanne, Switzerland.
| |
Collapse
|
5
|
Liang L, Ren X, Xu J, Ma Y, Xue Y, Zhuang T, Zhang G. Effect of Co-Treatment of Olanzapine with SEP-363856 in Mice Models of Schizophrenia. Molecules 2022; 27:molecules27082550. [PMID: 35458749 PMCID: PMC9024832 DOI: 10.3390/molecules27082550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Olanzapine is a commonly used drug in the treatment of schizophrenia, but its clinical application has been restricted by metabolic-related side effects. In order to mitigate the weight gain side effects caused by olanzapine, other drugs with different targets were selected for combined use and evaluated in animal models of schizophrenia. SEP-363856 is a novel psychotropic agent which is under phase III clinical trials for schizophrenia treatment. The aim of the research was to evaluate whether co-administration of olanzapine and SEP-363856 exerts synergistic anti-schizophrenic effects in the apomorphine (APO)-induced climbing test, the MK-801-induced hyperactivity test, and the Morris water maze test, and therefore reduces the weight gain side effects induced by olanzapine. Through isobolographic analysis, the results showed a synergistic interaction in the climbing test; the experimental ED30 (3 mg/kg) was significantly smaller (p < 0.05) than the theoretical ED30 (5 mg/kg). Additionally, such potentiating effects appeared additive in the MK-801 challenge experiment. Co-treatment with an effective dose of olanzapine and a low dose of SEP-363856 reversed MK-801-induced cognitive impairment symptoms in mice. Moreover, combination treatment with olanzapine and SEP-363856 controls sustained weight gain in mice with chronic exposure to olanzapine. These results support further clinical trials to test the effectiveness of co-treatment of olanzapine and SEP-363856 for controlling symptoms and weight gain in patients with schizophrenia during antipsychotic treatments.
Collapse
Affiliation(s)
- Lingzhi Liang
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
| | - Xia Ren
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
| | - Junyi Xu
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
| | - Yurong Ma
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
| | - Yunlin Xue
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
| | - Tao Zhuang
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
- Correspondence: (T.Z.); (G.Z.); Tel.: +86-27-8779-2235 (G.Z.)
| | - Guisen Zhang
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (T.Z.); (G.Z.); Tel.: +86-27-8779-2235 (G.Z.)
| |
Collapse
|
6
|
Neurobehavioral Differences of Valproate and Risperidone on MK-801 Inducing Acute Hyperlocomotion in Mice. Behav Neurol 2022; 2022:1048463. [PMID: 35251367 PMCID: PMC8890888 DOI: 10.1155/2022/1048463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The glutamate system plays a major role in the development of neuropsychiatric disorders such as addiction, epilepsy, dementia, and psychosis. MK-801 (dizocilpine), an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, could increase locomotor activity and stereotyped neurobehaviors mimicking schizophrenic-like features in the mouse model. The study would explore the neuropharmacological differences of risperidone and valproic acid on the MK-801-induced neurobehavioral changes. Methods The subjects were male C57BL/6J mice obtained from the National Laboratory Animal Center. Drug effects were assessed using the open field with a video-tracking system and gaiting tests. After habitation, risperidone (0, 0.1 mg/kg) or valproic acid (0, 200 mg/kg) was injected and ran locomotion for 30 mins. Sequentially, mice were followed by intraperitoneal injection (i.p.) with MK-801 (0, 0.2 mg/kg) and ran locomotion for 60 mins. Gaiting behaviors such as step angles, stride lengths, and stance widths were measured following the study drugs. Results The results showed that risperidone and valproic acid alone could not alter the locomotor activities. Following the MK-801 injection, the travelled distance and speed in the entire open field dramatically increased. The dose 0.1 mg/kg of risperidone could totally inhibit the MK-801-induced hyperlocomotion compared with that of the saline-injected group (p < 0.001). The valproic acid (200 mg/kg) partially suppressed the hyperlocomotion which is induced by MK801. Conclusion The more dominant effect of risperidone to rescue MK-801 induced hyperlocomotion compared with that of valproic acid. The partial suppression of valproic acid may imply the psychopharmacological evidence as adjuvant effect to treat psychotic patients through tuning glutamatergic neurotransmission.
Collapse
|
7
|
Al-Yamani MJ, Mohammed Basheeruddin Asdaq S, Alamri AS, Alsanie WF, Alhomrani M, Alsalman AJ, Al Mohaini M, Al Hawaj MA, Alanazi AA, Alanzi KD, Imran M. The role of serotonergic and catecholaminergic systems for possible antidepressant activity of apigenin. Saudi J Biol Sci 2022; 29:11-17. [PMID: 35002391 PMCID: PMC8716962 DOI: 10.1016/j.sjbs.2021.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background and objective Although, the anti-depressant like effects of apigenin (APG) are documented in the literature, the underlying mechanism for exerting such an effect is still not clear. In this research, an attempt was made to determine the possible role of APG for antidepressant activity through serotonergic and catecholaminergic systems using standardized animal models. Materials and methods The antidepressant property of APG was determine by involving tail suspension (TST) and modified forced swimming tests (MFST). The effect of APG was evaluated at 25 and 50 mg/kg. In mechanistic models, animals were pretreated with catecholaminergic and serotonergic antagonists prior to administration of APG. The results obtained were statistically analyzed to determine the level of significance. Results The period of immobility in both models (TST and MFST) was significantly reduced by APG (25 and 50 mg/kg). The best therapetuic dose of APG (50 mg/kg) was selected for the mechanistic study. The anti-immobility effect of APG declined to a significant extent upon pretreatment with catecholaminergic antagonists (α-methyl-para-tyrosine methyl ester; SCH 23390; sulpiride; phentolamine) and serotonergic inhibitors (p-clorophenylalanine-methyl-ester; ondansetron) in both TST and MFST models. The antidepressant benefits of apigenin were only modestly reversed when rats were given propranolol. Conclusions The findings suggest that APG's antidepressant effect is mediated by the α-adrenergic, dopaminergic and 5-HT3 serotonergic receptors.
Collapse
Affiliation(s)
- Mohammad J Al-Yamani
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | | | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Abdulkhaliq J Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Alahsa, Saudi Arabia.,King Abdullah International Medical Research Center, Alahsa, Saudi Arabia
| | - Maitham A Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Ahsa 31982, Saudi Arabia
| | - Amani A Alanazi
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Khulud D Alanzi
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
8
|
Percelay S, Freret T, Turnbull N, Bouet V, Boulouard M. Combination of MAP6 deficit, maternal separation and MK801 in female mice: A 3-hit animal model of neurodevelopmental disorder with cognitive deficits. Behav Brain Res 2021; 413:113473. [PMID: 34280461 DOI: 10.1016/j.bbr.2021.113473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022]
Abstract
Schizophrenia is a major psychiatric disease still lacking efficient treatment, particularly for cognitive deficits. To go further in research of new treatments that would encompass all the symptoms associated with this pathology, preclinical animal models need to be improved. To date, the aetiology of schizophrenia is unknown, but there is increasing evidence to highlight its multifactorial nature. We built a new neurodevelopmental mouse model gathering a triple factor combination (3-M): a genetic factor (partial deletion of MAP6 gene), an early stress (maternal separation) and a late pharmacological factor (MK801 administration, 0.05 mg/kg, i.p., daily for 5 days). The effects of each factor and of their combination were investigated on several behaviours including cognitive functions. While each individual factor induced slight deficits in one or another behavioural test, 3-M conditioning induces a wider phenotype with hyperlocomotion and cognitive deficits (working memory and social recognition). This study confirms the hypothesis that genetic, environmental and pharmacological factors, even if not deleterious by themselves, could act synergistically to induce a deleterious behavioural phenotype. It moreover encourages the use of such combined models to improve translational research on neurodevelopmental disorders.
Collapse
Affiliation(s)
- Solenn Percelay
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France.
| | - Thomas Freret
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Nicole Turnbull
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Valentine Bouet
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Michel Boulouard
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| |
Collapse
|
9
|
Vales K, Holubova K. Minireview: Animal model of schizophrenia from the perspective of behavioral pharmacology: Effect of treatment on cognitive functions. Neurosci Lett 2021; 761:136098. [PMID: 34224793 DOI: 10.1016/j.neulet.2021.136098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Schizophrenia is a debilitating mental disorder characterized by positive, negative and cognitive symptoms. Whereas positive symptoms are satisfactorily addressed by current antipsychotic treatment, negative and cognitive symptomatic treatment remains largely ineffective. This review investigates the treatment efficacy regarding cognitive symptoms and evaluates the contribution of different monoamine receptor systems involved in schizophrenia pathophysiology to cognition. In the review, we included preclinical studies assessing the effect of different treatments on cognition in pre-pulse inhibition and two spatial cognitive tests. While pre-pulse inhibition investigates pre-attentive processes operating outside of conscious awareness, the spatial tasks require continuous attention and active engagement in task solving for a successful outcome. The schizophrenia-like phenotype was attained by acute or subchronic administration of non-competitive NMDA receptor antagonist MK-801.
