1
|
Frouni I, Kwan C, Bédard D, Kang W, Hamadjida A, Nuara SG, Gourdon JC, Huot P. Effect of the mGlu 4 positive allosteric modulator ADX-88178 on parkinsonism, psychosis-like behaviours and dyskinesia in the MPTP-lesioned marmoset. Psychopharmacology (Berl) 2023; 240:2093-2099. [PMID: 37516708 DOI: 10.1007/s00213-023-06428-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
RATIONALE Positive allosteric modulation of metabotropic glutamate type 4 (mGlu4) receptors is a promising strategy to alleviate parkinsonian disability and L-3,4-dihydroxyphenylalanine (L-DOPA) induced dyskinesia. ADX-88178 is a highly selective mGlu4 positive allosteric modulator (PAM) that previously enhanced the anti-parkinsonian action of L-DOPA in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease (PD). OBJECTIVES We sought to explore the effects of ADX-88178 on psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. We also aimed to determine the effect of ADX-88178 on parkinsonism and dyskinesia. METHODS Six MPTP-lesioned marmosets were administered L-DOPA chronically to induce stable PLBs and dyskinesias. They were then administered ADX-88178 (0.01, 0.1 and 1 mg/kg) or vehicle, in combination with L-DOPA/benserazide (15/3.75 mg/kg), both sub-cutaneously, in a randomised fashion. PLBs, parkinsonism and dyskinesia were then measured. RESULTS ADX-88178 mildly worsened global PLBs at the dose of 1 mg/kg (by 13%, P = 0.020). L-DOPA alone conferred 158 min of on-time, while the duration of on-time was 212 min (34% increase, P = 0.011), after adding ADX-88178 1 mg/kg to L-DOPA. Accordingly, ADX-88178 1 mg/kg reduced global parkinsonian disability, by 38% (P = 0.0096). ADX-88178 1 mg/kg diminished peak dose dyskinesia by 34% (P = 0.015). Minimal effects were provided by lower doses. CONCLUSIONS Whereas these results provide additional evidence of the anti-parkinsonian and anti-dyskinetic effects of mGlu4 positive allosteric modulation as an adjunct to L-DOPA, they also suggest that ADX-88178 may exacerbate dopaminergic psychosis. Further studies are needed to evaluate this possible adverse effect of mGlu4 PAMs on PD psychosis.
Collapse
Affiliation(s)
- Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, Canada
| | - Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, Canada
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, Canada.
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
2
|
Stankiewicz A, Kaczorowska K, Bugno R, Kozioł A, Paluchowska MH, Burnat G, Chruścicka B, Chorobik P, Brański P, Wierońska JM, Duszyńska B, Pilc A, Bojarski AJ. New 1,2,4-oxadiazole derivatives with positive mGlu 4 receptor modulation activity and antipsychotic-like properties. J Enzyme Inhib Med Chem 2021; 37:211-225. [PMID: 34894953 PMCID: PMC8667925 DOI: 10.1080/14756366.2021.1998022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Considering the allosteric regulation of mGlu receptors for potential therapeutic applications, we developed a group of 1,2,4-oxadiazole derivatives that displayed mGlu4 receptor positive allosteric modulatory activity (EC50 = 282–656 nM). Selectivity screening revealed that they were devoid of activity at mGlu1, mGlu2 and mGlu5 receptors, but modulated mGlu7 and mGlu8 receptors, thus were classified as group III-preferring mGlu receptor agents. None of the compounds was active towards hERG channels or in the mini-AMES test. The most potent in vitro mGlu4 PAM derivative 52 (N-(3-chloro-4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)phenyl)picolinamide) was readily absorbed after i.p. administration (male Albino Swiss mice) and reached a maximum brain concentration of 949.76 ng/mL. Five modulators (34, 37, 52, 60 and 62) demonstrated significant anxiolytic- and antipsychotic-like properties in the SIH and DOI-induced head twitch test, respectively. Promising data were obtained, especially for N-(4-(5-(2-chlorophenyl)-1,2,4-oxadiazol-3-yl)-3-methylphenyl)picolinamide (62), whose effects in the DOI-induced head twitch test were comparable to those of clozapine and better than those reported for the selective mGlu4 PAM ADX88178.
Collapse
Affiliation(s)
- Anna Stankiewicz
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kaczorowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Aneta Kozioł
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Maria H Paluchowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Burnat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Barbara Chruścicka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Paulina Chorobik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
3
|
Jankowska A, Satała G, Świerczek A, Pociecha K, Partyka A, Jastrzębska-Więsek M, Głuch-Lutwin M, Bojarski AJ, Wyska E, Chłoń-Rzepa G. A new class of 5-HT 1A receptor antagonists with procognitive and antidepressant properties. Future Med Chem 2021; 13:1497-1514. [PMID: 34253032 DOI: 10.4155/fmc-2020-0363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aims: 5-HT1A receptor antagonists constitute a potential group of drugs in the treatment of CNS diseases. The aim of this study was to search for new procognitive and antidepressant drugs among amide derivatives of aminoalkanoic acids with 5-HT1A receptor antagonistic properties. Materials & methods: Thirty-three amides were designed and evaluated in silico for their drug-likeness. The synthesized compounds were tested in vitro for their 5-HT1A receptor affinity and functional profile. Moreover, their selectivity over 5-HT7, 5-HT2A and D2 receptors and ability to inhibit phosphodiesterases were evaluated. Results: A selected 5-HT1A receptor antagonist 20 (Ki = 35 nM, Kb = 4.9 nM) showed procognitive and antidepressant activity in vivo. Conclusion: Novel 5-HT1A receptor antagonists were discovered and shown as potential psychotropic drugs.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Grzegorz Satała
- Polish Academy of Sciences, Maj Institute of Pharmacology, Department of Medicinal Chemistry, 12 Smętna Street, 31-343, Kraków, Poland
| | - Artur Świerczek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics & Physical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Krzysztof Pociecha
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics & Physical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Anna Partyka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Clinical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Clinical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacobiology, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Andrzej J Bojarski
- Polish Academy of Sciences, Maj Institute of Pharmacology, Department of Medicinal Chemistry, 12 Smętna Street, 31-343, Kraków, Poland
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics & Physical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688, Kraków, Poland
| |
Collapse
|
4
|
Serotonergic-Muscarinic Interaction within the Prefrontal Cortex as a Novel Target to Reverse Schizophrenia-Related Cognitive Symptoms. Int J Mol Sci 2021; 22:ijms22168612. [PMID: 34445318 PMCID: PMC8395335 DOI: 10.3390/ijms22168612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
Recent studies revealed that the activation of serotonergic 5-HT1A and muscarinic M1, M4, or M5 receptors prevent MK-801-induced cognitive impairments in animal models. In the present study, the effectiveness of the simultaneous activation of 5-HT1A and muscarinic receptors at preventing MK-801-induced cognitive deficits in novel object recognition (NOR) or Y-maze tests was investigated. Activators of 5-HT1A (F15599), M1 (VU0357017), M4 (VU0152100), or M5 (VU0238429) receptors administered at top doses for seven days reversed MK-801-induced deficits in the NOR test, similar to the simultaneous administration of subeffective doses of F15599 (0.05 mg/kg) with VU0357017 (0.15 mg/kg), VU0152100 (0.05 mg/kg), or VU0238429 (1 mg/kg). The compounds did not prevent the MK-801-induced impairment when administered acutely. Their activity was less evident in the Y-maze. Pharmacokinetic studies revealed high brain penetration of F15599 (brain/plasma ratio 620%), which was detected in the frontal cortex (FC) up to 2 h after administration. Decreases in the brain penetration properties of the compounds were observed after acute administration of the combinations, which might have influenced behavioral responses. This negative effect on brain penetration was not observed when the compounds were administered repeatedly. Based on our results, prolonged administration of a 5-HT1A activator with muscarinic receptor ligands may be effective at reversing cognitive decline related to schizophrenia, and the FC may play a critical role in this interaction.
