1
|
Imperio CG, Levin FR, Martinez D. The Neurocircuitry of Substance Use Disorder, Treatment, and Change: A Resource for Clinical Psychiatrists. Am J Psychiatry 2024; 181:958-972. [PMID: 39380375 DOI: 10.1176/appi.ajp.20231023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Substance use disorder (SUD) is common in psychiatric patients and has a negative impact on health and well-being. However, SUD often goes untreated, and there is a need for psychiatrists, of all specialties, to address this pervasive clinical problem. In this review, the authors' goal is to provide a resource that describes treatments for SUD, using neuroscience as a framework. They discuss the effect of pharmacotherapy on craving, intoxication, and withdrawal and its ability to interrupt the cycle of substance use in SUD. The neuroscience of stress is reviewed, including medications targeting neurotransmitter systems activated by alarm and fear. Neuroplasticity and promising treatments that use this mechanism, including ketamine, psilocybin, and transcranial magnetic stimulation (TMS), are discussed. The authors conclude by listing resources and practice guidelines for physicians interested in learning more about treatments for SUD.
Collapse
Affiliation(s)
- Caesar G Imperio
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York
| | - Frances R Levin
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York
| | - Diana Martinez
- Division on Substance Use Disorders, New York State Psychiatric Institute, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York
| |
Collapse
|
2
|
Berro LF, Rowlett JK, Platt DM. GABAergic compounds for the treatment of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:383-399. [PMID: 39523061 DOI: 10.1016/bs.irn.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Decades of research have implicated the gamma-aminobutyric acid (GABA)ergic system as one of the main mediators of the behavioral effects of alcohol. Of importance, the addiction-related effects of alcohol also have been shown to be mediated in part by GABAergic systems, raising the possibility that pharmacotherapies targeting GABAergic receptors may be promising candidates for the treatment of alcohol use disorder (AUD). Alcohol modulates the activity of GABAA and GABAB receptors, and studies show that compounds targeting some of those receptors may decrease the addiction-related behavioral effects of alcohol. Specifically, drugs that share similar pharmacological properties with alcohol, such as positive allosteric modulators (PAMs) of GABAA and GABAB receptors, have been proposed as substitution therapies for AUD. Available evidence also suggests that negative allosteric modulators (NAMs) of GABAergic receptors may be potential therapeutics for AUD, although this effect is selective for specific receptor subtypes. Therefore, this Chapter reviews the available evidence on the use of GABAergic compounds for the treatment of AUD. Several GABAA and GABAB ligands show promising results, with a particularly positive therapeutic profile demonstrated for α5GABAA receptor NAMs, α4/6δGABAA receptor modulators (both positive and negative, including neurosteroids), and GABAB receptor PAMs. As newer and better GABAergic compounds become available, future research should focus on understanding how these ligands can modulate different clinical symptoms of AUD, with potential new areas of research encompassing alcohol withdrawal syndrome and AUD-related insomnia.
Collapse
Affiliation(s)
- Laís F Berro
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States.
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
3
|
Sinha R. Stress and substance use disorders: risk, relapse, and treatment outcomes. J Clin Invest 2024; 134:e172883. [PMID: 39145454 PMCID: PMC11324296 DOI: 10.1172/jci172883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Stress has long been associated with substance misuse and substance use disorders (SUDs). The past two decades have seen a surge in research aimed at understanding the underlying mechanisms driving this association. This Review introduces a multilevel "adaptive stress response" framework, encompassing a stress baseline, acute reaction, and recovery with return-to-homeostasis phase that occurs at varying response times and across domains of analysis. It also discusses evidence showing the disruption of this adaptive stress response in the context of chronic and repeated stressors, trauma, adverse social and drug-related environments, as well as with acute and chronic drug misuse and with drug withdrawal and abstinence sequelae. Subjective, cognitive, peripheral, and neurobiological disruptions in the adaptive stress response phases and their link to inflexible, maladaptive coping; increased craving; relapse risk; and maintenance of drug intake are also presented. Finally, the prevention and treatment implications of targeting this "stress pathophysiology of addiction" are discussed, along with specific aspects that may be targeted in intervention development to rescue stress-related alterations in drug motivation and to improve SUD treatment outcomes.