Collapse
Affiliation(s)
- K Vales
- The National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Institute of Physiology CAS, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - K Holubova
- The National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| |
Collapse
|
10
|
Zapata RC, Osborn O. Susceptibility of male wild type mouse strains to antipsychotic-induced weight gain. Physiol Behav 2020; 220:112859. [PMID: 32156556 DOI: 10.1016/j.physbeh.2020.112859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022]
Abstract
While both men and women gain weight as a side effect of antipsychotic (AP) treatment, studies in mice have found only female mice are susceptible to weight gain. Therefore, to we set out to identify a strain of male mice that gain significant weight in response to APs which could better model AP-induced weight gain observed in humans. These studies determined that male Balb/c mice developed late onset olanzapine-induced weight gain. Patients often take APs for many years and thus understanding AP-mediated changes in food intake, energy expenditure and body weight regulation is particularly important.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
11
|
Iskhakova J, Mustac T, Yuabov A, Macanian J, Israel E, Dohnalova P, Iskhakov B, Lulu EB, Aminov S, Fazylov D, Bodnar RJ. Acquisition and expression of fat conditioned flavor preferences following dopamine D1, opioid and NMDA receptor antagonism in C57BL/6 mice. Nutr Neurosci 2020; 25:137-145. [PMID: 32050863 DOI: 10.1080/1028415x.2020.1724706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: Inbred mouse strains differ in the pharmacology mediating sugar and fat intake and conditioned flavor preferences (CFP). C57BL/6, BALB/c and SWR inbred mice are differentially sensitive to dopamine (DA) D1, opioid and muscarinic receptor antagonism of sucrose, saccharin or fat intake, and to DA, opioid, muscarinic and N-methyl-D-aspartate (NMDA) receptor antagonism of acquisition of sucrose-CFP. DA D1, opioid and NMDA receptor antagonists differentially alter fat (Intralipid)-CFP in BALB/c and SWR mice. The present study examined whether naltrexone, SCH23390 or MK-801 altered acquisition and expression of Intralipid-CFP in C57BL/6 mice.Methods: In acquisition, groups of male food-restricted C57BL/6 mice received vehicle, naltrexone (1, 5 mg/kg), SCH23390 (50, 200 nmol/kg) or MK-801 (100, 200 μg/kg) before 10 training sessions in which mice alternately consumed two novel-flavored 5% (CS+) and 0.5% (CS-) Intralipid solutions. Six two-bottle CS choice tests followed with both flavors mixed in 0.5% Intralipid without injections. In expression, C57BL/6 mice underwent the 10 training sessions without injections followed by two-bottle CS choice tests 30 min following vehicle, naltrexone (1, 5 mg/kg), SCH23390 (200, 800 nmol/kg) or MK-801 (100, 200 μg/kg).Results: Fat-CFP acquisition in C57BL/6 mice was significantly though marginally reduced following naltrexone, SCH23390 and MK-801. Fat-CFP expression was similarly reduced by naltrexone, SCH23390 and MK-801 in C57BL/6 mice. Discussion: C57BL/6 mice were more sensitive to DA D1, opioid and NMDA antagonists in the expression of fat-CFP relative to sugar-CFP, but were less sensitive to DA D1 and NMDA antagonists in the acquisition of fat-CFP relative to sugar-CFP.
Collapse
Affiliation(s)
- Julia Iskhakova
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Tatjana Mustac
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Asnat Yuabov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Jason Macanian
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Emanuel Israel
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Petra Dohnalova
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Ben Iskhakov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Eden Ben Lulu
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Sonya Aminov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - David Fazylov
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA
| | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, Flushing, NY, USA.,CUNY Neuroscience Collaborative and Psychology Doctoral Program, CUNY Graduate Center, New York, NY, USA
| |
Collapse
|
12
|
Wilson C, Li S, Hannan AJ, Renoir T. Antidepressant-like effects of ketamine in a mouse model of serotonergic dysfunction. Neuropharmacology 2020; 168:107998. [PMID: 32061666 DOI: 10.1016/j.neuropharm.2020.107998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/28/2022]
Abstract
Traditional monoaminergic treatments of depression frequently exhibit suboptimal tolerability and effectiveness. The 'short' (s) allele variant of 5-HTTLPR is known to compromise transcriptional efficacy of the serotonin transporter (5-HTT) and can reduce treatment response to traditional antidepressants (e.g. selective serotonin reuptake inhibitors or SSRIs). This study sought to establish the 5-HTT knock-out (KO) line as a mouse model of SSRI-resistant depression and assess its response to a novel glutamatergic antidepressant, ketamine, a non-competitive N-methyl-d-aspartate receptor (NMDAR) antagonist. Following acute antidepressant treatment, 5-HTT KO mice and wild-type (WT) controls were subjected to the forced-swim test (FST), one of the most widely used techniques to detect acute antidepressant response. As hypothesised, when assessed 30 min after administration in the FST, the SSRI sertraline (20 mg/kg, i.p.) produced antidepressant-like effects in WT control but not in 5-HTT KO mice. In contrast, ketamine (20 mg/kg, i.p.) induced antidepressant-like effects in both genotypes. 5-HTT KO mice also exhibited a reduced locomotor response to both MK-801 (another NMDAR antagonist) and ketamine, and reduced GluN2A protein levels in the hippocampus, suggesting glutamatergic dysfunction in this model. These results highlight the utility of 5-HTT KO mice as a relevant model of SSRI-resistant depression and demonstrate that ketamine can produce acute antidepressant-like effects in conditions of 5-HTT deficiency. These findings extend existing literature that indicates ketamine is effective in ameliorating symptoms of treatment-resistant depression and may have implications for understanding the cellular and molecular mechanisms underlying the antidepressant effects of ketamine. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Melbourne School of Psychological Science, University of Melbourne, Parkville, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Facssulty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
13
|
Singh R, Bansal Y, Sodhi RK, Saroj P, Medhi B, Kuhad A. Modeling of antipsychotic-induced metabolic alterations in mice: An experimental approach precluding psychosis as a predisposing factor. Toxicol Appl Pharmacol 2019; 378:114643. [DOI: 10.1016/j.taap.2019.114643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
|
14
|
Shieh KR, Yang SC. Exploratory and agile behaviors with central dopaminergic activities in open field tests in Formosan wood mice (Apodemus semotus). J Exp Biol 2019; 222:jeb.199356. [DOI: 10.1242/jeb.199356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022]
Abstract
Taiwan is a mountainous island, and nearly 75% of its lands are 1000 m above sea level. Formosan wood mice, Apodemus semotus, are endemic rodents and are broadly distributed at altitudes between 1400 m and 3700 m in Taiwan. Interestingly, Formosan wood mice show similar locomotor activity in the laboratory as they do in the wild. Hence, we are interested in studying whether exploratory behaviors and central dopaminergic activity are changed in the open field test. We used male C57BL/6J mice as the control, comparing their behavioral responses in the open field, step-down inhibitory avoidance discrimination and novel object recognition tests with those of male Formosan wood mice. We also examined dopamine and its major metabolite 3,4-dihydroxyphenylacetic acid in the medial prefrontal cortex, striatum and nucleus accumbens. In open field tests, Formosan wood mice revealed higher levels of locomotion and exploration than C57BL/6J mice. Learning and memory performance in the novel object recognition test was similar in both Formosan wood mice and C57BL/6J mice, but more agile responses in the inhibitory avoidance discrimination task were found in Formosan wood mice. There was no difference in behavioral responses in the open field test between new second-generation Formosan wood mice and Formosan wood mice that were inbred for more than ten generations. After repeated exposure to the open field test, high levels of locomotion and exploration as well as central dopaminergic activities were markedly persistent in Formosan wood mice, but these activities were significantly reduced in C57BL/6J mice. Diazepam (anxiolytic) treatment reduced the higher exploratory activity and central dopaminergic activities in Formosan wood mice, but this treatment had no effect in C57BL/6J mice. This study provides comparative findings, as two phylogenetically related species showed differences in behavioral responses.
Collapse
Affiliation(s)
- Kun-Ruey Shieh
- Department of Physiology, Tzu Chi University, Hualien 970, Taiwan
| | - Shu-Chuan Yang
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| |
Collapse
|
15
|
Hideshima KS, Hojati A, Saunders JM, On DM, de la Fuente Revenga M, Shin JM, Sánchez-González A, Dunn CM, Pais AB, Pais AC, Miles MF, Wolstenholme JT, González-Maeso J. Role of mGlu2 in the 5-HT 2A receptor-dependent antipsychotic activity of clozapine in mice. Psychopharmacology (Berl) 2018; 235:3149-3165. [PMID: 30209534 PMCID: PMC6408231 DOI: 10.1007/s00213-018-5015-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/29/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Serotonin 5-HT2A and metabotropic glutamate 2 (mGlu2) are neurotransmitter G protein-coupled receptors (GPCRs) involved in the signaling mechanisms underlying psychosis and schizophrenia treatment. Previous findings in mGlu2 knockout (KO) mice suggested that mGlu2 is necessary for head-twitch behavior, a rodent phenotype characteristic of hallucinogenic 5-HT2A receptor agonists. However, the role of mGlu2 in the behavioral effects induced by antipsychotic drugs remains poorly understood. Here, we tested antipsychotic-like behavioral phenotypes induced by the atypical antipsychotic clozapine in mGlu2-KO mice and wild-type control littermates. METHODS Locomotor activity was tested in mGlu2-KO mice and control littermates injected (i.p.) with clozapine (1.5 mg/kg) or vehicle followed by MK801 (0.5 mg/kg), PCP (7.5 mg/kg), amphetamine (6 mg/kg), scopolamine (2 mg/kg), or vehicle. Using a virally (HSV) mediated transgene expression approach, the role of frontal cortex mGlu2 in the modulation of MK801-induced locomotor activity by clozapine treatment was also evaluated. RESULTS The effect of clozapine on hyperlocomotor activity induced by the dissociative drugs MK801 and phencyclidine (PCP) was decreased in mGlu2-KO mice as compared to controls. Clozapine treatment, however, reduced hyperlocomotor activity induced by the stimulant drug amphetamine and the deliriant drug scopolamine in both wild-type and mGlu2-KO mice. Virally mediated over-expression of mGlu2 in the frontal cortex of mGlu2-KO mice rescued the ability of clozapine to reduce MK801-induced hyperlocomotion. CONCLUSION These findings further support the existence of a functionally relevant crosstalk between 5-HT2A and mGlu2 receptors in different preclinical models of antipsychotic activity.