Collapse
|
5
|
Boczek T, Mackiewicz J, Sobolczyk M, Wawrzyniak J, Lisek M, Ferenc B, Guo F, Zylinska L. The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines. Cells 2021; 10:cells10051228. [PMID: 34067760 PMCID: PMC8155952 DOI: 10.3390/cells10051228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Schizophrenia is a common debilitating disease characterized by continuous or relapsing episodes of psychosis. Although the molecular mechanisms underlying this psychiatric illness remain incompletely understood, a growing body of clinical, pharmacological, and genetic evidence suggests that G protein-coupled receptors (GPCRs) play a critical role in disease development, progression, and treatment. This pivotal role is further highlighted by the fact that GPCRs are the most common targets for antipsychotic drugs. The GPCRs activation evokes slow synaptic transmission through several downstream pathways, many of them engaging intracellular Ca2+ mobilization. Dysfunctions of the neurotransmitter systems involving the action of GPCRs in the frontal and limbic-related regions are likely to underly the complex picture that includes the whole spectrum of positive and negative schizophrenia symptoms. Therefore, the progress in our understanding of GPCRs function in the control of brain cognitive functions is expected to open new avenues for selective drug development. In this paper, we review and synthesize the recent data regarding the contribution of neurotransmitter-GPCRs signaling to schizophrenia symptomology.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
- Correspondence:
| |
Collapse
|
6
|
Kryszkowski W, Boczek T. The G Protein-Coupled Glutamate Receptors as Novel Molecular Targets in Schizophrenia Treatment-A Narrative Review. J Clin Med 2021; 10:jcm10071475. [PMID: 33918323 PMCID: PMC8038150 DOI: 10.3390/jcm10071475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/02/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.
Collapse
Affiliation(s)
- Waldemar Kryszkowski
- General Psychiatric Ward, Babinski Memorial Hospital in Lodz, 91229 Lodz, Poland;
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92215 Lodz, Poland
- Correspondence:
| |
Collapse
|
7
|
Ulivieri M, Wierońska JM, Lionetto L, Martinello K, Cieslik P, Chocyk A, Curto M, Di Menna L, Iacovelli L, Traficante A, Liberatore F, Mascio G, Antenucci N, Giannino G, Vergassola M, Pittaluga A, Bruno V, Battaglia G, Fucile S, Simmaco M, Nicoletti F, Pilc A, Fazio F. The Trace Kynurenine, Cinnabarinic Acid, Displays Potent Antipsychotic-Like Activity in Mice and Its Levels Are Reduced in the Prefrontal Cortex of Individuals Affected by Schizophrenia. Schizophr Bull 2020; 46:1471-1481. [PMID: 32506121 PMCID: PMC7846105 DOI: 10.1093/schbul/sbaa074] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cinnabarinic acid (CA) is a kynurenine metabolite that activates mGlu4 metabotropic glutamate receptors. Using a highly sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS-MS) method, we found that CA is present in trace amounts in human brain tissue. CA levels were largely reduced in the prefrontal cortex (PFC) of individuals affected by schizophrenia. This reduction did not correlate with age, sex, duration of the disease, and duration and type of antipsychotic medication and might, therefore, represent a trait of schizophrenia. Interestingly, systemic treatment with low doses of CA (<1 mg/kg, i.p.) showed robust efficacy in several behavioral tests useful to study antipsychotic-like activity in mice and rats and attenuated MK-801-evoked glutamate release. CA failed to display antipsychotic-like activity and inhibit excitatory synaptic transmission in mice lacking mGlu4 receptors. These findings suggest that CA is a potent endogenous antipsychotic-like molecule and reduced CA levels in the PFC might contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
| | | | - Luana Lionetto
- Department of Medical-Surgical Sciences and Translational Medicine, DiMA (Advanced Molecular Diagnosis), Sant’Andrea Hospital—Sapienza University, Rome, Italy
| | | | - Paulina Cieslik
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Chocyk
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Martina Curto
- Department of Neurology and Psychiatry, Sapienza University, Rome, Italy,Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy,Bipolar & Psychotic Disorders Program, McLean Hospital, Belmont, MA
| | | | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | | | | | - Nico Antenucci
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Giannino
- School of Medicine and Psychology NESMOS Department, Sant’Andrea Hospital, Sapienza University, Rome, Italy
| | | | - Anna Pittaluga
- Department of Pharmacy, DiFAR, University of Genoa, Genoa, Italy,I.R.C.C.S. San Martino Hospital, Genoa, Italy
| | - Valeria Bruno
- I.R.C.C.S. Neuromed, Pozzilli, Italy,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- I.R.C.C.S. Neuromed, Pozzilli, Italy,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sergio Fucile
- I.R.C.C.S. Neuromed, Pozzilli, Italy,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Maurizio Simmaco
- Department of Medical-Surgical Sciences and Translational Medicine, DiMA (Advanced Molecular Diagnosis), Sant’Andrea Hospital—Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, Pozzilli, Italy,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Francesco Fazio
- I.R.C.C.S. Neuromed, Pozzilli, Italy,To whom correspondence should be addressed; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, room 610, New York City, NY, USA; tel: +1-718-430-2160, fax: +1-718-430-8932, e-mail:
| |
Collapse
|
8
|
The functional cooperation of 5-HT 1A and mGlu4R in HEK-293 cell line. Pharmacol Rep 2020; 72:1358-1369. [PMID: 32472388 PMCID: PMC7550284 DOI: 10.1007/s43440-020-00114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 10/28/2022]
Abstract
