1
|
Arenas YM, Pérez-Martinez G, Montoliu C, Llansola M, Felipo V. Extracellular vesicles from L. paracasei improve neuroinflammation, GABA neurotransmission and motor incoordination in hyperammonemic rats. Brain Behav Immun 2025; 123:556-570. [PMID: 39384052 DOI: 10.1016/j.bbi.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024] Open
Abstract
Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with motor incoordination and cognitive impairment that reduce life quality and span. Motor incoordination is due to neuroinflammation and enhanced GABAergic neurotransmission in cerebellum. Recent reports support that probiotics, including L. casei, may improve cognitive function in different pathologies and MHE in cirrhotic patients. Extracellular vesicles (EV) are small cell-derived membrane vesicles that carry bioactive molecules released from cells, including bacteria. We hypothesized that EV from Lacticaseibacillus paracasei (LC-EV) could improve neuroinflammation, GABAergic neurotransmission and motor function in MHE. We show that LC-EV treatment reverses glial activation and neuroinflammation in cerebellum and restore motor coordination in hyperammonemic rats. Moreover, ex vivo treatment of cerebellar slices from hyperammonemic rats with LC-EV also reverses glial activation and neuroinflammation, and the enhancement of the TNFR1-S1PR2-BDNF-TrkB and TNFR1-TrkB-pAKT-NFκB-glutaminase-GAT3 pathways and of GABAergic neurotransmission. The results reported support that LC-EV may be used as a therapeutic tool to improve motor incoordination in patients with MHE.
Collapse
Affiliation(s)
- Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain; Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain; INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain; Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
| | - Gaspar Pérez-Martinez
- Laboratory of Lactic Acid Bacteria and Probiotics, Department of Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
| | - Carmina Montoliu
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain; INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
2
|
Randall CA, Sun D, Randall PA. A novel alcohol+nicotine co-use self-administration procedure reveals sex differences and differential alteration of mesocorticolimbic TLR- and cholinergic-related neuroimmune gene expression in rats. Alcohol 2024; 121:115-131. [PMID: 39197504 DOI: 10.1016/j.alcohol.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Although alcohol and nicotine are two of the most commonly co-used drugs with upwards of 90% of adults with an alcohol use disorder (AUD) in the US also smoking, we don't tend to study alcohol and nicotine use this way. The current studies sought to develop and assess a novel alcohol + nicotine co-access self-administration (SA) model in adult male and female Long-Evans rats. Further, both drugs are implicated in neuroimmune function, albeit in largely opposing ways. Chronic alcohol use increases neuroinflammation via toll-like receptors (TLRs) which in turn increases alcohol intake. By contrast, nicotine produces anti-inflammatory effects, in part, through the monomeric alpha7 receptor (ChRNa7). Following long-term co-access (6 months), rats reliably administered both drugs during daily sessions, however males generally responded for more alcohol and females for nicotine. This was reflected in plasma analysis with translationally relevant intake levels of both alcohol and nicotine, making it invaluable in studying the effects of co-use on behavior and CNS function. Moreover, male rats show sensitivity to alterations in alcohol concentration whereas females show sensitivity to alterations in nicotine concentration. Rats trained on this procedure also developed an anxiogenic phenotype. Finally, we assessed alterations in neuroimmune-related gene expression in the medial prefrontal cortex - prelimbic, (mPFC-PL), nucleus accumbens core (AcbC), and ventral tegmental area (VTA). In the AcbC, where α7 expression was increased and β2 was decreased, markers of pro-inflammatory activity were decreased, despite increases in TLR gene expression suggesting that co-use with nicotine modulates inflammatory state downstream from the receptor level. By contrast, in mPFC-PL where α7 was not increased, both TLRs and downstream proinflammatory markers were increased. Taken together, these findings support that there are brain regional and sex differences with co-use of alcohol + nicotine SA and suggest that targeting nicotinic α7 may represent a novel strategy for treating alcohol + nicotine co-dependence.
Collapse
Affiliation(s)
- Christie A Randall
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University, College of Medicine, Hershey PA, 17033, USA
| | - Dongxiao Sun
- Department of Pharmacology, Pennsylvania State University, College of Medicine, Hershey PA, 17033, USA
| | - Patrick A Randall
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University, College of Medicine, Hershey PA, 17033, USA; Department of Pharmacology, Pennsylvania State University, College of Medicine, Hershey PA, 17033, USA.
| |
Collapse
|
3
|
Pan X, Guo A, Guan K, Chen C, Xu S, Tang Y, Li X, Huang Z. Lactobacillus rhamnosus GG attenuates depression-like behaviour and cognitive deficits in chronic ethanol exposure mice by down-regulating systemic inflammatory factors. Addict Biol 2024; 29:e13445. [PMID: 39585236 PMCID: PMC11587820 DOI: 10.1111/adb.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 11/26/2024]
Abstract
Ethanol can directly or indirectly lead to cognitive and mental disorders. The long-term intake of alcohol can directly affect the distribution of gut microbiota. Lactobacillus rhamnosus GG (LGG) is a natural bacterium isolated from healthy human intestines that has the function of preventing cytokine-induced cell apoptosis and protecting cell barriers. However, the regulatory effect of LGG on cognitive and mental disorders caused by chronic ethanol exposure (CEE) is still unclear. In this study, we established a CEE mouse model through free alcohol consumption and added LGG or antibiotics in the later stages of the model. Sequencing analysis of the 16S rRNA gene showed that CEE resulted in a decrease in the abundance and diversity of mouse gut microbial communities accompanied by alterations in the relative abundance of multiple enterobacterial genera. The use of LGG and antibiotics alleviated the depression-like behaviour and cognitive impairment of CEE-induced mice, reduced expression of inflammatory factors such as interleukin (IL)-6, IL-1β and tumour necrosis factor (TNF)-α in the ileum, serum and brain and increased the expression of synaptophysin (SYN), postsynaptic density protein-95 (PSD-95) and brain-derived neurotrophic factor (BDNF) in the hippocampus. Together, LGG can alleviate depression-like behaviour caused by CEE in mice while also improving cognitive and memory functions through reducing peripheral and nervous system inflammation factors and balancing gut microbiota.
Collapse
Affiliation(s)
- Xiaoyu Pan
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Anqi Guo
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Kaiyu Guan
- Peking University Sixth Hospital, Peking University Institute of Mental HealthBeijingChina
| | - Congcong Chen
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Shengnan Xu
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yali Tang
- Institute of Brain ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| | - Zhengwei Huang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental DisordersWenzhouZhejiangChina
| |
Collapse
|
4
|
Wen W, Li H, Lauffer M, Hu D, Zhang Z, Lin H, Wang Y, Leidinger M, Luo J. Sex-specific effects of alcohol on neurobehavioral performance and endoplasmic reticulum stress: an analysis using neuron-specific MANF deficient mice. Front Pharmacol 2024; 15:1407576. [PMID: 39130640 PMCID: PMC11310019 DOI: 10.3389/fphar.2024.1407576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Excessive alcohol exposure can cause neurobehavioral deficits and structural alterations in the brain. Emerging research evidence suggests that endoplasmic reticulum (ER) stress plays an important role in alcohol-induced neurotoxicity. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER stress inducible protein and is responsible to maintain ER homeostasis. MANF is highly expressed in both the developing and mature brain. We have previously shown that MANF deficiency exacerbated alcohol induced neurodegeneration and ER stress in the developing brain. However, little is known regarding the role of MANF in alcohol induced neuronal damage in the adult brain. In this study, we used a neuron-specific MANF knockout (KO) mouse model to investigate the effect of MANF deficiency on acute binge alcohol exposure-induced neurobehavioral deficits and ER stress. Adult male and female MANF KO mice and littermate controls received daily alcohol gavage (5 g/kg) for 10 days and then subjected to a battery of neurobehavioral tests including rotarods, balance beam, DigiGait, open field, elevated plus maze, Barnes maze, and three-chamber sociability task. Female MANF KO animals were more susceptible to alcohol-induced body weight loss. Alcohol exposure did not affect motor function, however female but not male MANF KO mice exhibited an increased locomotor activity in open field test. Learning and memory was not significantly impaired, but it was altered by MANF deficiency in females while it was affected by alcohol treatment in males. Both alcohol-exposed male and female MANF KO mice displayed increased sociability. Alcohol induced the expression of ER chaperones GRP78 and GRP94 and altered the levels of several unfolded protein response (UPR) and neuroinflammation markers in MANF KO mice in a sex-specific manner. The expression of MANF interacting proteins neuroplastin, PDIA1, and PDIA6 was increased in MANF KO mice, and was further induced by alcohol. In conclusion, alcohol exposure and neuronal MANF deficiency interacted to alter neurobehavioral outcomes, ER homeostasis and neuroinflammation in a sex-specific manner.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Marisol Lauffer
- Neural Circuits and Behavior Core, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Di Hu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zuohui Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Hong Lin
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yongchao Wang
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mariah Leidinger
- Comparative Pathology Laboratory, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
5
|
Gallardo J, Berríos-Cárcamo P, Ezquer F. Mesenchymal stem cells as a promising therapy for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:179-211. [PMID: 39523054 DOI: 10.1016/bs.irn.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alcohol Use Disorder (AUD) is a highly prevalent medical condition characterized by impaired control over alcohol consumption, despite negative consequences on the individual's daily life and health. There is increasing evidence suggesting that chronic alcohol intake, like other addictive drugs, induces neuroinflammation and oxidative stress, disrupting glutamate homeostasis in the main brain areas related to drug addiction. This review explores the potential application of mesenchymal stem cells (MSCs)-based therapy for the treatment of AUD. MSCs secrete a broad array of anti-inflammatory and antioxidant molecules, thus, the administration of MSCs, or their secretome, could reduce neuroinflammation and oxidative stress in the brain. These effects correlate with an increase in the expression of the main glutamate transporter, GLT1, which, through the normalization of the extracellular glutamate levels, could mediate the inhibitory effect of MSCs' secretome on chronic alcohol consumption, thus highlighting GLT1 as a central target to reduce chronic alcohol consumption.
Collapse
Affiliation(s)
- Javiera Gallardo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Pablo Berríos-Cárcamo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile; Research Center for the Development of Novel Therapeutics Alternatives for Alcohol Use Disorders, Santiago, Chile.
| |
Collapse
|
6
|
Morrow AL, McFarland MH, O'Buckley TK, Robinson DL. Emerging evidence for pregnane steroid therapeutics for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:59-96. [PMID: 39523063 DOI: 10.1016/bs.irn.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Many lines of research have suggested that the neuroactive pregnane steroids, including pregnenolone, progesterone, and allopregnanolone ([3α,5α]-3-hydroxypregnan-20-one, 3α,5α-THP), have therapeutic potential for treatment of alcohol use disorders (AUDs). In this chapter, we systematically address the preclinical and clinical evidence that supports this approach for AUD treatment, describe the underlying neurobiology of AUDs that are targeted by these treatments, and delineate how pregnane steroids may address various components of the disease. This review updates the theoretical framework for understanding how endogenous steroids that modulate the effects of alcohol, stress, excitatory/inhibitory and dopamine transmission, and the innate immune system appear to play a key role in the prevention and mitigation of AUDs. We further discuss newly discovered limitations of pregnane steroid therapies as well as the challenges that are inherent to development of endogenous compounds for therapeutics. We argue that overcoming these challenges presents the opportunity to help millions who suffer from AUDs across the world.