Collapse
|
4
|
Maddern XJ, Ursich LT, Bailey G, Pearl A, Anversa RG, Lawrence AJ, Walker LC. Sex Differences in Alcohol Use: Is It All About Hormones? Endocrinology 2024; 165:bqae088. [PMID: 39018449 DOI: 10.1210/endocr/bqae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Risky alcohol use and alcohol use disorders (AUD) are a rising problem in women, yet a major disparity in our understanding of what drives alcohol consumption in women remains. Historically biomedical research has focused on male subjects; however, recent increases in reporting of females, have highlighted major differences between the sexes. Here we review the current literature of the effect of gonadal steroid hormones (estrogens, androgens, and progestins), neurosteriods, and neurobiological factors on alcohol use in clinical and preclinical studies of both sexes. Further, we briefly discuss how fundamental sex differences in genetics, metabolism, neuroimmune, and stress responses may influence sex differences in alcohol intake. Comparing the sexes could aid in the discovery of novel therapeutics to treat AUD, and implementation of current treatment options in women.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lauren T Ursich
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Grace Bailey
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Amy Pearl
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
5
|
Morrow AL, McFarland MH, O'Buckley TK, Robinson DL. Emerging evidence for pregnane steroid therapeutics for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:59-96. [PMID: 39523063 DOI: 10.1016/bs.irn.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Many lines of research have suggested that the neuroactive pregnane steroids, including pregnenolone, progesterone, and allopregnanolone ([3α,5α]-3-hydroxypregnan-20-one, 3α,5α-THP), have therapeutic potential for treatment of alcohol use disorders (AUDs). In this chapter, we systematically address the preclinical and clinical evidence that supports this approach for AUD treatment, describe the underlying neurobiology of AUDs that are targeted by these treatments, and delineate how pregnane steroids may address various components of the disease. This review updates the theoretical framework for understanding how endogenous steroids that modulate the effects of alcohol, stress, excitatory/inhibitory and dopamine transmission, and the innate immune system appear to play a key role in the prevention and mitigation of AUDs. We further discuss newly discovered limitations of pregnane steroid therapies as well as the challenges that are inherent to development of endogenous compounds for therapeutics. We argue that overcoming these challenges presents the opportunity to help millions who suffer from AUDs across the world.
Collapse
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States.
| | - Minna H McFarland
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Donita L Robinson
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Chéry SL, O'Buckley TK, Boero G, Balan I, Morrow AL. Neurosteroid [3α,5α]3-hydroxypregnan-20-one inhibition of chemokine monocyte chemoattractant protein-1 in alcohol-preferring rat brain neurons, microglia, and astroglia. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024. [PMID: 38991981 DOI: 10.1111/acer.15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Neuroimmune dysfunction in alcohol use disorder (AUD) is associated with activation of myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptors (TLR) resulting in overexpression of the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). MCP-1 overexpression in the brain is linked to anxiety, higher alcohol intake, neuronal death, and activation of microglia observed in AUD. The neurosteroid [3α,5α][3-hydroxypregnan-20-one (3α,5α-THP) has been reported as an inhibitor of MyD88-dependent TLR activation and MCP-1 overexpression in mouse and human macrophages and the brain of alcohol-preferring (P) rats. METHODS We investigated how 3α,5α-THP regulates MCP-1 expression at the cellular level in P rat nucleus accumbens (NAc) and central amygdala (CeA). We focused on neurons, microglia, and astrocytes, examining the individual voxel density of MCP-1, neuronal marker NeuN, microglial marker IBA1, astrocytic marker GFAP, and their shared voxel density, defined as intersection. Ethanol-naïve male and female P rats were perfused 1 h after IP injections of 15 mg/kg of 3α,5α-THP, or vehicle. The NAc and CeA were imaged using confocal microscopy following double-immunofluorescence staining for MCP-1 with NeuN, IBA1, and GFAP, respectively. RESULTS MCP-1 intersected with NeuN predominantly and IBA1/GFAP negligibly. 