1
|
Lloret-Torres ME, Barreto-Estrada JL. LF-DBS of the ventral striatum shortens persistence for morphine place preference and modulates BDNF expression in the hippocampus. Behav Brain Res 2025; 477:115300. [PMID: 39490421 PMCID: PMC11574767 DOI: 10.1016/j.bbr.2024.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) represents a promising therapy for treatment-refractory patients with substance-use disorders. We previously found that low-frequency (LF) DBS aimed to the VC/VS during extinction training strengthens the extinction memory for morphine seeking under a partial extinction protocol. OBJECTIVES/HYPOTHESIS In this study, animals were tested in a full extinction protocol to determine whether LF-DBS applied during extinction facilitates extinction while preventing drug reinstatement, and study the molecular mechanisms underlying the effects of LF-DBS, METHODS/RESULTS: We used a full extinction CPP paradigm combined with LF-DBS to assess behavior. Western blots for the pro-extinction molecule, brain-derived neurotrophic factor (BDNF) were then performed in corticomesolimbic regions of the brain. Lastly, to determine whether changes in BDNF expression elicited by LF-DBS were specific to the VS/NAc afferents from the hippocampus, amygdala, and medial prefrontal cortex, we performed BDNF-like immunohistochemistry, combined with the retrograde tracer cholera toxin B (CtB). RESULTS We showed a significant reduction in the number of days required to fully extinguish morphine CPP in animals exposed to LF-DBS during extinction training accompanied by a significant increase in BDNF expression in the hippocampus. However, LF-DBS applied during extinction did not prevent drug reinstatement. Lastly, no changes in BDNF/CtB double-labeled cells were found in VS/NAc projecting cells after one-day exposure to LF-DBS. CONCLUSION(S) These data suggest that LF-DBS can facilitate extinction of morphine CPP by decreasing drug seeking through potential synaptic plasticity changes in the hippocampus to strengthen extinction memories.
Collapse
Affiliation(s)
- Mario E Lloret-Torres
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Jennifer L Barreto-Estrada
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico.
| |
Collapse
|
2
|
Smith DM, Torregrossa MM. The ventral tegmental area dopamine to basolateral amygdala projection supports acquisition of cocaine self-administration. Neuropharmacology 2024; 261:110160. [PMID: 39293506 PMCID: PMC11585075 DOI: 10.1016/j.neuropharm.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Dopamine signaling in the amygdala is known to play a role in associative learning and memory, including the process of learning to associate environmental cues with the reinforcing properties of drugs like cocaine. Evidence suggests that the ventral tegmental area (VTA) dopamine (DA) projection specifically to the basolateral amygdala (BLA) participates in establishing cocaine-cue associations that can promote later craving- and relapse-like responses to the cue alone. In order to further investigate the specific role of VTA-BLA projections in cocaine-reinforced learning, we used chemogenetics to manipulate VTA DA inputs to the BLA during cocaine self-administration, cue- and cocaine-primed reinstatement, and conditioned place preference. We found inhibiting DA input to the BLA during cocaine self-administration inhibited acquisition and weakened the ability of the previously cocaine-paired cue to elicit cocaine-seeking, while acutely inhibiting the pathway on the day of cue-induced reinstatement testing had no effect. Conversely, exciting the projection during self-administration boosted the salience of the cocaine-paired cue as indicated by enhanced responding during cue-induced reinstatement. Importantly, interfering with DA input to the BLA had no impact on the ability of cocaine to elicit a place preference or induce reinstatement in response to a priming cocaine injection. Overall, we show that manipulation of projections underlying DA signaling in the BLA may be useful for developing therapeutic interventions for substance use disorders.
Collapse
Affiliation(s)
- Dana M Smith
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
Bakhtazad A, Kabbaj M, Garmabi B, Joghataei MT. The role of CART peptide in learning and memory: A potential therapeutic target in memory-related disorders. Peptides 2024; 181:171298. [PMID: 39317295 DOI: 10.1016/j.peptides.2024.171298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Cocaine and amphetamine-regulated transcript (CART) mRNA and peptide are vastly expressed in both cortical and subcortical brain areas and are involved in critical cognitive functions. CART peptide (CARTp), described in reward-related brain structures, regulates drug-induced learning and memory, and its role appears specific to psychostimulants. However, many other drugs of abuse, such as alcohol, opiates, nicotine, and caffeine, have been shown to alter the expression levels of CART mRNA and peptides in brain structures directly or indirectly associated with learning and memory processes. However, the number of studies demonstrating the contribution of CARTp in learning and memory is still minimal. Notably, the exact cellular and molecular mechanisms underlying CARTp effects are still unknown. The discoveries that CARTp effects are mediated through a putative G-protein coupled receptor and activation of cellular signaling cascades via NMDA receptor-coupled ERK have enhanced our knowledge about the action of this neuropeptide and allowed us to comprehend better CARTp exact cellular/molecular mechanisms that could mediate drug-induced changes in learning and memory functions. Unfortunately, these efforts have been impeded by the lack of suitable and specific CARTp receptor antagonists. In this review, following a short introduction about CARTp, we report on current knowledge about CART's roles in learning and memory processes and its recently described role in memory-related neurological disorders. We will also discuss the importance of further investigating how CARTp interacts with its receptor(s) and other neurotransmitter systems to influence learning and memory functions. This topic is sure to intrigue and motivate further exploration in the field of neuroscience.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Young CC, Papini S, Minami H, Morikawa H, Otto MW, Roache JD, Smits JAJ. Isradipine augmentation of virtual reality cue exposure therapy for tobacco craving: a triple-blind randomized controlled trial. Neuropsychopharmacology 2024; 49:1711-1718. [PMID: 38789642 PMCID: PMC11399233 DOI: 10.1038/s41386-024-01872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Preclinical research with rodents suggests that the L-type calcium channel blocker isradipine can enhance long-term extinction of conditioned place preference for addictive substances when it is administered in conjunction with extinction training. Although isradipine alone, which is FDA-approved for hypertension, has not shown a direct effect on craving in human drug users, its potential to augment behavioral treatments designed to reduce craving remains unknown. We conducted a triple-blind, randomized placebo-controlled pilot clinical trial of isradipine combined with a novel virtual reality cue exposure therapy (VR-CET) approach with multimodal cues that targeted craving. After 24 hours of abstinence, 78 adults with an ongoing history of daily cigarette use received isradipine (n = 40) or placebo (n = 38) and reported craving levels after each of 10 trials of VR-CET. Consistent with pre-registered hypotheses, the isradipine group had significantly lower mean craving across cue exposure trials at the medication-free 24-hour follow-up (d = -0.42, p = 0.046). There were no serious adverse events; however, side effects such as headache and dizziness occurred more frequently in the isradipine group. The findings of the current study support follow-up clinical trials that specifically test the efficacy of isradipine-augmented VR-CET for reducing smoking relapse rates after an initial quit attempt. clinicaltrials.gov: NCT03083353.
Collapse
Affiliation(s)
- Cara C Young
- School of Nursing, The University of Texas at Austin, Austin, TX, USA.
| | - Santiago Papini
- Department of Psychology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Haruka Minami
- Department of Psychology, Fordham University, New York, NY, USA
| | - Hitoshi Morikawa
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - Michael W Otto
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - John D Roache
- Division of Alcohol & Drug Addiction, Department of Psychiatry & Behavioral Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jasper A J Smits
- Department of Psychology and Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Huang S, Liu X, Li Z, Si Y, Yang L, Deng J, Luo Y, Xue YX, Lu L. Memory Reconsolidation Updating in Substance Addiction: Applications, Mechanisms, and Future Prospects for Clinical Therapeutics. Neurosci Bull 2024:10.1007/s12264-024-01294-z. [PMID: 39264570 DOI: 10.1007/s12264-024-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/09/2024] [Indexed: 09/13/2024] Open
Abstract
Persistent and maladaptive drug-related memories represent a key component in drug addiction. Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure (MRUP), a non-pharmacological strategy intertwining two distinct memory processes: reconsolidation and extinction-alternatively termed "the memory retrieval-extinction procedure". This procedure presents a promising approach to attenuate, if not erase, entrenched drug memories and prevent relapse. The present review delineates the applications, molecular underpinnings, and operational boundaries of MRUP in the context of various forms of substance dependence. Furthermore, we critically examine the methodological limitations of MRUP, postulating potential refinement to optimize its therapeutic efficacy. In addition, we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction. Overall, existing studies underscore the significant potential of MRUP, suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.
Collapse
Affiliation(s)
- Shihao Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Zhonghao Li
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Yue Si
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Liping Yang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Yixiao Luo
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yan-Xue Xue
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Lin Lu
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Guida CR, Maia JM, Ferreira LFR, Rahdar A, Branco LGS, Soriano RN. Advancements in addressing drug dependence: A review of promising therapeutic strategies and interventions. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111070. [PMID: 38908501 DOI: 10.1016/j.pnpbp.2024.111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Substance dependence represents a pervasive global concern within the realm of public health. Presently, it is delineated as a persistent and recurrent neurological disorder stemming from drug-triggered neuroadaptations in the brain's reward circuitry. Despite the availability of various therapeutic modalities, there has been a steady escalation in the mortality rate attributed to drug overdoses. Substantial endeavors have been directed towards the exploration of innovative interventions aimed at mitigating cravings and drug-induced repetitive behaviors. Within this review, we encapsulate the most auspicious contemporary treatment methodologies, accentuating meta-analyses of efficacious pharmacological and non-pharmacological approaches: including gabapentin, topiramate, prazosin, physical exercise regimens, and cerebral stimulation techniques.
Collapse
Affiliation(s)
- Clara Rodrigues Guida
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Juliana Marino Maia
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | | | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Luiz G S Branco
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-904, Brazil; Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG 35020-360, Brazil.
| |
Collapse
|
7
|
Burwell SC, Yan H, Lim SS, Shields BC, Tadross MR. Natural phasic inhibition of dopamine neurons signals cognitive rigidity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593320. [PMID: 38766037 PMCID: PMC11100816 DOI: 10.1101/2024.05.09.593320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
When animals unexpectedly fail, their dopamine neurons undergo phasic inhibition that canonically drives extinction learning-a cognitive-flexibility mechanism for discarding outdated strategies. However, the existing evidence equates natural and artificial phasic inhibition, despite their spatiotemporal differences. Addressing this gap, we targeted a GABAA-receptor antagonist precisely to dopamine neurons, yielding three unexpected findings. First, this intervention blocked natural phasic inhibition selectively, leaving tonic activity unaffected. Second, blocking natural phasic inhibition accelerated extinction learning-opposite to canonical mechanisms. Third, our approach selectively benefitted perseverative mice, restoring rapid extinction without affecting new reward learning. Our findings reveal that extinction learning is rapid by default and slowed by natural phasic inhibition-challenging foundational learning theories, while delineating a synaptic mechanism and therapeutic target for cognitive rigidity.