Collapse
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States.
| | - Minna H McFarland
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Donita L Robinson
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Trang KB, Chesi A, Toikumo S, Pippin JA, Pahl MC, O’Brien JM, Amundadottir LT, Brown KM, Yang W, Welles J, Santoleri D, Titchenell PM, Seale P, Zemel BS, Wagley Y, Hankenson KD, Kaestner KH, Anderson SA, Kayser MS, Wells AD, Kranzler HR, Kember RL, Grant SF. Shared and unique 3D genomic features of substance use disorders across multiple cell types. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.18.24310649. [PMID: 39072016 PMCID: PMC11275669 DOI: 10.1101/2024.07.18.24310649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Recent genome-wide association studies (GWAS) have revealed shared genetic components among alcohol, opioid, tobacco and cannabis use disorders. However, the extent of the underlying shared causal variants and effector genes, along with their cellular context, remain unclear. We leveraged our existing 3D genomic datasets comprising high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq and RNA-seq across >50 diverse human cell types to focus on genomic regions that coincide with GWAS loci. Using stratified LD regression, we determined the proportion of genomewide SNP heritability attributable to the features assayed across our cell types by integrating recent GWAS summary statistics for the relevant traits: alcohol use disorder (AUD), tobacco use disorder (TUD), opioid use disorder (OUD) and cannabis use disorder (CanUD). Statistically significant enrichments (P<0.05) were observed in 14 specific cell types, with heritability reaching 9.2-fold for iPSC-derived cortical neurons and neural progenitors, confirming that they are crucial cell types for further functional exploration. Additionally, several pancreatic cell types, notably pancreatic beta cells, showed enrichment for TUD, with heritability enrichments up to 4.8-fold, suggesting genomic overlap with metabolic processes. Further investigation revealed significant positive genetic correlations between T2D with both TUD and CanUD (FDR<0.05) and a significant negative genetic correlation with AUD. Interestingly, after partitioning the heritability for each cell type's cis-regulatory elements, the correlation between T2D and TUD for pancreatic beta cells was greater (r=0.2) than the global genetic correlation value. Our study provides new genomic insights into substance use disorders and implicates cell types where functional follow-up studies could reveal causal variant-gene mechanisms underpinning these disorders.
Collapse
Affiliation(s)
- Khanh B. Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joan M. O’Brien
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Disease, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M. Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wenli Yang
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaclyn Welles
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dominic Santoleri
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Babette S. Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yadav Wagley
- Department of Orthopedic Surgery, University of Michigan Medical School Ann Arbor, MI, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School Ann Arbor, MI, USA
| | - Klaus H. Kaestner
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry R. Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel L. Kember
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
8
|
Heilig M, Witkiewitz K, Ray LA, Leggio L. Novel medications for problematic alcohol use. J Clin Invest 2024; 134:e172889. [PMID: 38828724 PMCID: PMC11142745 DOI: 10.1172/jci172889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Alcohol-related harm, a major cause of disease burden globally, affects people along a spectrum of use. When a harmful pattern of drinking is present in the absence of significant behavioral pathology, low-intensity brief interventions that provide information about health consequences of continued use provide large health benefits. At the other end of the spectrum, profound behavioral pathology, including continued use despite knowledge of potentially fatal consequences, warrants a medical diagnosis, and treatment is strongly indicated. Available behavioral and pharmacological treatments are supported by scientific evidence but are vastly underutilized. Discovery of additional medications, with a favorable balance of efficacy versus safety and tolerability can improve clinical uptake of treatment, allow personalized treatment, and improve outcomes. Here, we delineate the clinical conditions when pharmacotherapy should be considered in relation to the main diagnostic systems in use and discuss clinical endpoints that represent meaningful clinical benefits. We then review specific developments in three categories of targets that show promise for expanding the treatment toolkit. GPCRs remain the largest category of successful drug targets across contemporary medicine, and several GPCR targets are currently pursued for alcohol-related indications. Endocrine systems are another established category, and several promising targets have emerged for alcohol indications. Finally, immune modulators have revolutionized treatment of multiple medical conditions, and they may also hold potential to produce benefits in patients with alcohol problems.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University, and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Katie Witkiewitz
- Department of Psychology and Center on Alcohol, Substance Use and Addictions, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lara A. Ray
- Department of Psychology, UCLA, Los Angeles, California, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| |
Collapse
|
9
|
Duffus BLM, Haggerty DL, Doud EH, Mosley AL, Yamamoto BK, Atwood BK. The impact of abstinence from chronic alcohol consumption on the mouse striatal proteome: sex and subregion-specific differences. Front Pharmacol 2024; 15:1405446. [PMID: 38887549 PMCID: PMC11180734 DOI: 10.3389/fphar.2024.1405446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Alcohol misuse is the third leading preventable cause of death in the world. The World Health Organization currently estimates that 1 in 20 deaths are directly alcohol related. One of the ways in which consuming excessive levels of alcohol can both directly and indirectly affect human mortality and morbidity, is through chronic inflammation. Recently, studies have suggested a link between increased alcohol use and the incidence of neuroinflammatory-related diseases. However, the mechanism in which alcohol potentially influences neuroinflammatory processes is still being uncovered. We implemented an unbiased proteomics exploration of alcohol-induced changes in the striatum, with a specific emphasis on proteins related to inflammation. The striatum is a brain region that is critically involved with the progression of alcohol use disorder. Using mass spectrometry following voluntary alcohol self-administration in mice, we show that distinct protein abundances and signaling pathways in different subregions of the striatum are disrupted by chronic exposure to alcohol compared to water drinking control mice. Further, in mice that were allowed to experience abstinence from alcohol compared to mice that were non-abstinent, the overall proteome and signaling pathways showed additional differences, suggesting that the responses evoked by chronic alcohol exposure are dependent on alcohol use history. To our surprise we did not find that chronic alcohol drinking or abstinence altered protein abundance or pathways associated with inflammation, but rather affected proteins and pathways associated with neurodegeneration and metabolic, cellular organization, protein translation, and molecular transport processes. These outcomes suggest that in this drinking model, alcohol-induced neuroinflammation in the striatum is not a primary outcome controlling altered neurobehavioral function, but these changes are rather mediated by altered striatal neuronal structure and cellular health.
Collapse
Affiliation(s)
- Brittnie-lee M. Duffus
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David L. Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | | |
Collapse
|
10
|
Singh N, Nandy SK, Jyoti A, Saxena J, Sharma A, Siddiqui AJ, Sharma L. Protein Kinase C (PKC) in Neurological Health: Implications for Alzheimer's Disease and Chronic Alcohol Consumption. Brain Sci 2024; 14:554. [PMID: 38928554 PMCID: PMC11201589 DOI: 10.3390/brainsci14060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C (PKC) is a diverse enzyme family crucial for cell signalling in various organs. Its dysregulation is linked to numerous diseases, including cancer, cardiovascular disorders, and neurological problems. In the brain, PKC plays pivotal roles in synaptic plasticity, learning, memory, and neuronal survival. Specifically, PKC's involvement in Alzheimer's Disease (AD) pathogenesis is of significant interest. The dysregulation of PKC signalling has been linked to neurological disorders, including AD. This review elucidates PKC's pivotal role in neurological health, particularly its implications in AD pathogenesis and chronic alcohol addiction. AD, characterised by neurodegeneration, implicates PKC dysregulation in synaptic dysfunction and cognitive decline. Conversely, chronic alcohol consumption elicits neural adaptations intertwined with PKC signalling, exacerbating addictive behaviours. By unravelling PKC's involvement in these afflictions, potential therapeutic avenues emerge, offering promise for ameliorating their debilitating effects. This review navigates the complex interplay between PKC, AD pathology, and alcohol addiction, illuminating pathways for future neurotherapeutic interventions.
Collapse
Affiliation(s)
- Nishtha Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Shouvik Kumar Nandy
- School of Pharmacy, Techno India University, Sector-V, Kolkata 700091, West Bengal, India;
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara 391760, Gujarat, India;
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| |
Collapse
|
11
|
Jithoo A, Penny TR, Pham Y, Sutherland AE, Smith MJ, Petraki M, Fahey MC, Jenkin G, Malhotra A, Miller SL, McDonald CA. The Temporal Relationship between Blood-Brain Barrier Integrity and Microglial Response following Neonatal Hypoxia Ischemia. Cells 2024; 13:660. [PMID: 38667275 PMCID: PMC11049639 DOI: 10.3390/cells13080660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Blood-brain barrier (BBB) dysfunction and neuroinflammation are key mechanisms of brain injury. We performed a time-course study following neonatal hypoxia-ischemia (HI) to characterize these events. HI brain injury was induced in postnatal day 10 rats by single carotid artery ligation followed by hypoxia (8% oxygen, 90 min). At 6, 12, 24, and 72 h (h) post-HI, brains were collected to assess neuropathology and BBB dysfunction. A significant breakdown of the BBB was observed in the HI injury group compared to the sham group from 6 h in the cortex and hippocampus (p < 0.001), including a significant increase in albumin extravasation (p < 0.0033) and decrease in basal lamina integrity and tight-junction proteins. There was a decrease in resting microglia (p < 0.0001) transitioning to an intermediate state from as early as 6 h post-HI, with the intermediate microglia peaking at 12 h (p < 0.0001), which significantly correlated to the peak of microbleeds. Neonatal HI insult leads to significant brain injury over the first 72 h that is mediated by BBB disruption within 6 h and a transitioning state of the resident microglia. Key BBB events coincide with the appearance of the intermediate microglial state and this relationship warrants further research and may be a key target for therapeutic intervention.
Collapse
Affiliation(s)
- Arya Jithoo
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Tayla R. Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Amy E. Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Madeleine J. Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Maria Petraki
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
| | - Michael C. Fahey
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia;
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia;
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Courtney A. McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
12
|
Naidu C, Cox AJ, Lewohl JM. Influence of sex and liver cirrhosis on the expression of miR-146a-5p and its target genes, IRAK1 and TRAF6. Brain Res 2024; 1827:148763. [PMID: 38215866 DOI: 10.1016/j.brainres.2024.148763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Long-term alcohol misuse triggers cellular adaptions in susceptible regions of the human brain, resulting in neurodegeneration, neuroinflammation and altered gene expression. Previous studies have identified ∼35 miRNAs, including miR-146a-5p, which are up-regulated in the frontal cortex of males with alcohol use disorder (AUD), but the influence of liver cirrhosis and sex is unknown. The expression of miR-146a-5p, IRAK1, and TRAF6 was measured in the prefrontal cortex of controls and individuals with AUD with and without cirrhosis of the liver. Further, individuals were genotyped for two SNPs, rs2910164 and rs57095329. The expression of miR-146a-5p was significantly different between sexes. In males the expression of miR-146a-5p was increased in individuals with AUD with and without liver cirrhosis compared with controls. In females miR-146a-5p expression was significantly lower in individuals with AUD compared with both controls and those with AUD and cirrhosis, suggesting that both the severity of alcohol misuse and the sex of the individual influences the expression of miR-146a-5p. The expression of TRAF6 was significantly lower in individuals with uncomplicated AUD compared with those with AUD and cirrhosis. The expression of IRAK1 did not differ between groups or sexes. There was no influence of genotype on expression. Increased expression of miR-146a-5p did not correlate with decreased IRAK1 or TRAF6 expression suggesting a loss of regulatory control of the TLR4 pathway. Understanding sex-specific differences in the regulation of gene expression in AUD is key to determine which inflammatory pathways could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Carol Naidu
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, Brisbane, Australia
| | - Amanda J Cox
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, Brisbane, Australia
| | - Joanne M Lewohl
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast Campus, Southport, Brisbane, Australia.