Collapse
Affiliation(s)
- Kelsey S Hideshima
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Ashkhan Hojati
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Justin M Saunders
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Doan M On
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Mario de la Fuente Revenga
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Jong M Shin
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Ana Sánchez-González
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Cassandra M Dunn
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Alexander B Pais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Anthony C Pais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
16
|
Can ÖD, Turan N, Demir Özkay Ü, Öztürk Y. Antidepressant-like effect of gallic acid in mice: Dual involvement of serotonergic and catecholaminergic systems. Life Sci 2017; 190:110-117. [PMID: 28942286 DOI: 10.1016/j.lfs.2017.09.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
Abstract
AIMS This study was planned to examine the antidepressant potency of gallic acid (30 and 60mg/kg), a phenolic acid widely distributed in nature, together with its possible underlying monoaminergic mechanisms. MAIN METHODS Antidepressant-like activity was assessed using the tail suspension (TST) and the modified forced swimming tests (MFST). Locomotor activity was evaluated in an activity cage. KEY FINDINGS Administration of gallic acid at 60mg/kg reduced the immobility duration of mice in both the TST and MFST without any changes in the locomotor activity. The anti-immobility effect observed in the TST was abolished with pre-treatment of p-chlorophenylalanine methyl ester (an inhibitor of serotonin synthesis; 100mg/kg i.p. administered for 4-consecutive days), ketanserin (a 5-HT2A/2C antagonist; 1mg/kg i.p.), ondansetron (a 5-HT3 antagonist; 0.3mg/kg i.p.), α-methyl-para-tyrosine methyl ester (an inhibitor of catecholamine synthesis; 100mg/kg i.p.), phentolamine (non-selective alpha-adrenoceptor antagonist; 5mg/kg i.p.), SCH 23390 (a dopamine D1 antagonist; 0.05mg/kg s.c.), and sulpiride (a dopamine D2/D3 antagonist; 50mg/kg i.p.). However, NAN 190 (a 5-HT1A antagonist; 0.5mg/kg i.p.) and propranolol (a non-selective β-adrenoceptor antagonist; 5mg/kg i.p.) pre-treatments were ineffective at reversing the antidepressant-like effects of gallic acid. SIGNIFICANCE The results of the present study indicate that gallic acid seems to have a dual mechanism of action by increasing not only serotonin but also catecholamine levels in synaptic clefts of the central nervous system. Further alpha adrenergic, 5-HT2A/2C and 5-HT3 serotonergic, and D1, D2, and D3 dopaminergic receptors also seem to be involved in this antidepressant-like activity.
Collapse
Affiliation(s)
- Özgür Devrim Can
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey.
| | - Nazlı Turan
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey
| | - Ümide Demir Özkay
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey
| | - Yusuf Öztürk
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey
| |
Collapse
|
17
|
Partyka A, Kurczab R, Canale V, Satała G, Marciniec K, Pasierb A, Jastrzębska-Więsek M, Pawłowski M, Wesołowska A, Bojarski AJ, Zajdel P. The impact of the halogen bonding on D 2 and 5-HT 1A/5-HT 7 receptor activity of azinesulfonamides of 4-[(2-ethyl)piperidinyl-1-yl]phenylpiperazines with antipsychotic and antidepressant properties. Bioorg Med Chem 2017; 25:3638-3648. [PMID: 28529043 DOI: 10.1016/j.bmc.2017.04.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/30/2017] [Accepted: 04/20/2017] [Indexed: 02/03/2023]
Abstract
A series of azinesulfonamides of long-chain arylpiperazine derivatives with semi-rigid alkylene spacer was designed, synthesized, and biologically evaluated using in vitro methods for their affinity for dopaminergic D2 and serotoninergic 5-HT1A, 5-HT2A, 5-HT6 and 5-HT7 receptors. Docking to homology models revealed a possible halogen bond formation in complexes of the most potent ligands and the target receptors. The study allowed for the identification of compound 5-({4-(2-[4-(2,3-dichlorophenyl)piperazin-1-yl]ethyl)piperidin-1-yl}sulfonyl)quinoline (21), which behaved as D2, 5-HT1A and 5-HT7 receptor antagonist. In preliminary in vivo studies, compound 21 displayed distinct antipsychotic properties in the MK-801-evoked hyperactivity test in mice at a dose of 10mg/kg, and exerted antidepressant-like effect in a forced swim test in mice (MED=0.625mg/kg, i.p.).
Collapse
Affiliation(s)
- Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Rafał Kurczab
- Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smętna Street, 31-343 Krakow, Poland
| | - Vittorio Canale
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smętna Street, 31-343 Krakow, Poland
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, 4 Jagiellońska Street, 41-200 Sosnowiec, Poland
| | - Agnieszka Pasierb
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 12 Smętna Street, 31-343 Krakow, Poland
| | - Paweł Zajdel
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| |
Collapse
|
18
|
Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. Eur J Neurosci 2016; 45:2-19. [DOI: 10.1111/ejn.13390] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/23/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Bernard Le Foll
- Centre for Addiction and Mental Health; Toronto ON Canada
- University of Toronto; Toronto ON Canada
| |
Collapse
|
19
|
Choy KHC, Shackleford DM, Malone DT, Mistry SN, Patil RT, Scammells PJ, Langmead CJ, Pantelis C, Sexton PM, Lane JR, Christopoulos A. Positive Allosteric Modulation of the Muscarinic M1 Receptor Improves Efficacy of Antipsychotics in Mouse Glutamatergic Deficit Models of Behavior. J Pharmacol Exp Ther 2016; 359:354-365. [PMID: 27630144 DOI: 10.1124/jpet.116.235788] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Current antipsychotics are effective in treating the positive symptoms associated with schizophrenia, but they remain suboptimal in targeting cognitive dysfunction. Recent studies have suggested that positive allosteric modulation of the M1 muscarinic acetylcholine receptor (mAChR) may provide a novel means of improving cognition. However, very little is known about the potential of combination therapies in extending coverage across schizophrenic symptom domains. This study investigated the effect of the M1 mAChR positive allosteric modulator BQCA [1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid], alone or in combination with haloperidol (a first-generation antipsychotic), clozapine (a second-generation atypical antipsychotic), or aripiprazole (a third-generation atypical antipsychotic), in reversing deficits in sensorimotor gating and spatial memory induced by the N-methyl-d-aspartate receptor antagonist, MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]. Sensorimotor gating and spatial memory induction are two models that represent aspects of schizophrenia modeled in rodents. In prepulse inhibition (an operational measure of sensorimotor gating), BQCA alone had minimal effects but exhibited different levels of efficacy in reversing MK-801-induced prepulse inhibition disruptions when combined with a subeffective dose of each of the three (currently prescribed) antipsychotics. Furthermore, the combined effect of BQCA and clozapine was absent in M1-/- mice. Interestingly, although BQCA alone had no effect in reversing MK-801-induced memory impairments in a Y-maze spatial test, we observed a reversal upon the combination of BQCA with atypical antipsychotics, but not with haloperidol. These findings provide proof of concept that a judicious combination of existing antipsychotics with a selective M1 mAChR positive allosteric modulator can extend antipsychotic efficacy in glutamatergic deficit models of behavior.