Collapse
Affiliation(s)
- Sasha C.V. Burwell
- Department of Neurobiology, Duke University, Durham, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Haidun Yan
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Shaun S.X. Lim
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Brenda C. Shields
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Michael R. Tadross
- Department of Neurobiology, Duke University, Durham, NC
- Department of Biomedical Engineering, Duke University, NC
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
8
|
Bender BN, Stringfield SJ, Torregrossa MM. Changes in dorsomedial striatum activity during expression of goal-directed vs. habit-like cue-induced cocaine seeking. ADDICTION NEUROSCIENCE 2024; 11:100149. [PMID: 38957402 PMCID: PMC11218864 DOI: 10.1016/j.addicn.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking that is goal-directed but not habit-like. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry in rats trained to self-administer cocaine paired with an audiovisual cue to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habit-like cue-induced cocaine seeking and how it is impacted by cue extinction. After minimal fixed-ratio training, rats showed enhanced DMS and DLS calcium responses to cue-reinforced compared to unreinforced lever presses. After rats were trained on goal-promoting fixed ratio schedules or habit-promoting second-order schedules of reinforcement, different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses emerged. Rats trained on habit-promoting second-order schedules showed reduced DMS calcium responses and enhanced DLS dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habit-like behavior and the DLS are unaffected.
Collapse
Affiliation(s)
- Brooke N. Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, United States
| | - Sierra J. Stringfield
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Mary M. Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, United States
| |
Collapse
|
9
|
Martínez-Rivera FJ, Holt LM, Minier-Toribio A, Estill M, Yeh SY, Tofani S, Futamura R, Browne CJ, Mews P, Shen L, Nestler EJ. Transcriptional characterization of cocaine withdrawal versus extinction within nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584637. [PMID: 38559084 PMCID: PMC10980003 DOI: 10.1101/2024.03.12.584637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Substance use disorder is characterized by a maladaptive imbalance wherein drug seeking persists despite negative consequences or drug unavailability. This imbalance correlates with neurobiological alterations some of which are amplified during forced abstinence, thereby compromising the capacity of extinction-based approaches to prevent relapse. Cocaine use disorder (CUD) exemplifies this phenomenon in which neurobiological modifications hijack brain reward regions such as the nucleus accumbens (NAc) to manifest craving and withdrawal-like symptoms. While increasing evidence links transcriptional changes in the NAc to specific phases of addiction, genome-wide changes in gene expression during withdrawal vs. extinction (WD/Ext) have not been examined in a context- and NAc-subregion-specific manner. Here, we used cocaine self-administration (SA) in rats combined with RNA-sequencing (RNA-seq) of NAc subregions (core and shell) to transcriptionally profile the impact of experiencing withdrawal in the home cage or in the previous drug context or experiencing extinction training. As expected, home-cage withdrawal maintained drug seeking in the previous drug context, whereas extinction training reduced it. By contrast, withdrawal involving repetitive exposure to the previous drug context increased drug-seeking behavior. Bioinformatic analyses of RNA-seq data revealed gene expression patterns, networks, motifs, and biological functions specific to these behavioral conditions and NAc subregions. Comparing transcriptomic analysis of the NAc of patients with CUD highlighted conserved gene signatures, especially with rats that were repetitively exposed to the previous drug context. Collectively, these behavioral and transcriptional correlates of several withdrawal-extinction settings reveal fundamental and translational information about potential molecular mechanisms to attenuate drug-associated memories.
Collapse
|
10
|
Radiske A, Cahill EN, Milton AL, Cammarota M. Editorial: On the destabilization of maladaptive memory: updates and future perspectives. Front Behav Neurosci 2024; 17:1351704. [PMID: 38249126 PMCID: PMC10797033 DOI: 10.3389/fnbeh.2023.1351704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Affiliation(s)
- Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Edmond and Lily Safra International Institute of Neuroscience, Macaiba, Brazil
| | - Emma N. Cahill
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Amy L. Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
11
|
Milton AL. Drug memory reconsolidation: from molecular mechanisms to the clinical context. Transl Psychiatry 2023; 13:370. [PMID: 38040677 PMCID: PMC10692359 DOI: 10.1038/s41398-023-02666-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Since its rediscovery at the beginning of the 21st Century, memory reconsolidation has been proposed to be a therapeutic target for reducing the impact of emotional memories that can go awry in mental health disorders such as drug addiction (substance use disorder, SUD). Addiction can be conceptualised as a disorder of learning and memory, in which both pavlovian and instrumental learning systems become hijacked into supporting drug-seeking and drug-taking behaviours. The past two decades of research have characterised the details of the molecular pathways supporting the reconsolidation of pavlovian cue-drug memories, with more recent work indicating that the reconsolidation of instrumental drug-seeking memories also relies upon similar mechanisms. This narrative review considers what is known about the mechanisms underlying the reconsolidation of pavlovian and instrumental memories associated with drug use, how these approaches have translated to experimental medicine studies, and the challenges and opportunities for the clinical use of reconsolidation-based therapies.
Collapse
Affiliation(s)
- Amy L Milton
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Smith DM, Torregrossa MM. The ventral tegmental area dopamine to lateral amygdala projection supports cocaine cue associative learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554187. [PMID: 37662292 PMCID: PMC10473658 DOI: 10.1101/2023.08.22.554187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Learning and memory mechanisms are critically involved in drug craving and relapse. Environmental cues paired with repeated drug use acquire incentive value such that exposure to the cues alone can trigger craving and relapse. The amygdala, particularly the lateral amygdala (LA), underlies cue-related learning processes that assign valence to environmental stimuli including drug-paired cues. Evidence suggests that the ventral tegmental area (VTA) dopamine (DA) projection to the LA participates in encoding reinforcing effects that act as a US in conditioned cue reward-seeking as DA released in the amygdala is important for emotional and behavioral functions. Here we used chemogenetics to manipulate these VTA DA inputs to the LA to determine the role of this projection for acquisition of drug-cue associations and reinstatement of drug-seeking. We found inhibiting DA input to the LA during cocaine self-administration slowed acquisition and weakened the ability of the previously cocaine-paired cue to elicit cocaine-seeking. Conversely, exciting the projection during self-administration boosted the salience of the cocaine-paired cue as indicated by enhanced responding during cue-induced reinstatement. Importantly, interfering with DA input to the LA had no impact on the ability of cocaine to elicit a place preference or induce reinstatement in response to a priming cocaine injection. Overall, we show that manipulation of projections underlying DA signaling in the LA may be useful for developing therapeutic interventions for substance use disorders.
Collapse
|
13
|
Bender BN, Stringfield SJ, Torregrossa MM. Changes in dorsomedial striatum activity mediate expression of goal-directed vs. habit-like cue-induced cocaine seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550364. [PMID: 37546826 PMCID: PMC10402009 DOI: 10.1101/2023.07.24.550364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking when drug seeking is goal-directed but not habitual. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habitual cue-induced cocaine seeking and how it is impacted by cue extinction. Rats trained to self-administer cocaine paired with an audiovisual cue on schedules of reinforcement that promote goal-directed or habitual cocaine seeking had different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium and dopamine responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habitual behavior and the DLS are unaffected.
Collapse
|
14
|
Peeters LD, Wills LJ, Cuozzo AM, Ivanich KL, Brown RW. Reinstatement of nicotine conditioned place preference in a transgenerational model of drug abuse vulnerability in psychosis: Impact of BDNF on the saliency of drug associations. Psychopharmacology (Berl) 2023; 240:1453-1464. [PMID: 37160431 PMCID: PMC10330905 DOI: 10.1007/s00213-023-06379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
RATIONALE Psychotic disorders such as schizophrenia are often accompanied by high rates of cigarette smoking, reduced quit success, and high relapse rates, negatively affecting patient outcomes. However, the mechanisms underlying altered relapse-like behaviors in psychosis are poorly understood. OBJECTIVES The present study analyzed changes in extinction and reinstatement of nicotine conditioned place preference (CPP) and resulting changes in brain-derived neurotrophic factor (BDNF) in a novel heritable rodent model of psychosis, demonstrating increased dopamine D2 receptor sensitivity, to explore mechanisms contributing to changes in relapse-like behaviors. METHODS Male and female offspring of two neonatal quinpirole-treated (1 mg/kg quinpirole from postnatal day (P)1-21; QQ) and two neonatal saline-treated (SS) Sprague-Dawley rats (F1 generation) were tested on an extended CPP paradigm to analyze extinction and nicotine-primed reinstatement. Brain tissue was analyzed 60 min after the last nicotine injection for BDNF response in the ventral tegmental area (VTA), the infralimbic (IfL) and prelimbic (PrL) cortices. RESULTS F1 generation QQ offspring demonstrated delayed extinction and more robust reinstatement compared to SS control animals. In addition, QQ animals demonstrated an enhanced BDNF response to nicotine in the VTA, IfL and Prl cortices compared to SS offspring. CONCLUSIONS This study is the first to demonstrate altered relapse-like behavior in a heritable rodent model with relevance to comorbid drug abuse and psychosis. This altered pattern of behavior is hypothesized to be related to elevated activity-dependent BDNF in brain areas associated with drug reinforcement during conditioning that persists through the extinction phase, rendering aberrantly salient drug associations resistant to extinction and enhancing relapse vulnerability.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Liza J Wills
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Kira L Ivanich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
15
|
Mattioni L, Ferri F, Nikčević AV, Spada MM, Sestieri C. Twisted memories: Addiction-related engrams are strengthened by desire thinking. Addict Behav 2023; 145:107782. [PMID: 37348176 DOI: 10.1016/j.addbeh.2023.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Associative learning plays a central role in addiction by reinforcing associations between environmental cues and addiction-related information. Unsupervised learning models posit that memories are adjusted based on how strongly these representations are coactivated during the retrieval process. From a different perspective, clinical models of addiction posit that the escalation and persistence of craving may depend on desire thinking, a thinking style orienting to prefigure information about positive addiction-related experiences. In the present work, we tested the main hypothesis that desire thinking is a key factor in the strengthening of addiction-related associations. A group of adult smoking volunteers (N = 26) engaged in a period of desire thinking before performing an associative learning task in which neutral words (cues) were shown along with images (smoking-related vs. neutral context) at different frequencies. Two retrieval tests were administered, one immediately after encoding and the other after 24 h, to test how the recall of associations changed as a function of retention interval. Two control groups, smokers (N = 21) and non-smokers (N = 22), performed a similar procedure, with a neutral imagination task replacing desire thinking. Participants who engaged in desire thinking increased their performance from the first to the second retrieval test only for the most frequent smoking-related associations. Crucially, this selective effect was not observed in the two control groups. These results provide behavioral evidence in support of the idea that desire thinking plays a role in strengthening addiction-related associations. Thus, this thinking process may be considered a target for reconsolidation-based conceptualizations of, and treatments for, addiction.