| |
Collapse
|
13
|
Grodin EN. Neuroimmune modulators as novel pharmacotherapies for substance use disorders. Brain Behav Immun Health 2024; 36:100744. [PMID: 38435721 PMCID: PMC10906159 DOI: 10.1016/j.bbih.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
One promising avenue of research is the use of neuroimmune modulators to treat substance use disorders (SUDs). Neuroimmune modulators target the interactions between the nervous system and immune system, which have been found to play a crucial role in the development and maintenance of SUDs. Multiple classes of substances produce alterations to neuroimmune signaling and peripheral immune function, including alcohol, opioids, and psychostimulants Preclinical studies have shown that neuroimmune modulators can reduce drug-seeking behavior and prevent relapse in animal models of SUDs. Additionally, early-phase clinical trials have demonstrated the safety and feasibility of using neuroimmune modulators as a treatment for SUDs in humans. These therapeutics can be used as stand-alone treatments or as adjunctive. This review summarizes the current state of the field and provides future directions with a specific focus on personalized medicine.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Elgazzaz M, Berdasco C, Garai J, Baddoo M, Lu S, Daoud H, Zabaleta J, Mauvais-Jarvis F, Lazartigues E. Maternal Western diet programs cardiometabolic dysfunction and hypothalamic inflammation via epigenetic mechanisms predominantly in the male offspring. Mol Metab 2024; 80:101864. [PMID: 38159883 PMCID: PMC10806294 DOI: 10.1016/j.molmet.2023.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Maternal exposure during pregnancy is a strong determinant of offspring health outcomes. Such exposure induces changes in the offspring epigenome resulting in gene expression and functional changes. In this study, we investigated the effect of maternal Western hypercaloric diet (HCD) programming during the perinatal period on neuronal plasticity and cardiometabolic health in adult offspring. METHODS C57BL/6J dams were fed HCD for 1 month prior to mating with regular diet (RD) sires and kept on the same diet throughout pregnancy and lactation. At weaning, offspring were maintained on either HCD or RD for 3 months resulting in 4 treatment groups that underwent cardiometabolic assessments. DNA and RNA were extracted from the hypothalamus to perform whole genome methylation, mRNA, and miRNA sequencing followed by bioinformatic analyses. RESULTS Maternal programming resulted in male-specific hypertension and hyperglycemia, with both males and females showing increased sympathetic tone to the vasculature. Surprisingly, programmed male offspring fed HCD in adulthood exhibited lower glucose levels, less insulin resistance, and leptin levels compared to non-programmed HCD-fed male mice. Hypothalamic genes involved in inflammation and type 2 diabetes were targeted by differentially expressed miRNA, while genes involved in glial and astrocytic differentiation were differentially methylated in programmed male offspring. These data were supported by our findings of astrogliosis, microgliosis and increased microglial activation in programmed males in the paraventricular nucleus (PVN). Programming induced a protective effect in male mice fed HCD in adulthood, resulting in lower protein levels of hypothalamic TGFβ2, NF-κB2, NF-κBp65, Ser-pIRS1, and GLP1R compared to non-programmed HCD-fed males. Although TGFβ2 was upregulated in male mice exposed to HCD pre- or post-natally, only blockade of the brain TGFβ receptor in RD-HCD mice improved glucose tolerance and a trend to weight loss. CONCLUSIONS Our study shows that maternal HCD programs neuronal plasticity in the offspring and results in male-specific hypertension and hyperglycemia associated with hypothalamic inflammation in mechanisms and pathways distinct from post-natal HCD exposure. Together, our data unmask a compensatory role of HCD programming, likely via priming of metabolic pathways to handle excess nutrients in a more efficient way.
Collapse
Affiliation(s)
- Mona Elgazzaz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Clara Berdasco
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - Jone Garai
- Department of Interdisciplinary Oncology and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine/Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shiping Lu
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hisham Daoud
- School of Computer and Cyber Sciences, Augusta University, Augusta, GA 30901, USA
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Franck Mauvais-Jarvis
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Department of Medicine, Section of Endocrinology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
15
|
Secci ME, Kelley LK, Avegno EM, Holmgren EB, Chen L, Rein SL, Engi SA, Quinlan V, Wilson L, Gilpin NW, Wills TA. Adolescent Alcohol Exposure Produces Sex-Specific Long-term Hyperalgesia via Changes in Central Amygdala Circuit Function. Biol Psychiatry 2024; 95:207-219. [PMID: 37717844 PMCID: PMC10866691 DOI: 10.1016/j.biopsych.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Exposure to alcohol during adolescence produces many effects that last well into adulthood. Acute alcohol use is analgesic, and people living with pain report drinking alcohol to reduce pain, but chronic alcohol use produces increases in pain sensitivity. METHODS We tested the acute and lasting effects of chronic adolescent intermittent ethanol (AIE) exposure on pain-related behavioral and brain changes in male and female rats. We also tested the long-term effects of AIE on synaptic transmission in midbrain (ventrolateral periaqueductal gray [vlPAG])-projecting central amygdala (CeA) neurons using whole-cell electrophysiology. Finally, we used circuit-based approaches (DREADDs [designer receptors exclusively activated by designer drugs]) to test the role of vlPAG-projecting CeA neurons in mediating AIE effects on pain-related outcomes. RESULTS AIE produced long-lasting hyperalgesia in male, but not female, rats. Similarly, AIE led to a reduction in synaptic strength of medial CeA cells that project to the vlPAG in male, but not female, rats. Challenge with an acute painful stimulus (i.e., formalin) in adulthood produced expected increases in pain reactivity, and this effect was exaggerated in male rats with a history of AIE. Finally, CeA-vlPAG circuit activation rescued AIE-induced hypersensitivity in male rats. CONCLUSIONS Our findings are the first, to our knowledge, to show long-lasting sex-dependent effects of adolescent alcohol exposure on pain-related behaviors and brain circuits in adult animals. This work has implications for understanding the long-term effects of underage alcohol drinking on pain-related behaviors in humans.
Collapse
Affiliation(s)
- Maria E Secci
- Department of Physiology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana
| | - Leslie K Kelley
- Department of Physiology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana
| | - Elizabeth M Avegno
- Department of Physiology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana
| | - Eleanor B Holmgren
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana
| | - Lily Chen
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana
| | - Sydney L Rein
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana
| | - Sheila A Engi
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana
| | - Virginia Quinlan
- Department of Physiology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana
| | - Lisa Wilson
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana; Veterans Affairs Southeast Louisiana Healthcare System, New Orleans, Louisiana
| | - Tiffany A Wills
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
16
|
Getachew B, Hauser SR, Bennani S, El Kouhen N, Sari Y, Tizabi Y. Adolescent alcohol drinking interaction with the gut microbiome: implications for adult alcohol use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:11881. [PMID: 38322648 PMCID: PMC10846679 DOI: 10.3389/adar.2024.11881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Reciprocal communication between the gut microbiota and the brain, commonly referred to as the "gut-brain-axis" is crucial in maintaining overall physiological homeostasis. Gut microbiota development and brain maturation (neuronal connectivity and plasticity) appear to be synchronized and to follow the same timeline during childhood (immature), adolescence (expansion) and adulthood (completion). It is important to note that the mesolimbic reward circuitry develops early on, whereas the maturation of the inhibitory frontal cortical neurons is delayed. This imbalance can lead to increased acquirement of reward-seeking and risk-taking behaviors during adolescence, and consequently eventuate in heightened risk for substance abuse. Thus, there is high initiation of alcohol drinking in early adolescence that significantly increases the risk of alcohol use disorder (AUD) in adulthood. The underlying causes for heightened AUD risk are not well understood. It is suggested that alcohol-associated gut microbiota impairment during adolescence plays a key role in AUD neurodevelopment in adulthood. Furthermore, alcohol-induced dysregulation of microglia, either directly or indirectly through interaction with gut microbiota, may be a critical neuroinflammatory pathway leading to neurodevelopmental impairments and AUD. In this review article, we highlight the influence of adolescent alcohol drinking on gut microbiota, gut-brain axis and microglia, and eventual manifestation of AUD. Furthermore, novel therapeutic interventions via gut microbiota manipulations are discussed briefly.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
17
|
Darbinian N, Merabova N, Tatevosian G, Morrison M, Darbinyan A, Zhao H, Goetzl L, Selzer ME. Biomarkers of Affective Dysregulation Associated with In Utero Exposure to EtOH. Cells 2023; 13:2. [PMID: 38201206 PMCID: PMC10778368 DOI: 10.3390/cells13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Children with fetal alcohol spectrum disorders (FASD) exhibit behavioral and affective dysregulation, including hyperactivity and depression. The mechanisms are not known, but they could conceivably be due to postnatal social or environmental factors. However, we postulate that, more likely, the affective dysregulation is associated with the effects of EtOH exposure on the development of fetal serotonergic (5-HT) and/or dopaminergic (DA) pathways, i.e., pathways that in postnatal life are believed to regulate mood. Many women who use alcohol (ethanol, EtOH) during pregnancy suffer from depression and take selective serotonin reuptake inhibitors (SSRIs), which might influence these monoaminergic pathways in the fetus. Alternatively, monoaminergic pathway abnormalities might reflect a direct effect of EtOH on the fetal brain. To distinguish between these possibilities, we measured their expressions in fetal brains and in fetal brain-derived exosomes (FB-Es) isolated from the mothers' blood. We hypothesized that maternal use of EtOH and/or SSRIs during pregnancy would be associated with impaired fetal neural development, detectable as abnormal levels of monoaminergic and apoptotic biomarkers in FB-Es. METHODS Fetal brain tissues and maternal blood were collected at 9-23 weeks of pregnancy. EtOH groups were compared with unexposed controls matched for gestational age (GA). The expression of 84 genes associated with the DA and 5-HT pathways was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) on microarrays. FB-Es also were assayed for serotonin transporter protein (SERT) and brain-derived neurotrophic factor (BDNF) by enzyme-linked immunosorbent assay (ELISA). RESULTS Six EtOH-exposed human fetal brain samples were compared to SSRI- or polydrug-exposed samples and to unexposed controls. EtOH exposure was associated with significant upregulation of DA receptor D3 and 5-HT receptor HTR2C, while HTR3A was downregulated. Monoamine oxidase A (MAOA), MAOB, the serine/threonine kinase AKT3, and caspase-3 were upregulated, while mitogen-activated protein kinase 1 (MAPK1) and AKT2 were downregulated. ETOH was associated with significant upregulation of the DA transporter gene, while SERT was downregulated. There were significant correlations between EtOH exposure and (a) caspase-3 activation, (b) reduced SERT protein levels, and (c) reduced BDNF levels. SSRI exposure independently increased caspase-3 activity and downregulated SERT and BDNF. Early exposure to EtOH and SSRI together was associated synergistically with a significant upregulation of caspase-3 and a significant downregulation of SERT and BDNF. Reduced SERT and BDNF levels were strongly correlated with a reduction in eye diameter, a somatic manifestation of FASD. CONCLUSIONS Maternal use of EtOH and SSRI during pregnancy each was associated with changes in fetal brain monoamine pathways, consistent with potential mechanisms for the affective dysregulation associated with FASD.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
| | - Mary Morrison
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Psychiatry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Michael Edgar Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.M.); (G.T.)
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
18
|
Renu K, Myakala H, Chakraborty R, Bhattacharya S, Abuwani A, Lokhandwala M, Vellingiri B, Gopalakrishnan AV. Molecular mechanisms of alcohol's effects on the human body: A review and update. J Biochem Mol Toxicol 2023; 37:e23502. [PMID: 37578200 DOI: 10.1002/jbt.23502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Alcohol consumption has been linked to numerous negative health outcomes although it has some beneficial effects on moderate dosages, the most severe of which being alcohol-induced hepatitis. The number of people dying from this liver illness has been shown to climb steadily over time, and its prevalence has been increasing. Researchers have found that alcohol consumption primarily affects the brain, leading to a wide range of neurological and psychological diseases. High-alcohol-consumption addicts not only experienced seizures, but also ataxia, aggression, social anxiety, and variceal hemorrhage that ultimately resulted in death, ascites, and schizophrenia. Drugs treating this liver condition are limited and can cause serious side effects like depression. Serine-threonine kinases, cAMP protein kinases, protein kinase C, ERK, RACK 1, Homer 2, and more have all been observed to have their signaling pathways disrupted by alcohol, and alcohol has also been linked to epigenetic changes. In addition, alcohol consumption induces dysbiosis by changing the composition of the microbiome found in the gastrointestinal tract. Although more studies are needed, those that have been done suggest that probiotics aid in keeping the various microbiota concentrations stable. It has been argued that reducing one's alcohol intake may seem less harmful because excessive drinking is a lifestyle disorder.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sharmishtha Bhattacharya
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Asmita Abuwani
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Mariyam Lokhandwala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Balachandar Vellingiri
- Department of Zoology, Stem Cell and Regenerative Medicine/Translational Research, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
19
|
Wooden JI, Peacoe LE, Anasooya Shaji C, Melbourne JK, Chandler CM, Bardo MT, Nixon K. Adolescent Intermittent Ethanol Drives Modest Neuroinflammation but Does Not Escalate Drinking in Male Rats. Cells 2023; 12:2572. [PMID: 37947650 PMCID: PMC10649200 DOI: 10.3390/cells12212572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
During adolescence, the brain is highly susceptible to alcohol-induced damage and subsequent neuroimmune responses, effects which may enhance development of an alcohol use disorder (AUD). Neuroimmune reactions are implicated in adolescent alcohol exposure escalating adulthood drinking. Therefore, we investigated whether intermittent alcohol exposure in male, adolescent rats (AIE) escalated adult drinking via two-bottle choice (2BC). We also examined the influence of housing environment across three groups: standard (group-housed with enrichment during 2BC), impoverished (group-housed without enrichment during 2BC), or isolation (single-housed without bedding or enrichment throughout). In the standard group immediately after AIE/saline and after 2BC, we also examined the expression of microglial marker, Iba1, reactive astrocyte marker, vimentin, and neuronal cell death dye, FluoroJade B (FJB). We did not observe an escalation of adulthood drinking following AIE, regardless of housing condition. Further, only a modest neuroimmune response occurred after AIE in the standard group: no significant microglial reactivity or neuronal cell death was apparent using this model, although some astrocyte reactivity was detected in adolescence following AIE that resolved by adulthood. These data suggest that the lack of neuroimmune response in adolescence in this model may underlie the lack of escalation of alcohol drinking, which could not be modified through isolation stress.
