1
|
Baddenhausen S, Lutz B, Hofmann C. Cannabinoid type-1 receptor signaling in dopaminergic Engrailed-1 expressing neurons modulates motivation and depressive-like behavior. Front Mol Neurosci 2024; 17:1379889. [PMID: 38660383 PMCID: PMC11042029 DOI: 10.3389/fnmol.2024.1379889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The endocannabinoid system comprises highly versatile signaling functions within the nervous system. It is reported to modulate the release of several neurotransmitters, consequently affecting the activity of neuronal circuits. Investigations have highlighted its roles in numerous processes, including appetite-stimulating characteristics, particularly for palatable food. Moreover, endocannabinoids are shown to fine-tune dopamine-signaled processes governing motivated behavior. Specifically, it has been demonstrated that excitatory and inhibitory inputs controlled by the cannabinoid type 1 receptor (CB1) regulate dopaminergic neurons in the mesocorticolimbic pathway. In the present study, we show that mesencephalic dopaminergic (mesDA) neurons in the ventral tegmental area (VTA) express CB1, and we investigated the consequences of specific deletion of CB1 in cells expressing the transcription factor Engrailed-1 (En1). To this end, we validated a new genetic mouse line EN1-CB1-KO, which displays a CB1 knockout in mesDA neurons beginning from their differentiation, as a tool to elucidate the functional contribution of CB1 in mesDA neurons. We revealed that EN1-CB1-KO mice display a significantly increased immobility time and shortened latency to the first immobility in the forced swim test of adult mice. Moreover, the maximal effort exerted to obtain access to chocolate-flavored pellets was significantly reduced under a progressive ratio schedule. In contrast, these mice do not differ in motor skills, anhedonia- or anxiety-like behavior compared to wild-type littermates. Taken together, these findings suggest a depressive-like or despair behavior in an inevitable situation and a lack of motivation to seek palatable food in EN1-CB1-KO mice, leading us to propose that CB1 plays an important role in the physiological functions of mesDA neurons. In particular, our data suggest that CB1 directly modifies the mesocorticolimbic pathway implicated in depressive-like/despair behavior and motivation. In contrast, the nigrostriatal pathway controlling voluntary movement seems to be unaffected.
Collapse
Affiliation(s)
- Sarah Baddenhausen
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Moore CF, Stiltner JW, Davis CM, Weerts EM. Translational models of cannabinoid vapor exposure in laboratory animals. Behav Pharmacol 2022; 33:63-89. [PMID: 33136615 PMCID: PMC8079522 DOI: 10.1097/fbp.0000000000000592] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cannabis is one of the most frequently used psychoactive substances in the world. The most common route of administration for cannabis and cannabinoid constituents such as Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is via smoking or vapor inhalation. Preclinical vapor models have been developed, although the vaporization devices and delivery methods vary widely across laboratories. This review examines the emerging field of preclinical vapor models with a focus on cannabinoid exposure in order to (1) summarize vapor exposure parameters and other methodological details across studies; (2) discuss the pharmacological and behavioral effects produced by exposure to vaporized cannabinoids; and (3) compare behavioral effects of cannabinoid vapor administration with those of other routes of administration. This review will serve as a guide for past and current vapor delivery methods in animals, synergize findings across studies, and propose future directions for this area of research.
Collapse
Affiliation(s)
- Catherine F. Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jeffrey W. Stiltner
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine M. Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elise M. Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Kantonen T, Karjalainen T, Pekkarinen L, Isojärvi J, Kalliokoski K, Kaasinen V, Hirvonen J, Nuutila P, Nummenmaa L. Cerebral μ-opioid and CB 1 receptor systems have distinct roles in human feeding behavior. Transl Psychiatry 2021; 11:442. [PMID: 34453034 PMCID: PMC8397789 DOI: 10.1038/s41398-021-01559-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Eating behavior varies greatly between individuals, but the neurobiological basis of these trait-like differences in feeding remains poorly understood. Central μ-opioid receptors (MOR) and cannabinoid CB1 receptors (CB1R) regulate energy balance via multiple neural pathways, promoting food intake and reward. Because obesity and eating disorders have been associated with alterations in the brain's opioid and endocannabinoid signaling, the variation in MOR and CB1R system function could potentially underlie distinct eating behavior phenotypes. In this retrospective positron emission tomography (PET) study, we analyzed [11C]carfentanil PET scans of MORs from 92 healthy subjects (70 males and 22 females), and [18F]FMPEP-d2 scans of CB1Rs from 35 subjects (all males, all also included in the [11C]carfentanil sample). Eating styles were measured with the Dutch Eating Behavior Questionnaire (DEBQ). We found that lower cerebral MOR availability was associated with increased external eating-individuals with low MORs reported being more likely to eat in response to environment's palatable food cues. CB1R availability was associated with multiple eating behavior traits. We conclude that although MORs and CB1Rs overlap anatomically in brain regions regulating food reward, they have distinct roles in mediating individual feeding patterns. Central MOR system might provide a pharmacological target for reducing individual's excessive cue-reactive eating behavior.