Collapse
Affiliation(s)
- Kwok H C Choy
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - David M Shackleford
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Daniel T Malone
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Shailesh N Mistry
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Rahul T Patil
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Peter J Scammells
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Christopher J Langmead
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Christos Pantelis
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Patrick M Sexton
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Johnathan R Lane
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| | - Arthur Christopoulos
- Drug Discovery Biology (K.H.C.C., D.T.M, C.J.L, P.M.S, J.R.L, A.C.), Centre for Drug Candidate Optimization (D.M.S., R.T.P.), and Medicinal Chemistry (S.N.M, P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; and Melbourne Neuropsychiatry Centre, Department of Psychiatry and Centre for Neural Engineering, University of Melbourne, Melbourne, Australia (C.P.)
| |
Collapse
|
20
|
NMDA receptor antagonism differentially reduces acquisition and expression of sucrose- and fructose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacol Biochem Behav 2016; 148:76-83. [DOI: 10.1016/j.pbb.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/18/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
|
21
|
MK-801 reduces sensitivity to Müller-Lyer's illusion in capuchin monkeys. Behav Brain Res 2016; 316:54-58. [PMID: 27575949 DOI: 10.1016/j.bbr.2016.08.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
The Müller-Lyer's illusion (MLI) is a visual illusion in which the presence of contextual cues (i.e., the orientation of arrowheads) changes the perception of the length of straight lines. An altered sensitivity to the MLI has been proposed as a marker for the progression of perceptual deficits in schizophrenia. Since dizocilpine (MK-801), a noncompetitive antagonist of the NMDA glutamate receptor, induces schizophrenic-like sensory impairments, it may have potential value for investigating the neurochemical basis of the perceptual changes in schizophrenia. Here we tested the effects of MK-801 on the perception of the MLI in a nonhuman primate. Five capuchin monkeys Sapajus spp. were trained on a MLI task using a touch screen monitor. After training, the Point of Subjective Equality (PSE; i.e., the minimum difference in length between two lines which the subject can distinguish) was determined for each subject. Then, during 12 consecutive days, we evaluated changes in PSE in response to vehicle, MK-801 (5.6μg/kg, i.m.) and a no-treatment protocol (post- test). Each of these was given as a single daily treatment, on four consecutive days. Results showed that MK-801 increased the monkeys' performance in the MLI task, suggesting that NMDA receptor modulation reduces sensitivity to this illusion, similar to prodromal stage in schizophrenia patients. The MLI protocol may thus be used in nonhuman primates to screen potential antipsychotic drugs for early stages of this disease.
Collapse
|
22
|
Burrows EL, Laskaris L, Koyama L, Churilov L, Bornstein JC, Hill-Yardin EL, Hannan AJ. A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice. Mol Autism 2015; 6:62. [PMID: 26583067 PMCID: PMC4650404 DOI: 10.1186/s13229-015-0055-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/05/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Aggression is common in patients with autism spectrum disorders (ASD) along with the core symptoms of impairments in social communication and repetitive behavior. Risperidone, an atypical antipsychotic, is widely used to treat aggression in ASD. In order to understand the neurobiological underpinnings of these challenging behaviors, a thorough characterisation of behavioral endophenotypes in animal models is required. METHODS We investigated aggression in mice containing the ASD-associated R451C (arginine to cysteine residue 451 substitution) mutation in neuroligin-3 (NL3). Furthermore, we sought to verify social interaction impairments and assess olfaction, anxiety, and repetitive and restrictive behavior in NL3(R451C) mutant mice. RESULTS We show a pronounced elevation in aggressive behavior in NL3(R451C) mutant mice. Treatment with risperidone reduced this aggression to wild-type (WT) levels. Juvenile and adult social interactions were also investigated, and subtle differences in initiation of interaction were seen in juvenile NL3(R451C) mice. No genotype differences in olfactory discrimination or anxiety were observed indicating that aggression was not dependent on altered olfaction, stress response, or social preference. We also describe repetitive behavior in NL3(R451C) mice as assessed by a clinically relevant object exploration task. CONCLUSIONS The presence of aberrant aggression and other behavioral phenotypes in NL3(R451C) mice consistent with clinical traits strengthen face validity of this model of ASD. Furthermore, we demonstrate predictive validity in this model through the reversal of the aggressive phenotype with risperidone. This is the first demonstration that risperidone can ameliorate aggression in an animal model of ASD and will inform mechanistic and therapeutic research into the neurobiology underlying abnormal behaviors in ASD.
Collapse
Affiliation(s)
- Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Cnr Genetics Lane and Royal Pde, Parkville, Victoria 3010 Australia
| | - Liliana Laskaris
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Cnr Genetics Lane and Royal Pde, Parkville, Victoria 3010 Australia
| | - Lynn Koyama
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Cnr Genetics Lane and Royal Pde, Parkville, Victoria 3010 Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, 245 Burgundy St, Heidelberg, Victoria 3084 Australia
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Royal Pde, Parkville, Victoria 3010 Australia
| | - Elisa L Hill-Yardin
- Department of Physiology, The University of Melbourne, Royal Pde, Parkville, Victoria 3010 Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Cnr Genetics Lane and Royal Pde, Parkville, Victoria 3010 Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Royal Pde, Parkville, Victoria 3010 Australia
| |
Collapse
|
23
|
Saletti PG, Maior RS, Hori E, Nishijo H, Tomaz C. Sensorimotor gating impairments induced by MK-801 treatment may be reduced by tolerance effect and by familiarization in monkeys. Front Pharmacol 2015; 6:204. [PMID: 26441660 PMCID: PMC4585034 DOI: 10.3389/fphar.2015.00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/04/2015] [Indexed: 02/03/2023] Open
Abstract
Dizocilpine (MK-801) is a non-competitive NMDA antagonist that induces schizophreniclike effects. It is therefore widely used in experimental models of schizophrenia including prepulse inhibition (PPI) impairments in rodents. Nevertheless, MK-801 has never been tested in monkeys on a PPI paradigm. In order to evaluate MK-801 effects on monkeys’ PPI, we tested eight capuchin monkeys (Sapajus spp.) using three different doses of MK-801 (0.01; 0.02; 0.03 mg/kg). Results show PPI impairment in acute administration of the highest dose (0.03 mg/kg). PPI impairment induced by MK-801 was reversed by re-exposure to the PPI test throughout treatment trials, in contrast with rodent studies. These results indicate that tolerance effect and familiarization with PPI test may reduce the sensorimotor gating deficits induced by MK-801 in monkeys, suggesting a drug-training interaction.
Collapse
Affiliation(s)
- Patricia G Saletti
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia , Brasilia, Brazil
| | - Rafael S Maior
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia , Brasilia, Brazil
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, Japan
| | - Carlos Tomaz
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia , Brasilia, Brazil ; Neurosciences Research Group, Universidade CEUMA , São Luís, Brazil
| |
Collapse
|
24
|
Tanyeri P, Buyukokuroglu ME, Mutlu O, Ulak G, Akar FY, Celikyurt IK, Erden BF. Effects of ziprasidone, SCH23390 and SB277011 on spatial memory in the Morris water maze test in naive and MK-801 treated mice. Pharmacol Biochem Behav 2015; 138:142-7. [PMID: 26394282 DOI: 10.1016/j.pbb.2015.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/27/2023]
Abstract
Introduction: Patients with schizophrenia have cognitive dysfunctions; positive psychotic symptoms are the primary purposes for schizophrenia treatment. Improvements in cognitive function should be a characteristic of all newly developed drugs for the treatment of schizophreniawith dementia. Thus,we investigated the effects of the second-generation antipsychotic ziprasidone, dopamine D1 antagonist SCH-23390 and dopamine D3 antagonist SB-277011 on spatial learning and memory. Materials and methods: Male inbred mice were used. The effects of ziprasidone, SCH-23390 and SB-277011 were investigated using the Morris water maze test. Results: Ziprasidone (0.5 and 1mg/kg), SCH-23390 (0.05 and 0.1 mg/kg) and SB-277011 (10 and 20 mg/kg) had no effect on the time spent in the target quadrant in naive mice.MK-801 (0.1mg/kg) significantly decreased the time spent in the target quadrant. The time spent in the target quadrant was significantly prolonged by Ziprasidone (0.5 and 1 mg/kg) and SCH-23390 (0.1 mg/kg), but not with SB-277011 (20 mg/kg) in MK-801-treated mice. Ziprasidone (0.5 and 1mg/kg), SCH-23390 (0.05 and 0.1 mg/kg) and SB-277011 (10 and 20 mg/kg) had no effect on themean distance to the platformin naivemice.MK-801 significantly increased themean distance to the platform. Ziprasidone (1 mg/kg) and SCH-23390 (0.1 mg/kg) significantly decreased the mean distance to the platform in MK-801-treated mice, but SB-277011 (20 mg/kg) didn't. MK-801 significantly increased the total distance moved. Ziprasidone (0.5 and 1 mg/kg), SCH-23390 (0.05 and 0.1 mg/kg) and SB-277011 (10 and 20 mg/kg) had no effect on the total distance moved in naive mice. Ziprasidone (1 mg/kg) and SCH-23390 (0.1 mg/kg) significantly decreased the total distance moved in MK-801-treated mice, but SB-277011 (20 mg/kg) didn't. Conclusions: The second-generation antipsychotic drug ziprasidone and D1 antagonist SCH23390, but not the D3 antagonist SB277011, might be clinically useful for the treatment of cognitive impairments in patients with schizophrenia.