BACKGROUND The serotonin 5-HT1A receptor (5-HT1AR) and metabotropic glutamate receptor 4 (mGlu4) have been implicated as sites of antipsychotic drug action. 5-HT1AR belongs to the A class of G protein-coupled receptors (GPCRs); mGlu4 is a representative of class C GPCRs. Both receptors preferentially couple with Gi protein to inhibit cAMP formation. The present work aimed to examine the possibility of mGlu4 and 5-HT1A receptor cross-talk, the phenomenon that could serve as a molecular basis of the interaction of these receptor ligands observed in behavioral studies. METHODS First, in vitro studies were performed to examine the pharmacological modulation of interaction of the mGlu4 and 5-HT1A receptors in the T-REx 293 cell line using SNAP- or HALO-tag and cAMP accumulation assay. Next, the colocalization of these two receptors was examined in some regions of the mouse brain by applying RNAScope dual fluorescence in situ hybridization, immunohistochemical labeling, and proximity ligation assay (PLA). RESULTS The ex vivo and in vitro results obtained in the present work suggest the existence of interactions between mGlu4 and 5-HT1A receptors. The changes were observed in cAMP accumulation assay and were dependent on expression and activation of mGlu4R in T-REx 293cell line. Moreover, the existence of spots with proximity expression of both receptors were showed by PLA, immunofluorescence labeling and RNAscope methods. CONCLUSION The existence of interactions between mGlu4 and 5-HT1A receptors may represent another signaling pathway involved in the development and treatment psychiatric disorders such as schizophrenia or depression.
Collapse
|
9
|
Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019; 26:4885-4913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
10
|
Cieślik P, Radulska A, Pelikant-Małecka I, Płoska A, Kalinowski L, Wierońska JM. Reversal of MK-801-Induced Disruptions in Social Interactions and Working Memory with Simultaneous Administration of LY487379 and VU152100 in Mice. Int J Mol Sci 2019; 20:ijms20112781. [PMID: 31174329 PMCID: PMC6600181 DOI: 10.3390/ijms20112781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/25/2023] Open
Abstract
Negative and cognitive symptoms of schizophrenia contribute to an impaired social and professional life for schizophrenic patients, and in most cases, these symptoms are treatment resistant. Therefore, identification of new treatment strategies is sorely needed. Metabotropic glutamate receptors (mGlu) and muscarinic (M) receptors for acetylcholine have been considered promising targets for novel antipsychotics. Among them, mGlu2 and M4 subtypes seem to be of particular importance. In the present study, the effect of mutual activation of mGlu2 and M4 receptors was assessed in MK-801-based animal models of negative and cognitive symptoms of schizophrenia, that is, social interaction and novel object recognition tests. Low sub-effective doses of LY487379 (0.5 mg/kg), a positive allosteric activator of the mGlu2 receptor, and VU152100 (0.25−0.5 mg/kg), a positive allosteric modulator of the M4 receptor, were simultaneously administered in the aforementioned tests. Combined administration of these compounds prevented MK-801-induced disturbances in social interactions and object recognition when acutely administered 30 min before MK-801. Prolonged (7 days) administration of these compounds resulted in the loss of effectiveness in preventing MK-801-induced disruptions in the novel object recognition test but not in the social interaction test. In the next set of experiments, MK-801 (0.3 mg/kg) was administered for seven consecutive days, and the activity of the compounds was investigated on day eight, during which time MK-801 was not administered. In this model, based on prolonged MK-801 administration, the effectiveness of the compounds to treat MK-801-induced disruptions was evident at low doses which were ineffective in preventing the behavioural disturbances induced by an acute MK-801 injection. Combined administration of the compounds did not exert better efficacy than each compound given alone. Pharmacokinetic analysis confirmed a lack of possible drug–drug interactions after combined administration of LY487379 and VU152100. Our data show that modulation of M4 and mGlu2 receptors may potentially be beneficial in the treatment of negative and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
11
|
Belhocine A, Veglianese P, Hounsou C, Dupuis E, Acher F, Durroux T, Goudet C, Pin JP. Profiling of orthosteric and allosteric group-III metabotropic glutamate receptor ligands on various G protein-coupled receptors with Tag-lite ® assays. Neuropharmacology 2018; 140:233-245. [PMID: 30099051 DOI: 10.1016/j.neuropharm.2018.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
Abstract
Group-III metabotropic glutamate (mGlu) receptors are important synaptic regulators and are potential druggable targets for Parkinson disease, autism and pain. Potential drugs include orthosteric agonists in the glutamate binding extracellular domain and positive allosteric modulators interacting with seven-pass transmembrane domains. Orthosteric agonists are rarely completely specific for an individual group-III mGlu subtype. Furthermore they often fail to pass the blood-brain barrier and they constitutively activate their target receptor. These properties limit the potential therapeutic use of orthosteric agonists. Allosteric modulators are more specific and maintain the biological activity of the targeted receptor. However, they bind in a hydrophobic pocket and this limits their bio-availability and increases possible off-target action. It is therefore important to characterize the action of potential drug targets with a multifaceted and deeply informative assay. Here we aimed at multifaceted deep profiling of the effect of seven different agonists, and seven positive allosteric modulators on 34 different G protein-coupled receptors by a Tag-lite® assay. Our results did not reveal off-target activity of mGlu orthosteric agonists. However, five allosteric modulators had either positive or negative effects on non-cognate G protein-coupled receptors. In conclusion, we demonstrate the power of the Tag-lite® assay for potential drug ligand profiling on G protein-coupled receptors and its potential to identify positive allosteric compounds.