Collapse
Affiliation(s)
- Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland. .,Clinical Neurosciences, University of Turku, Turku, Finland.
| | - Tomi Karjalainen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Laura Pekkarinen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Endocrinology, Turku University Hospital, Turku, Finland
| | - Janne Isojärvi
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Kari Kalliokoski
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Valtteri Kaasinen
- grid.1374.10000 0001 2097 1371Clinical Neurosciences, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XNeurocenter, Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
4
|
van Steenbergen H, Eikemo M, Leknes S. The role of the opioid system in decision making and cognitive control: A review. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:435-458. [PMID: 30963411 PMCID: PMC6599188 DOI: 10.3758/s13415-019-00710-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The opioid system regulates affective processing, including pain, pleasure, and reward. Restricting the role of this system to hedonic modulation may be an underestimation, however. Opioid receptors are distributed widely in the human brain, including the more "cognitive" regions in the frontal and parietal lobes. Nonhuman animal research points to opioid modulation of cognitive and decision-making processes. We review emerging evidence on whether acute opioid drug modulation in healthy humans can influence cognitive function, such as how we choose between actions of different values and how we control our behavior in the face of distracting information. Specifically, we review studies employing opioid agonists or antagonists together with experimental paradigms of reward-based decision making, impulsivity, executive functioning, attention, inhibition, and effort. Although this field is still in its infancy, the emerging picture suggests that the mu-opioid system can influence higher-level cognitive function via modulation of valuation, motivation, and control circuits dense in mu-opioid receptors, including orbitofrontal cortex, basal ganglia, amygdalae, anterior cingulate cortex, and prefrontal cortex. The framework that we put forward proposes that opioids influence decision making and cognitive control by increasing the subjective value of reward and reducing aversive arousal. We highlight potential mechanisms that might underlie the effects of mu-opioid signaling on decision making and cognitive control and provide directions for future research.
Collapse
Affiliation(s)
- Henk van Steenbergen
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Marie Eikemo
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Abstract
The opioid receptor system plays a major role in the regulation of mood, reward, and pain. The opioid receptors therefore make attractive targets for the treatment of many different conditions, including pain, depression, and addiction. However, stimulation or blockade of any one opioid receptor type often leads to on-target adverse effects that limit the clinical utility of a selective opioid agonist or antagonist. Literature precedent suggests that the opioid receptors do not act in isolation and that interactions among the opioid receptors and between the opioid receptors and other proteins may produce clinically useful targets. Multifunctional ligands have the potential to elicit desired outcomes with reduced adverse effects by allowing for the activation of specific receptor conformations and/or signaling pathways promoted as a result of receptor oligomerization or crosstalk. In this chapter, we describe several classes of multifunctional ligands that interact with at least one opioid receptor. These ligands have been designed for biochemical exploration and the treatment of a wide variety of conditions, including multiple kinds of pain, depression, anxiety, addiction, and gastrointestinal disorders. The structures, pharmacological utility, and therapeutic drawbacks of these classes of ligands are discussed.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Pharmacology, Medical School and the Edward F. Domino Research Center, University of Michigan, Ann Arbor, MI, USA.
| | - Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Oral Administration of the Endocannabinoid Anandamide during Lactation: Effects on Hypothalamic Cannabinoid Type 1 Receptor and Food Intake in Adult Mice. J Nutr Metab 2017; 2017:2945010. [PMID: 28808587 PMCID: PMC5541785 DOI: 10.1155/2017/2945010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/07/2017] [Accepted: 06/22/2017] [Indexed: 11/17/2022] Open
Abstract
We have previously shown that administration of the endocannabinoid anandamide (AEA) during lactation leads to overweight, increased body fat accumulation, and insulin resistance in adult mice. This study was designed to elucidate if these effects are due to increased food intake, stimulated by an augmented abundance and binding ability of the hypothalamic cannabinoid type 1 receptor (CB1R). With this aim, male mice pups were treated with a daily oral dose of AEA during lactation. Adult mice were also treated with a single oral dose of AEA, to evaluate acute food intake during 4 h. At 21 and 160 days, CB1R protein abundance was calculated by western blot analysis. Capacity of hypothalamic membranes to specifically bind the radioligand 3[H]-CP55.940 was also measured. Western blots showed a 72% increase in CB1R abundance in AEA-treated 21-day-old mice, without differences in adult mice. Additionally, specific binding of 3[H]-CP55.940 to hypothalamic membranes from adult mice was significantly lower in those mice treated with AEA during lactation. Moreover, AEA did not stimulate acute food intake in both, AEA-treated and control mice. Results suggest that metabolic alterations found in adult mice because of AEA treatment during lactation are not associated with hypothalamic CB1R.
Collapse
|
7
|
Simon V, Cota D. MECHANISMS IN ENDOCRINOLOGY: Endocannabinoids and metabolism: past, present and future. Eur J Endocrinol 2017; 176:R309-R324. [PMID: 28246151 DOI: 10.1530/eje-16-1044] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
The endocannabinoid system (ECS), including cannabinoid type 1 and type 2 receptors (CB1R and CB2R), endogenous ligands called endocannabinoids and their related enzymatic machinery, is known to have a role in the regulation of energy balance. Past information generated on the ECS, mainly focused on the involvement of this system in the central nervous system regulation of food intake, while at the same time clinical studies pointed out the therapeutic efficacy of brain penetrant CB1R antagonists like rimonabant for obesity and metabolic disorders. Rimonabant was removed from the market in 2009 and its obituary written due to its psychiatric side effects. However, in the meanwhile a number of investigations had started to highlight the roles of the peripheral ECS in the regulation of metabolism, bringing up new hope that the ECS might still represent target for treatment. Accordingly, peripherally restricted CB1R antagonists or inverse agonists have shown to effectively reduce body weight, adiposity, insulin resistance and dyslipidemia in obese animal models. Very recent investigations have further expanded the possible toolbox for the modulation of the ECS, by demonstrating the existence of endogenous allosteric inhibitors of CB1R, the characterization of the structure of the human CB1R, and the likely involvement of CB2R in metabolic disorders. Here we give an overview of these findings, discussing what the future may hold in the context of strategies targeting the ECS in metabolic disease.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Animals
- Anti-Obesity Agents/adverse effects
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Cannabinoid Receptor Antagonists/adverse effects
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinoid Receptor Antagonists/therapeutic use
- Drug Inverse Agonism
- Endocannabinoids/metabolism
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Humans
- Models, Biological
- Obesity/drug therapy
- Obesity/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Vincent Simon
- INSERM and University of BordeauxNeurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| | - Daniela Cota
- INSERM and University of BordeauxNeurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
| |
Collapse
|
8
|
Rodgers R. Bench to bedside in appetite research: Lost in translation? Neurosci Biobehav Rev 2017; 76:163-173. [DOI: 10.1016/j.neubiorev.2016.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
|
9
|