Collapse
Affiliation(s)
- Pelin Tanyeri
- Sakarya University, Faculty of Medicine, Department of Pharmacology, 54100 Sakarya, Turkey.
| | | | - Oguz Mutlu
- Kocaeli University, Faculty of Medicine, Department of Pharmacology, 41380 Kocaeli, Turkey.
| | - Güner Ulak
- Kocaeli University, Faculty of Medicine, Department of Pharmacology, 41380 Kocaeli, Turkey.
| | - Füruzan Yildiz Akar
- Kocaeli University, Faculty of Medicine, Department of Pharmacology, 41380 Kocaeli, Turkey.
| | | | - Bekir Faruk Erden
- Kocaeli University, Faculty of Medicine, Department of Pharmacology, 41380 Kocaeli, Turkey.
| |
Collapse
|
25
|
Carruthers SP, Gurvich CT, Rossell SL. The muscarinic system, cognition and schizophrenia. Neurosci Biobehav Rev 2015; 55:393-402. [PMID: 26003527 DOI: 10.1016/j.neubiorev.2015.05.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
An increasing body of evidence has implicated the central muscarinic system as contributing to a number of symptoms of schizophrenia and serving as a potential target for pharmaceutical interventions. A theoretical review is presented that focuses on the central muscarinic system's contribution to the cognitive symptoms of schizophrenia. The aim is to bridge the void between pertinent neuropsychological and neurobiological research to provide an explanatory account of the role that the central muscarinic system plays in the symptoms of schizophrenia. First, there will be a brief overview of the relevant neuropsychological schizophrenia literature, followed by a concise introduction to the central muscarinic system. Subsequently, we will draw from animal, neuropsychological and pharmacological literature, and discuss the findings in relation to cognition, schizophrenia and the muscarinic system. Whilst unifying the multiple domains of research into a concise review will act as a useful line of enquiry into the central muscarinic systems contribution to the symptoms of schizophrenia, it will be made apparent that more research is needed in this field.
Collapse
Affiliation(s)
- Sean P Carruthers
- Brain and Psychological Sciences Research Centre (BPsyC), Faculty of Health, Arts, Design, Swinburne University of Technology, Melbourne 3122, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred Hospital, Melbourne 3004, VIC, Australia.
| | - Caroline T Gurvich
- Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred Hospital, Melbourne 3004, VIC, Australia
| | - Susan L Rossell
- Brain and Psychological Sciences Research Centre (BPsyC), Faculty of Health, Arts, Design, Swinburne University of Technology, Melbourne 3122, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred Hospital, Melbourne 3004, VIC, Australia; Psychiatry, St Vincent's Hospital, Melbourne 3065, VIC, Australia
| |
Collapse
|
26
|
Wang L, Alachkar A, Sanathara N, Belluzzi JD, Wang Z, Civelli O. A Methionine-Induced Animal Model of Schizophrenia: Face and Predictive Validity. Int J Neuropsychopharmacol 2015; 18:pyv054. [PMID: 25991655 PMCID: PMC4675974 DOI: 10.1093/ijnp/pyv054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Modulating the methylation process induces broad biochemical changes, some of which may be involved in schizophrenia. Methylation is in particular central to epigenesis, which is also recognized as a factor in the etiology of schizophrenia. Because methionine administration to patients with schizophrenia has been reported to exacerbate their psychotic symptoms and because mice treated with methionine exhibited social deficits and prepulse inhibition impairment, we investigated whether methionine administration could lead to behavioral changes that reflect schizophrenic symptoms in mice. METHODS l-Methionine was administered to mice twice a day for 7 days. RESULTS We found that this treatment induces behavioral responses that reflect the 3 types of schizophrenia-like symptoms (positive, negative, or cognitive deficits) as monitored in a battery of behavioral assays (locomotion, stereotypy, social interaction, forced swimming, prepulse inhibition, novel object recognition, and inhibitory avoidance). Moreover, these responses were differentially reversed by typical haloperidol and atypical clozapine antipsychotics in ways that parallel their effects in schizophrenics. CONCLUSION We thus propose the l-methionine treatment as an animal model recapitulating several symptoms of schizophrenia. We have established the face and predictive validity for this model. Our model relies on an essential natural amino acid and on an intervention that is relatively simple and time effective and may offer an additional tool for assessing novel antipsychotics.
Collapse
Affiliation(s)
| | | | | | | | | | - Olivier Civelli
- Departments of Pharmacology (Ms L. Wang, Dr Alachkar, Ms Sanathara, Dr Belluzzi, Dr Z. Wang, and Dr Civelli), Pharmaceutical Sciences (Dr Civelli), and Developmental and Cell Biology (Dr Civelli), School of Medicine, University of California, Irvine.CA.
| |
Collapse
|
27
|
Effects of NMDA receptor antagonists and antipsychotics on high frequency oscillations recorded in the nucleus accumbens of freely moving mice. Psychopharmacology (Berl) 2015; 232:4525-35. [PMID: 26446869 PMCID: PMC4646921 DOI: 10.1007/s00213-015-4073-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022]
Abstract
RATIONALE Abnormal oscillatory activity associated with N-methyl-D-aspartate (NMDA) receptor hypofunction is widely considered to contribute to the symptoms of schizophrenia. OBJECTIVE This study aims to characterise the changes produced by NMDA receptor antagonists and antipsychotics on accumbal high-frequency oscillations (HFO; 130-180 Hz) in mice. METHODS Local field potentials were recorded from the nucleus accumbens of freely moving mice. RESULTS Systemic injection of ketamine and MK801 both dose-dependently increased the power of HFO and produced small increases in HFO frequency. The atypical antipsychotic drug, clozapine, produced a robust dose-dependent reduction in the frequency of MK801-enhanced HFO, whilst haloperidol, a typical antipsychotic drug, had little effect. Stimulation of NMDA receptors (directly or through the glycine site) as well as activation of 5-HT1A receptors, reduced the frequency of MK801-enhanced HFO, but other receptors known to be targets for clozapine, namely 5-HT2A, 5-HT7 and histamine H3 receptors had no effect. CONCLUSIONS NMDA receptor antagonists and antipsychotics produce broadly similar fundamental effects on HFO, as reported previously for rats, but we did observe several notable differences. In mice, HFO at baseline were weak or not detectable unlike rats. Post-injection of NMDA receptor antagonists HFO was also weaker but significantly faster. Additionally, we found that atypical antipsychotic drugs may reduce the frequency of HFO by interacting with NMDA and/or 5-HT1A receptors.
Collapse
|
28
|
Liu H, Ren Z, Zhong J, Cai H, Chen X, Li J. Haloperidol and Clozapine Reverse MK-801-Induced Deficits in Hypoactivity, but Not the Impairment of Spatial Memory in Sprague-Dawley Rats. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.120.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Kołaczkowski M, Mierzejewski P, Bieńkowski P, Wesołowska A, Newman-Tancredi A. ADN-1184 a monoaminergic ligand with 5-HT(6/7) receptor antagonist activity: pharmacological profile and potential therapeutic utility. Br J Pharmacol 2014; 171:973-84. [PMID: 24199650 PMCID: PMC3925036 DOI: 10.1111/bph.12509] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/17/2013] [Accepted: 10/31/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. EXPERIMENTAL APPROACH We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. KEY RESULTS ADN-1184 exhibits substantial 5-HT6 /5-HT7 /5-HT2A /D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg(-1) i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg(-1) i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg(-1) ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg(-1) i.p.). CONCLUSIONS AND IMPLICATIONS ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia.
Collapse
Affiliation(s)
- M Kołaczkowski
- Adamed LtdCzosnów, Poland
- Faculty of Pharmacy, Jagiellonian University Collegium MedicumCracow, Poland
| | | | - P Bieńkowski
- Institute of Psychiatry and NeurologyWarsaw, Poland
| | - A Wesołowska
- Faculty of Pharmacy, Jagiellonian University Collegium MedicumCracow, Poland
| | | |
Collapse
|
30
|
Abstract
One of the main obstacles faced by translational neuroscience is the development of animal models of psychiatric disorders. Behavioural pharmacology studies indicate that psychedelic drugs, such as lysergic acid diethylamide (LSD) and dissociative drugs, such as phencyclidine (PCP), induce in healthy human volunteers psychotic and cognitive symptoms that resemble some of those observed in schizophrenia patients. Serotonin 5-HT2A and metabotropic glutamate 2 receptors have been involved in the mechanism of action of psychedelic and dissociative drugs. Here we review recent advances using LSD-like and PCP-like drugs in rodent models that implicate these receptors in the neurobiology of schizophrenia and its treatment.
Collapse
|
31
|
Prenatal stress induces schizophrenia-like alterations of serotonin 2A and metabotropic glutamate 2 receptors in the adult offspring: role of maternal immune system. J Neurosci 2013; 33:1088-98. [PMID: 23325246 DOI: 10.1523/jneurosci.2331-12.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It has been suggested that severe adverse life events during pregnancy increase the risk of schizophrenia in the offspring. The serotonin 5-HT(2A) and the metabotropic glutamate 2 (mGlu2) receptors both have been the target of considerable attention regarding schizophrenia and antipsychotic drug development. We tested the effects of maternal variable stress during pregnancy on expression and behavioral function of these two receptors in mice. Prenatal stress increased 5-HT(2A) and decreased mGlu2 expression in frontal cortex, a brain region involved in perception, cognition, and mood. This pattern of expression of 5-HT(2A) and mGlu2 receptors was consistent with behavioral alterations, including increased head-twitch response to the hallucinogenic 5-HT(2A) agonist DOI [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane] and decreased mGlu2-dependent antipsychotic-like effect of the mGlu2/3 agonist LY379268 (1R,4R,5S,6R-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate) in adult, but not prepubertal, mice born to stressed mothers during pregnancy. Cross-fostering studies determined that these alterations were not attributable to effects of prenatal stress on maternal care. Additionally, a similar pattern of biochemical and behavioral changes were observed in mice born to mothers injected with polyinosinic:polycytidylic acid [poly(I:C)] during pregnancy as a model of prenatal immune activation. These data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for schizophrenia and other psychiatric disorders.