3α,5α-THP reduced MCP-1 expression in NeuN-labeled cells by 38.27 ± 28.09% in male and 56.11 ± 21.46% in female NAc, also 37.99 ± 19.53% in male and 54.96 ± 30.58% in female CeA. In females, 3α,5α-THP reduced the MCP-1 within IBA1 and GFAP-labeled voxels in the NAc and CeA. Conversely, in males, 3α,5α-THP did not significantly alter the MCP-1 within IBA1 in NAc or with GFAP in the CeA. Furthermore, 3α,5α-THP decreased levels of IBA1 in both regions and sexes with no impact on GFAP or NeuN levels. Secondary analysis performed on data normalized to % control values indicated that no significant sex differences were present. CONCLUSIONS These data suggest that 3α,5α-THP inhibits neuronal MCP-1 expression and decreases the proliferation of microglia in P rats. These results increase our understanding of potential mechanisms for 3α,5α-THP modulation of ethanol consumption.
Collapse
Affiliation(s)
- Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Giorgia Boero
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Wang M, Hu S, Fu X, Zhou H, Yang S, Yang C. Neurosteroids: A potential target for neuropsychiatric disorders. J Steroid Biochem Mol Biol 2024; 239:106485. [PMID: 38369032 DOI: 10.1016/j.jsbmb.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Neurosteroids are steroids produced by endocrine glands and subsequently entering the brain, and also include steroids synthesis in the brain. It has been widely known that neurosteroids influence many neurological functions, including neuronal signaling, synaptic adaptations, and neuroprotective effects. In addition, abnormality in the synthesis and function of neurosteroids has been closely linked to neuropsychiatric disorders, such as Alzheimer's disease (AD), schizophrenia (SZ), and epilepsy. Given their important role in brain pathophysiology and disorders, neurosteroids offer potential therapeutic targets for a variety of neuropsychiatric diseases, and that therapeutic strategies targeting neurosteroids probably exert beneficial effects. We therefore summarized the role of neurosteroids in brain physiology and neuropsychiatric disorders, and introduced the recent findings of synthetic neurosteroid analogues for potential treatment of neuropsychiatric disorders, thereby providing insights for further research in the future.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghuo Fu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huixuan Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
8
|
Covault J, Tennen H, Feinn R. Randomized Placebo-Controlled Clinical Trial of Dutasteride for Reducing Heavy Drinking in Men. J Clin Psychopharmacol 2024; 44:223-231. [PMID: 38684046 PMCID: PMC11060692 DOI: 10.1097/jcp.0000000000001849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
BACKGROUND Prior studies indicate that neuroactive steroids mediate some of alcohol's effects. Dutasteride, widely used to treat benign prostatic hypertrophy, is an inhibitor of 5-alpha reductase enzymes, which play a central role in the production of 5α-reduced neuroactive steroids. The purpose of this study was to test dutasteride's tolerability and efficacy for reducing drinking. METHODS Men (n = 142) with heavy drinking (>24 drinks per week) and a goal to either stop or reduce drinking to nonhazardous levels were randomized to placebo or 1 mg dutasteride daily for 12 weeks. We hypothesized that dutasteride-treated patients would be more successful in reducing drinking. RESULTS Generalized linear mixed models that included baseline drinking, treatment, time and their 2-way interaction identified significant interactions of treatment-time, such that dutasteride treatment reduced drinking more than placebo. During the last month of treatment, 25% of dutasteride-treated participants had no hazardous drinking (no heavy drinking days and not more than 14 drinks per week) compared with 6% of placebo-treated participants (P = 0.006; NNT = 6). Sensitivity analysis identified baseline drinking to cope as a factor associated with larger reductions in drinking for dutasteride compared with placebo-treated participants. Dutasteride was well tolerated. Adverse events more common in the dutasteride group were stomach discomfort and reduced libido. CONCLUSION Dutasteride 1 mg daily was efficacious in reducing the number of heavy drinking days and drinks per week in treatment-seeking men. The benefit of dutasteride compared with placebo was greatest for participants with elevated baseline drinking to cope motives.