Collapse
Affiliation(s)
- Lorenzo Mattioni
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University, Chieti, Italy.
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University, Chieti, Italy
| | - Ana V Nikčević
- Department of Psychology, Kingston University, Kingston upon Thames, UK
| | | | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
16
|
Malik JA, Agrewala JN. Future perspectives of emerging novel drug targets and immunotherapies to control drug addiction. Int Immunopharmacol 2023; 119:110210. [PMID: 37099943 DOI: 10.1016/j.intimp.2023.110210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Substance Use Disorder (SUD) is one of the major mental illnesses that is terrifically intensifying worldwide. It is becoming overwhelming due to limited options for treatment. The complexity of addiction disorders is the main impediment to understanding the pathophysiology of the illness. Hence, unveiling the complexity of the brain through basic research, identification of novel signaling pathways, the discovery of new drug targets, and advancement in cutting-edge technologies will help control this disorder. Additionally, there is a great hope of controlling the SUDs through immunotherapeutic measures like therapeutic antibodies and vaccines. Vaccines have played a cardinal role in eliminating many diseases like polio, measles, and smallpox. Further, vaccines have controlled many diseases like cholera, dengue, diphtheria, Haemophilus influenza type b (Hib), human papillomavirus, influenza, Japanese encephalitis, etc. Recently, COVID-19 was controlled in many countries by vaccination. Currently, continuous effort is done to develop vaccines against nicotine, cocaine, morphine, methamphetamine, and heroin. Antibody therapy against SUDs is another important area where serious attention is required. Antibodies have contributed substantially against many serious diseases like diphtheria, rabies, Crohn's disease, asthma, rheumatoid arthritis, and bladder cancer. Antibody therapy is gaining immense momentum due to its success rate in cancer treatment. Furthermore, enormous advancement has been made in antibody therapy due to the generation of high-efficiency humanized antibodies with a long half-life. The advantage of antibody therapy is its instant outcome. This article's main highlight is discussing the drug targets of SUDs and their associated mechanisms. Importantly, we have also discussed the scope of prophylactic measures to eliminate drug dependence.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Javed N Agrewala
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
17
|
Eskandari K, Fattahi M, Riahi E, Khosrowabadi R, Haghparast A. A wide range of Deep Brain Stimulation of the nucleus accumbens shell time independently reduces the extinction period and prevents the reinstatement of methamphetamine-seeking behavior in rats. Life Sci 2023; 319:121503. [PMID: 36804308 DOI: 10.1016/j.lfs.2023.121503] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Methamphetamine (METH) addiction is a significant public health issue, and standard medical therapies are often not curative. Deep Brain Stimulation (DBS) has recently shown the potential to cure addiction by modulating neural activity in specific brain circuits. Recent studies have revealed that the nucleus accumbens shell (NAcSh) could serve as a promising target in treating addiction. Therefore, the present study aimed to investigate the therapeutic effects of NAcSh high- or low-frequency stimulation (HFS or LFS) in the different time points of application on the extinction and reinstatement of the METH-conditioned place preference (CPP). LFS or HFS (10 or 130 Hz, 150-200 μA, 100 μs) was delivered to the NAcSh for 30 min non-simultaneous (in a distinct non-drug environment) or simultaneous (in a drug-paired context) of the drug-free extinction sessions. The obtained results showed that both non-simultaneous and simultaneous treatments by HFS and LFS notably reduced the extinction period of METH-induced CPP. Furthermore, the data indicated that both non-synchronous and synchronous HFS prevented METH-primed reinstatement, while only the LFS synchronized group could block the reinstatement of METH-seeking behavior. The results also demonstrated that HFS was more effective than LFS in attenuating METH-primed reinstatement, and applying HFS synchronous was significantly more effective than HFS non-synchronous in reducing the relapse of drug-seeking. In conclusion, the current study's results suggest that DBS of the NAcSh in a wide range of frequencies (LFS and HFS) could affect addiction-related behaviors. However, it should be considered that the frequency and timing of DBS administration are among the critical determining factors.
Collapse
Affiliation(s)
- Kiarash Eskandari
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Fattahi
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Abbas Haghparast
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Bui UTD, Milton AL. Making Leaps and Hitting Boundaries in Reconsolidation: Overcoming Boundary Conditions to Increase Clinical Translatability of Reconsolidation-based Therapies. Neuroscience 2023; 519:198-206. [PMID: 36933761 DOI: 10.1016/j.neuroscience.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Reconsolidation results in the restabilisation, and thus persistence, of a memory made labile by retrieval, and interfering with this process is thought to enable modification or weakening of the original trace. As such, reconsolidation-blockade has been a focus of research aiming to target the maladaptive memories underlying mental health disorders, including post-traumatic stress disorder and drug addiction. Current first-line therapies are not effective for all patients, and a substantial proportion of those for whom therapies are effective later relapse. A reconsolidation-based intervention would be invaluable as an alternative treatment for these conditions. However, the translation of reconsolidation-based therapies to the clinic presents a number of challenges, with arguably the greatest being the overcoming of the boundary conditions governing the opening of the reconsolidation window. These include factors such as the age and strength of memory, and can broadly be divided into two categories: intrinsic features of the targeted memory itself, and parameters of the reactivation procedure used. With maladaptive memory characteristics inevitably varying amongst individuals, manipulation of the other limitations imposed by procedural variables have been explored to circumvent the boundary conditions on reconsolidation. Although several apparently discrepant results remain to be reconciled and these limitations yet to be truly defined, many studies have produced successful results which encouragingly demonstrate that boundary conditions may be overcome using various proposed strategies to enable translation of a reconsolidation-based intervention to clinical use.
Collapse
Affiliation(s)
- Uyen T D Bui
- Department of Psychology, University of Cambridge, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, UK.
| |
Collapse
|
19
|
Yang Q, Zhou J, Wang L, Hu W, Zhong Y, Li Q. Spontaneous recovery of reward memory through active forgetting of extinction memory. Curr Biol 2023; 33:838-848.e3. [PMID: 36731465 DOI: 10.1016/j.cub.2023.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Learned behavior can be suppressed by the extinction procedure. Such extinguished memory often returns spontaneously over time, making it difficult to treat diseases such as addiction. However, the biological mechanisms underlying such spontaneous recovery remain unclear. Here, we report that the extinguished reward memory in Drosophila recovers spontaneously because extinction training forms an aversive memory that can be actively forgotten via the Rac1/Dia pathway. Manipulating Rac1 activity does not affect sugar-reward memory and its immediate extinction effect but bidirectionally regulates spontaneous recovery-the decay process of extinction. Experiments using thermogenetic inhibition and functional imaging support that such extinction appears to be coded as an aversive experience. Genetic and pharmacological inhibition of formin Dia, a downstream effector of Rac1, specifically prevents spontaneous recovery after extinction in both behavioral performance and corresponding physiological traces. Together, our data suggest that spontaneous recovery is caused by active forgetting of the opposing extinction memory.
Collapse
Affiliation(s)
- Qi Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jun Zhou
- School of Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Lingling Wang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wantong Hu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yi Zhong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| | - Qian Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
20
|
Conditioned place preferences for virtual alcohol cues. Behav Brain Res 2023; 438:114176. [PMID: 36283566 DOI: 10.1016/j.bbr.2022.114176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
This study examined whether a conditioned place preference (CPP) could be established for a virtual reality (VR) room that previously contained virtual alcohol stimuli. 298 undergraduates with varying levels of alcohol use completed six, three-minute conditioning sessions in which they were confined to one of two visually-distinct VR rooms: one of the VR rooms contained virtual alcohol cues (CS+) while the other VR room was neutral (CS-). Following conditioning, participants completed a three-minute test session during which they had unrestricted access to both VR rooms and neither room contained any alcohol-related cues. Although no virtual alcohol cues were present, participants with alcohol use (n = 248) spent significantly longer in CS+ relative to CS- compared to participants with alcohol non-use (n = 50) during the test session. This is the first study to show that a CPP can be established using virtual alcohol cues, in the absence of any actual alcohol administration. However, participants with alcohol use did not subjectively report enjoying CS+ more than CS- and explicitly chose CS- as their preferred room. Interestingly, these findings suggest that implicit and explicit measures of CPP may tap into distinct, separable processes and should be investigated further.