Collapse
|
32
|
Modafinil disrupts prepulse inhibition in mice: Strain differences and involvement of dopaminergic and serotonergic activation. Eur J Pharmacol 2013; 699:132-40. [DOI: 10.1016/j.ejphar.2012.11.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 11/15/2012] [Accepted: 11/23/2012] [Indexed: 11/21/2022]
|
33
|
Moreno JL, Holloway T, Umali A, Rayannavar V, Sealfon SC, González-Maeso J. Persistent effects of chronic clozapine on the cellular and behavioral responses to LSD in mice. Psychopharmacology (Berl) 2013; 225:217-26. [PMID: 22842765 PMCID: PMC3552490 DOI: 10.1007/s00213-012-2809-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/09/2012] [Indexed: 12/24/2022]
Abstract
RATIONALE In schizophrenia patients, optimal treatment with antipsychotics requires weeks to months of sustained drug therapy. However, single administration of antipsychotic drugs can reverse schizophrenia-like behavioral alterations in rodent models of psychosis. This raises questions about the physiological relevance of such antipsychotic-like activity. OBJECTIVE This study evaluates the effects of chronic treatment with clozapine on the cellular and behavioral responses induced by the hallucinogenic serotonin 5-HT(2A) receptor agonist lysergic acid diethylamide (LSD) as a mouse model of psychosis. METHOD Mice were treated chronically (21 days) with 25 mg/kg/day clozapine. Experiments were conducted 1, 7, 14, and 21 days after the last clozapine administration. [(3)H]Ketanserin binding and 5-HT ( 2A ) mRNA expression were determined in mouse somatosensory cortex. Head-twitch behavior, expression of c-fos, which is induced by all 5-HT(2A) agonists, and expression of egr-1 and egr-2, which are LSD-like specific, were assayed. RESULTS Head-twitch response was decreased and [(3)H]ketanserin binding was downregulated in 1, 7, and 14 days after chronic clozapine. 5-HT ( 2A ) mRNA was reduced 1 day after chronic clozapine. Induction of c-fos, but not egr-1 and egr-2, was rescued 7 days after chronic clozapine. These effects were not observed after short treatment (2 days) with clozapine or chronic haloperidol (1 mg/kg/day). CONCLUSION Our findings provide a murine model of chronic atypical antipsychotic drug action and suggest downregulation of the 5-HT(2A) receptor as a potential mechanism involved in these persistent therapeutic-like effects.
Collapse
Affiliation(s)
- José L. Moreno
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Terrell Holloway
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Adrienne Umali
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Vinayak Rayannavar
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Stuart C. Sealfon
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA. Center for Translational Systems Biology, Mount Sinai School of Medicine, New York, NY 10029, USA. Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Javier González-Maeso
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA. Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA. Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
34
|
Khroyan TV, Zhang J, Yang L, Zou B, Xie J, Pascual C, Malik A, Xie J, Zaveri NT, Vazquez J, Polgar W, Toll L, Fang J, Xie X. Rodent motor and neuropsychological behaviour measured in home cages using the integrated modular platform SmartCage™. Clin Exp Pharmacol Physiol 2012; 39:614-22. [PMID: 22540540 DOI: 10.1111/j.1440-1681.2012.05719.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. To facilitate investigation of diverse rodent behaviours in rodents' home cages, we have developed an integrated modular platform, the SmartCage(™) system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner. 2, The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables. 3. The SmartCage(™) detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods. 4. In conclusion, the SmartCage(™) system provides an automated and accurate tool to quantify various rodent behaviours in a 'stress-free' environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening.
Collapse
|
35
|
Can ÖD, Demir Özkay Ü, Üçel Uİ. Anti-depressant-like effect of vitexin in BALB/c mice and evidence for the involvement of monoaminergic mechanisms. Eur J Pharmacol 2012; 699:250-7. [PMID: 23099258 DOI: 10.1016/j.ejphar.2012.10.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/05/2012] [Accepted: 10/13/2012] [Indexed: 11/17/2022]
Abstract
The present study was designed to investigate the putative effect of vitexin, a flavone C-glucoside present in some drugs, medicinal plants and nutraceuticals, on the central nervous system. Vitexin (10-30 mg/kg) did not show significant alterations in the behaviour of mice tested in hole-board, plus-maze or activity cage tests. However, immobility time of the mice significantly reduced by vitexin administrations in both the tail-suspension and modified forced swimming tests. The anti-immobility effect of vitexin in the tail-suspension test was reversed with α-methyl-para-tyrosine methyl ester (AMPT, an inhibitor of catecholamine synthesis, 100mg/kg, i.p.), yohimbine (an α(2)-adrenoceptor antagonist, 1mg/kg, i.p.), NAN 190 (a 5-HT(1A) antagonist, 0.5mg/kg, i.p.), SCH 23390 (a dopamine D(1) antagonist, 0.05 mg/kg, s.c.) and sulpiride (a dopamine D(2)/D(3) antagonist, 50mg/kg, i.p.). The same effect was not reversed, however, by p-chlorophenylalanine methyl ester (PCPA; an inhibitor of serotonin synthesis 100mg/kg, i.p., administered for 4 consecutive days), ketanserin (a 5-HT(2A/2C) antagonist, 1-4 mg/kg, i.p.), ondansetron (a 5-HT(3) antagonist, 0.1-0.4 mg/kg, i.p.), prazosin (an α(1)-adrenoceptor antagonist, 1-4 mg/kg, i.p.), or propranolol (a non-selective β-adrenoceptor antagonist, 5-20mg/kg, i.p.). These results suggest that the anti-depressant-like effect of vitexin is mediated through an increase in catecholamine levels in the synaptic cleft as well as through interactions with the serotonergic 5-HT(1A), noradrenergic α(2), and dopaminergic D(1), D(2), and D(3) receptors. To our knowledge, this is the first study to show findings that indicate an anti-depressant-like effect of vitexin and its underlying mechanisms.
Collapse
Affiliation(s)
- Özgür Devrim Can
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey.
| | | | | |
Collapse
|
36
|
Direct and indirect interactions of the dopamine D₃ receptor with glutamate pathways: implications for the treatment of schizophrenia. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:107-24. [PMID: 23001156 PMCID: PMC3558669 DOI: 10.1007/s00210-012-0797-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/03/2012] [Indexed: 12/24/2022]
Abstract
This article, based on original data as well as on previously reported preclinical and clinical data that are reviewed, describes direct and indirect interactions of the D(3) receptor with N-methyl-D-aspartate receptor (NMDA) signaling and their functional consequences and therapeutic implications for schizophrenia. D(3) receptor immunoreactivity at ultrastructural level with electron microscopy was identified at presumably glutamatergic, asymmetric synapses of the medium-sized spiny neurons of the nucleus accumbens. This finding supports the existence of a direct interaction of the D(3) receptor with glutamate, in line with previously described interactions with NMDA signaling involving Ca(2+)/calmodulin-dependent protein kinase II at post-synaptic densities (Liu et al. 2009). Indirect interactions of the D(3) receptor with glutamate could involve a negative control exerted by the D(3) receptor on mesocortical dopamine neurons and the complex regulation of the glutamatergic pyramidal cells by dopamine in the prefrontal cortex. This could be exemplified here by the regulation of pyramidal cell activity in conditions of chronic NMDA receptor blockade with dizocilpine (MK-801). BP897, a D(3) receptor-selective partial agonist, reversed the dysregulation of cortical c-fos mRNA expression and pyramidal cell hyperexcitability, as measured by paired-pulse electrophysiology. At the behavioral level, blockade of the D(3) receptor, by known D(3) receptor antagonists or the novel D(3) receptor-selective antagonist F17141, produces antipsychotic-like effects in reversing hyperactivity and social interaction deficits induced by NMDA receptor blockade by MK-801 in mice. The glutamate-D(3) receptor interactions described here offer a conceptual framework for developing new D(3) receptor-selective drugs, which may appear as an original, efficacious, and safe way to potentially indirectly target glutamate in schizophrenia.