Collapse
Affiliation(s)
- Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Howard Tennen
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Richard Feinn
- Frank Netter School of Medicine, Quinnipiac University, Hamden, CT 06518
| |
Collapse
|
9
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Osuch B, Misztal T, Pałatyńska K, Tomaszewska-Zaremba D. Implications of Kynurenine Pathway Metabolism for the Immune System, Hypothalamic-Pituitary-Adrenal Axis, and Neurotransmission in Alcohol Use Disorder. Int J Mol Sci 2024; 25:4845. [PMID: 38732064 PMCID: PMC11084367 DOI: 10.3390/ijms25094845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In recent years, there has been a marked increase in interest in the role of the kynurenine pathway (KP) in mechanisms associated with addictive behavior. Numerous reports implicate KP metabolism in influencing the immune system, hypothalamic-pituitary-adrenal (HPA) axis, and neurotransmission, which underlie the behavioral patterns characteristic of addiction. An in-depth analysis of the results of these new studies highlights interesting patterns of relationships, and approaching alcohol use disorder (AUD) from a broader neuroendocrine-immune system perspective may be crucial to better understanding this complex phenomenon. In this review, we provide an up-to-date summary of information indicating the relationship between AUD and the KP, both in terms of changes in the activity of this pathway and modulation of this pathway as a possible pharmacological approach for the treatment of AUD.
Collapse
Affiliation(s)
- Bartosz Osuch
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (T.M.); (K.P.); (D.T.-Z.)
| | | | | | | |
Collapse
|
11
|
Peltier MR, Verplaetse TL, Altemus M, Zakiniaeiz Y, Ralevski EA, Mineur YS, Gueorguieva R, Picciotto MR, Cosgrove KP, Petrakis I, McKee SA. The role of neurosteroids in posttraumatic stress disorder and alcohol use disorder: A review of 10 years of clinical literature and treatment implications. Front Neuroendocrinol 2024; 73:101119. [PMID: 38184208 PMCID: PMC11185997 DOI: 10.1016/j.yfrne.2023.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Rates of alcohol use disorder (AUD) are increasing in men and women and there are high rates of concurrent posttraumatic stress disorder (PTSD) and AUD. AUD and PTSD synergistically increase symptomatology and negatively affect treatment outcomes; however, there are very limited pharmacological treatments for PTSD/AUD. Neurosteroids have been implicated in the underlying neurobiological mechanisms of both PTSD and AUD and may be a target for treatment development. This review details the past ten years of research on pregnenolone, progesterone, allopregnanolone, pregnanolone, estradiol, testosterone and dehydroepiandrosterone/dehydroepiandrosterone-sulfate (DHEA/DHEA-S) in the context of PTSD and AUD, including examination of trauma/alcohol-related variables, such as stress-reactivity. Emerging evidence that exogenous pregnenolone, progesterone, and allopregnanolone may be promising, novel interventions is also discussed. Specific emphasis is placed on examining the application of sex as a biological variable in this body of literature, given that women are more susceptible to both PTSD diagnoses and stress-related alcohol consumption.