Collapse
|
21
|
Osorio-Gómez D, Miranda MI, Guzmán-Ramos K, Bermúdez-Rattoni F. Transforming experiences: Neurobiology of memory updating/editing. Front Syst Neurosci 2023; 17:1103770. [PMID: 36896148 PMCID: PMC9989287 DOI: 10.3389/fnsys.2023.1103770] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Long-term memory is achieved through a consolidation process where structural and molecular changes integrate information into a stable memory. However, environmental conditions constantly change, and organisms must adapt their behavior by updating their memories, providing dynamic flexibility for adaptive responses. Consequently, novel stimulation/experiences can be integrated during memory retrieval; where consolidated memories are updated by a dynamic process after the appearance of a prediction error or by the exposure to new information, generating edited memories. This review will discuss the neurobiological systems involved in memory updating including recognition memory and emotional memories. In this regard, we will review the salient and emotional experiences that promote the gradual shifting from displeasure to pleasure (or vice versa), leading to hedonic or aversive responses, throughout memory updating. Finally, we will discuss evidence regarding memory updating and its potential clinical implication in drug addiction, phobias, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Kioko Guzmán-Ramos
- División de Ciencias Biológicas y de la Salud, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Lerma de Villada, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
22
|
Hippocampal and amygdalar increased BDNF expression in the extinction of opioid-induced place preference. IBRO Neurosci Rep 2022; 13:402-409. [PMID: 36275846 PMCID: PMC9580243 DOI: 10.1016/j.ibneur.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The opioid crisis was exacerbated during the COVID-19 pandemic in the United States with alarming statistics about overdose-related deaths. Current treatment options, such as medication assisted treatments, have been unable to prevent relapse in many patients, whereas cue-based exposure therapy have had mixed results in human trials. To improve patient outcomes, it is imperative to develop animal models of addiction to understand molecular mechanisms and identify potential therapeutic targets. We previously found increased brain derived neurotrophic factor (bdnf) transcript in the ventral striatum/nucleus accumbens (VS/NAc) of rats that extinguished morphine-induced place preference. Here, we expand our study to determine whether BDNF protein expression was modulated in mesolimbic brain regions of the reward system in animals exposed to extinction training. Drug conditioning and extinction sessions were followed by Western blots for BDNF in the hippocampus (HPC), amygdala (AMY) and VS/NAc. Rears, as a measure of withdrawal-induced anxiety were also measured to determine their impact on extinction. Results showed that animals who received extinction training and successfully extinguished morphine CPP significantly increased BDNF in the HPC when compared to animals deprived of extinction training (sham-extinction). This increase was not significant in animals who failed to extinguish (extinction-resistant). In AMY, all extinction-trained animals showed increased BDNF, regardless of behavior phenotype. No BDNF modulation was observed in the VS/NAc. Finally, extinction-trained animals showed no difference in rears regardless of extinction outcome, suggesting that anxiety elicited by drug withdrawal did not significantly impact extinction of morphine CPP. Our results suggest that BDNF expression in brain regions of the mesolimbic reward system could play a key role in extinction of opioid-induced maladaptive behaviors and represents a potential therapeutic target for future combined pharmacological and extinction-based therapies.
Collapse
|
23
|
Zhu C, Hong T, Li H, Jiang S, Guo B, Wang L, Ding J, Gao C, Sun Y, Sun T, Wang F, Wang Y, Wan D. Glucagon-Like Peptide-1 Agonist Exendin-4 Facilitates the Extinction of Cocaine-Induced Condition Place Preference. Front Syst Neurosci 2022; 15:711750. [PMID: 35024034 PMCID: PMC8744468 DOI: 10.3389/fnsys.2021.711750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulating studies suggest that the glucagon-like peptide-1 receptor agonist exendin-4 (Ex4) and toll-like receptor 4 (TLR4) play a pivotal role in the maladaptive behavior of cocaine. However, few studies have assessed whether Ex4 can facilitate the extinction of drug-associated behavior and attenuate the reinstatement of cocaine-induced condition place preference (CPP) in mice. The main objective of the present study was to evaluate Ex4's ability to regulate the extinction and reinstatement of cocaine-induced CPP. C57BL/6 mice were conditioned to either cocaine (20 mg/kg) or an equivalent volume of saline to establish a cocaine-mediated CPP paradigm. To investigate the potential effects of Ex4 on extinction, animals received an intraperitoneal injection of Ex4 either immediately or 6 h after each extinction or only on the test day. The persistence of extinction was measured using the reinstatement paradigm evoked by 10 mg/kg of cocaine. To explore the possible impacts of Ex4 and neuroinflammation on cocaine, the expression levels of TLR4 within the hippocampus was detected using western blotting. As a result, we found that systemic administration of Ex4 immediately after each extinction training, instead of 6 h after each extinction and on the day of extinction test, was capable of facilitating extinction in the confined or non-confined CPP extinction paradigms and blocking the cocaine-primed reinstatement of cocaine-induced CPP. Additionally, we also observed that Ex4 was competent to alleviate TLR4 signaling that has been up-regulated by cocaine. Altogether, our findings indicated that the combination of Ex4 with daily extinction training was sufficient to facilitate extinction of the conditioned behavior, attenuate reinstatement of cocaine-induced CPP and inhibit TLR4 signaling. Thus, Ex4 deserves further investigation as a potential intervention for the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hailiang Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibin Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yu Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Din Wan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
24
|
Pintori N, Piva A, Guardiani V, Decimo I, Chiamulera C. Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behav Brain Res 2022; 416:113556. [PMID: 34474039 DOI: 10.1016/j.bbr.2021.113556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic Environmental Enrichment (EE) has been shown to prevent the relapse to addictive behaviours, such as drug-taking and -seeking. Recently, acute EE was shown to reduce cue-induced sucrose-seeking, but its effects on contextual (Cx)-induced sucrose-seeking is still unknown. Here we report the effects of brief EE exposure on Cx-induced sucrose-seeking with and without prior Cx-memory reactivation. Adult male Sprague-Dawley rats were trained to sucrose self-administration associated to a specific conditioning Cx (CxA), followed by a 7-day extinction in a different Cx (CxB). Afterwards, rats were exposed for 22 h to EE, and 1 h later to either i) Cx-induced sucrose-seeking (1 h, renewal without Cx-memory reactivation), ii) or two different Cx-memory reactivations: short (2-min) and long (15-min) CxA-retrieval session (Cx-Ret). In Cx-Ret experiments, CxA-induced sucrose-seeking test (1 h) was done after a subsequent 3-day extinction phase. The assessment of molecular markers of memory reactivation/reconsolidation, Zif-268 and rpS6P, was performed 2 h after Cx-Ret. Brief EE exposure enhanced Cx-induced sucrose-seeking without and with short but not long Cx-retrieval. Moreover, EE impaired discriminative responding at test prior to long, whereas improved it with or without short Cx-retrieval. Different changes in Zif-268 and rpS6P expression induced by short vs. long Cx-Ret were correlated to behavioural data, suggesting the occurrence of different memory processes affected by EE. Our data show that brief EE exposure may differently affect subsequent appetitive relapse depending on the modality of re-exposure to conditioned context. This finding suggests caution and further studies to understand the proper conditions for the use of EE against appetitive and addiction disorders.
Collapse
Affiliation(s)
- N Pintori
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - A Piva
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - V Guardiani
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - I Decimo
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - C Chiamulera
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
25
|
Hu SJ, Chang HA, Dai W. Dose-dependent effect of retrieval-extinction on preventing reinstatement of cocaine-associated memory in mice. CHINESE J PHYSIOL 2022; 65:159-170. [DOI: 10.4103/0304-4920.354804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Gale G, Walsh K, Hennessy VE, Stemerding LE, Ni KS, Thomas E, Kamboj SK, Das RK. Long-term behavioural rewriting of maladaptive drinking memories via reconsolidation-update mechanisms. Psychol Med 2021; 51:2875-2885. [PMID: 32539883 DOI: 10.1017/s0033291720001531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alcohol use disorders can be conceptualised as a learned pattern of maladaptive alcohol-consumption behaviours. The memories encoding these behaviours centrally contribute to long-term excessive alcohol consumption and are therefore an important therapeutic target. The transient period of memory instability sparked during memory reconsolidation offers a therapeutic window to directly rewrite these memories using targeted behavioural interventions. However, clinically-relevant demonstrations of the efficacy of this approach are few. We examined key retrieval parameters for destabilising naturalistic drinking memories and the ability of subsequent counterconditioning to effect long-term reductions in drinking. METHODS Hazardous/harmful beer-drinking volunteers (N = 120) were factorially randomised to retrieve (RET) or not retrieve (No RET) alcohol reward memories with (PE) or without (No PE) alcohol reward prediction error. All participants subsequently underwent disgust-based counterconditioning of drinking cues. Acute responses to alcohol were assessed pre- and post-manipulation and drinking levels were assessed up to 9 months. RESULTS Greater long-term reductions in drinking were found when counterconditioning was conducted following retrieval (with and without PE), despite a lack of short-term group differences in motivational responding to acute alcohol. Large variability in acute levels of learning during counterconditioning was noted. 'Responsiveness' to counterconditioning predicted subsequent responses to acute alcohol in RET + PE only, consistent with reconsolidation-update mechanisms. CONCLUSIONS The longevity of behavioural interventions designed to reduce problematic drinking levels may be enhanced by leveraging reconsolidation-update mechanisms to rewrite maladaptive memory. However, inter-individual variability in levels of corrective learning is likely to determine the efficacy of reconsolidation-updating interventions and should be considered when designing and assessing interventions.
Collapse
Affiliation(s)
- Grace Gale
- Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
| | - Katie Walsh
- Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
| | - Vanessa E Hennessy
- Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
| | - L E Stemerding
- Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
| | - Koa Sher Ni
- Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
| | - Emily Thomas
- Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
| | - Sunjeev K Kamboj
- Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
| | - Ravi K Das
- Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
| |
Collapse
|
27
|
Silent Synapses in Cocaine-Associated Memory and Beyond. J Neurosci 2021; 41:9275-9285. [PMID: 34759051 DOI: 10.1523/jneurosci.1559-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic synapses are key cellular sites where cocaine experience creates memory traces that subsequently promote cocaine craving and seeking. In addition to making across-the-board synaptic adaptations, cocaine experience also generates a discrete population of new synapses that selectively encode cocaine memories. These new synapses are glutamatergic synapses that lack functionally stable AMPARs, often referred to as AMPAR-silent synapses or, simply, silent synapses. They are generated de novo in the NAc by cocaine experience. After drug withdrawal, some of these synapses mature by recruiting AMPARs, contributing to the consolidation of cocaine-associated memory. After cue-induced retrieval of cocaine memories, matured silent synapses alternate between two dynamic states (AMPAR-absent vs AMPAR-containing) that correspond with the behavioral manifestations of destabilization and reconsolidation of these memories. Here, we review the molecular mechanisms underlying silent synapse dynamics during behavior, discuss their contributions to circuit remodeling, and analyze their role in cocaine-memory-driven behaviors. We also propose several mechanisms through which silent synapses can form neuronal ensembles as well as cross-region circuit engrams for cocaine-specific behaviors. These perspectives lead to our hypothesis that cocaine-generated silent synapses stand as a distinct set of synaptic substrates encoding key aspects of cocaine memory that drive cocaine relapse.