Collapse
Affiliation(s)
- Jessica I. Wooden
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren E. Peacoe
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chinchusha Anasooya Shaji
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer K. Melbourne
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Cassie M. Chandler
- Department of Psychology, University of Kentucky, Lexington, KY 40506, USA (M.T.B.)
| | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40506, USA (M.T.B.)
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
20
|
Canepa E, Parodi-Rullan R, Vazquez-Torres R, Gamallo-Lana B, Guzman-Hernandez R, Lemon NL, Angiulli F, Debure L, Ilies MA, Østergaard L, Wisniewski T, Gutiérrez-Jiménez E, Mar AC, Fossati S. FDA-approved carbonic anhydrase inhibitors reduce amyloid β pathology and improve cognition, by ameliorating cerebrovascular health and glial fitness. Alzheimers Dement 2023; 19:5048-5073. [PMID: 37186121 PMCID: PMC10600328 DOI: 10.1002/alz.13063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Cerebrovascular pathology is an early and causal hallmark of Alzheimer's disease (AD), in need of effective therapies. METHODS Based on the success of our previous in vitro studies, we tested for the first time in a model of AD and cerebral amyloid angiopathy (CAA), the carbonic anhydrase inhibitors (CAIs) methazolamide and acetazolamide, Food and Drug Administration-approved against glaucoma and high-altitude sickness. RESULTS Both CAIs reduced cerebral, vascular, and glial amyloid beta (Aβ) accumulation and caspase activation, diminished gliosis, and ameliorated cognition in TgSwDI mice. The CAIs also improved microvascular fitness and induced protective glial pro-clearance pathways, resulting in the reduction of Aβ deposition. Notably, we unveiled that the mitochondrial carbonic anhydrase-VB (CA-VB) is upregulated in TgSwDI brains, CAA and AD+CAA human subjects, and in endothelial cells upon Aβ treatment. Strikingly, CA-VB silencing specifically reduces Aβ-mediated endothelial apoptosis. DISCUSSION This work substantiates the potential application of CAIs in clinical trials for AD and CAA.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Rebecca Parodi-Rullan
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Rafael Vazquez-Torres
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Begona Gamallo-Lana
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Roberto Guzman-Hernandez
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nicole L. Lemon
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Federica Angiulli
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Ludovic Debure
- Department on Neurology, Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Thomas Wisniewski
- Department on Neurology, Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Eugenio Gutiérrez-Jiménez
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Adam C. Mar
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
21
|
Diaz LA, Winder GS, Leggio L, Bajaj JS, Bataller R, Arab JP. New insights into the molecular basis of alcohol abstinence and relapse in alcohol-associated liver disease. Hepatology 2023:01515467-990000000-00605. [PMID: 37862466 DOI: 10.1097/hep.0000000000000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Alcohol use disorder remains a significant public health concern, affecting around 5% of adults worldwide. Novel pathways of damage have been described during the last years, providing insight into the mechanism of injury due to alcohol misuse beyond the direct effect of ethanol byproducts on the liver parenchyma and neurobehavioral mechanisms. Thus, the gut-liver-brain axis and immune system involvement could be therapeutic targets for alcohol use disorder. In particular, changes in gut microbiota composition and function, and bile acid homeostasis, have been shown with alcohol consumption and cessation. Alcohol can also directly disrupt intestinal and blood-brain barriers. Activation of the immune system can be triggered by intestinal barrier dysfunction and translocation of bacteria, pathogen-associated molecular patterns (such as lipopolysaccharide), cytokines, and damage-associated molecular patterns. These factors, in turn, promote liver and brain inflammation and the progression of liver fibrosis. Other involved mechanisms include oxidative stress, apoptosis, autophagy, and the release of extracellular vesicles and miRNA from hepatocytes. Potential therapeutic targets include gut microbiota (probiotics and fecal microbiota transplantation), neuroinflammatory pathways, as well as neuroendocrine pathways, for example, the ghrelin system (ghrelin receptor blockade), incretin mimetics (glucagon-like peptide-1 analogs), and the mineralocorticoid receptor system (spironolactone). In addition, support with psychological and behavioral treatments is essential to address the multiple dimensions of alcohol use disorder. In the future, a personalized approach considering these novel targets can contribute to significantly decreasing the alcohol-associated burden of disease.
Collapse
Affiliation(s)
- Luis Antonio Diaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institutes of Health, NIDA and NIAAA, Baltimore, Maryland, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Health Care System, Richmond, Virginia, USA
| | - Ramon Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Medicine, Division of Gastroenterology, Schulich School of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
22
|
Steinfeld MR, Torregrossa MM. Consequences of adolescent drug use. Transl Psychiatry 2023; 13:313. [PMID: 37802983 PMCID: PMC10558564 DOI: 10.1038/s41398-023-02590-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 10/08/2023] Open
Abstract
Substance use in adolescence is a known risk factor for the development of neuropsychiatric and substance use disorders in adulthood. This is in part due to the fact that critical aspects of brain development occur during adolescence, which can be altered by drug use. Despite concerted efforts to educate youth about the potential negative consequences of substance use, initiation remains common amongst adolescents world-wide. Additionally, though there has been substantial research on the topic, many questions remain about the predictors and the consequences of adolescent drug use. In the following review, we will highlight some of the most recent literature on the neurobiological and behavioral effects of adolescent drug use in rodents, non-human primates, and humans, with a specific focus on alcohol, cannabis, nicotine, and the interactions between these substances. Overall, consumption of these substances during adolescence can produce long-lasting changes across a variety of structures and networks which can have enduring effects on behavior, emotion, and cognition.
Collapse
Affiliation(s)
- Michael R Steinfeld
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
23
|
Yao X, Zhao J, Yuan Y, Wang C, Yu Z, Huang Z, Chen C, Yang C, Ren J, Ma Y, Rong Y, Huang Y, Ming Y, Liu L. Prolonged Early Exposure to a High-Fat Diet Augments the Adverse Effects on Neurobehavior and Hippocampal Neuroplasticity: Involvement of Microglial Insulin Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1568-1586. [PMID: 37356575 DOI: 10.1016/j.ajpath.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
High-fat diet (HFD) consumption may contribute to the high prevalence of cognitive-emotional issues in modern society. Mice fed a HFD for a prolonged period develop more severe neurobehavioral disturbances when first exposed to a HFD in the juvenile period than in adulthood, suggesting an initial age-related difference in the detrimental effects of long-term HFD feeding. However, the mechanism underlying this difference remains unclear. Here, male C57BL/6J mice initially aged 4 (IA4W) or 8 (IA8W) weeks were fed a control diet (CD) or HFD for 6 months and then subjected to metabolic, neurobehavioral, and histomorphological examinations. Although the detrimental effects of long-term HFD feeding on metabolism and neurobehavior were observed in mice of both ages, IA4W-HFD mice showed significant cognitive inflexibility accompanied by significantly greater levels of anxiety-like behavior than age-matched controls. Hippocampal neuroplasticity and microglial phenotype were altered by HFD feeding, whereas significant morphological alterations were more frequently observed in IA4W-HFD mice than in IA8W-HFD mice. Additionally, significantly increased hippocampal microglial engulfment of postsynaptic proteins and elevated phospho-insulin-receptor levels were observed in IA4W-HFD, but not in IA8W-HFD, mice. These findings suggest that aberrant microglia-related histomorphological changes in the hippocampus underlie the exacerbated detrimental neurobehavioral effects of prolonged early HFD exposure and indicate that enhanced insulin signaling might drive microglial dysfunction after prolonged early HFD exposure.
Collapse
Affiliation(s)
- Xiuting Yao
- Medical College, Southeast University, Nanjing, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yang Yuan
- The Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing, China
| | - Zhehao Yu
- Medical College, Southeast University, Nanjing, China
| | - Zhihui Huang
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chen Chen
- Medical College, Southeast University, Nanjing, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing, China
| | - Jiayi Ren
- Medical College, Southeast University, Nanjing, China
| | - Yu Ma
- Medical College, Southeast University, Nanjing, China
| | - Yi Rong
- Medical College, Southeast University, Nanjing, China
| | - Yi Huang
- Medical College, Southeast University, Nanjing, China
| | - Yue Ming
- Medical College, Southeast University, Nanjing, China
| | - Lijie Liu
- Department of Physiology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
24
|
Ibáñez C, Acuña T, Quintanilla ME, Pérez-Reytor D, Morales P, Karahanian E. Fenofibrate Decreases Ethanol-Induced Neuroinflammation and Oxidative Stress and Reduces Alcohol Relapse in Rats by a PPAR-α-Dependent Mechanism. Antioxidants (Basel) 2023; 12:1758. [PMID: 37760061 PMCID: PMC10525752 DOI: 10.3390/antiox12091758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
High ethanol consumption triggers neuroinflammation, implicated in sustaining chronic alcohol use. This inflammation boosts glutamate, prompting dopamine release in reward centers, driving prolonged drinking and relapse. Fibrate drugs, activating peroxisome proliferator-activated receptor alpha (PPAR-α), counteract neuroinflammation in other contexts, prompting investigation into their impact on ethanol-induced inflammation. Here, we studied, in UChB drinker rats, whether the administration of fenofibrate in the withdrawal stage after chronic ethanol consumption reduces voluntary intake when alcohol is offered again to the animals (relapse-type drinking). Furthermore, we determined if fenofibrate was able to decrease ethanol-induced neuroinflammation and oxidative stress in the brain. Animals treated with fenofibrate decreased alcohol consumption by 80% during post-abstinence relapse. Furthermore, fenofibrate decreased the expression of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukins IL-1β and IL-6, and of an oxidative stress-induced gene (heme oxygenase-1), in the hippocampus, nucleus accumbens, and prefrontal cortex. Animals treated with fenofibrate showed an increase M2-type microglia (with anti-inflammatory proprieties) and a decrease in phagocytic microglia in the hippocampus. A PPAR-α antagonist (GW6471) abrogated the effects of fenofibrate, indicating that they are dependent on PPAR-α activation. These findings highlight the potential of fenofibrate, an FDA-approved dyslipidemia medication, as a supplementary approach to alleviating relapse severity in individuals with alcohol use disorder (AUD) during withdrawal.
Collapse
Affiliation(s)
- Cristina Ibáñez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.I.); (D.P.-R.)
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
| | - Tirso Acuña
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - María Elena Quintanilla
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Diliana Pérez-Reytor
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.I.); (D.P.-R.)
| | - Paola Morales
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile; (C.I.); (D.P.-R.)
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8910060, Chile;
| |
Collapse
|
25
|
Holloway KN, Douglas JC, Rafferty TM, Kane CJM, Drew PD. Ethanol Induces Neuroinflammation in a Chronic Plus Binge Mouse Model of Alcohol Use Disorder via TLR4 and MyD88-Dependent Signaling. Cells 2023; 12:2109. [PMID: 37626919 PMCID: PMC10453365 DOI: 10.3390/cells12162109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Ethanol induces neuroinflammation, which is believed to contribute to the pathogenesis of alcohol use disorder (AUD). Toll-like receptors (TLRs) are a group of pattern recognition receptors (PRRs) expressed on both immune cells, including microglia and astrocytes, and non-immune cells in the central nervous system (CNS). Studies have shown that alcohol activates TLR4 signaling, resulting in the induction of pro-inflammatory cytokines and chemokines in the CNS. However, the effect of alcohol on signaling pathways downstream of TLR4, such as MyD88 and TRIF (TICAM) signaling, has not been evaluated extensively. In the current study, we treated male wild-type, TLR4-, MyD88-, and TRIF-deficient mice using a chronic plus binge mouse model of AUD. Evaluation of mRNA expression by qRT-PCR revealed that ethanol increased IL-1β, TNF-α, CCL2, COX2, FosB, and JunB in the cerebellum in wild-type and TRIF-deficient mice, while ethanol generally did not increase the expression of these molecules in TLR4- and MyD88-deficient mice. Furthermore, IRF3, IRF7, and IFN-β1, which are associated with the TRIF-dependent signaling cascade, were largely unaffected by alcohol. Collectively, these results suggest that the TLR4 and downstream MyD88-dependent signaling pathways are essential in ethanol-induced neuroinflammation in this mouse model of AUD.