Fride E, Bregman T, Kirkham TC. Endocannabinoids and Food Intake: Newborn Suckling and Appetite Regulation in Adulthood. Exp Biol Med (Maywood) 2016; 230:225-34. [PMID: 15792943 DOI: 10.1177/153537020523000401] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The appetite-stimulating effects of the cannabis plant (Cannabis sativa) have been known since ancient times, and appear to be effected through the incentive and rewarding properties of foods. Investigations into the biological basis of the multiple effects of cannabis have yielded important breakthroughs in recent years: the discovery of two cannabinoid receptors in brain and peripheral organ systems, and endogenous ligands (endocannabinoids) for these receptors. These advances have greatly increased our understanding of how appetite is regulated through these endocannabinoid receptor systems. The presence of endocannabinoids in the developing brain and in maternal milk have led to evidence for a critical role for CB, receptors in oral motor control of suckling during neonatal development. The endocannabinoids appear to regulate energy balance and food intake at four functional levels within the brain and periphery: (i) limbic system (for hedonic evaluation of foods), (ii) hypothalamus and hindbrain (integrative functions), (iii) intestinal system, and (iv) adipose tissue. At each of these levels, the endocannabinoid system interacts with a number of better known molecules involved in appetite and weight regulation, including leptin, ghrelin, and the melanocortins. Therapeutically, appetite stimulation by cannabinoids has been studied for several decades, particularly in relation to cachexia and malnutrition associated with cancer, acquired immunodeficiency syndrome, or anorexia nervosa. The recent advances in cannabinoid pharmacology may lead to improved treatments for these conditions or, conversely, for combating excessive appetite and body weight, such as CB, receptor antagonists as antiobesity medications. In conclusion, the exciting progress in the understanding of how the endocannabinoid CB receptor systems influence appetite and body weight is stimulating the development of therapeutic orexigenic and anorectic agents. Furthermore, the role of cannabinoid CB, receptor activation for milk suckling in newborns may open new doors toward understanding nonorganic failure-to-thrive in infants, who display growth failure without known organic cause.
Collapse
Affiliation(s)
- Ester Fride
- Department of Behavioral Sciences, College of Judea and Samaria, Ariel, Israel.
| | | | | |
Collapse
|
10
|
Rasmussen EB, Robertson SH, Rodriguez LR. The utility of behavioral economics in expanding the free-feed model of obesity. Behav Processes 2016; 127:25-34. [PMID: 26923097 PMCID: PMC4868767 DOI: 10.1016/j.beproc.2016.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 01/19/2023]
Abstract
Animal models of obesity are numerous and diverse in terms of identifying specific neural and peripheral mechanisms related to obesity; however, they are limited when it comes to behavior. The standard behavioral measure of food intake in most animal models occurs in a free-feeding environment. While easy and cost-effective for the researcher, the free-feeding environment omits some of the most important features of obesity-related food consumption-namely, properties of food availability, such as effort and delay to obtaining food. Behavior economics expands behavioral measures of obesity animal models by identifying such behavioral mechanisms. First, economic demand analysis allows researchers to understand the role of effort in food procurement, and how physiological and neural mechanisms are related. Second, studies on delay discounting contribute to a growing literature that shows that sensitivity to delayed food- and food-related outcomes is likely a fundamental process of obesity. Together, these data expand the animal model in a manner that better characterizes how environmental factors influence food consumption.
Collapse
|
11
|
Effects of co-administration of 2-arachidonylglycerol (2-AG) and a selective µ-opioid receptor agonist into the nucleus accumbens on high-fat feeding behaviors in the rat. Brain Res 2015; 1618:309-15. [PMID: 26100333 DOI: 10.1016/j.brainres.2015.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/26/2015] [Accepted: 06/12/2015] [Indexed: 12/14/2022]
Abstract
Previous research has demonstrated that the nucleus accumbens is a site where opioids and cannabinoids interact to alter feeding behavior. However, the influence of the endocannabinoid 2-arachidonylglycerol (2-AG) on the well-characterized model of intra-accumbens opioid driven high-fat feeding behavior has not been explored. The present experiments examined high-fat feeding associated behaviors produced by the interaction of 2-AG and the μ-opioid receptor agonist DAla(2),N,Me-Phe(4),Gly-ol(5)-enkaphalin (DAMGO) administered into the nucleus accumbens. Sprague-Dawley rats were implanted with bilateral cannulae aimed at the nucleus accumbens and were co-administered both a sub-threshold dose of 2-AG (0 or 0.25 μg/0.5 μl/side) and DAMGO (0, 0.025 μg or 0.25 μg/0.5 μl/side) in all dose combinations, and in a counterbalanced order. Animals were then immediately allowed a 2h-unrestricted access period to a palatable high-fat diet. Consumption, number and duration of food hopper entries, and locomotor activity were all monitored. DAMGO treatment led to an increase in multiple behaviors, including consumption, duration of food hopper entry, and locomotor activity. However, combined intra-accumbens administration of DAMGO and a subthreshold dose of 2-AG led to a significant increase in number of food hopper entries and locomotor activity, compared to DAMGO by itself. The results confirm that intra-accumbens administration of subthreshold dose of the endogenous cannabinoid 2-AG increases the DAMGO-induced approach and locomotor behaviors associated with high-fat feeding.