Collapse
|
28
|
Lewis V, Laberge F, Heyland A. Transcriptomic signature of extinction learning in the brain of the fire-bellied toad, Bombina orientalis. Neurobiol Learn Mem 2021; 184:107502. [PMID: 34391934 DOI: 10.1016/j.nlm.2021.107502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
Insight into the molecular and cellular mechanisms of learning and memory from a diverse array of taxa contributes to our understanding of the evolution of these processes. The fire-bellied toad, Bombina orientalis, is a basal anuran amphibian model species who could help us describe shared and divergent characteristics of learning and memory mechanisms between amphibians and other vertebrates, and hence answer questions about the evolution of learning. Utilizing next generation sequencing techniques, we profiled gene expression patterns associated with the extinction of prey-catching conditioning in the brain of the fire-bellied toad. For this purpose, gene expression was at first compared between toads sacrificed after acquisition and extinction of the conditioned response. A second comparison was done between toads submitted to extinction following either short or long acquisition training, which results in toads displaying response extinction or resistance to extinction, respectively. We analyzed brain tissue transcription profiles common to both acquisition and extinction learning, or unique to extinction learning and resistance to extinction, and found significant overlap in gene expression related to molecular pathways involving neuronal plasticity (e.g. structural modification, transcription). However, extinction learning induced a unique GABAergic transcriptomic signal, which may be responsible for suppression of the original response memory. Further, when comparing extinction learning in short- and long-trained groups, short training engaged many pathways related to neuronal plasticity, as expected, but long training engaged molecular pathways related to the suppression of learning through epigenetic mediated transcriptional suppression and inhibitory neurotransmission. Overall, gene expression patterns associated with extinction learning in the fire-bellied toad were similar to those found in mammals submitted to extinction, although some divergent profiles highlighted potential differences in the mechanisms of learning and memory among tetrapods.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
29
|
Vicente-Rodríguez M, Pérez-García C, Gramage E, Herradón G. Genetic inactivation of midkine, not pleiotrophin, facilitates extinction of alcohol-induced conditioned place preference. Neurosci Lett 2021; 762:136156. [PMID: 34358624 DOI: 10.1016/j.neulet.2021.136156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Pleiotrophin (PTN) and midkine (MK) are growth factors that modulate alcohol consumption and reward. Since both PTN and MK limit the rewarding effects of alcohol, pharmacological potentiation of the PTN and MK signaling pathways has been proposed for the treatment of alcohol use disorders (AUD). Although the use of this therapy in the prevention of alcohol relapse is important, the potential role of these cytokines in extinguishing alcohol-induced seeking behavior is a key question that remains unanswered. To fill this gap, we have now studied the extinction of the conditioned place preference (CPP) induced by different doses of alcohol in Ptn knockout (Ptn-/-) and Mk knockout (Mk-/-) mice. The data confirm a higher sensitivity of Ptn-/- mice to the conditioning effects of a low dose (1 g/kg) and a rewarding dose (2 g/kg) of alcohol, while Mk-/- mice are only more susceptible to the conditioning effects of the low dose of this drug. More importantly, the percentage of Mk-/- mice, not Ptn-/- mice, that efficiently extinguished alcohol-induced CPP was significantly higher than that of Wt mice. Taken together, the data presented here confirm that Ptn and Mk are genetic factors that determine the conditioning effects of alcohol in mice and that Mk is a novel factor that plays an important role in the extinction of alcohol-induced CPP.
Collapse
Affiliation(s)
- Marta Vicente-Rodríguez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Carmen Pérez-García
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925, Alcorcón, Madrid, Spain; Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, 28925, Alcorcón, Madrid, Spain.
| |
Collapse
|
30
|
Rulan D, Zhenbang Y, Yipu Z, Yuan G, Galaj E, Xiaorui S, Wenshuya L, Jiaqi L, Yan Z, Chang Y, Xi Y, Li S, Yixiao L, Haishui S. Exogenous SO 2 donor treatment impairs reconsolidation of drug reward memory in mice. Eur J Pharmacol 2021; 896:173911. [PMID: 33503460 DOI: 10.1016/j.ejphar.2021.173911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022]
Abstract
Substance-related and addictive disorders (SRADs) are characterized by compulsive drug use and recurrent relapse. The persistence of pathological drug-related memories indisputably contributes to a high propensity to relapse. Hence, strategies to disrupt reconsolidation of drug reward memory are currently being pursued as potential anti-relapse interventions. Sulfur dioxide (SO2), acting as a potential gaseous molecule, endogenously derives from sulfur amino acid and can exert significant neural regulatory effects. However, the role of SO2 in reconsolidation of drug memory has not been determined. In the present study, we used morphine- or cocaine-induced conditioned place preference (CPP) mouse models with retrieval to investigate the effects of exogenous SO2 donor treatment on reconsolidation of drug reward memory. We found that administration of SO2 donor immediately after the retrieval impaired the expression of morphine or cocaine CPP. Furthermore, the exogenous SO2 donor treatment 6 h post-retrieval or in the absence of retrieval had no effect on drug reward memory and the expression of CPP. SO2 itself did not produce aversive effects nor did it acutely block morphine CPP. Our results indicate that exogenous SO2 impairs reconsolidation of drug reward memory rather than inhibits the expression of drug reward memory. As such, SO2 holds potential for the treatment and prevention of SRADs and should be studied further.
Collapse
Affiliation(s)
- Ding Rulan
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China; Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yang Zhenbang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhang Yipu
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Gao Yuan
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ewa Galaj
- National Institute on Drug Abuse, Molecular Targets and Medications Discovery Branch, Baltimore, MD, USA
| | - Shi Xiaorui
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Li Wenshuya
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Luo Jiaqi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhang Yan
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yang Chang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yin Xi
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Song Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Luo Yixiao
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China.
| | - Shi Haishui
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medicinal University, 050017, China.
| |
Collapse
|
31
|
Smaga I, Wydra K, Suder A, Frankowska M, Sanak M, Caffino L, Fumagalli F, Filip M. The NMDA Receptor Subunit (GluN1 and GluN2A) Modulation Following Different Conditions of Cocaine Abstinence in Rat Brain Structures. Neurotox Res 2021; 39:556-565. [PMID: 33759085 PMCID: PMC8096759 DOI: 10.1007/s12640-021-00350-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 01/06/2023]
Abstract
Different neuronal alterations within glutamatergic system seem to be crucial for developing of cocaine-seeking behavior. Cocaine exposure provokes a modulation of the NMDA receptor subunit expression in rodents, which probably contributes to cocaine-induced behavioral alterations. The aim of this study was to examine the composition of the NMDA receptor subunits in the brain structures in rats with the history of cocaine self-administration after cocaine abstinence (i) in an enriched environment, (ii) in an isolated condition, (iii) with extinction training, or (iv) without instrumental task, as well as the Grin1 (encoding GluN1) and Grin2A (encoding GluN2A) gene expression were evaluated after 10-day extinction training in rat brain structures. In the present study, we observed changes only following cocaine abstinence with extinction training, when the increased GluN2A subunit levels were seen in the postsynaptic density fraction but not in the whole homogenate of the prelimbic cortex (PLC) and dorsal hippocampus (dHIP) in rats previously self-administered cocaine. At the same time, extinction training did not change the Grin1 and Grin2A gene expression in these structures. In conclusion, NMDA receptor subunit modulation observed following cocaine abstinence with extinction training may represent a potential target in cocaine-seeking behavior.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, PL, Poland.
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, PL, Poland
| | - Agata Suder
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, PL, Poland
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, PL, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, PL, Poland
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, PL, Poland
| |
Collapse
|
32
|
Mañas‐Padilla MC, Gil‐Rodríguez S, Sampedro‐Piquero P, Ávila‐Gámiz F, Rodríguez de Fonseca F, Santín LJ, Castilla‐Ortega E. Remote memory of drug experiences coexists with cognitive decline and abnormal adult neurogenesis in an animal model of cocaine-altered cognition. Addict Biol 2021; 26:e12886. [PMID: 32090424 DOI: 10.1111/adb.12886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/23/2019] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
Cocaine addiction is a chronic disorder in which the person loses control over drug use. The past memories of the stimuli associated with the drug are a relevant clinical problem, since they trigger compulsive drug-seeking and drug-taking habits. Furthermore, these persistent drug-related memories seemingly coexist with cognitive decline that predicts worse therapeutic output. Here, we use a new animal model of cocaine-altered cognition that allowed to observe these events in the same individual and study their relationship. Mice were chronically administered cocaine in a conditioned place preference (CPP) apparatus for 14 days, and control mice received saline. After 28 days of cocaine withdrawal, animals were tested for retrieval of remote drug-associated memory as well as for cognitive performance in a battery of tests, including novel object and place recognition and spatial memory. The cocaine-withdrawn mice showed persistent CPP memory while impaired in the cognitive tasks, displaying deficits in reference memory acquisition and working memory. However, the CPP expression was not associated with the defective cognitive performance, indicating that they were concomitant but independent occurrences. After completion of the experiment, adult hippocampal neurogenesis (AHN) was studied as a relevant neurobiological correlate due to its potential role in both learning and drug addiction. Results suggested a preserved basal AHN in the cocaine-withdrawn mice but an aberrant learning-induced regulation of these neurons. This paradigm may be useful to investigate maladaptive cognition in drug addiction as well as related therapies.