Collapse
Affiliation(s)
| | | | | | | | - Francine Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Cyril Goudet
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
12
|
Selvam C, Lemasson IA, Brabet I, Oueslati N, Karaman B, Cabaye A, Tora AS, Commare B, Courtiol T, Cesarini S, McCort-Tranchepain I, Rigault D, Mony L, Bessiron T, McLean H, Leroux FR, Colobert F, Daniel H, Goupil-Lamy A, Bertrand HO, Goudet C, Pin JP, Acher FC. Increased Potency and Selectivity for Group III Metabotropic Glutamate Receptor Agonists Binding at Dual sites. J Med Chem 2018; 61:1969-1989. [DOI: 10.1021/acs.jmedchem.7b01438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chelliah Selvam
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle A. Lemasson
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle Brabet
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Nadia Oueslati
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Berin Karaman
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Alexandre Cabaye
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Amélie S. Tora
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Bruno Commare
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Tiphanie Courtiol
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Sara Cesarini
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle McCort-Tranchepain
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Delphine Rigault
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Laetitia Mony
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
- Institut de Biologie, Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, PSL University, 46 rue d’Ulm, 75005 Paris, France
| | - Thomas Bessiron
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Heather McLean
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Frédéric R. Leroux
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Françoise Colobert
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Hervé Daniel
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Anne Goupil-Lamy
- BIOVIA, Dassault Systèmes, 10 rue Marcel Dassault, CS 40501, 78946 Vélizy-Villacoublay Cedex, France
| | - Hugues-Olivier Bertrand
- BIOVIA, Dassault Systèmes, 10 rue Marcel Dassault, CS 40501, 78946 Vélizy-Villacoublay Cedex, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Jean-Philippe Pin
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Francine C. Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
13
|
Hajasova Z, Canestrelli C, Acher F, Noble F, Marie N. Role of mGlu7 receptor in morphine rewarding effects is uncovered by a novel orthosteric agonist. Neuropharmacology 2018; 131:424-430. [PMID: 29307544 DOI: 10.1016/j.neuropharm.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/26/2017] [Accepted: 01/02/2018] [Indexed: 11/26/2022]
Abstract
Opiate dependence is a major health issue and despite the existence of opioid substitution treatment, relapse frequently occurs. Group III metabotropic glutamate (mGlu) receptors has received much attention as a putative target in ethanol and cocaine addiction, but no data on opiate addiction exist. So we investigated the role of group III mGlu receptors in morphine rewarding effects through the expression and the reinstatement of conditioned place preference (CPP) using a newly synthesized mGlu4/mGlu7 receptor orthosteric agonist, LSP2-9166. We found that LSP2-9166 blocked morphine CPP expression and reinstatement after extinction. Blockade of CPP expression with LSP2-9166 was abolished when using XAP044, a mGlu7 antagonist. We also found that LSP2-9166 at the dose active for blocking morphine reward was devoid of any effect on locomotion, hedonic state, spatial memory, anxiety or depression. Altogether our data demonstrated that group III mGlu receptors, and more specifically mGlu7, might be a valuable target in opiate addiction.
Collapse
Affiliation(s)
- Zuzana Hajasova
- CNRS ERL 3649, Neuroplasticité et Thérapie des Addictions, Paris, France; INSERM UMR-S 1124, Paris, France; Université Paris Descartes, Paris, France
| | - Corinne Canestrelli
- CNRS ERL 3649, Neuroplasticité et Thérapie des Addictions, Paris, France; INSERM UMR-S 1124, Paris, France; Université Paris Descartes, Paris, France
| | - Francine Acher
- Université Paris Descartes, Paris, France; CNRS UMR8601, Laboratoire de Chimie & Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Florence Noble
- CNRS ERL 3649, Neuroplasticité et Thérapie des Addictions, Paris, France; INSERM UMR-S 1124, Paris, France; Université Paris Descartes, Paris, France
| | - Nicolas Marie
- CNRS ERL 3649, Neuroplasticité et Thérapie des Addictions, Paris, France; INSERM UMR-S 1124, Paris, France; Université Paris Descartes, Paris, France.