Collapse
Affiliation(s)
- MacKenzie R Peltier
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA; National Center for PTSD, Clinical Neuroscience Division, West Haven, CT 06516, USA.
| | | | - Margaret Altemus
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA
| | - Yasmin Zakiniaeiz
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| | - Elizabeth A Ralevski
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA
| | - Yann S Mineur
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| | - Ralitza Gueorguieva
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Marina R Picciotto
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| | - Kelly P Cosgrove
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; National Center for PTSD, Clinical Neuroscience Division, West Haven, CT 06516, USA; Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, USA
| | - Ismene Petrakis
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA; VA Connecticut Healthcare System, Mental Health Service, West Haven, CT 06516, USA; National Center for PTSD, Clinical Neuroscience Division, West Haven, CT 06516, USA
| | - Sherry A McKee
- Yale School of Medicine, Department of Psychiatry, New Haven, CT 06519, USA
| |
Collapse
|
12
|
Morrow AL, Boero G, Balan I. Emerging evidence for endogenous neurosteroid modulation of pro-inflammatory and anti-inflammatory pathways that impact neuropsychiatric disease. Neurosci Biobehav Rev 2024; 158:105558. [PMID: 38244954 DOI: 10.1016/j.neubiorev.2024.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
This mini-review presents emerging evidence that endogenous neurosteroids modulate both pro- and anti-inflammatory signaling by immune cells and brain cells that contribute to depression, alcohol use disorders, and other inflammatory conditions. We first review the literature on pregnenolone and allopregnanolone inhibition of proinflammatory neuroimmune pathways in the periphery and the brain - effects that are independent of GABAergic mechanisms. We follow with evidence for neurosteroid enhancement of anti-inflammatory and protective pathways in brain and immune cells. These studies draw clinical relevance from a large body of evidence that pro-inflammatory immune signaling is dysregulated in many brain disorders and the fact that neurosteroids inhibit the same inflammatory pathways that are activated in depression, alcohol use disorders and other inflammatory conditions. Thus, we describe evidence that neurosteroid levels are decreased and neurosteroid supplementation has therapeutic efficacy in these neuropsychiatric conditions. We conclude with a perspective that endogenous regulation of immune balance between pro- and anti-inflammatory pathways by neurosteroid signaling is essential to prevent the onset of disease. Deficits in neurosteroids may unleash excessive pro-inflammatory activation which progresses in a feed-forward manner to disrupt brain networks that regulate stress, emotion and motivation. Neurosteroids can block various inflammatory pathways in mouse and human macrophages, rat brain and human blood and therefore provide new hope for treatment of intractable conditions that involve excessive inflammatory signaling.
Collapse
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Giorgia Boero
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Irina Balan
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Patterson R, Balan I, Morrow AL, Meltzer-Brody S. Novel neurosteroid therapeutics for post-partum depression: perspectives on clinical trials, program development, active research, and future directions. Neuropsychopharmacology 2024; 49:67-72. [PMID: 37715106 PMCID: PMC10700474 DOI: 10.1038/s41386-023-01721-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023]
Abstract
This article reviews novel neurosteroid therapeutics for post-partum depression, with a focus on their development, clinical trial data, current practices, and future directions in this exciting field. We discuss the clinical impact of brexanolone and several other neurosteroids, particularly as they relate to the treatment of postpartum depression (PPD) and major depressive disorders outside of the perinatal period. There has been increasing interest in GABA signaling and modulation as it pertains to the development of altered circuity and depressive states. This scientific underpinning served as the rationale for the initial development of brexanolone. We review the clinical trials supporting its Food and Drug Administration (FDA) approval as the first rapidly acting antidepressant specific for PPD, and the subsequent development of a clinical brexanolone program at an academic medical center, highlighting new research and data from that site as well as the challenges with the delivery of this I.V. drug. In addition to the GABA signaling hypothesis, we discuss the new evidence demonstrating that brexanolone inhibits inflammatory signaling post-infusion, suggesting that inflammatory signaling may contribute to the etiology of PPD. Finally, we describe new and future directions in neurosteroid therapeutics, including the development of an oral agent, zuranolone, and the IV and oral formulations of ganaxolone. Ultimately, the hope is that these novel neurosteroid therapeutics will provide fast-acting treatment for these impairing disorders and improve our understanding of the underlying mechanisms of depressive disorders.