Collapse
Affiliation(s)
- M. Carmen Mañas‐Padilla
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Sara Gil‐Rodríguez
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Patricia Sampedro‐Piquero
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Fabiola Ávila‐Gámiz
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Unidad de Gestión Clínica de Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Luis J. Santín
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología Universidad de Málaga Málaga Spain
| | - Estela Castilla‐Ortega
- Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Unidad de Gestión Clínica de Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
33
|
Lay BPP, Khoo SYS. Associative processes in addiction relapse models: A review of their Pavlovian and instrumental mechanisms, history, and terminology. NEUROANATOMY AND BEHAVIOUR 2021. [DOI: 10.35430/nab.2021.e18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Animal models of relapse to drug-seeking have borrowed heavily from associative learning approaches. In studies of relapse-like behaviour, animals learn to self-administer drugs then receive a period of extinction during which they learn to inhibit the operant response. Several triggers can produce a recovery of responding which form the basis of a variety of models. These include the passage of time (spontaneous recovery), drug availability (rapid reacquisition), extinction of an alternative response (resurgence), context change (renewal), drug priming, stress, and cues (reinstatement). In most cases, the behavioural processes driving extinction and recovery in operant drug self-administration studies are similar to those in the Pavlovian and behavioural literature, such as context effects. However, reinstatement in addiction studies have several differences with Pavlovian reinstatement, which have emerged over several decades, in experimental procedures, associative mechanisms, and terminology. Interestingly, in cue-induced reinstatement, drug-paired cues that are present during acquisition are omitted during lever extinction. The unextinguished drug-paired cue may limit the model’s translational relevance to cue exposure therapy and renders its underlying associative mechanisms ambiguous. We review major behavioural theories that explain recovery phenomena, with a particular focus on cue-induced reinstatement because it is a widely used model in addiction. We argue that cue-induced reinstatement may be explained by a combination of behavioural processes, including reacquisition of conditioned reinforcement and Pavlovian to Instrumental Transfer. While there are important differences between addiction studies and the behavioural literature in terminology and procedures, it is clear that understanding associative learning processes is essential for studying relapse.
Collapse
Affiliation(s)
- Belinda Po Pyn Lay
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, Montreal, Canada
| | - Shaun Yon-Seng Khoo
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Abstract
A growing body of evidence from the past 15 years implicates epigenetic mechanisms in the behavioral effects of addictive drugs. The main focus of these studies has been epigenetic mechanisms of psychomotor sensitization and drug reinforcement, as assessed by the conditioned place preference and drug self-administration procedures. Some of these studies have documented long-lasting changes in the expression of epigenetic enzymes and molecules that persist for weeks after the last drug exposure. These observations have inspired more recent investigations on the epigenetic mechanisms of relapse to drug seeking after prolonged abstinence. Here, we review studies that have examined epigenetic mechanisms (e.g., histone modifications, chromatin remodeler-associated modifications, and DNA methylation) that contribute to relapse to cocaine, amphetamine, methamphetamine, morphine, heroin, nicotine, or alcohol seeking, as assessed in rodent models. We first provide a brief overview of studies that have examined persistent epigenetic changes in the brain after prolonged abstinence from noncontingent drug exposure or drug self-administration. Next, we review studies on the effect of either systemic or brain site-specific epigenetic manipulations on the reinstatement of drug-conditioned place preference after extinction of the learned preference, the reinstatement of drug seeking after operant drug self-administration and extinction of the drug-reinforced responding, and the incubation of drug craving (the time-dependent increase in drug seeking after cessation of drug self-administration). We conclude by discussing the implications of these studies for understanding mechanisms contributing to persistent relapse vulnerability after prolonged abstinence. We also discuss the implications of these results for translational research on the potential use of systemically administered epigenetic enzyme inhibitors for relapse prevention in human drug users.
Collapse
|
35
|
McLean S, Rose N. Drug overdose deaths, addiction neuroscience and the challenges of translation. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16265.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this article, we argue that the rapid rise in drug overdose deaths in America is a tragedy that draws attention to fundamental conceptual and experimental problems in addiction science that have significant human consequences. Despite enormous economic investment, political support and claims to have revolutionised addiction medicine, neurobiological models are yet to produce a treatment for substance addiction. This is partly, we claim, because neurobiology is unable to explain essential features of addiction and relapse that neurobehavioral models of addiction are better placed to investigate. We show how addiction neuroscience turned to long-term memory to explain the chronicity of addiction and persistent relapses long after neurochemical traces have left the body. The turn to memory may in time help to close the translational gap facing addiction medicine, but it is our view in this article that the primary value of memory theory lays in its potential to create new critical friendships between biological and social sciences that are attuned to the lived experience and suffering of stigmatised people. The value of the memory turn may rest upon the capacity of these critical friendships to wean addiction science off its long-term dependence on disease concepts of human distress.
Collapse
|
36
|
Soravia LM, Moggi F, de Quervain DJF. Effects of cortisol administration on craving during in vivo exposure in patients with alcohol use disorder. Transl Psychiatry 2021; 11:6. [PMID: 33414435 PMCID: PMC7791020 DOI: 10.1038/s41398-020-01180-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Alcohol-associated memories and craving play a crucial role in the development and maintenance of alcohol use disorder (AUD). As treatment options are limited in AUD, novel treatment strategies focus on the manipulation of alcohol-associated memories. The stress hormone cortisol affects various memory processes, and first clinical studies have shown that it inhibits the retrieval of disorder-specific memories and enhances extinction memory. This study aimed to investigate the effects of a single oral administration of cortisol on craving in patients with AUD during repeated in vivo exposure to alcohol pictures and the preferred alcoholic drink. In a double-blind, block-randomized, placebo-controlled cross-over design, 46 patients with AUD were treated with two sessions of in vivo exposure to alcohol. Cortisol (20 mg) or placebo was orally administered 1 h before each test day. Craving, stress, and cortisol were repeatedly measured during exposure sessions. Results show, that cortisol administration had distinct effects on craving depending on the severity of AUD and test day. While cortisol administration significantly enhanced craving during exposure on the first test day in patients with less severe AUD, it reduced craving in patients with more severe AUD. Independent of the cortisol administration, repeated in vivo exposure reduced craving from test day 1 to test day 2. In conclusion, adding cortisol to in vivo exposure might be a promising approach for reducing the strength of alcohol-associated memories and might promote the consolidation of extinction memory in patients with severe AUD. However, the differential effect of cortisol on craving depending on AUD severity cannot be conclusively explained and highlights the need for future studies elucidating the underlying mechanism.
Collapse
Affiliation(s)
- Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland.
- Südhang Clinic, Kirchlindach, Switzerland.
| | - Franz Moggi
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | | |
Collapse
|
37
|
Effects of N-acetylcysteine treatment on ethanol's rewarding properties and dopaminergic alterations in mesocorticolimbic and nigrostriatal pathways. Behav Pharmacol 2020; 32:239-250. [PMID: 33290342 DOI: 10.1097/fbp.0000000000000613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent reports have shown that N-acetylcysteine (N-AC) has beneficial effects in the treatment of cocaine and nicotine abuse. Considering the similar neurobiologic mechanisms involved in the development of addiction to different drugs, N-AC treatment could be useful in the treatment of ethanol abuse. The rewarding properties of the drugs of abuse plays an important role in the development of addiction and can be studied using the conditioned place preference (CPP) paradigm. Thus, to study the effects of N-AC treatment in the rewarding effects of ethanol, we investigated the effects of N-AC administration in the ethanol-induced CPP and neurochemical alterations within the mesocorticolimbic and the nigrostriatal dopaminergic pathways. Adult male Swiss mice were pretreated with N-AC (60 or 120 mg/kg intraperitoneal) and tested for the development, expression, or extinction of the ethanol-induced CPP. Another cohort of animals received N-AC (60 or 120 mg/kg intraperitoneal) 2-h before an acute administration of ethanol and had their brains removed for dopamine and its metabolites quantification in the mesocorticolimbic and nigrostriatal pathways. Pretreatment with N-AC (120 mg/kg) blocked the development of ethanol-induced CPP. On the other hand, N-AC at both doses did not alter the expression nor the extinction of ethanol-induced CPP. N-AC increased 3,4-dihydroxyphenylacetic acid content in the medial prefrontal cortex and dopaminergic turnover within the substantia nigra. Besides that, there was an increase in dopamine content in the nucleus accumbens of ethanol-treated animals. In summary, N-AC treatment blocked the development of ethanol CPP, without altering ethanol effects on dopaminergic neurotransmission.
Collapse
|
38
|
Wright WJ, Dong Y. Psychostimulant-Induced Adaptations in Nucleus Accumbens Glutamatergic Transmission. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a039255. [PMID: 31964644 DOI: 10.1101/cshperspect.a039255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carrying different aspects of emotional and motivational signals, glutamatergic synaptic projections from multiple limbic and paralimbic brain regions converge to the nucleus accumbens (NAc), in which these arousing signals are processed and prioritized for behavioral output. In animal models of drug addiction, some key drug-induced alterations at NAc glutamatergic synapses underlie important cellular and circuit mechanisms that promote subsequent drug taking, seeking, and relapse. With the focus of cocaine, we review changes at NAc glutamatergic synapses that occur after different drug procedures and abstinence durations, and the behavioral impact of these changes.
Collapse
Affiliation(s)
- William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
39
|
Leblanc H, Ramirez S. Linking Social Cognition to Learning and Memory. J Neurosci 2020; 40:8782-8798. [PMID: 33177112 PMCID: PMC7659449 DOI: 10.1523/jneurosci.1280-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Many mammals have evolved to be social creatures. In humans, the ability to learn from others' experiences is essential to survival; and from an early age, individuals are surrounded by a social environment that helps them develop a variety of skills, such as walking, talking, and avoiding danger. Similarly, in rodents, behaviors, such as food preference, exploration of novel contexts, and social approach, can be learned through social interaction. Social encounters facilitate new learning and help modify preexisting memories throughout the lifespan of an organism. Moreover, social encounters can help buffer stress or the effects of negative memories, as well as extinguish maladaptive behaviors. Given the importance of such interactions, there has been increasing work studying social learning and applying its concepts in a wide range of fields, including psychotherapy and medical sociology. The process of social learning, including its neural and behavioral mechanisms, has also been a rapidly growing field of interest in neuroscience. However, the term "social learning" has been loosely applied to a variety of psychological phenomena, often without clear definition or delineations. Therefore, this review gives a definition for specific aspects of social learning, provides an overview of previous work at the circuit, systems, and behavioral levels, and finally, introduces new findings on the social modulation of learning. We contextualize such social processes in the brain both through the role of the hippocampus and its capacity to process "social engrams" as well as through the brainwide realization of social experiences. With the integration of new technologies, such as optogenetics, chemogenetics, and calcium imaging, manipulating social engrams will likely offer a novel therapeutic target to enhance the positive buffering effects of social experiences or to inhibit fear-inducing social stimuli in models of anxiety and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02119
- Neurophotonics Center at Boston University, Boston, Massachusetts, 02119
- Center for Systems Neuroscience at Boston University, Boston, Massachusetts, 02119
| |
Collapse
|
40
|
Bender BN, Torregrossa MM. Molecular and circuit mechanisms regulating cocaine memory. Cell Mol Life Sci 2020; 77:3745-3768. [PMID: 32172301 PMCID: PMC7492456 DOI: 10.1007/s00018-020-03498-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 01/27/2023]
Abstract
Risk of relapse is a major challenge in the treatment of substance use disorders. Several types of learning and memory mechanisms are involved in substance use and have implications for relapse. Associative memories form between the effects of drugs and the surrounding environmental stimuli, and exposure to these stimuli during abstinence causes stress and triggers drug craving, which can lead to relapse. Understanding the neural underpinnings of how these associations are formed and maintained will inform future advances in treatment practices. A large body of research has expanded our knowledge of how associative memories are acquired and consolidated, how they are updated through reactivation and reconsolidation, and how competing extinction memories are formed. This review will focus on the vast literature examining the mechanisms of cocaine Pavlovian associative memories with an emphasis on the molecular memory mechanisms and circuits involved in the consolidation, reconsolidation, and extinction of these memories. Additional research elucidating the specific signaling pathways, mechanisms of synaptic plasticity, and epigenetic regulation of gene expression in the circuits involved in associative learning will reveal more distinctions between consolidation, reconsolidation, and extinction learning that can be applied to the treatment of substance use disorders.