Collapse
|
37
|
López Hill X, Scorza MC. Role of the anterior thalamic nucleus in the motor hyperactivity induced by systemic MK-801 administration in rats. Neuropharmacology 2012; 62:2440-6. [PMID: 22353285 DOI: 10.1016/j.neuropharm.2012.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/04/2012] [Accepted: 01/28/2012] [Indexed: 10/28/2022]
Abstract
Non-competitive N-methyl-D-aspartate receptor (NMDA-R) antagonists have been extensively used in rodents to model psychotic symptoms of schizophrenia. Although the motor syndrome induced by acute and systemic administration of low doses of dizocilpine (MK-801) has been extensively characterized, its neurobiological basis is not fully understood. NMDA-R antagonists can disinhibit excitatory inputs in certain brain areas, but the precise circuitry is not fully known. We examined the involvement of the anterior thalamic nucleus (ATN) in hyperlocomotion and other related behaviors (stereotypies, ataxia signs) induced after acute systemic administration of MK-801. Since GABAergic neurons of the reticular thalamic nucleus (RTN) exert the main inhibitory control on thalamic projection neurons, we hypothesized that systemically injected MK-801 might block NMDA-R on RTN GABAergic neurons. This effect would subsequently result in disinhibition of GABAergic inputs onto ATN projections to cortical motor areas, thereby inducing behavioral effects. We evaluated the behavioral syndrome induced by the systemic administration MK-801 (0.2 mg/kg) in control rats and in rats subjected to a bilateral stereotaxic infusion of the GABA(A) agonist muscimol (0.2 μl of 2.5 and 5.0 mM; 0.5-1 nmol per application, respectively) into the ATN. As previously reported, MK-801-induced hyperlocomotion in parallel with disorganized movements (e.g. not guided by normal exploration) slight ataxia signs and stereotypies. All responses were antagonized by pre-infusion of muscimol but not saline into the ATN. According to our results we suggest that the ATN plays a role on hyperlocomotion evoked by MK-801 and could involve a thalamic GABAergic disinhibition mechanism.
Collapse
Affiliation(s)
- Ximena López Hill
- Laboratory of Cell Biology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay
| | | |
Collapse
|
38
|
Kargieman L, Riga MS, Artigas F, Celada P. Clozapine Reverses Phencyclidine-Induced Desynchronization of Prefrontal Cortex through a 5-HT(1A) Receptor-Dependent Mechanism. Neuropsychopharmacology 2012; 37:723-33. [PMID: 22012474 PMCID: PMC3260989 DOI: 10.1038/npp.2011.249] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The non-competitive NMDA receptor (NMDA-R) antagonist phencyclidine (PCP)-used as a pharmacological model of schizophrenia-disrupts prefrontal cortex (PFC) activity. PCP markedly increased the discharge rate of pyramidal neurons and reduced slow cortical oscillations (SCO; 0.15-4 Hz) in rat PFC. Both effects were reversed by classical (haloperidol) and atypical (clozapine) antipsychotic drugs. Here we extended these observations to mice brain and examined the potential involvement of 5-HT(2A) and 5-HT(1A) receptors (5-HT(2A)R and 5-HT(1A)R, respectively) in the reversal by clozapine of PCP actions. Clozapine shows high in vitro affinity for 5-HT(2A)R and behaves as partial agonist in vivo at 5-HT(1A)R. We used wild-type (WT) mice and 5-HT(1A)R and 5-HT(2A)R knockout mice of the same background (C57BL/6) (KO-1A and KO-2A, respectively). Local field potentials (LFPs) were recorded in the PFC of WT, KO-1A, and KO-2A mice. PCP (10 mg/kg, intraperitoneally) reduced SCO equally in WT, KO-2A, and KO-1A mice (58±4%, 42±7%, and 63±7% of pre-drug values, n=23, 13, 11, respectively; p<0.0003). Clozapine (0.5 mg/kg, intraperitoneally) significantly reversed PCP effect in WT and KO-2A mice, but not in KO-1A mice nor in WT mice pretreated with the selective 5-HT(1A)R antagonist WAY-100635.The PCP-induced disorganization of PFC activity does not appear to depend on serotonergic function. However, the lack of effect of clozapine in KO-1A mice and the prevention by WAY-100635 indicates that its therapeutic action involves 5-HT(1A)R activation without the need to block 5-HT(2A)R, as observed with clozapine-induced cortical dopamine release.
Collapse
Affiliation(s)
- Lucila Kargieman
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Maurizio S Riga
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pau Celada
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 161, 6th floor, Barcelona 08036, Spain, Tel: +349 3363 8314, Fax: +349 3363 8301, E-mail:
| |
Collapse
|
39
|
Ennaceur A, Michalikova S, van Rensburg R, Chazot PL. MK-801 increases the baseline level of anxiety in mice introduced to a spatial memory task without prior habituation. Neuropharmacology 2011; 61:981-91. [PMID: 21762710 DOI: 10.1016/j.neuropharm.2011.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/16/2011] [Accepted: 06/25/2011] [Indexed: 12/24/2022]
Abstract
C57BL/6J mice were introduced to a nine arm radial maze without prior habituation and trained in the acquisition of a working memory task in 16 sessions, one session per day. In this maze mice need to climb onto an upward inclined bridge in order to reach and cross onto an arm. They received in each session an i.p. injection of MK-801 (0.1 mg/kg) 30 min before training or immediately after training. MK-801 pre-treated mice made significantly more entries onto the bridges, fewer entries onto the arms and took significantly longer time to make a first arm visit compared to saline and MK-801 post-treated mice during the first 3 session blocks (4 sessions per block). These results indicate that MK-801 induced anxiety which was extended throughout the first 3 session blocks. MK-801 pre-treated mice made also significantly more errors and required more sessions to reach the criterion compared to saline and MK-801 post-treated mice. Administration of MK-801 after training did not affect the acquisition of the task. The present results indicate that MK-801 pre-treatment impaired the acquisition of a spatial task and this can be accounted for by its effect on the baseline level of anxiety which was elevated. The introduction of mice to the acquisition of the task without prior habituation demonstrates that a drug treatment can affect learning and memory by increasing and/or prolonging anxiety. Such effect may be confounded with learning and memory performance and not detected with pre-habituation training procedures, particularly when the number of sessions is determined a-priori.
Collapse
Affiliation(s)
- A Ennaceur
- University of Sunderland, Department of Pharmacy, Sunderland, UK.
| | | | | | | |
Collapse
|
40
|
Leppä E, Linden AM, Vekovischeva OY, Swinny JD, Rantanen V, Toppila E, Höger H, Sieghart W, Wulff P, Wisden W, Korpi ER. Removal of GABA(A) receptor γ2 subunits from parvalbumin neurons causes wide-ranging behavioral alterations. PLoS One 2011; 6:e24159. [PMID: 21912668 PMCID: PMC3166293 DOI: 10.1371/journal.pone.0024159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/01/2011] [Indexed: 11/28/2022] Open
Abstract
We investigated the behavioral significance of fast synaptic inhibition by αβγ2-type GABAA receptors on parvalbumin (Pv) cells. The GABAA receptor γ2 subunit gene was selectively inactivated in Pv-positive neurons by Cre/loxP recombination. The resulting Pv-Δγ2 mice were relatively healthy in the first postnatal weeks; but then as Cre started to be expressed, the mice progressively developed wide-ranging phenotypic alterations including low body weight, motor deficits and tremor, decreased anxiety levels, decreased pain sensitivity and deficient prepulse inhibition of the acoustic startle reflex and impaired spatial learning. Nevertheless, the deletion was not lethal, and mice did not show increased mortality even after one year. Autoradiography with t-butylbicyclophosphoro[35S]thionate suggested an increased amount of GABAA receptors with only α and β subunits in central nervous system regions that contained high levels of parvalbumin neurons. Using BAC-transgenesis, we reduced some of the Pv-Δγ2 phenotype by selectively re-expressing the wild-type γ2 subunit back into some Pv cells (reticular thalamic neurons and cerebellar Pv-positive neurons). This produced less severe impairments of motor skills and spatial learning compared with Pv-Δγ2 mice, but all other deficits remained. Our results reveal the widespread significance of fast GABAergic inhibition onto Pv-positive neurons for diverse behavioral modalities, such as motor coordination, sensorimotor integration, emotional behavior and nociception.
Collapse
Affiliation(s)
- Elli Leppä
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Evidence for antimanic efficacy of glycogen synthase kinase-3 (GSK3) inhibitors in a strain-specific model of acute mania. Int J Neuropsychopharmacol 2011; 14:1051-67. [PMID: 21208504 DOI: 10.1017/s1461145710001495] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There is a growing body of evidence suggesting that animal models can be developed to probe the specific domains of bipolar disorder (BD) using the endophenotype approach. Here we tested clinically active antimanic drugs to validate amphetamine-induced hyperactivity in Black Swiss mice as a putative model of the manic phase of BD. We also co-administered a mood stabilizer and an atypical antipsychotic drug in a manner akin to the clinical treatment regimens. Since lithium has been shown to potentially act through glycogen synthase kinase-3 (GSK3) inhibition, we evaluated the efficacy of selective GSK3 inhibitors in this model. Habituated animals were pretreated with a compound of interest before being challenged with amphetamine (2.0 mg/kg) and returned to activity cages for an additional 1.5 h. We tested lithium, sodium valproate, carbamazepine, olanzapine, ziprasidone as well as co-administered lithium and olanzapine at sub-efficacious doses. The GSK3 inhibitors tested included indirubin, alsterpaullone, TDZD-8, AR-A014418, SB-216763, and SB-627772. All mood stabilizers and antipsychotic drugs reduced hyperactivity without affecting spontaneous locomotion. While subactive doses of lithium and olanzapine were without effect, their co-administration produced robust reductions in hyperactivity. All GSK3 inhibitors were active in the model, producing selective inhibition of rearing hyperactivity. These data support the predictive validity of the model for the acute manic phase of BD and may have utility as an in-vivo model for identifying novel antimanic therapeutics.