| |
Collapse
|
14
|
Abstract
The approval of psychotropic drugs with novel mechanisms of action has been rare in recent years. To address this issue, further analysis of the pathophysiology of neuropsychiatric disorders is essential for identifying new pharmacological targets for psychotropic medications. In this report, we detail drug candidates being examined as treatments for psychiatric disorders. Particular emphasis is placed on agents with novel mechanisms of action that are being tested as therapies for depression, schizophrenia, or Alzheimer’s disease. All of the compounds considered were recently approved for human use or are in advanced clinical trials. Drugs included here are new antipsychotic medications endowed with a preferential affinity at dopamine D3 receptor (cariprazine) or at glutamatergic or cannabinoid receptors, as well as vortioxetine, a drug approved for managing the cognitive deficits associated with major depression. New mechanistic approaches for the treatment of depression include intravenous ketamine or esketamine or intranasal esketamine. As for Alzheimer’s disease, the possible value of passive immunotherapy with agents such as aducanumab is considered to be a potential disease-modifying approach that could slow or halt the progressive decline associated with this devastating disorder.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina (EN), Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Woźniak M, Acher F, Marciniak M, Lasoń-Tyburkiewicz M, Gruca P, Papp M, Pilc A, Wierońska JM. Involvement of GABAB Receptor Signaling in Antipsychotic-like Action of the Novel Orthosteric Agonist of the mGlu4 Receptor, LSP4-2022. Curr Neuropharmacol 2017; 14:413-26. [PMID: 26769224 PMCID: PMC4983756 DOI: 10.2174/1570159x13666150516000630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/11/2015] [Accepted: 05/12/2015] [Indexed: 01/08/2023] Open
Abstract
Considering that ligands of metabotropic glutamate and GABA receptors may exert beneficial effects on schizophrenia, we assessed the actions of the first mGlu4-selective orthosteric agonist, LSP4-2022, in several tests reflecting positive, negative, and cognitive symptoms of schizophrenia. Moreover, we investigated the possible involvement of GABAB receptors in LSP4-2022-induced actions. Hyperactivity induced by MK-801 or amphetamine and DOI-induced head twitches in mice were used as the models of positive symptoms. The social interaction test, modified forced swim test (FST), and novel object recognition (NOR) test were used as the models of negative and cognitive symptoms of schizophrenia. LSP4-2022 inhibited hyperactivity (in a dose-dependent manner, 0.5-2 mg/kg) induced by MK-801 or amphetamine and DOI-induced head twitches. In mGlu4 receptor knockout mice, LSP4-2022 was not effective. However, it reversed MK-801-induced impairment in the social interaction test and the MK-801-induced increase of immobility in the modified FST. In the NOR test, LSP4-2022 was active at a dose of 2 mg/kg. GABAB receptor antagonist, CGP55845 (10 mg/kg), reversed LSP4-2022-induced effects in hyperactivity and head twitch tests. At the same time, the simultaneous administration of subeffective doses of LSP4-2022 (0.1 mg/kg) and a positive allosteric modulator of GABAB receptor PAM, GS39783 (0.1 mg/kg), induced clear antipsychotic-like effects in those two tests. Such an interaction between mGlu4 and GABAB receptors was not observed in the social interaction and NOR tests. Therefore, we suggest that the activation of the mGlu4 receptor is a promising approach facilitating the discovery of novel antipsychotic drugs, and that the interplay between mGlu4 and GABAB receptors may become the basis for a novel therapy for schizophrenic patients with predomination of positive symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
16
|
Woźniak M, Gołembiowska K, Noworyta-Sokołowska K, Acher F, Cieślik P, Kusek M, Tokarski K, Pilc A, Wierońska JM. Neurochemical and behavioral studies on the 5-HT 1A-dependent antipsychotic action of the mGlu 4 receptor agonist LSP4-2022. Neuropharmacology 2016; 115:149-165. [PMID: 27465045 DOI: 10.1016/j.neuropharm.2016.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 11/29/2022]
Abstract
LSP4-2022 is a novel, orthosteric agonist of mGlu4 receptor that induces antipsychotic-like activity in animal studies. In the present study, the involvement of 5-HT1A receptors in LSP4-2022-induced antipsychotic actions and the neurochemical background of that interaction were investigated. In several behavioral tests the actions of effective doses of the compound (0.5-2 mg/kg) were antagonized via the administration of the 5-HT1A antagonist WAY100635 (0.1 mg/kg). The co-administration of sub-effective dose of the 5-HT1A agonist (R)-(S)-8-OH-DPAT (0.01 mg/kg) intensified the activity of ineffective doses of LSP4-2022, having no influence on the efficacy of the active doses. The co-administration of effective doses of both compounds did not intensify each other's action. In the microdialysis in vivo tests, MK-801 (0.6 mg/kg) induced an enhancement of the release of dopamine, serotonin, glutamate and GABA in the prefrontal cortex. Administration of LSP4-2022 (2 mg/kg) abolished this MK-801-induced effect on neurotransmitter release. Co-administration with WAY100635 (0.1 mg/kg), a 5-HT1A antagonist, completely (dopamine, serotonin) or partially (glutamate, GABA) counteracted this LSP4-2022-induced effect. Subsequently, the patch-clamp recordings of spontaneous EPSCs were performed. sEPSCs were evoked in slices from the mouse prefrontal cortex by DOI (10 μM). LSP4-2022 (2.5; 5 and 10 μm) reversed DOI-induced changes in both the frequency and amplitude of the sEPSCs, but the more robust effect on the frequency was observed. The administration of WAY100635 had no effect on the LSP4-2022-induced effects on sEPSCs, indicating that the mGlu4-5-HT1A interaction does not occur via single-neuron signaling but involves neuronal circuits that regulate neurotransmitter release. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Monika Woźniak
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | | | | | - Francine Acher
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, UMR8601-CNRS, Paris Descartes University, Sorbonne Paris Cite,45, rue des Saints-Peres, 75270 Paris Cedex 06, France
| | - Paulina Cieślik
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Magdalena Kusek
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Krzysztof Tokarski
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
17
|
Wierońska JM, Zorn SH, Doller D, Pilc A. Metabotropic glutamate receptors as targets for new antipsychotic drugs: Historical perspective and critical comparative assessment. Pharmacol Ther 2015; 157:10-27. [PMID: 26549541 DOI: 10.1016/j.pharmthera.2015.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this review, we aim to present, discuss and clarify our current understanding regarding the prediction of possible antipsychotic effects of metabotropic glutamate (mGlu) receptor ligands. The number of preclinical trials clearly indicates, that this group of compounds constitutes an excellent alternative to presently used antipsychotic therapy, being effective not only to positive, but also negative and cognitive symptoms of schizophrenia. Although the results of clinical trials that were performed for the group of mGlu2/3 agonists were not so enthusiastic as in animal studies, they still showed that mGlu ligands do not induced variety of side effects typical for presently used antipsychotics, and were generally well tolerated. The lack of satisfactory effectiveness towards schizophrenia symptoms of mGlu2/3 activators in humans could be a result of variety of uncontrolled factors and unidentified biomarkers different for each schizophrenia patient, that should be taken into consideration in the future set of clinical trials. The subject is still open for further research, and the novel classes of mGlu5 or mGlu2/3 agonists/PAMs were recently introduced, including the large group of compounds from the third group of mGlu receptors, especially of mGlu4 subtype. Finally, more precise treatment based on simultaneous administration of minimal doses of the ligands for two or more receptors, seems to be promising in the context of symptoms-specific schizophrenia treatment.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | | | | | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland.