Collapse
Affiliation(s)
- Kalee N. Holloway
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - James C. Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tonya M. Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Cynthia J. M. Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Paul D. Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
26
|
Koob GF, Vendruscolo L. Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction as a Reward Deficit/Stress Surfeit Disorder. Curr Top Behav Neurosci 2023. [PMID: 37421551 DOI: 10.1007/7854_2023_424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Alcohol use disorder (AUD) can be defined by a compulsion to seek and take alcohol, the loss of control in limiting intake, and the emergence of a negative emotional state when access to alcohol is prevented. Alcohol use disorder impacts multiple motivational mechanisms and can be conceptualized as a disorder that includes a progression from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). Compulsive drug seeking that is associated with AUD can be derived from multiple neuroadaptations, but the thesis argued herein is that a key component involves the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from the dysregulation of specific neurochemical elements that are involved in reward and stress within basal forebrain structures that involve the ventral striatum and extended amygdala, respectively. Specific neurochemical elements in these structures include decreases in reward neurotransmission (e.g., decreases in dopamine and opioid peptide function in the ventral striatum) and the recruitment of brain stress systems (e.g., corticotropin-releasing factor [CRF]) in the extended amygdala, which contributes to hyperkatifeia and greater alcohol intake that is associated with dependence. Glucocorticoids and mineralocorticoids may play a role in sensitizing the extended amygdala CRF system. Other components of brain stress systems in the extended amygdala that may contribute to the negative motivational state of withdrawal include norepinephrine in the bed nucleus of the stria terminalis, dynorphin in the nucleus accumbens, hypocretin and vasopressin in the central nucleus of the amygdala, and neuroimmune modulation. Decreases in the activity of neuropeptide Y, nociception, endocannabinoids, and oxytocin in the extended amygdala may also contribute to hyperkatifeia that is associated with alcohol withdrawal. Such dysregulation of emotional processing may also significantly contribute to pain that is associated with alcohol withdrawal and negative urgency (i.e., impulsivity that is associated with hyperkatifeia during hyperkatifeia). Thus, an overactive brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of AUD. The combination of the loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement that at least partially drives the compulsivity of AUD.
Collapse
Affiliation(s)
- George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Leandro Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
27
|
Banks WA, Hansen KM, Erickson MA, Crews FT. High-mobility group box 1 (HMGB1) crosses the BBB bidirectionally. Brain Behav Immun 2023; 111:386-394. [PMID: 37146655 DOI: 10.1016/j.bbi.2023.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a ubiquitous protein that regulates transcription in the nucleus, and is an endogenous damage-associated molecular pattern molecule that activates the innate immune system. HMGB1 activates the TLR4 and RAGE recepto, inducing downstream signals reminiscent of cytokines that have been found to cross the blood-brain barrier (BBB). Blood HMGB1 increases in stroke, sepsis, senescence, alcohol binge drinking and other conditions. Here, we examined the ability of HMGB1 radioactively labeled with iodine (I-HMGB1) to cross the BBB. We found that I-HMGB1 readily entered into mouse brain from the circulation with a unidirectional influx rate of 0.654 μl/g-min. All brain regions tested took up I-HMGB1; uptake was greatest by the olfactory bulb and least in the striatum. Transport was not reliably inhibited by unlabeled HMGB1 nor by inhibitors of TLR4, TLR2, RAGE, or CXCR4. Uptake was enhanced by co-injection of wheatgerm agglutinin, suggestive of involvement of absorptive transcytosis as a mechanism of transport. Induction of inflammation/neuroinflammation with lipopolysaccharide is known to increase blood HMGB1; we report here that brain transport is also increased by LPS-induced inflammation. Finally, we found that I-HMGB1 was also transported in the brain-to-blood direction, with both unlabeled HMGB1 or lipopolysaccharide increasing the transport rate. These results show that HMGB1 can bidirectionally cross the BBB and that those transport rates are enhanced by inflammation. Such transport provides a mechanism by which HMGB1 levels would impact neuroimmune signaling in both the brain and periphery.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, US State; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, US State.
| | - Kim M Hansen
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, US State; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, US State
| | - Michelle A Erickson
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, US State; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, US State
| | - Fulton T Crews
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, US State
| |
Collapse
|
28
|
Quilaqueo ME, Adasme S, Solís-Egaña F, Quintanilla ME, Vásquez D, Morales P, Herrera-Marschitz M, Rivera-Meza M. The administration of Alda-1, an activator of ALDH2, inhibits relapse-like ethanol intake in female alcohol-preferring UChB rats. Life Sci 2023; 328:121876. [PMID: 37348813 DOI: 10.1016/j.lfs.2023.121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
AIMS Alcohol relapse is a main limitation for the treatment of alcohol use disorders. Previous studies have shown that Alda-1, a pharmacological activator of ALDH2, inhibits both acquisition and chronic ethanol intake in rats; however, its effects on relapse-like ethanol intake are unknown. The aim of this study was to assess the effect of Alda-1 on post-deprivation and reaccess relapse-like ethanol intake in alcohol-preferring UChB rats. We also aimed to assess the possible mechanisms associated with the effects of Alda-1 by measuring the levels of glutamate transporter (GLT-1), oxidative stress and neuroinflammation markers in different regions of the mesocorticolimbic system. MAIN METHODS In Experiment I, UChB female rats were exposed for 100 days to voluntary ethanol intake followed by 2-weeks of ethanol withdrawal and 1 week of ethanol reaccess. Alda-1 (25 mg/kg, intragastric, i.g) or vehicle was administered daily for 14 days during the withdrawal/re-access period. Experiment II was similar to Experiment I, but after the withdrawal period, ethanol re-access was not allowed, and Alda-1 was administered during the last week of withdrawal. At the end of both experiments, the levels of GLT-1, oxidative stress (GSH, MDA), and neuroinflammation markers (GFAP, Iba-1) were assessed in nucleus accumbens and/or hippocampus. KEY FINDINGS The results showed that Alda-1 administration markedly blocked (90 %, p < 0.001) relapse-like ethanol intake in UChB rats. Alda-1 increased Iba-1 reactivity (microglial marker) in the NAc of ethanol-deprived rats. Alda-1 administration did not influence the levels of GLT-1, oxidative stress markers (MDA, GSH) or GFAP reactivity in the mesocorticolimbic system. SIGNIFICANCE These preclinical findings support the use of activators of ALDH2, such as Alda-1, as a potential pharmacological strategy in the treatment of alcohol relapse.
Collapse
Affiliation(s)
- María Elena Quilaqueo
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Sofía Adasme
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Fresia Solís-Egaña
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | | | - David Vásquez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile
| | - Paola Morales
- Program of Molecular and Clinical Pharmacology, Chile; Department of Neuroscience, Faculty of Medicine, University of Chile, Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| | | | - Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Chile; Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile.
| |
Collapse
|
29
|
Golub A, Ordak M, Nasierowski T, Bujalska-Zadrozny M. Advanced Biomarkers of Hepatotoxicity in Psychiatry: A Narrative Review and Recommendations for New Psychoactive Substances. Int J Mol Sci 2023; 24:ijms24119413. [PMID: 37298365 DOI: 10.3390/ijms24119413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
One of the factors that increase the effectiveness of the pharmacotherapy used in patients abusing various types of new psychoactive substances (NPSs) is the proper functioning of the liver. However, the articles published to date on NPS hepatotoxicity only address non-specific hepatic parameters. The aim of this manuscript was to review three advanced markers of hepatotoxicity in psychiatry, namely, osteopontin (OPN), high-mobility group box 1 protein (HMGB1) and glutathione dehydrogenase (GDH, GLDH), and, on this basis, to identify recommendations that should be included in future studies in patients abusing NPSs. This will make it possible to determine whether NPSs do indeed have a hepatotoxic effect or whether other factors, such as additional substances taken or hepatitis C virus (HCV) infection, are responsible. NPS abusers are at particular risk of HCV infection, and for this reason, it is all the more important to determine what factors actually show a hepatotoxic effect in them.
Collapse
Affiliation(s)
- Aniela Golub
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Michal Ordak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Tadeusz Nasierowski
- Department of Psychiatry, Faculty of Pharmacy, Medical University of Warsaw, Nowowiejska 27 Str., 00-665 Warsaw, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| |
Collapse
|
30
|
Schlett JS, Mettang M, Skaf A, Schweizer P, Errerd A, Mulugeta EA, Hein TM, Tsesmelis K, Tsesmelis M, Büttner UFG, Wendt H, Abaei A, Rasche V, Prex V, Nespoli E, Alami NO, Tews D, Walther P, Yilmazer-Hanke D, Oswald F, Dimou L, Wirth T, Baumann B. NF-κB is a critical mediator of post-mitotic senescence in oligodendrocytes and subsequent white matter loss. Mol Neurodegener 2023; 18:24. [PMID: 37069623 PMCID: PMC10108549 DOI: 10.1186/s13024-023-00616-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Inflammaging represents an accepted concept where the immune system shifts to a low-grade chronic pro-inflammatory state without overt infection upon aging. In the CNS, inflammaging is mainly driven by glia cells and associated with neurodegenerative processes. White matter degeneration (WMD), a well-known process in the aging brain, manifests in myelin loss finally resulting in motor, sensory and cognitive impairments. Oligodendrocytes (OL) are responsible for homeostasis and maintenance of the myelin sheaths, which is a complex and highly energy demanding process sensitizing these cells to metabolic, oxidative and other forms of stress. Yet, the immediate impact of chronic inflammatory stress like inflammaging on OL homeostasis, myelin maintenance and WMD remains open. METHODS To functionally analyze the role of IKK/NF-κB signaling in the regulation of myelin homeostasis and maintenance in the adult CNS, we established a conditional mouse model allowing NF-κB activation in mature myelinating oligodendrocytes. IKK2-CAPLP-CreERT2 mice were characterized by biochemical, immunohistochemical, ultrastructural and behavioral analyses. Transcriptome data from isolated, primary OLs and microglia cells were explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS Chronic NF-κB activation in mature OLs leads to aggravated neuroinflammatory conditions phenocopying brain inflammaging. As a consequence, IKK2-CAPLP-CreERT2 mice showed specific neurological deficits and impaired motoric learning. Upon aging, persistent NF-κB signaling promotes WMD in these mice as ultrastructural analysis revealed myelination deficits in the corpus callosum accompanied by impaired myelin protein expression. RNA-Seq analysis of primary oligodendrocytes and microglia cells uncovers gene expression signatures associated with activated stress responses and increased post mitotic cellular senescence (PoMiCS) which was confirmed by elevated senescence-associated β-galactosidase activity and SASP gene expression profile. We identified an elevated integrated stress response (ISR) characterized by phosphorylation of eIF2α as a relevant molecular mechanism which is able to affect translation of myelin proteins. CONCLUSIONS Our findings demonstrate an essential role of IKK/NF-κB signaling in mature, post-mitotic OLs in regulating stress-induced senescence in these cells. Moreover, our study identifies PoMICS as an important driving force of age-dependent WMD as well as of traumatic brain injury induced myelin defects.