Collapse
|
12
|
Nimczick M, Decker M. New Approaches in the Design and Development of Cannabinoid Receptor Ligands: Multifunctional and Bivalent Compounds. ChemMedChem 2015; 10:773-86. [DOI: 10.1002/cmdc.201500041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 12/22/2022]
|
13
|
Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res 2015; 277:14-31. [PMID: 25217810 DOI: 10.1016/j.bbr.2014.08.065] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
|
14
|
Wright FL, Rodgers RJ. Behavioural profile of exendin-4/naltrexone dose combinations in male rats during tests of palatable food consumption. Psychopharmacology (Berl) 2014; 231:3729-44. [PMID: 24682505 DOI: 10.1007/s00213-014-3507-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/12/2014] [Indexed: 12/25/2022]
Abstract
RATIONALE The glucagon-like peptide 1 receptor (GLP-1R) agonist exendin-4 potently suppresses food intake in animals and humans. However, little is known about the behavioural specificity of this effect either when administered alone or when co-administered with another anorectic agent. OBJECTIVES The present study characterises the effects of exendin-4, both alone and in combination with naltrexone, on behaviours displayed by male rats during tests with palatable mash. METHODS Experiment 1 examined the dose-response effects of exendin-4 (0.025-2.5 μg/kg, IP), while experiment 2 profiled the effects of low-dose combinations of the peptide (0.025 and 0.25 μg/kg) and naltrexone (0.1 mg/kg). RESULTS In experiment 1, exendin-4 dose dependently suppressed food intake as well as the frequency and rate of eating. However, these effects were accompanied by dose-dependent reductions in all active behaviours and, at 2.5 μg/kg, a large increase in resting and disruption of the behavioural satiety sequence (BSS). In experiment 2, while exendin-4 (0.25 μg/kg) and naltrexone each produced a significant reduction in intake and feeding behaviour (plus an acceleration in the BSS), co-treatment failed to produce stronger effects than those seen in response to either compound alone. CONCLUSION Similarities between the behavioural signature of exendin-4 and that previously reported for the emetic agent lithium chloride would suggest that exendin-4 anorexia is related to the aversive effects of the peptide. Furthermore, as low-dose combinations of the peptide with naltrexone failed to produce an additive/synergistic anorectic effect, this particular co-treatment strategy would not appear to have therapeutic significance.
Collapse
Affiliation(s)
- F L Wright
- Behavioural Neuroscience Laboratory, Institute of Psychological Sciences, University of Leeds, Leeds, LS2 9JT, UK, England
| | | |
Collapse
|
15
|
Ding Y, Qiu Y, Jing L, Thorn DA, Zhang Y, Li JX. Behavioral effects of the cannabinoid CB1 receptor allosteric modulator ORG27569 in rats. Pharmacol Res Perspect 2014; 2:e00069. [PMID: 25431655 PMCID: PMC4186448 DOI: 10.1002/prp2.69] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/15/2014] [Indexed: 01/03/2023] Open
Abstract
The cannabinoid CB1 receptor system is involved in feeding behaviors and the CB1 receptor antagonist SR141716A is an effective antiobesity drug. However, SR141716A also has serious side effects, which prompted the exploration of alternative strategies to modulate this important drug target. Recently a CB1 receptor allosteric modulating site has been discovered and the allosteric modulating activity of several modulators including ORG27569 has been characterized in vitro. Yet, little is known of the in vivo pharmacological effects of ORG27569. This study examined the behavioral pharmacology of ORG27569 in rats. ORG27569 (3.2–10 mg/kg, i.p.) selectively attenuated the hypothermic effects of CB1 receptor agonists CP55940 (0.1–1 mg/kg) and anandamide (3.2–32 mg/kg). In contrast, SR141716A only attenuated the hypothermic effects of CP55940 but not anandamide. SR141716A but not ORG27569 blocked CP55940-induced catalepsy and antinociception. In addition, ORG27569 did not modify SR141716A-elicited grooming and scratching behaviors. In feeding studies, ORG27569 decreased palatable and plain food intake which was partially blocked by CP55940. The hypophagic effect of ORG27569 developed tolerance after 4 days of daily 5.6 mg/kg treatment; however, the effect on body weight gain outlasted the drug treatment for 10 days. These data suggest that ORG27569 may not function as a CB1 receptor allosteric modulator in vivo, although its hypophagic activity still has potential therapeutic utility.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Pharmacology and Toxicology, University at Buffalo Buffalo, New York