| |
Collapse
|
18
|
mGlu5-GABAB interplay in animal models of positive, negative and cognitive symptoms of schizophrenia. Neurochem Int 2015; 88:97-109. [DOI: 10.1016/j.neuint.2015.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
|
19
|
Wierońska JM, Sławińska A, Łasoń-Tyburkiewicz M, Gruca P, Papp M, Zorn SH, Doller D, Kłeczek N, Noworyta-Sokołowska K, Gołembiowska K, Pilc A. The antipsychotic-like effects in rodents of the positive allosteric modulator Lu AF21934 involve 5-HT1A receptor signaling: mechanistic studies. Psychopharmacology (Berl) 2015; 232:259-73. [PMID: 25012236 PMCID: PMC4281359 DOI: 10.1007/s00213-014-3657-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/09/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE Diverse preclinical studies suggest the potential therapeutic utility of the modulation of the glutamatergic system in brain via metabotropic glutamate (mGlu) receptors. Lu AF21934, a positive allosteric modulator of the mGlu4 receptor, was previously shown to reverse behavioral phenotypes in animal models thought to mimic positive, negative, and cognitive symptoms of schizophrenia. OBJECTIVES To begin elucidating the brain circuitry involved in mGlu4 receptor pharmacology and add mechanistic support to Lu AF21934-induced phenotypic responses, the potential involvement of 5-HT1A receptors in these antipsychotic-like effects was explored. The tests used were the following: MK-801-induced hyperactivity and 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head twitches in mice, for positive symptoms; MK-801-induced disruptions of social interactions for negative symptoms; and novel object recognition and spatial delayed alteration test for cognitive symptoms. The microdialysis studies in which the effect of Lu AF21934 on MK-801-induced dopamine and serotonin release was investigated. RESULTS The effects caused by Lu AF2193 were inhibited by administration of the selective 5-HT1A receptor antagonist WAY100635 (0.1 mg/kg). That inhibition was observed across all models used. Moreover, the concomitant administration of sub-effective doses of Lu AF21934 and a sub-effective dose of the selective 5-HT1A receptor agonist tool compound (R)-(+)-8-hydroxy-DPAT hydrobromide (0.01 mg/kg) induced a clear antipsychotic-like effect in all the procedures used. Lu AF21934 (5 mg/kg) also inhibited MK-801-induced increase in dopamine and 5-HT release. CONCLUSIONS The actions of Lu AF21934 are 5-HT1A receptor-dependent. Activation of the mGlu4 receptor may be a promising mechanism for the development of novel antipsychotic drugs, efficacious toward positive, negative, and cognitive symptoms.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna Str. 12, 31-343, Kraków, Poland,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Commare B, Rigault D, Lemasson IA, Deschamps P, Tomas A, Roussel P, Brabet I, Goudet C, Pin JP, Leroux FR, Colobert F, Acher FC. Determination of the absolute configuration of phosphinic analogues of glutamate. Org Biomol Chem 2015; 13:1106-12. [DOI: 10.1039/c4ob01960a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stereomers of LSP1-2111 have been separated, their absolute configuration and agonist activity at mGlu4R determined.
Collapse
|
21
|
Kalinichev M, Le Poul E, Boléa C, Girard F, Campo B, Fonsi M, Royer-Urios I, Browne SE, Uslaner JM, Davis MJ, Raber J, Duvoisin R, Bate ST, Reynolds IJ, Poli S, Celanire S. Characterization of the novel positive allosteric modulator of the metabotropic glutamate receptor 4 ADX88178 in rodent models of neuropsychiatric disorders. J Pharmacol Exp Ther 2014; 350:495-505. [PMID: 24947466 DOI: 10.1124/jpet.114.214437] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is growing evidence that activation of metabotropic glutamate receptor 4 (mGlu4) leads to anxiolytic- and antipsychotic-like efficacy in rodent models, yet its relevance to depression-like reactivity remains unclear. Here, we present the pharmacological evaluation of ADX88178 [5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine], a novel potent, selective, and brain-penetrant positive allosteric modulator of the mGlu4 receptor in rodent models of anxiety, obsessive compulsive disorder (OCD), fear, depression, and psychosis. ADX88178 dose-dependently reduced the number of buried marbles in the marble burying test and increased open-arm exploration in the elevated plus maze (EPM) test, indicative of anxiolytic-like efficacy. Target specificity of the effect in the EPM test was confirmed using male and female mGlu4 receptor knockout mice. In mice, ADX88178 reduced the likelihood of conditioned freezing in the acquisition phase of the fear conditioning test, yet had no carryover effect in the expression phase. Also, ADX88178 dose-dependently reduced duration of immobility in the forced swim test, indicative of antidepressant-like efficacy. ADX88178 reduced DOI (2,5-dimethoxy-4-iodoamphetamine)-mediated head twitches (albeit with no dose-dependency), and MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]-induced locomotor hyperactivity in mice, but was inactive in the conditioned avoidance response test in rats. The compound showed good specificity as it had no effect on locomotor activity in mice and rats at efficacious doses. Thus, allosteric activation of mGlu4 receptors can be a promising new therapeutic approach for treatment of anxiety, OCD, fear-related disorders, and psychosis.
Collapse
Affiliation(s)
- Mikhail Kalinichev
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Emmanuel Le Poul
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Christelle Boléa
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Françoise Girard
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Brice Campo
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Massimiliano Fonsi
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Isabelle Royer-Urios
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Susan E Browne
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Jason M Uslaner
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Matthew J Davis
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Jacob Raber
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Robert Duvoisin
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Simon T Bate
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Ian J Reynolds
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Sonia Poli
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| | - Sylvain Celanire
- Addex Therapeutics, Plan-les-Ouates, Geneva, Switzerland (M.K., E.L.P., C.B., F.G., B.C., M.F., I.R.-U., S.P., S.C.); Merck Research Laboratories, West Point, Pennsylvania (S.E.B., J.M.U., M.J.D., I.J.R.); Oregon Health & Science University, Portland, Oregon (M.J.D., J.R., R.D.); and Huntingdon Life Sciences Ltd., Huntingdon Research Centre, Huntingdon, United Kingdom (S.T.B.)