Collapse
Affiliation(s)
- Brooke N Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
41
|
McKendrick G, Graziane NM. Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Front Behav Neurosci 2020; 14:582147. [PMID: 33132862 PMCID: PMC7550834 DOI: 10.3389/fnbeh.2020.582147] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
The conditioned place preference (CPP) paradigm is a well-established model utilized to study the role of context associations in reward-related behaviors, including both natural rewards and drugs of abuse. In this review article, we discuss the basic history, various uses, and considerations that are tied to this technique. There are many potential takeaway implications of this model, including negative affective states, conditioned drug effects, memory, and motivation, which are all considered here. We also discuss the neurobiology of CPP including relevant brain regions, molecular signaling cascades, and neuromodulatory systems. We further examine some of our prior findings and how they integrate CPP with self-administration paradigms. Overall, by describing the fundamentals of CPP, findings from the past few decades, and implications of using CPP as a research paradigm, we have endeavored to support the case that the CPP method is specifically advantageous for studying the role of a form of Pavlovian learning that associates drug use with the surrounding environment.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States.,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
42
|
Taujanskaitė U, Cahill EN, Milton AL. Targeting drug memory reconsolidation: a neural analysis. Curr Opin Pharmacol 2020; 56:7-12. [PMID: 32961367 DOI: 10.1016/j.coph.2020.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Addiction can be conceptualised as a disorder of maladaptive learning and memory. Therefore, maladaptive drug memories supporting drug-seeking and relapse behaviours may present novel treatment targets for therapeutic approaches based upon reconsolidation-blockade. It is known that different structures within the limbic corticostriatal system contribute differentially to different types of maladaptive drug memories, including pavlovian associations between environmental cues and contexts with the drug high, and instrumental memories underlying drug-seeking. Here, we review the mechanisms underlying drug memory reconsolidation in the amygdala, striatum, and hippocampus, noting similarities and differences, and opportunities for future research.
Collapse
Affiliation(s)
- Uršulė Taujanskaitė
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
McLean S, Rose N. Crisis, what crisis? Addiction neuroscience and the challenges of translation. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.16265.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this article we interrogate the claim that there is an opioid crisis: a dramatic rise in drug overdose fatalities in the United States over the past two decades that is also spreading to other countries. The usual argument is that this crisis is largely explained by errant prescription practices leading to an oversupply of opioids, leading to addiction, premature mortality and drug overdose deaths, both among those prescribed opioids for pain relief, and those obtaining them on the illegal market. We argue, that this view is highly problematic and that it is likely to entrench deeper problems with how substance addiction has been perceived and known. In this article, we develop an alternative picture of the addiction crisis based on four years of research and collaboration with addiction neuroscientists. Drug overdose deaths, we claim, are symptoms of what we term the ‘structural distribution of social despair.’ We argue that this is compounded by a translation crisis at the heart of addiction neuroscience. For all its dominance, the ‘dopamine hypothesis’ of addiction that shaped understandings for some three decades, has still not produced a single effective treatment. However, this translation crisis also represents an opportunity for ‘the memory turn’ in addiction neuroscience as it seeks to translate its emerging conception of addiction as a problem of memory into effective forms of treatment. We conclude by arguing that, for the ‘memory turn’ to underpin effective interventions into ‘the opioid crisis’, a new relation between neuroscientists and social scientists of addiction is needed, one that proceeds from the lived experience of human beings.
Collapse
|
44
|
Li X, Hartwell KJ, Henderson S, Badran BW, Brady KT, George MS. Two weeks of image-guided left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation improves smoking cessation: A double-blind, sham-controlled, randomized clinical trial. Brain Stimul 2020; 13:1271-1279. [PMID: 32534252 PMCID: PMC7494651 DOI: 10.1016/j.brs.2020.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/01/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Previous studies have found that repetitive transcranial magnetic stimulation (rTMS) to the left dorsal lateral prefrontal cortex (LDLPFC) transiently reduces smoking craving, decreases cigarette consumption, and increases abstinence rates. OBJECTIVE We investigated whether 10 daily MRI-guided rTMS sessions over two weeks to the LDLPFC paired with craving cues could reduce cigarette consumption and induce smoking cessation. METHODS We enrolled 42 treatment-seeking nicotine-dependent smokers (≥10 cigarettes per day) in a randomized, double-blind, sham-controlled trial. Participants received 10 daily sessions over 2 weeks of either active or sham MRI-guided rTMS (10Hz, 3000 pulses each session) to the LDLPFC concurrently with video smoking cues. The primary outcome was a reduction in biochemically confirmed cigarette consumption with a secondary outcome of abstinence on the target quit date. We also recorded cue-induced craving and withdrawal symptoms. RESULTS Compared to sham (n = 17), participants receiving active rTMS (n = 21) smoked significantly fewer cigarettes per day during the 2-week treatment (mean [SD], 13.73[9.18] vs. 11.06[9.29], P < .005) and at 1-month follow-up (12.78[9.53] vs. 7.93[7.24], P < .001). Active rTMS participants were also more likely to quit by their target quit rate (23.81%vs. 0%, OR 11.67, 90% CL, 0.96-141.32, x2 = 4.66, P = .031). Furthermore, rTMS significantly reduced mean craving throughout the treatments and at follow-up (29.93[13.12] vs. 25.01[14.45], P < .001). Interestingly across the active treatment sample, more lateral coil location was associated with more success in quitting (-43.43[0.40] vs. -41.79[2.24], P < .013). CONCLUSIONS Daily MRI-guided rTMS to the LDLPFC for 10 days reduces cigarette consumption and cued craving for up to one month and also increases the likelihood of smoking cessation. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02401672.
Collapse
Affiliation(s)
- Xingbao Li
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Karen J Hartwell
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Scott Henderson
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kathleen T Brady
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| |
Collapse
|
45
|
Kuiper LB, Lucas KA, Mai V, Coolen LM. Enhancement of Drug Seeking Following Drug Taking in a Sexual Context Requires Anterior Cingulate Cortex Activity in Male Rats. Front Behav Neurosci 2020; 14:87. [PMID: 32670029 PMCID: PMC7330085 DOI: 10.3389/fnbeh.2020.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Individual variance in vulnerability to develop addictions is influenced by social factors. Specifically, drug-taking in a sexual context appears to enhance further drug-seeking behavior in human users, as these users identify the effects of drugs to enhance sexual pleasure as a primary reason for continued drug use. Methamphetamine (Meth) is commonly used in this context. Similarly, male rats that self-administered Meth immediately followed by sexual behavior display enhanced drug-seeking behavior, including attenuation of extinction and increased reinstatement to seeking of Meth-associated cues. Hence, drug-taking in a sexual context enhances vulnerability for addiction. However, the neural mechanisms by which this occurs are unknown. Here the hypothesis was tested that medial prefrontal cortex is essential for this effect of Meth and sex when experienced concurrently. First it was shown that CaMKII neurons in the anterior cingulate area (ACA) were co-activated by both Meth and sex. Next, chemogenetic inactivation of ACA CaMKII cells using AAV5-CaMKIIa-hM4Di-mCherry was shown not to affect Meth-induced locomotor activity or sexual behavior. Subsequently, chemogenetic inactivation of ACA CaMKII neurons during Meth self-administration followed by sexual behavior was shown to prevent the effects of Meth and sex on enhanced reinstatement of Meth-seeking but did not affect enhanced drug-seeking during extinction tests. These results indicate that ACA CaMKII cell activation during exposure to Meth in a sexual context plays an essential role in the subsequent enhancement of drug-seeking during reinstatement tests.
Collapse
Affiliation(s)
- Lindsey B Kuiper
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kathryn A Lucas
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Vy Mai
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
46
|
Amaral VCS, Morais-Silva G, Laverde CF, Marin MT. Susceptibility to extinction and reinstatement of ethanol-induced conditioned place preference is related to differences in astrocyte cystine-glutamate antiporter content. Neurosci Res 2020; 170:245-254. [PMID: 32653617 DOI: 10.1016/j.neures.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022]
Abstract
Individual susceptibility to alcohol effects plays an important role in the development of alcohol addiction and studies have shown that glutamate release is altered after chronic ethanol consumption. The cystine-glutamate antiporter (xCT) is a protein that regulates glutamate release. However, little is known about the relationship between xCT levels and this individual susceptibility. Thus, this study aimed to evaluate the relationship between the extinction and stress-induced reinstatement of ethanol conditioned place preference (CPP) and xCT levels in the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) and amygdala (Amy). Male Swiss mice were submitted to a CPP procedure followed by an extinction protocol and then identified as those which extinguished the CPP and those that did not. In another cohort, mice that extinguished the CPP were submitted to a protocol of stress-induced reinstatement. Immediately after the tests, brains were removed for xCT quantification. The xCT levels were significantly lower in the mPFC and NAcc of mice that did not extinguish CPP. Moreover, mice that were susceptible to stress-induced reinstatement of CPP had lower levels of xCT in the NAcc. Our results suggest that individual susceptibility to the extinction and reinstatement of ethanol CPP is related to alterations in xCT levels.