Collapse
|
42
|
Nagai T, Kitahara Y, Ibi D, Nabeshima T, Sawa A, Yamada K. Effects of antipsychotics on the behavioral deficits in human dominant-negative DISC1 transgenic mice with neonatal polyI:C treatment. Behav Brain Res 2011; 225:305-10. [PMID: 21835207 DOI: 10.1016/j.bbr.2011.07.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 01/01/2023]
Abstract
Interactions of environmental and genetic factors may play a role in the pathoetiology of schizophrenia. We have recently developed a novel animal model of mental disorders such as schizophrenia by inducing abnormal immune response during the perinatal period in mice with overexpression of the human dominant-negative form of disrupted-in-schizophrenia 1 (DN-DISC1). In the present study, we investigated the effects of antipsychotics on the behavioral deficits in this animal model for mental disorders with gene-environment interaction. Neonatal DN-DISC1 transgenic (DN-DISC1 tg) mice were repeatedly injected with polyriboinosinic-polyribocytidylic acid (polyI:C) for 5 days from postnatal days 2 to 6. The behavioral analyses were performed in adulthood. Clozapine (3mg/kg) or haloperidol (1mg/kg) was administered orally once a day from 1 week before starting a series of behavioral experiments and continued until the end of the study. Cognitive impairment in polyI:C-treated DN-DISC1 tg mice was improved by repeated administration of clozapine while haloperidol had no effect. Both antipsychotics suppressed the augmentation of MK-801-induced hyperactivity in the model mice. Neither clozapine nor haloperidol ameliorated the impairments of social behaviors in polyI:C-treated DN-DISC1 tg mice. These results suggest that the polyI:C-treated DN-DISC tg mice are quite unique as an animal model for mental disorders. Furthermore, this mouse model may be useful for the screening of potential antipsychotic compounds that could be more effective than clozapine in ameliorating negative symptoms and cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1A receptor properties. Psychopharmacology (Berl) 2011; 216:451-73. [PMID: 21394633 DOI: 10.1007/s00213-011-2247-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/22/2011] [Indexed: 02/07/2023]
Abstract
RATIONALE There is increasing interest in antipsychotics intended to manage positive symptoms via D(2) receptor blockade and improve negative symptoms and cognitive deficits via 5-HT(1A) activation. Such a strategy reduces side-effects such as the extrapyramidal syndrome (EPS), weight gain, and autonomic disturbance liability. OBJECTIVE This study aims to review pharmacological literature on compounds interacting at both 5-HT(1A) and D(2) receptors (as well as at other receptors), including aripiprazole, perospirone, ziprasidone, bifeprunox, lurasidone and cariprazine, PF-217830, adoprazine, SSR181507, and F15063. METHODS We examine data on in vitro binding and agonism and in vivo tests related to (1) positive symptoms (e.g., psychostimulant-induced hyperactivity or prepulse inhibition deficit), (2) negative symptoms (e.g., phencyclidine-induced social interaction deficits and cortical dopamine release), and (3) cognitive deficits (e.g., phencyclidine or scopolamine-induced memory deficits). EPS liability is assessed by measuring catalepsy and neuroendocrine impact by determining plasma prolactin, glucose, and corticosterone levels. RESULTS Compounds possessing "balanced" 5-HT(1A) receptor agonism and D(2) antagonism (or weak partial agonism) and, in some cases, combined with other beneficial properties, such as 5-HT(2A) receptor antagonism, are efficacious in a broad range of rodent pharmacological models yet have a lower propensity to elicit EPS or metabolic dysfunction. CONCLUSIONS Recent compounds exhibiting combined 5-HT(1A)/D(2) properties may be effective in treating a broader range of symptoms of schizophrenia and be better tolerated than existing antipsychotics. Nevertheless, further investigations are necessary to evaluate recent compounds, notably in view of their differing levels of 5-HT(1A) affinity and efficacy, which can markedly influence activity and side-effect profiles.
Collapse
|
44
|
Marona-Lewicka D, Nichols CD, Nichols DE. An animal model of schizophrenia based on chronic LSD administration: old idea, new results. Neuropharmacology 2011; 61:503-12. [PMID: 21352832 DOI: 10.1016/j.neuropharm.2011.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/12/2011] [Accepted: 02/02/2011] [Indexed: 11/18/2022]
Abstract
Many people who take LSD experience a second temporal phase of LSD intoxication that is qualitatively different, and was described by Daniel Freedman as "clearly a paranoid state." We have previously shown that the discriminative stimulus effects of LSD in rats also occur in two temporal phases, with initial effects mediated by activation of 5-HT(2A) receptors (LSD30), and the later temporal phase mediated by dopamine D2-like receptors (LSD90). Surprisingly, we have now found that non-competitive NMDA antagonists produced full substitution in LSD90 rats, but only in older animals, whereas in LSD30, or in younger animals, these drugs did not mimic LSD. Chronic administration of low doses of LSD (>3 months, 0.16 mg/kg every other day) induces a behavioral state characterized by hyperactivity and hyperirritability, increased locomotor activity, anhedonia, and impairment in social interaction that persists at the same magnitude for at least three months after cessation of LSD treatment. These behaviors, which closely resemble those associated with psychosis in humans, are not induced by withdrawal from LSD; rather, they are the result of neuroadaptive changes occurring in the brain during the chronic administration of LSD. These persistent behaviors are transiently reversed by haloperidol and olanzapine, but are insensitive to MDL-100907. Gene expression analysis data show that chronic LSD treatment produced significant changes in multiple neurotransmitter system-related genes, including those for serotonin and dopamine. Thus, we propose that chronic treatment of rats with low doses of LSD can serve as a new animal model of psychosis that may mimic the development and progression of schizophrenia, as well as model the established disease better than current acute drug administration models utilizing amphetamine or NMDA antagonists such as PCP.
Collapse
MESH Headings
- Akathisia, Drug-Induced/etiology
- Animals
- Antipsychotic Agents/therapeutic use
- Behavior, Animal/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Dopamine Agonists/administration & dosage
- Dopamine Agonists/toxicity
- Gene Expression Regulation/drug effects
- Lysergic Acid Diethylamide/administration & dosage
- Lysergic Acid Diethylamide/toxicity
- Male
- Motor Activity/drug effects
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Psychotic Disorders/drug therapy
- Psychotic Disorders/metabolism
- Psychotic Disorders/physiopathology
- RNA, Messenger/metabolism
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A/chemistry
- Receptor, Serotonin, 5-HT2C/genetics
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Schizophrenia/drug therapy
- Schizophrenia/metabolism
- Schizophrenia/physiopathology
- Serotonin 5-HT2 Receptor Agonists/administration & dosage
- Serotonin 5-HT2 Receptor Agonists/toxicity
Collapse
Affiliation(s)
- Danuta Marona-Lewicka
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., Purdue University, West Lafayette, IN 47906-2091, USA
| | | | | |
Collapse
|
45
|
The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology (Berl) 2011; 213:289-305. [PMID: 21212939 DOI: 10.1007/s00213-010-2137-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/02/2010] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To review the evidence that agents which preferentially affect serotonin (5-HT) attenuate the ability of N-methyl-D-aspartate (NMDA) receptor non-competitive antagonists (NMDA-RA), e.g., phencyclidine (PCP), dizocilpine (MK-801), and ketamine, to stimulate locomotor activity (LA), and to impair novel object recognition (NOR). RATIONALE NMDA-RA-induced increased LA and impairment of NOR are widely used models of the pathophysiology of schizophrenia, the mechanism of action of antipsychotic drugs (APDs), and the identification of novel treatments. Serotonin (5-HT) plays an important role in attenuating these effects of NMDA-RA. RESULTS Selective 5-HT(2A) inverse agonists, e.g., M100907 and ACP-103, and atypical APDs, which are more potent 5-HT(2A) than D(2) antagonists, e.g., clozapine and lurasidone, are more effective than selective D(2) receptor antagonists to attenuate NMDA-RA-induced increased LA. 5-HT(2A) inverse agonists alone are not effective to improve NMDA-RA-impaired NOR, but augment the effects of atypical, but not typical APDs, to improve NOR. The 5-HT(1A) receptor partial agonist tandospirone alone and the 5-HT(1A) agonist effects of atypical APDs may substitute for, or contribute to, the effects of D(2) and 5-HT(2A) receptor antagonism to reverse the NMDA-RA impairment in NOR. 5-HT(6) and 5-HT(7) receptor antagonists may also attenuate these NMDA-RA-induced behaviors. 5-HT(2C) receptor inverse agonist, but not neutral antagonists, block NOR in naïve rats and the effects of atypical APDs to restore NOR in PCP-treated rats, suggesting the importance of the constitutive activity of 5-HT(2C) receptors in NOR. CONCLUSIONS Multiple 5-HT receptors contribute to effective treatments to reverse adverse effects of NMDA-RA which model psychosis and cognitive impairment.
Collapse
|