| |
Collapse
|
22
|
Pomierny-Chamioło L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M. Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther 2014; 142:281-305. [DOI: 10.1016/j.pharmthera.2013.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
|
23
|
Ossowska K, Wardas J, Berghauzen-Maciejewska K, Głowacka U, Kuter K, Pilc A, Zorn SH, Doller D. Lu AF21934, a positive allosteric modulator of mGlu4 receptors, reduces the harmaline-induced hyperactivity but not tremor in rats. Neuropharmacology 2014; 83:28-35. [PMID: 24726309 DOI: 10.1016/j.neuropharm.2014.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/18/2014] [Accepted: 03/31/2014] [Indexed: 12/19/2022]
Abstract
Harmaline induces tremor in animals resembling essential tremor which has been suggested to result from activation of the glutamatergic olivo-cerebellar projection. The aim of the present study was to examine the effects of systemic administration of Lu AF21934, a brain-penetrating positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu4), on the harmaline-induced tremor and other forms of motor activity in rats using fully automated Force Plate Actimeters. The influence of harmaline on the mGlu4 mRNA expression in the cerebellum and inferior olive was analysed by in situ hybridization. Harmaline at a dose of 15 mg/kg (ip) triggered tremor which was manifested by an increase in the power within 9-15 Hz band and in the tremor index (a difference in power between bands 9-15 Hz and 0-8 Hz). Harmaline induced a biphasic effect on mobility, initially inhibiting the exploratory locomotor activity of rats (0-30 min after administration), followed by an increase in their basic activity. Lu AF21934 (0.5-5 mg/kg sc) did not influence tremor but at doses of 0.5 and 2.5 mg/kg reversed harmaline-induced hyperactivity. MGlu4 mRNA expression was high in the cerebellar cortex and low in the inferior olive. Repeated harmaline (15 mg/kg ip once a day for 5 days] decreased mGlu4 mRNA in the cerebellum and inferior olive. The present study indicates that the mGlu4 stimulation counteracts hyperactivity induced by harmaline which suggests the involvement of cerebellar glutamatergic transmission in this process. In contrast, neuronal mechanisms involved in tremor seem to be insensitive to the stimulation of mGlu4.
Collapse
Affiliation(s)
- Krystyna Ossowska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland.
| | - Jadwiga Wardas
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Klemencja Berghauzen-Maciejewska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Urszula Głowacka
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Katarzyna Kuter
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 12, Smętna St., 31-343 Kraków, Poland
| | - Stevin H Zorn
- Discovery Chemistry & DMPK, Lundbeck Research USA, 215 College Road, Paramus, NJ 07652, USA
| | - Dario Doller
- Discovery Chemistry & DMPK, Lundbeck Research USA, 215 College Road, Paramus, NJ 07652, USA
| |
Collapse
|
24
|
Cajina M, Nattini M, Song D, Smagin G, Jørgensen EB, Chandrasena G, Bundgaard C, Toft DB, Huang X, Acher F, Doller D. Qualification of LSP1-2111 as a Brain Penetrant Group III Metabotropic Glutamate Receptor Orthosteric Agonist. ACS Med Chem Lett 2014; 5:119-23. [PMID: 24900783 DOI: 10.1021/ml400338f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/12/2013] [Indexed: 12/20/2022] Open
Abstract
LSP1-2111 is a group III metabotropic glutamate receptor agonist with preference toward the mGlu4 receptor subtype. This compound has been extensively used as a tool to explore the pharmacology of mGlu4 receptor activation in preclinical animal behavioral models. However, the blood-brain barrier penetration of this amino acid derivative has never been studied. We report studies on the central nervous system (CNS) disposition of LSP1-2111 using quantitative microdialysis in rat. Significant unbound concentrations of the drug relative to its in vitro binding affinity and functional potency were established in extracellular fluid (ECF). These findings support the use of LSP1-2111 to study the CNS pharmacology of mGlu4 receptor activation through orthosteric agonist mechanisms.
Collapse
Affiliation(s)
- Manuel Cajina
- Lundbeck Research
USA, 215 College Road, Paramus, New Jersey 07652, United States
| | - Megan Nattini
- Lundbeck Research
USA, 215 College Road, Paramus, New Jersey 07652, United States
| | - Dekun Song
- Lundbeck Research
USA, 215 College Road, Paramus, New Jersey 07652, United States
| | - Gennady Smagin
- Lundbeck Research
USA, 215 College Road, Paramus, New Jersey 07652, United States
| | | | - Gamini Chandrasena
- Lundbeck Research
USA, 215 College Road, Paramus, New Jersey 07652, United States
| | | | | | - Xinyan Huang
- Lundbeck Research
USA, 215 College Road, Paramus, New Jersey 07652, United States
| | - Francine Acher
- Laboratoire
de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601
CNRS, Université Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Dario Doller
- Lundbeck Research
USA, 215 College Road, Paramus, New Jersey 07652, United States
| |
Collapse
|
25
|
Sławińska A, Wierońska JM, Stachowicz K, Marciniak M, Lasoń-Tyburkiewicz M, Gruca P, Papp M, Kusek M, Tokarski K, Doller D, Pilc A. The antipsychotic-like effects of positive allosteric modulators of metabotropic glutamate mGlu4 receptors in rodents. Br J Pharmacol 2014; 169:1824-39. [PMID: 23714045 DOI: 10.1111/bph.12254] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/24/2013] [Accepted: 05/12/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Because agonists at metabotropic glutamate receptors exert beneficial effects in schizophrenia, we have assessed the actions of Lu AF21934 and Lu AF32615, two chemically distinct, selective and brain-penetrant positive allosteric modulators (PAMs) of the mGlu4 receptor, in several tests reflecting positive, negative and cognitive symptoms of schizophrenia in rodents. EXPERIMENTAL APPROACH Hyperactivity induced by MK-801 or amphetamine and head twitches induced by 2,5-dimethoxy-4-iodoamphetamine (DOI) in mice were used as models for positive symptoms. Disruption of social interaction and spatial delayed alternation tests induced by MK-801 in rats were used as models for negative and cognitive symptoms of schizophrenia, respectively. KEY RESULTS Lu AF21934 (0.1-5 mg·kg(-1) ) and Lu AF32615 (2-10 mg·kg(-1) ) dose-dependently inhibited hyperactivity induced by MK-801 or amphetamine. They also antagonized head twitches and increased frequency of spontaneous excitatory postsynaptic currents (EPSCs) in brain slices, induced by DOI. In mice lacking the mGlu4 receptor (mGlu4 (-/-) ) mice, Lu AF21934 did not antagonize DOI-induced head twitches. MK-801-induced disruption in the social interaction test was decreased by Lu AF21934 at 0.5 mg·kg(-1) and by Lu AF32615 at 10 mg·kg(-1) . In the delayed spatial alternation test, Lu AF21934 was active at 1 and 2 mg·kg(-1) , while Lu AF32615 was active at 10 mg·kg(-1) . CONCLUSIONS AND IMPLICATIONS We propose that activation by PAMs of the mGlu4 receptor is a promising approach to the discovery of novel antipsychotic drugs.