Collapse
Affiliation(s)
- Riah Patterson
- Department of Psychiatry and Emergency Medicine, MacNider Bldg. Suite 304, CB# 7160, Chapel Hill, NC, 27599-7160, USA.
| | - Irina Balan
- Department of Psychiatry, Bowles Center for Alcohol Studies, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC, 27599-7178, USA
| | - A Leslie Morrow
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC, 27599-7178, USA
| | - Samantha Meltzer-Brody
- Department of Psychiatry, UNC Center for Women's Mood Disorders, MacNider Bldg. Suite 304CB #7160, Chapel Hill, NC, 27599-7160, USA
| |
Collapse
|
14
|
Pedraz-Petrozzi B, Lamadé EK, Schneiberg R, Scharnholz B, Vítků J, Hill M, Stárka Ľ, Gilles M, Deuschle M. Reduced urine pregnenolone concentration after clinical response in patients with depression: An open-label short-term prospective study. Psychoneuroendocrinology 2023; 157:106366. [PMID: 37597381 DOI: 10.1016/j.psyneuen.2023.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Identifying biological alterations in patients with depression, particularly those that differ between responders and non-responders, is of interest to clinical practice. Biomarker candidates involve neuroactive steroids, including pregnenolone (PREG) and allopregnanolone (ALLO). However, alterations in PREG and ALLO associated with treatment response are understudied. This study's main aim was to evaluate the effects of antidepressant treatment, clinical response, and treatment duration on PREG and ALLO in depression. MATERIALS AND METHODS In a 4-week, open-label trial, participants were allocated randomly to the venlafaxine (n = 27) or mirtazapine (n = 30) group. Urine concentrations of PREG and ALLO were assessed through gas chromatography-mass spectrometry. Participants collected night urine between 10:30 p.m. and 8:00 a.m. Two primary outcomes were analyzed. Firstly, the effect of treatment (mirtazapine or venlafaxine), clinical response (operationalized through the Hamilton Depression Rating Scale), and time (baseline compared to 28 days) on the urine concentrations of PREG or ALLO in depression. Finally, the effect of clinical response and time on the urine concentration of PREG or ALLO, independently of the antidepressant given (mirtazapine or venlafaxine). Linear mixed models were carried out. RESULTS There was no significant difference in PREG and ALLO concentrations between baseline and 28 days in responders and non-responders when investigating the venlafaxine or the mirtazapine group. However, we found a significant reduction of urine PREG concentration after 28 days of treatment in responders who received either venlafaxine or mirtazapine (estimate = -0.56; p = 0.016; 95CI [-1.003; -0.115]; Cohen's d = -0.61). CONCLUSIONS Our main results indicate that responders in depression show reduced urinary PREG concentrations after 4-weeks of therapy, independently of the antidepressant used. More studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Bruno Pedraz-Petrozzi
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany.