Collapse
Affiliation(s)
- Judith Stefanie Schlett
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Melanie Mettang
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Aladdin Skaf
- Molecular and Translational Neuroscience, Department of Neurology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Pavel Schweizer
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Alina Errerd
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | | | - Tabea Melissa Hein
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Konstantinos Tsesmelis
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Miltiadis Tsesmelis
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Ulrike F G Büttner
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Heinrich Wendt
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Imaging (CF-SANI), Ulm University, 89081, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal Imaging (CF-SANI), Ulm University, 89081, Ulm, Germany
| | - Vivien Prex
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Ester Nespoli
- Molecular and Translational Neuroscience, Department of Neurology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Najwa Ouali Alami
- Institute of Clinical Neuroanatomy, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Daniel Tews
- Core Facility Extracellular Flux Analyzer, Ulm University Medical Center, 89081, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Institute of Clinical Neuroanatomy, Ulm University, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, 89081, Ulm, Germany
| | - Leda Dimou
- Molecular and Translational Neuroscience, Department of Neurology, University Medical Center Ulm, 89081, Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Albert- Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
31
|
Carlson ER, Guerin SP, Nixon K, Fonken LK. The neuroimmune system - Where aging and excess alcohol intersect. Alcohol 2023; 107:153-167. [PMID: 36150610 PMCID: PMC10023388 DOI: 10.1016/j.alcohol.2022.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 01/05/2023]
Abstract
As the percentage of the global population over age 65 grows, and with it a subpopulation of individuals with alcohol use disorder (AUD), understanding the effect of alcohol on the aged brain is of utmost importance. Neuroinflammation is implicated in both natural aging as well as alcohol use, and its role in alterations to brain morphology and function may be exacerbated in aging individuals who drink alcohol to excess. The neuroimmune response to alcohol in aging is complex. The few studies investigating this issue have reported heightened basal activity and either hypo- or hyper-reactivity to an alcohol challenge. This review of preclinical research will first introduce key players of the immune system, then explore changes in neuroimmune function with aging or alcohol alone, with discussion of vulnerable brain regions, changes in cytokines, and varied reactions of microglia and astrocytes. We will then consider different levels of alcohol exposure, relevant animal models of AUD, and neuroimmune activation by alcohol across the lifespan. By identifying key findings, challenges, and targets for future research, we hope to bring more attention and resources to this underexplored area of inquiry.
Collapse
Affiliation(s)
- Erika R Carlson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Steven P Guerin
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
32
|
The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells. Int J Biol Macromol 2023; 229:305-320. [PMID: 36535359 DOI: 10.1016/j.ijbiomac.2022.12.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The role of the blood-brain barrier (BBB) is to control trafficking of biomolecules and protect the brain. This function can be compromised by pathological conditions. Parkinson's disease (PD) is characterized by the accumulation of α-synuclein aggregates (αSN-AGs) such as oligomers and fibrils, which contribute to disease progression and severity. Here we study how αSN-AGs affect the BBB in in vitro co-culturing models consisting of human brain endothelial hCMEC/D3 cells (to overcome inter-species differences) alone and co-cultured with astrocytes and neurons/glial cells. When cultivated on their own, hCMEC/D3 cells were compromised by αSN-AGs, which decreased cellular viability, mitochondrial membrane potential, wound healing activity, TEER value, and enhanced permeability, as well as increased the levels of ROS and NO. Co-culturing of these cells with activated microglia also increased BBB impairment according to TEER and systemic immune cell transmigration assays. In contrast, hCMEC/D3 cells co-cultured with astrocytes or dopaminergic neurons or simultaneously treated with their conditioned media showed increased resistance against αSN-AGs. Our work demonstrates the complex relationship between members of the neurovascular unit (NVU) (perivascular astrocytes, neurons, microglia, and endothelial cells), αSN-AGs and BBB.
Collapse
|
33
|
Fang C, Lau WL, Sun J, Chang R, Vallejo A, Lee D, Liu J, Liu H, Hung YH, Zhao Y, Paganini-Hill A, Sumbria RK, Cribbs DH, Fisher M. Chronic kidney disease promotes cerebral microhemorrhage formation. J Neuroinflammation 2023; 20:51. [PMID: 36841828 PMCID: PMC9960195 DOI: 10.1186/s12974-023-02703-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is increasingly recognized as a stroke risk factor, but its exact relationship with cerebrovascular disease is not well-understood. We investigated the development of cerebral small vessel disease using in vivo and in vitro models of CKD. METHODS CKD was produced in aged C57BL/6J mice using an adenine-induced tubulointerstitial nephritis model. We analyzed brain histology using Prussian blue staining to examine formation of cerebral microhemorrhage (CMH), the hemorrhagic component of small vessel disease and the neuropathological substrate of MRI-demonstrable cerebral microbleeds. In cell culture studies, we examined effects of serum from healthy or CKD patients and gut-derived uremic toxins on brain microvascular endothelial barrier. RESULTS CKD was induced in aged C57BL/6J mice with significant increases in both serum creatinine and cystatin C levels (p < 0.0001) without elevation of systolic or diastolic blood pressure. CMH was significantly increased and positively correlated with serum creatinine level (Spearman r = 0.37, p < 0.01). Moreover, CKD significantly increased Iba-1-positive immunoreactivity by 51% (p < 0.001), induced a phenotypic switch from resting to activated microglia, and enhanced fibrinogen extravasation across the blood-brain barrier (BBB) by 34% (p < 0.05). On analysis stratified by sex, the increase in CMH number was more pronounced in male mice and this correlated with greater creatinine elevation in male compared with female mice. Microglial depletion with PLX3397 diet significantly decreased CMH formation in CKD mice without affecting serum creatinine levels. Incubation of CKD serum significantly reduced transendothelial electrical resistance (TEER) (p < 0.01) and increased sodium fluorescein permeability (p < 0.05) across the endothelial monolayer. Uremic toxins (i.e., indoxyl sulfate, p-cresyl sulfate, and trimethylamine-N-oxide) in combination with urea and lipopolysaccharide induced a marked drop in TEER compared with the control group (p < 0.0001). CONCLUSIONS CKD promotes the development of CMH in aged mice independent of blood pressure but directly proportional to the degree of renal impairment. These effects of CKD are likely mediated in part by microglia and are associated with BBB impairment. The latter is likely related to gut-derived bacteria-dependent toxins classically associated with CKD. Overall, these findings demonstrate an important role of CKD in the development of cerebral small vessel disease.
Collapse
Affiliation(s)
- Chuo Fang
- Department of Neurology, University of California, Irvine, CA, USA
| | - Wei Ling Lau
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Rudy Chang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Adrian Vallejo
- Department of Neurology, University of California, Irvine, CA, USA
| | - Donghy Lee
- Department of Neurology, University of California, Irvine, CA, USA
| | - Jihua Liu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Han Liu
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - Yu-Han Hung
- Department of Neurology, University of California, Irvine, CA, USA
| | - Yitong Zhao
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | | | - Rachita K Sumbria
- Department of Neurology, University of California, Irvine, CA, USA
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mark Fisher
- Department of Neurology, University of California, Irvine, CA, USA.
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA.
- Department of Neurology, UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall (Building 55), Room 121, Orange, CA, 92868, USA.
| |
Collapse
|
34
|
Sustained Hyperammonemia Activates NF-κB in Purkinje Neurons Through Activation of the TrkB-PI3K-AKT Pathway by Microglia-Derived BDNF in a Rat Model of Minimal Hepatic Encephalopathy. Mol Neurobiol 2023; 60:3071-3085. [PMID: 36790604 DOI: 10.1007/s12035-023-03264-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Chronic hyperammonemia is a main contributor to the cognitive and motor impairment in patients with hepatic encephalopathy. Sustained hyperammonemia induces the TNFα expression in Purkinje neurons, mediated by NF-κB activation. The aims were the following: (1) to assess if enhanced TrkB activation by BDNF is responsible for enhanced NF-κB activation in Purkinje neurons in hyperammonemic rats, (2) to assess if this is associated with increased content of NF-κB modulated proteins such as TNFα, HMGB1, or glutaminase I, (3) to assess if these changes are due to enhanced activation of the TNFR1-S1PR2-CCR2-BDNF-TrkB pathway, (4) to analyze if increased activation of NF-κB is mediated by the PI3K-AKT pathway. It is shown that, in the cerebellum of hyperammonemic rats, increased BDNF levels enhance TrkB activation in Purkinje neurons leading to activation of PI3K, which enhances phosphorylation of AKT and of IκB, leading to increased nuclear translocation of NF-κB which enhances TNFα, HMGB1, and glutaminase I content. To assess if the changes are due to enhanced activation of the TNFR1-S1PR2-CCR2 pathway, we blocked TNFR1 with R7050, S1PR2 with JTE-013, and CCR2 with RS504393. These changes are reversed by blocking TrkB, PI3K, or the TNFR1-SP1PR2-CCL2-CCR2-BDNF-TrkB pathway at any step. In hyperammonemic rats, increased levels of BDNF enhance TrkB activation in Purkinje neurons, leading to activation of the PI3K-AKT-IκB-NF-κB pathway which increased the content of glutaminase I, HMGB1, and TNFα. Enhanced activation of this TrkB-PI3K-AKT-NF-κB pathway would contribute to impairing the function of Purkinje neurons and motor function in hyperammonemic rats and likely in cirrhotic patients with minimal or clinical hepatic encephalopathy.
Collapse
|
35
|
CB2R activation ameliorates late adolescent chronic alcohol exposure-induced anxiety-like behaviors during withdrawal by preventing morphological changes and suppressing NLRP3 inflammasome activation in prefrontal cortex microglia in mice. Brain Behav Immun 2023; 110:60-79. [PMID: 36754245 DOI: 10.1016/j.bbi.2023.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic alcohol exposure (CAE) during late adolescence increases the risk of anxiety development. Alcohol-induced prefrontal cortex (PFC) microglial activation, characterized by morphological changes and increased associations with neurons, plays a critical role in the pathogenesis of anxiety. Alcohol exposure increases NLRP3 inflammasome expression, increasing cytokine secretion by activated microglia. Cannabinoid type 2 receptor (CB2R), an essential receptor of the endocannabinoid system, regulates microglial activation and neuroinflammatory reactions. We aimed to investigate the role of CB2R activation in ameliorating late adolescent CAE-induced anxiety-like behaviors and microglial activation in C57BL/6J mice. METHODS Six-week-old C57BL/6J mice were acclimated for 7 days and then were administered alcohol by gavage (4 g/kg, 25 % w/v) for 28 days. The mice were intraperitoneally injected with the specific CB2R agonist AM1241 1 h before alcohol treatment. Anxiety-like behaviors during withdrawal were assessed by open field test and elevated plus maze test 24 h after the last alcohol administration. Microglial activation, microglia-neuron interactions, and CB2R and NLRP3 inflammasome-related molecule expression in the PFC were measured using immunofluorescence, immunohistochemical, qPCR, and Western blotting assays. Microglial morphology was evaluated by Sholl analysis and the cell body-to-total cell size index. Additionally, N9 microglia were activated by LPS in vitro, and the effects of AM1241 on NLRP3 and N9 microglial activation were investigated. RESULTS After CAE, mice exhibited severe anxiety-like behaviors during withdrawal. CAE induced obvious microglia-neuron associations, and increased expression of microglial activation markers, CB2R, and NLRP3 inflammasome-related molecules in the PFC. Microglia also showed marked filament retraction and reduction and cell body enlargement after CAE. AM1241 treatment ameliorated anxiety-like behaviors in CAE model mice, and it prevented microglial morphological changes, reduced microglial activation marker expression, and suppressed the microglial NLRP3 inflammasome activation and proinflammatory cytokine secretion induced by CAE. AM1241 suppressed the LPS-induced increase in NLRP3 inflammasome-related molecules, IL-1β release, and M1 phenotype markers (iNOS and CD86) in N9 cell, which was reversed by CB2R antagonist treatment. CONCLUSIONS CAE caused anxiety-like behaviors in late adolescent mice at least partly by inducing microglial activation and increasing microglia-neuron associations in the PFC. CB2R activation ameliorated these effects by preventing morphological changes and suppressing NLRP3 inflammasome activation in PFC microglia.