Collapse
Affiliation(s)
- Anna Sławińska
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nickols HH, Conn PJ. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 2014; 61:55-71. [PMID: 24076101 PMCID: PMC3875303 DOI: 10.1016/j.nbd.2013.09.013] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 12/14/2022] Open
Abstract
The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction.
Collapse
Key Words
- (+)-6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one
- (1-(4-cyano-4-(pyridine-2-yl)piperidine-1-yl)methyl-4-oxo-4H-quinolizine-3-carboxylic acid)
- (1S,2S)-N(1)-(3,4-dichlorophenyl)cyclohexane-1,2-dicarboxamide
- (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid
- (3,4-dihydro-2H-pyrano[2,3]b quinolin-7-yl)(cis-4-methoxycyclohexyl) methanone
- (3aS,5S,7aR)-methyl 5-hydroxy-5-(m-tolylethynyl)octahydro-1H-indole-1-carboxylate
- 1-(1′-(2-methylbenzyl)-1,4′-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one
- 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone
- 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine
- 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1Himidazol-4-yl)ethynyl)pyridine
- 2-methyl-6-(2-phenylethenyl)pyridine
- 2-methyl-6-(phenylethynyl)-pyridine
- 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide
- 3-cyclohexyl-5-fluoro-6-methyl-7-(2-morpholin-4-ylethoxy)-4H-chromen-4-one
- 3[(2-methyl-1,3-thiazol-4-yl)ethylnyl]pyridine
- 4-((E)-styryl)-pyrimidin-2-ylamine
- 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide
- 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine
- 5-methyl-6-(phenylethynyl)-pyridine
- 5MPEP
- 6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one
- 6-OHDA
- 6-hydroxydopamine
- 6-methyl-2-(phenylazo)-3-pyridinol
- 77-LH-28-1
- 7TMR
- AC-42
- ACPT-1
- AChE
- AD
- ADX71743
- AFQ056
- APP
- Allosteric modulator
- Alzheimer's disease
- BINA
- BQCA
- CDPPB
- CFMMC
- CNS
- CPPHA
- CTEP
- DA
- DFB
- DHPG
- Drug discovery
- ERK1/2
- FMRP
- FTIDC
- FXS
- Fragile X syndrome
- GABA
- GPCR
- JNJ16259685
- L-AP4
- L-DOPA
- Lu AF21934
- Lu AF32615
- M-5MPEP
- MMPIP
- MPEP
- MPTP
- MTEP
- Metabotropic glutamate receptor
- Muscarinic acetylcholine receptor
- N-[4-chloro-2[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl]-2-hydrobenzamide
- N-methyl-d-aspartate
- N-phenyl-7-(hydroxylimino)cyclopropa[b]chromen-1a-carboxamide
- NAM
- NMDA
- PAM
- PCP
- PD
- PD-LID
- PET
- PHCCC
- PQCA
- Parkinson's disease
- Parkinson's disease levodopa-induced dyskinesia
- SAM
- SIB-1757
- SIB-1893
- TBPB
- [(3-fluorophenyl)methylene]hydrazone-3-fluorobenzaldehyde
- acetylcholinesterase
- amyloid precursor protein
- benzylquinolone carboxylic acid
- central nervous system
- dihydroxyphenylglycine
- dopamine
- extracellular signal-regulated kinase 1/2
- fragile X mental retardation protein
- l-(+)-2-amino-4-phosphonobutyric acid
- l-3,4-dihydroxyphenylalanine
- mGlu
- metabotropic glutamate receptor
- negative allosteric modulator
- phencyclidine
- positive allosteric modulator
- positron emission tomography
- potassium 30-([(2-cyclopentyl-6-7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5yl)oxy]methyl)biphenyl l-4-carboxylate
- seven transmembrane receptor
- silent allosteric modulator
- γ-aminobutyric acid
Collapse
Affiliation(s)
- Hilary Highfield Nickols
- Division of Neuropathology, Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
27
|
Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res 2013; 354:309-30. [DOI: 10.1007/s00441-013-1692-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022]
|
28
|
Wierońska JM, Sławińska A, Stachowicz K, Łasoń-Tyburkiewicz M, Gruca P, Papp M, Pilc A. The reversal of cognitive, but not negative or positive symptoms of schizophrenia, by the mGlu₂/₃ receptor agonist, LY379268, is 5-HT₁A dependent. Behav Brain Res 2013; 256:298-304. [PMID: 23948211 DOI: 10.1016/j.bbr.2013.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/26/2013] [Accepted: 08/02/2013] [Indexed: 11/24/2022]
Abstract
mGlu(2/3) receptor agonists were shown to possess an antipsychotic-like potential in animal studies. Recent clinical investigations revealed that their antipsychotic potential might also manifest in humans. LY379268, the group II mGlu receptor orthosteric agonist, was previously shown to exhibit antipsychotic-like action in animal models of schizophrenia. However, the mechanism of its action is not fully recognized. Here, we decided to investigate the involvement of 5-HT1A receptors in the LY379268-induced antipsychotic effects. We used models of positive, negative and cognitive symptoms of schizophrenia, such as MK-801- and amphetamine-induced hyperactivity tests, DOI-induced head twitches, social interaction and novel object recognition. LY379268 was active in a wide range of doses (0.5-5 mg/kg), depending on the paradigm. The effects of the drug were not antagonized by 5-HT(1A) antagonist, WAY100635 (0.1 mg/kg) in the models of positive and negative symptoms. Conversely, in the novel object recognition test, which exerts cognitive disturbances, the action of LY379268 was antagonized by WAY100635. Concomitantly, the action of a sub-effective dose of the drug was enhanced by the administration of a sub-effective dose of 5-HT(1A) agonist, (R)-(+)-8-Hydroxy-DPAT. Altogether, we propose that the antipsychotic-like action of group II mGlu receptors' agonist is 5-HT(1A) independent in context of positive and negative symptoms, while the action toward cognitive disturbances seems to be 5-HT(1A) dependent.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|