| | - Eva Kathrin Lamadé
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Rebekka Schneiberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Barbara Scharnholz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Jana Vítků
- Department of Steroids and Proteofactors, Institute of Endocrinology, Národni 8, 11694 Prague, Czech Republic
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Národni 8, 11694 Prague, Czech Republic
| | - Ľuboslav Stárka
- Department of Steroids and Proteofactors, Institute of Endocrinology, Národni 8, 11694 Prague, Czech Republic
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| |
Collapse
|
15
|
Boero G, McFarland MH, Tyler RE, O’Buckley TK, Chéry SL, Robinson DL, Besheer J, Morrow AL. Deleterious Interaction between the Neurosteroid (3α,5α)3-Hydroxypregnan-20-One (3α,5α-THP) and the Mu-Opioid System Activation during Forced Swim Stress in Rats. Biomolecules 2023; 13:1205. [PMID: 37627270 PMCID: PMC10452864 DOI: 10.3390/biom13081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The neurosteroid 3α,5α-THP is a potent GABAA receptor-positive modulator and its regulatory action on the HPA axis stress response has been reported in numerous preclinical and clinical studies. We previously demonstrated that 3α,5α-THP down-regulation of HPA axis activity during stress is sex-, brain region- and stressor-dependent. In this study, we observed a deleterious submersion behavior in response to 3α,5α-THP (15 mg/kg) during forced swim stress (FSS) that led us to investigate how 3α,5α-THP might affect behavioral coping strategies engaged in by the animal. Given the well-established involvement of the opioid system in HPA axis activation and its interaction with GABAergic neurosteroids, we explored the synergic effects of 3α,5α-THP/opiate system activation in this behavior. Serum β-endorphin (β-EP) was elevated by FSS and enhanced by 3α,5α-THP + FSS. Hypothalamic Mu-opiate receptors (MOP) were increased in female rats by 3α,5α-THP + FSS. Pretreatment with the MOP antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 2 mg/kg, IP) reversed submersion behavior in males. Moreover, in both males and females, CTAP pretreatment decreased immobility episodes while increasing immobility duration but did not alter swimming duration. This interaction between 3α,5α-THP and the opioid system in the context of FSS might be important in the development of treatment for neuropsychiatric disorders involving HPA axis activation.
Collapse
Affiliation(s)
- Giorgia Boero
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA; (G.B.)
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA; (G.B.)
| | - Ryan E. Tyler
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA; (G.B.)
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA; (G.B.)
| | - Samantha L. Chéry
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA; (G.B.)
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA; (G.B.)
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA; (G.B.)
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA; (G.B.)
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Macedo GC, Kreifeldt M, Goulding SP, Okhuarobo A, Sidhu H, Contet C. Chronic MAP4343 reverses escalated alcohol drinking in a mouse model of alcohol use disorder. Neuropsychopharmacology 2023; 48:821-830. [PMID: 36670228 PMCID: PMC10066354 DOI: 10.1038/s41386-023-01529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023]
Abstract
Alcohol use disorders can be driven by negative reinforcement. Alterations of the microtubule cytoskeleton have been associated with mood regulation in the context of depression. Notably, MAP4343, a pregnenolone derivative known to promote tubulin assembly, has antidepressant properties. In the present study, we tested the hypothesis that MAP4343 may reduce excessive alcohol drinking in a mouse model of alcohol dependence by normalizing affect during withdrawal. Adult male C57BL/6J mice were given limited access to voluntary alcohol drinking and ethanol intake escalation was induced by chronic intermittent ethanol (CIE) vapor inhalation. Chronic, but not acute, administration of MAP4343 reduced ethanol intake and this effect was more pronounced in CIE-exposed mice. There was a complex interaction between the effects of MAP4343 and alcohol on affective behaviors. In the elevated plus maze, chronic MAP4343 tended to increase open-arm exploration in alcohol-naive mice but reduced it in alcohol-withdrawn mice. In the tail suspension test, chronic MAP4343 reduced immobility selectively in Air-exposed alcohol-drinking mice. Finally, chronic MAP4343 countered the plasma corticosterone reduction induced by CIE. Parallel analysis of tubulin post-translational modifications revealed lower α-tubulin acetylation in the medial prefrontal cortex of CIE-withdrawn mice. Altogether, these data support the relevance of microtubules as a therapeutic target for the treatment of AUD.
Collapse
Affiliation(s)
- Giovana C Macedo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Kreifeldt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Scott P Goulding
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Agbonlahor Okhuarobo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Faculty of Pharmacy, Department of Pharmacology & Toxicology, University of Benin, Benin City, Nigeria
| | - Harpreet Sidhu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Candice Contet
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|