Collapse
|
36
|
Zahir FR. Epigenomic impacts of meditative practices. Epigenomics 2022; 14:1593-1608. [PMID: 36891912 DOI: 10.2217/epi-2022-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Meditative practices (MPs) are an inherent lifestyle and healing practice employed in Eastern medicine and spirituality. Integrating MPs into world mainstream medicine (WMM) requires effective empirical investigation of psychophysiological impacts. Epigenomic regulation is a probable mechanism of action that is empirically assessable. Recently, WMM-styled studies have screened the epigenomic impacts of MPs with early encouraging results. This article discusses the variety of MPs extant across three major Eastern religio-spiritual-healing traditions and their integration into WMM via the lens of epigenomic modulation. MPs unanimously report positive impacts on stress-reduction pathways, known to be epigenomically sensitive. Early high-resolution assays show MPs are potent in altering the epigenome - dynamically and by inducing long-term changes. This suggests the importance of integrating MPs into WMM.
Collapse
Affiliation(s)
- Farah R Zahir
- Irfa'a Foundation, 5063 North Service Road, Burlington, ON, L7L 5H6 Canada
- Departent of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1 Canada
| |
Collapse
|
37
|
Cognitive Deficits Found in a Pro-inflammatory State are Independent of ERK1/2 Signaling in the Murine Brain Hippocampus Treated with Shiga Toxin 2 from Enterohemorrhagic Escherichia coli. Cell Mol Neurobiol 2022:10.1007/s10571-022-01298-1. [PMID: 36227397 DOI: 10.1007/s10571-022-01298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) produces hemorrhagic colitis, hemolytic uremic syndrome (HUS), and acute encephalopathy. The mortality rate in HUS increases significantly when the central nervous system (CNS) is involved. Besides, EHEC also releases lipopolysaccharide (LPS). Many reports have described cognitive dysfunctions in HUS patients, the hippocampus being one of the brain areas targeted by EHEC infection. In this context, a translational murine model of encephalopathy was employed to establish the deleterious effects of Stx2 and the contribution of LPS in the hippocampus. The purpose of this work is to elucidate the signaling pathways that may activate the inflammatory processes triggered by Stx2, which produces cognitive alterations at the level of the hippocampus. Results demonstrate that Stx2 produced depression-like behavior, pro-inflammatory cytokine release, and NF-kB activation independent of the ERK1/2 signaling pathway, while co-administration of Stx2 and LPS reduced memory index. On the other hand, LPS activated NF-kB dependent on ERK1/2 signaling pathway. Cotreatment of Stx2 with LPS aggravated the pathologic state, while dexamethasone treatment succeeded in preventing behavioral alterations. Our present work suggests that the use of drugs such as corticosteroids or NF-kB signaling inhibitors may serve as neuroprotectors from EHEC infection.
Collapse
|
38
|
Pérez-Reytor D, Karahanian E. Alcohol use disorder, neuroinflammation, and intake of dietary fibers: a new approach for treatment. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022:1-7. [DOI: 10.1080/00952990.2022.2114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diliana Pérez-Reytor
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
| |
Collapse
|
39
|
Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen TL, Cremonini AL, Tagliafico L, Persia A, Caffa I, Monacelli F, Odetti P, Bonfiglio T, Nencioni A, Pigliautile M, Boccardi V, Mecocci P, Pike CJ, Cohen P, LaDu MJ, Pellegrini M, Xia K, Tran K, Ann B, Chowdhury D, Longo VD. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep 2022; 40:111417. [PMID: 36170815 PMCID: PMC9648488 DOI: 10.1016/j.celrep.2022.111417] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
The effects of fasting-mimicking diet (FMD) cycles in reducing many aging and disease risk factors indicate it could affect Alzheimer's disease (AD). Here, we show that FMD cycles reduce cognitive decline and AD pathology in E4FAD and 3xTg AD mouse models, with effects superior to those caused by protein restriction cycles. In 3xTg mice, long-term FMD cycles reduce hippocampal Aβ load and hyperphosphorylated tau, enhance genesis of neural stem cells, decrease microglia number, and reduce expression of neuroinflammatory genes, including superoxide-generating NADPH oxidase (Nox2). 3xTg mice lacking Nox2 or mice treated with the NADPH oxidase inhibitor apocynin also display improved cognition and reduced microglia activation compared with controls. Clinical data indicate that FMD cycles are feasible and generally safe in a small group of AD patients. These results indicate that FMD cycles delay cognitive decline in AD models in part by reducing neuroinflammation and/or superoxide production in the brain.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Fleur Lobo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Edoardo Parrella
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, BS 25123, Italy
| | - Nicolas Rochette
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Terri-Leigh Stephen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Anna Laura Cremonini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Martina Pigliautile
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Virginia Boccardi
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christian J Pike
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Pinchas Cohen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy., Los Angeles, CA 90089-0191, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Kyle Xia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Katelynn Tran
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Brandon Ann
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Dolly Chowdhury
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano, MI 20139, Italy.
| |
Collapse
|
40
|
Gano A, Lebonville CL, Becker HC. TLR3 activation with poly I:C exacerbates escalated alcohol consumption in dependent male C57BL/6J mice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022:1-12. [PMID: 36095319 DOI: 10.1080/00952990.2022.2092492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Background: Activation of TLR3 receptors, which are sensitive to viral infection, has emerged as a possible mechanism that increases alcohol intake in rodents.Objectives: These studies examined whether a history of ethanol dependence exacerbated the increase in drinking driven by the TLR3 agonist poly I:C.Methods: Male C57BL/6J mice (>10 per group) were given access to ethanol (20% v/v) 2 hours a day following a history of home cage drinking or after having been rendered ethanol-dependent using a chronic intermittent ethanol (CIE) vapor model. After testing multiple doses, a 5 mg/kg repeated poly I:C challenge was used to probe the effects of repeated immune challenge, alone or in conjunction with repeated cycles of CIE, on voluntary drinking. An ethanol (12% v/v) operant self-administration model was used to test the effects of poly I:C on stress-induced reinstatement of ethanol seeking and consumption.Results: Poly I:C in naive animals resulted in transient, modest increases in ethanol intake in the home cage and in self-administration (p < 0.05). However, poly I:C challenge resulted in sensitized stress-induced ethanol consumption and evoked a strong and persistent escalation of drinking in mice with a history of dependence (p < 0.05 for both).Conclusion: Activation of viral immune defense may affect ethanol consumption in dependence and sensitivity to future stressors. As patients who suffer from alcohol use disorder are at a heightened risk for viral infection, this interaction could generate risk factors for exacerbating behaviors associated with Alcohol Use Disorders via an immune mechanism.
Collapse
Affiliation(s)
- Anny Gano
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Christina L Lebonville
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- RHJ Department of Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
41
|
Ramos A, Joshi RS, Szabo G. Innate immune activation: Parallels in alcohol use disorder and Alzheimer’s disease. Front Mol Neurosci 2022; 15:910298. [PMID: 36157070 PMCID: PMC9505690 DOI: 10.3389/fnmol.2022.910298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol use disorder is associated with systemic inflammation and organ dysfunction especially in the liver and the brain. For more than a decade, studies have highlighted alcohol abuse-mediated impairment of brain function and acceleration of neurodegeneration through inflammatory mechanisms that directly involve innate immune cells. Furthermore, recent studies indicate overlapping genetic risk factors between alcohol use and neurodegenerative disorders, specifically regarding the role of innate immunity in the pathomechanisms of both areas. Considering the pressing need for a better understanding of the relevance of alcohol abuse in dementia progression, here we summarize the molecular mechanisms of neuroinflammation observed in alcohol abuse and Alzheimer’s disease, the most common cause of dementia. In addition, we highlight mechanisms that are already established in the field of Alzheimer’s disease that may be relevant to explore in alcoholism to better understand alcohol mediated neurodegeneration and dementia, including the relevance of the liver-brain axis.
Collapse
Affiliation(s)
- Adriana Ramos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Radhika S. Joshi
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Gyongyi Szabo,
| |
Collapse
|
42
|
Ball JB, Green-Fulgham SM, Watkins LR. Mechanisms of Microglia-Mediated Synapse Turnover and Synaptogenesis. Prog Neurobiol 2022; 218:102336. [DOI: 10.1016/j.pneurobio.2022.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
|
43
|
Doughty D, Rajpurohit SK, Trang A, Alptekin A, Korkaya AK, Achyut BR, Arbab AS, Bradford JW. Development of a novel purification protocol to isolate and identify brain microglia. Exp Biol Med (Maywood) 2022; 247:1433-1446. [PMID: 35666093 PMCID: PMC9493764 DOI: 10.1177/15353702221096060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Microglia, the tissue-resident macrophage of the central nervous system (CNS), play a paramount role in brain health and disease status. Here, we describe a novel method for enriching and isolating primary microglia from mouse brain tissue. This isolation method yields a high number of cells from either young or adult mice, and importantly, maintains the health and function of the cells for subsequent cell culture. We also describe flow cytometry methods using novel cell surface markers, including CX3CR1 and Siglec-H, to specifically label microglia while avoiding other bone marrow and/or non-CNS derived macrophages and monocytes, which has been historically difficult to achieve. As microglia are crucial in multiple aspects of biology, such as in normal brain development/function, immune response, neurodegeneration, and cancer, this isolation technique could greatly benefit a wide range of studies in human CNS biology, health, and disease mechanisms. Being able to isolate a largely pure population of microglia could also allow for a more comprehensive understanding of their functional dynamics and role in disease mechanisms, advancement of potential biomarkers, and development of novel therapeutic targets to improve prognosis and quality of life in multiple diseases.
Collapse
Affiliation(s)
- Deanna Doughty
- Department of Biological Sciences,
Augusta University, Augusta, GA 30912, USA,D. D. is Medical College of Georgia,
Augusta University, Augusta, GA 30912, USA
| | | | - Amy Trang
- Department of Biological Sciences,
Augusta University, Augusta, GA 30912, USA
| | - Ahmet Alptekin
- Georgia Cancer Center, Augusta
University, Augusta, GA 30912, USA
| | - Ahmet K Korkaya
- Department of Biological Sciences,
Augusta University, Augusta, GA 30912, USA
| | - Bhagelu R Achyut
- Winship Cancer Institute, Emory
University, Atlanta, GA 30322, USA
| | - Ali S Arbab
- Georgia Cancer Center, Augusta
University, Augusta, GA 30912, USA
| | - Jennifer W Bradford
- Department of Biological Sciences,
Augusta University, Augusta, GA 30912, USA,Jennifer W Bradford.
| |
Collapse
|
44
|
Terracina S, Ferraguti G, Tarani L, Messina MP, Lucarelli M, Vitali M, De Persis S, Greco A, Minni A, Polimeni A, Ceccanti M, Petrella C, Fiore M. Transgenerational Abnormalities Induced by Paternal Preconceptual Alcohol Drinking: Findings from Humans and Animal Models. Curr Neuropharmacol 2022; 20:1158-1173. [PMID: 34720083 PMCID: PMC9886817 DOI: 10.2174/1570159x19666211101111430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption during pregnancy and lactation is a widespread preventable cause of neurodevelopmental impairment in newborns. While the harmful effects of gestational alcohol use have been well documented, only recently, the role of paternal preconceptual alcohol consumption (PPAC) prior to copulating has drawn specific epigenetic considerations. Data from human and animal models have demonstrated that PPAC may affect sperm function, eliciting oxidative stress. In newborns, PPAC may induce changes in behavior, cognitive functions, and emotional responses. Furthermore, PPAC may elicit neurobiological disruptions, visuospatial impairments, hyperactivity disorders, motor skill disruptions, hearing loss, endocrine, and immune alterations, reduced physical growth, placental disruptions, and metabolic alterations. Neurobiological studies on PPAC have also disclosed changes in brain function and structure by disrupting the growth factors pathways. In particular, as shown in animal model studies, PPAC alters brain nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) synthesis and release. This review shows that the crucial topic of lifelong disabilities induced by PPAC and/or gestational alcohol drinking is quite challenging at the individual, societal, and familial levels. Since a nontoxic drinking behavior before pregnancy (for both men and women), during pregnancy, and lactation cannot be established, the only suggestion for couples planning pregnancies is to completely avoid the consumption of alcoholic beverages.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, “Sapienza” University of Rome, Rome, Italy
| | | | - Marco Lucarelli
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | | | | | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy,Address correspondence to this author at the Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy; E-mail:
| |
Collapse
|
45
|
Meredith LR, Grodin EN, Montoya AK, Miranda R, Squeglia LM, Towns B, Evans C, Ray LA. The effect of neuroimmune modulation on subjective response to alcohol in the natural environment. Alcohol Clin Exp Res 2022; 46:876-890. [PMID: 35362101 PMCID: PMC10460619 DOI: 10.1111/acer.14821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 03/18/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Despite the promising implications for novel immune therapeutics, few clinical trials have tested these therapies to date. An understanding of how immune pharmacotherapies influence complex alcohol use disorder (AUD) profiles, including subjective response to alcohol, is very limited. Initial findings show that ibudilast, a neuroimmune modulator, reduces rates of heavy drinking and measures of alcohol craving. METHODS This study is a secondary analysis of a 2-week clinical trial of ibudilast that enrolled a nontreatment-seeking sample with AUD. Eligible participants (N = 52) were randomized to receive ibudilast or matched placebo and completed daily diary assessments (DDAs) during the 2-week period. Each morning, participants reported on their mood and craving levels both before and during the previous day's drinking episode, as well as stimulation and sedation levels during the previous day's drinking episode. Multilevel models were used to compare the effects of ibudilast and placebo on subjective alcohol response. Exploratory analyses tested whether ibudilast moderated the relationship between daily stimulation/sedation and alcohol intake and whether withdrawal-related dysphoria moderated ibudilast's effects on subjective response. RESULTS Ibudilast did not significantly alter mean levels of stimulation or sedation (p's > 0.05). It did, however, moderate the effect of daily stimulation on drinking (p = 0.045). Ibudilast attenuated alcohol-induced increases in craving compared with placebo (p = 0.047), but not other subjective response measures. Ibudilast significantly tempered daily alcohol-induced changes in urge to drink and positive mood only among individuals without withdrawal-related dysphoria. CONCLUSIONS Ibudilast's effects on subjective alcohol responses appear to be nuanced and perhaps most salient for individuals drinking for positive reinforcement as distinguished from those who drink to feel normal. Consistent with previous findings, reductions in alcohol craving may represent a primary mechanism of ibudilast's effects on drinking. The ecologically valid nature of DDAs provide a clinically useful window into how individuals experience alcohol's effects while taking ibudilast.