Collapse
Affiliation(s)
- Vanessa Cristiane Santana Amaral
- Laboratory of Pharmacology and Toxicology of Natural and Synthetic Products, State University of Goias, Exact and Technological Sciences Campus, Anapolis, GO, Brazil; São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Gessynger Morais-Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Celina F Laverde
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Marcelo T Marin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil.
| |
Collapse
|
47
|
Moro F, Giannotti G, Caffino L, Marzo CM, Di Clemente A, Fumagalli F, Cervo L. Lasting reduction of nicotine-seeking behavior by chronic N-acetylcysteine during experimental cue-exposure therapy. Addict Biol 2020; 25:e12771. [PMID: 31132808 DOI: 10.1111/adb.12771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/10/2019] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
Nicotine-associated cues can trigger reinstatement in humans as well as in animal models of drug addiction. To date, no behavioral intervention or pharmacological treatment has been effective in preventing relapse in the long term. A large body of evidence indicates that N-acetylcysteine (N-AC) blunts the activation of glutamatergic (GLUergic) neurons in the nucleus accumbens (Nacc) associated with reinstatement. We evaluated the effect of an experimental cue exposure therapy (eCET) alone or in combination with N-AC to verify whether restoring GLU homeostasis enhances extinction of nicotine-associated cues. Rats were trained to associate discriminative stimuli with intravenous nicotine or saline self-administration. Reinforced response was followed by cue signals. After rats met the self-administration criteria, the lasting anti-relapse activity of i.p. N-AC or vehicle was assessed in three different experimental conditions after 14 days of treatment: treatment + eCET; treatment + lever-presses extinction (LP-EXT); and treatment + abstinence. N-AC 100 mg/kg, but not 60 mg/kg, induced anti-relapse activity that persisted 50 days after treatment only when paired with either LP-EXT or eCET with the greater activity found in the latter condition. To identify potential mechanisms for behavioral results, separate groups of rats that received either N-AC or vehicle + eCET were killed at different time points for Nacc Western-blot analysis. Seven days after treatment, chronic N-AC restored the expression of proteins crucial for GLU homeostasis, while at 50 days, it increased the expression of type II metabotropic GLU receptors. These results suggest that N-AC treatment in combination with eCET may offer a novel strategy to prevent relapse in nicotine addiction.
Collapse
Affiliation(s)
- Federico Moro
- Experimental Psychopharmacology, Department of Neuroscience Mario Negri Institute for Pharmacological Research—IRCCS Milan Italy
| | | | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | | | - Angelo Di Clemente
- Experimental Psychopharmacology, Department of Neuroscience Mario Negri Institute for Pharmacological Research—IRCCS Milan Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Luigi Cervo
- Experimental Psychopharmacology, Department of Neuroscience Mario Negri Institute for Pharmacological Research—IRCCS Milan Italy
| |
Collapse
|
48
|
Becker JE, Price JL, Leonard D, Suris A, Kandil E, Shaw M, Kroener S, Brown ES, Adinoff B. The Efficacy of Lidocaine in Disrupting Cocaine Cue-Induced Memory Reconsolidation. Drug Alcohol Depend 2020; 212:108062. [PMID: 32480252 DOI: 10.1016/j.drugalcdep.2020.108062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 01/10/2023]
Abstract
RATIONAL Cue-induced craving memories, linked to drug-seeking behaviors, require key molecular processes for memory reconsolidation. Lidocaine, a sodium channel blocker, inhibits NMDA receptor activation and suppresses nitric oxide and ERK production. These processes are required for memory re-consolidation; inhibiting them may reduce cue-related craving memories in cocaine dependent subjects. OBJECTIVES To assess the efficacy of lidocaine in decreasing cue-induced cocaine craving and cocaine use. METHODS Treatment-seeking cocaine-dependent participants (n = 33, 25 men) were recruited. Personalized craving and relaxation scripts were developed. Participants were then randomly assigned in a double-blind design to either receive intravenous lidocaine immediately following a cocaine craving script (lidocaine/craving), saline following a craving script (saline/craving), or lidocaine following a relaxation script (lidocaine/relax). One week following the infusion, cue-induced craving was assessed in the same paradigm without an infusion. Cocaine use and craving were assessed for 4 weeks following infusion. RESULTS The administration of lidocaine during craving induction (lidocaine/craving) did not decrease cue-induced craving during craving reactivation one week later or craving and cocaine use over the 4-week follow-up period compared to the saline/craving group. There were no significant differences in craving and cocaine use between the lidocaine/relax and saline/craving groups. CONCLUSION Lidocaine administered following craving induction did not decrease subsequent cue-induced craving or cocaine use. Blocking the reconsolidation of craving-related memories with pharmacological agents remains an important area of investigation.
Collapse
Affiliation(s)
- Josh E Becker
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX USA; School of Behavior and Brain Sciences, UT Dallas, Dallas, TX USA
| | - Julianne L Price
- Department of Psychiatry, University of Florida, Gainesville, FL USA
| | - David Leonard
- David Leonard Statistical Consulting, Wichita Falls, TX USA
| | - Alina Suris
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX USA; VA North Texas Health Care System, Dallas, TX USA
| | - Enas Kandil
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO USA; Department of Anesthesiology & Pain Management, UT Southwestern Medical Center, Dallas, TX USA; School of Behavior and Brain Sciences, UT Dallas, Dallas, TX USA
| | - Meredith Shaw
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX USA; VA North Texas Health Care System, Dallas, TX USA
| | - Sven Kroener
- School of Behavior and Brain Sciences, UT Dallas, Dallas, TX USA
| | - E Sherwood Brown
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX USA
| | - Bryon Adinoff
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO USA
| |
Collapse
|
49
|
Scaplen KM, Talay M, Nunez KM, Salamon S, Waterman AG, Gang S, Song SL, Barnea G, Kaun KR. Circuits that encode and guide alcohol-associated preference. eLife 2020; 9:48730. [PMID: 32497004 PMCID: PMC7272191 DOI: 10.7554/elife.48730] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
A powerful feature of adaptive memory is its inherent flexibility. Alcohol and other addictive substances can remold neural circuits important for memory to reduce this flexibility. However, the mechanism through which pertinent circuits are selected and shaped remains unclear. We show that circuits required for alcohol-associated preference shift from population level dopaminergic activation to select dopamine neurons that predict behavioral choice in Drosophila melanogaster. During memory expression, subsets of dopamine neurons directly and indirectly modulate the activity of interconnected glutamatergic and cholinergic mushroom body output neurons (MBON). Transsynaptic tracing of neurons important for memory expression revealed a convergent center of memory consolidation within the mushroom body (MB) implicated in arousal, and a structure outside the MB implicated in integration of naïve and learned responses. These findings provide a circuit framework through which dopamine neuronal activation shifts from reward delivery to cue onset, and provide insight into the maladaptive nature of memory.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Neuroscience, Brown University, Providence, United States
| | - Mustafa Talay
- Department of Neuroscience, Brown University, Providence, United States
| | - Kavin M Nunez
- Department of Molecular Pharmacology and Physiology, Brown University, Providence, United States
| | - Sarah Salamon
- Department of Pharmacology, University of Cologne, Cologne, Germany
| | - Amanda G Waterman
- Department of Neuroscience, Brown University, Providence, United States
| | - Sydney Gang
- Department of Biochemistry, Brown University, Providence, United States
| | - Sophia L Song
- Department of Neuroscience, Brown University, Providence, United States
| | - Gilad Barnea
- Department of Neuroscience, Brown University, Providence, United States
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
50
|
Sun K, Mu Q, Chang H, Zhang C, Wang Y, Rong S, Liu S, Zuo D, He Z, Wan D, Yang H, Wang F, Sun T. Postretrieval Microinjection of Baclofen Into the Agranular Insular Cortex Inhibits Morphine-Induced CPP by Disrupting Reconsolidation. Front Pharmacol 2020; 11:743. [PMID: 32508658 PMCID: PMC7248341 DOI: 10.3389/fphar.2020.00743] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Environmental cues associated with drug abuse are powerful mediators of drug craving and relapse in substance-abuse disorders. Consequently, attenuating the strength of cue-drug memories could reduce the number of factors that cause drug craving and relapse. Interestingly, impairing cue-drug memory reconsolidation is a generally accepted strategy aimed at reducing the intensity of cues that trigger drug-seeking and drug-taking behaviors. In addition, the agranular insular cortex (AI) is an important component of the neural circuits underlying drug-related memory reconsolidation. GABAB receptors (GABABRs) are potential targets for the treatment of addiction, and baclofen (BLF) is the only prototypical GABAB agonist available for application in clinical addiction treatment. Furthermore, ΔFosB is considered a biomarker for the evaluation of potential therapeutic interventions for addiction. Here, we used the morphine-induced conditioned place preference (CPP) paradigm to investigate whether postretrieval microinjections of BLF into the AI could affect reconsolidation of drug-reward memory, reinstatement of CPP, and the level of ΔFosB in mice. Our results showed that BLF infused into the AI immediately following morphine CPP memory retrieval, but not 6 h postretrieval or following nonretrieval, could eliminate the expression of a morphine CPP memory. This effect persisted in a morphine-priming–induced reinstatement test, suggesting that BLF in the AI was capable of preventing the reconsolidation of the morphine CPP memory. Our results also showed that the elimination of morphine CPP memory was associated with reduced morphine-associated ΔFosB expression in the longer term. Taken together, the results of our research provide evidence to support that GABABRs in the AI have an important role in drug-cue memory reconsolidation and further our understanding of the role of the AI in drug-related learning and memory.
Collapse
Affiliation(s)
- Kuisheng Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The People's Hospital of Gaozhou, Gaozhou, China
| | - Qingchun Mu
- Department of Neurosurgery, The People's Hospital of Gaozhou, Gaozhou, China
| | - Haigang Chang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yehua Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shikuo Rong
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shenhai Liu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Di Zuo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Zhenquan He
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Ding Wan
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hua Yang
- Department of Critical Care Medicine, The People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|