Collapse
Affiliation(s)
| | - Erica N. Grodin
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Amanda K. Montoya
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Robert Miranda
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- E. P. Bradley Hospital, Riverside, RI, USA
| | - Lindsay M. Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Brandon Towns
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Christopher Evans
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Lara A. Ray
- Department of Psychology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
46
|
Wen W, Li H, Luo J. Potential Role of MANF, an ER Stress Responsive Neurotrophic Factor, in Protecting Against Alcohol Neurotoxicity. Mol Neurobiol 2022; 59:2992-3015. [PMID: 35254650 PMCID: PMC10928853 DOI: 10.1007/s12035-022-02786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Alcohol exposure during pregnancy is harmful to the fetus and causes a wide range of long-lasting physiological and neurocognitive impairments, collectively referred to as fetal alcohol spectrum disorders (FASD). The neurobehavioral deficits observed in FASD result from structural and functional damages in the brain, with neurodegeneration being the most destructive consequence. Currently, there are no therapies for FASD. It is exigent to delineate the underlying mechanisms of alcohol neurotoxicity and develop an effective strategy of treatment. ER stress, caused by the accumulation of unfolded/misfolded proteins in the ER, is the hallmark of many neurodegenerative diseases, including alcohol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly discovered endoplasmic reticulum (ER) stress responsive neurotrophic factor that regulates diverse neuronal functions. This review summarizes the recent findings revealing the effects of MANF on the CNS and its protective role against neurodegeneration. Particularly, we focus the role of MANF on alcohol-induced ER stress and neurodegeneration and discuss the therapeutic potential of MANF in treating alcohol neurotoxicity such as FASD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Iowa City VA Health Care System, Iowa City, IA, 52246, USA.
| |
Collapse
|
47
|
Prenatal and adolescent alcohol exposure programs immunity across the lifespan: CNS-mediated regulation. Pharmacol Biochem Behav 2022; 216:173390. [PMID: 35447157 DOI: 10.1016/j.pbb.2022.173390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022]
Abstract
For many individuals, first exposure to alcohol occurs either prenatally due to maternal drinking, or during adolescence, when alcohol consumption is most likely to be initiated. Prenatal Alcohol Exposure (PAE) and its associated Fetal Alcohol Spectrum Disorders (FASD) in humans is associated with earlier initiation of alcohol use and increased rates of Alcohol Use Disorders (AUD). Initiation of alcohol use and misuse in early adolescence correlates highly with later AUD diagnosis as well. Thus, PAE and adolescent binge drinking set the stage for long-term health consequences due to adverse effects of alcohol on subsequent immune function, effects that may persist across the lifespan. The overarching goal of this review, therefore, is to determine the extent to which early developmental exposure to alcohol produces long-lasting, and potentially life-long, changes in immunological function. Alcohol affects the whole body, yet most studies are narrowly focused on individual features of immune function, largely ignoring the systems-level interactions required for effective host defense. We therefore emphasize the crucial role of the Central Nervous System (CNS) in orchestrating host defense processes. We argue that alcohol-mediated disruption of host immunity can occur through both (a) direct action of ethanol on neuroimmune processes, that subsequently disrupt peripheral immune function (top down); and (b) indirect action of ethanol on peripheral immune organs/cells, which in turn elicit consequent changes in CNS neuroimmune function (bottom up). Recognizing that alcohol consumption across the entire body, we argue in favor of integrative, whole-organism approaches toward understanding alcohol effects on immune function, and highlight the need for more work specifically examining long-lasting effects of early developmental exposure to alcohol (prenatal and adolescent periods) on host immunity.
Collapse
|
48
|
Quintanilla ME, Ezquer F, Morales P, Santapau D, Ezquer M, Herrera‐Marschitz M, Israel Y. A dual mechanism fully blocks ethanol relapse: Role of vagal innervation. Addict Biol 2022; 27:e13140. [PMID: 35229957 DOI: 10.1111/adb.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 11/01/2022]
Abstract
Previous studies showed that vagotomy markedly inhibits alcohol self-administration. Present studies hypothesised that vagotomy significantly adds to the inhibition of alcohol relapse induced by drugs that reduce the alcohol-induced hyperglutamatergic state (e.g., N-acetylcysteine + acetylsalicylic acid). The alcohol relapse paradigm tested gauges the elevated alcohol intake observed in animals that had consumed ethanol chronically, were subjected to a prolonged alcohol deprivation and are subsequently allowed ethanol re-access. Ethanol-drinker rats (UChB) were exposed to 10% and 20% ethanol and water concurrently for 4 months, were alcohol deprived for 14 days and were thereafter allowed re-access to the ethanol solutions. An initial binge-like drinking episode is observed upon ethanol re-access, followed by a protracted elevated ethanol intake that exceeds the predeprivation intake baseline. Prior to ethanol re-access, animals were (i) administered N-acetylcysteine (40 mg/kg/day) + acetylsalicylic acid (15 mg/kg/day), (ii) were bilaterally vagotomised, (iii) were exposed to both treatments or (iv) received no treatments. The initial binge-like relapse intake and a protracted elevated ethanol intake observed after repeated ethanol deprivations/re-access cycles were inhibited by 50%-70% by the administration of N-acetylcysteine + acetylsalicylic acid and by 40%-70% by vagotomy, while the combined vagotomy plus N-acetylcysteine + acetylsalicylic acid treatment inhibited both the initial binge-like intake and the protracted ethanol intake by >95% (p < 0.001), disclosing a dual mechanism of ethanol relapse and subsequent inhibition beyond that induced by either treatment alone. Future exploration into the mechanism by which vagal activity contributes to ethanol relapse may have translational promise.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine University of Chile Santiago Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa Facultad de Medicina Clínica Alemana‐Universidad del Desarrollo Santiago Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders Santiago Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine University of Chile Santiago Chile
- Department of Neuroscience, Faculty of Medicine University of Chile Santiago Chile
| | - Daniela Santapau
- Centro de Medicina Regenerativa Facultad de Medicina Clínica Alemana‐Universidad del Desarrollo Santiago Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa Facultad de Medicina Clínica Alemana‐Universidad del Desarrollo Santiago Chile
| | - Mario Herrera‐Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine University of Chile Santiago Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine University of Chile Santiago Chile
- Centro de Medicina Regenerativa Facultad de Medicina Clínica Alemana‐Universidad del Desarrollo Santiago Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders Santiago Chile
| |
Collapse
|
49
|
Liu M, Guo S, Huang D, Hu D, Wu Y, Zhou W, Song W. Chronic Alcohol Exposure Alters Gene Expression and Neurodegeneration Pathways in the Brain of Adult Mice. J Alzheimers Dis 2022; 86:315-331. [PMID: 35034908 DOI: 10.3233/jad-215508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chronic alcohol consumption can alter the structure of the central nervous system and disrupt cognitive function. Alcoholics are more likely to develop neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, the role of alcohol in promoting neurotoxicity and neurodegeneration remains unclear. OBJECTIVE In this study, we aimed at estimating the effects of chronic binge alcohol exposure on brain transcriptome and behavior changes in a chronic "Drinking in the Dark" (DID) mouse model. METHODS The adult C57BL/6J male mice were exposed to alcohol for 4 weeks. RNA-seq was applied to assess the effects of chronic alcohol exposure on transcriptome in brain. The open field test and novel object recognition test were used to assess the changes of anxiety level, locomotive function, and short-term memory induced by alcohol. RNA-seq analysis revealed that chronic alcohol exposure caused significant change in the brain transcriptome, especially in prefrontal cortex. RESULTS The gene dysregulation caused by chronic alcohol exposure includes pathways related to mitochondrial energy metabolism (such as oxidative phosphorylation) and multiple neurodegenerative diseases (such as AD and PD). Furthermore, the pathway and network analyses suggest that the genes involved in mitochondrial energy metabolism, ubiquitin-proteasome system, Wnt signaling pathway, and microtubules may attribute to the neurotoxicity and neurodegeneration caused by chronic alcohol consumption. Additionally, locomotive function was also significantly impaired. CONCLUSION This work provides gene transcriptional profile data for future research on alcohol-induced neurodegenerative diseases, especially AD and PD.
Collapse
Affiliation(s)
- Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Daochao Huang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| |
Collapse
|
50
|
Czerwińska-Błaszczyk A, Pawlak E, Pawłowski T. The Significance of Toll-Like Receptors in the Neuroimmunologic Background of Alcohol Dependence. Front Psychiatry 2022; 12:797123. [PMID: 35095609 PMCID: PMC8791063 DOI: 10.3389/fpsyt.2021.797123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Toll-like receptors (TLR) are a group of protein belonging to the family of Pattern Recognition Receptors (PRR) which have the ability to distinguish between an organism's own antigens and foreign ones and to induce immunological response. TLR play a significant part in non-specific immunity but at the same time they are also a vital element linking non-specific response to the specific one. A growing number of data seems to indicate that the non-specific immunity mechanisms affect the development and sustenance of alcohol addiction. Alcohol damages the organism's cells not only directly but also through an increase inintestinal permeability which induces innate immune response of peripheral blood cells. The signaling pathway of Toll-like receptors located on the surface of brain immune cells intensifies the inflammatory reaction and, through modifying gene expression of proinflammatory factors, unnaturally supports it. This overly protracted "sterile inflammatory reaction" positively correlates with alcohol craving affecting also the functioning of the reward system structures and increasing the risk of relapse of alcoholism. Recurrent alcoholic binges sensitize the microglia and cause an escalation in inflammatory reaction which also leads to neurodegeneration. The induction of innate immunity signaling pathways exposes clinical symptoms of alcohol addiction such as increased impulsivity, loss of behavioral control, depressive-anxiety symptoms and cognitive dysfunctions. Traditional methods of treating alcohol addiction have tended to focus predominantly on reducing symptoms which-given the frequency of relapses-seems insufficient. The aim of the present paper is to discuss the role of toll-like receptors as elements of the immunity system which, together with the nervous system, plays a crucial part in the pathogenesis of alcohol addiction. We also wish to present pharmacotherapeutic perspectives targeted at the neuroimmunological mechanisms of alcohol addiction.
Collapse
Affiliation(s)
| | - Edyta Pawlak
- Laboratory of Immunopatology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|