| | - Yanyan Qiu
- Department of Pharmacology and Toxicology, University at Buffalo Buffalo, New York
| | - Li Jing
- Department of Pharmacology and Toxicology, University at Buffalo Buffalo, New York ; Department of Physiology and Pathophysiology, Tianjin Medical University Tianjin, China
| | - David A Thorn
- Department of Pharmacology and Toxicology, University at Buffalo Buffalo, New York
| | - Yanan Zhang
- Research Triangle Institute Research Triangle Park, North Carolina
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo Buffalo, New York
| |
Collapse
|
16
|
Comparison of automated home-cage monitoring systems: Emphasis on feeding behaviour, activity and spatial learning following pharmacological interventions. J Neurosci Methods 2014; 234:13-25. [DOI: 10.1016/j.jneumeth.2014.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022]
|
17
|
Fernández-Fernández C, Callado LF, Girón R, Sánchez E, Erdozain AM, López-Moreno JA, Morales P, Rodríguez de Fonseca F, Fernández-Ruiz J, Goya P, Meana JJ, Martín MI, Jagerovic N. Combining rimonabant and fentanyl in a single entity: preparation and pharmacological results. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:263-77. [PMID: 24591816 PMCID: PMC3934591 DOI: 10.2147/dddt.s55045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Based on numerous pharmacological studies that have revealed an interaction between cannabinoid and opioid systems at the molecular, neurochemical, and behavioral levels, a new series of hybrid molecules has been prepared by coupling the molecular features of two wellknown drugs, ie, rimonabant and fentanyl. The new compounds have been tested for their affinity and functionality regarding CB1 and CB2 cannabinoid and μ opioid receptors. In [35S]-GTPγS (guanosine 5′-O-[gamma-thio]triphosphate) binding assays from the post-mortem human frontal cortex, they proved to be CB1 cannabinoid antagonists and μ opioid antagonists. Interestingly, in vivo, the new compounds exhibited a significant dual antagonist action on the endocannabinoid and opioid systems.
Collapse
Affiliation(s)
| | - Luis F Callado
- Departamento de Farmacología, Universidad del Pais Vasco, UPV/EHU, CIBERSAM, Leioa, Spain
| | - Rocío Girón
- Departamento de Farmacología y Nutrición, Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Eva Sánchez
- Departamento de Farmacología y Nutrición, Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Amaia M Erdozain
- Departamento de Farmacología, Universidad del Pais Vasco, UPV/EHU, CIBERSAM, Leioa, Spain
| | | | | | | | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, CIBERNED, IRYCIS, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, CSIC, Madrid, Spain
| | - J Javier Meana
- Departamento de Farmacología, Universidad del Pais Vasco, UPV/EHU, CIBERSAM, Leioa, Spain
| | - M Isabel Martín
- Departamento de Farmacología y Nutrición, Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | | |
Collapse
|
18
|
Wright FL, Rodgers RJ. On the behavioural specificity of hypophagia induced in male rats by mCPP, naltrexone, and their combination. Psychopharmacology (Berl) 2014; 231:787-800. [PMID: 24114428 DOI: 10.1007/s00213-013-3295-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE Serotonergic (5-hydroxytryptamine, 5-HT) and opioidergic mechanisms are intimately involved in appetite regulation. OBJECTIVES In view of recent evidence of positive anorectic interactions between opioid and various non-opioid substrates, our aim was to assess the behavioural specificity of anorectic responses to the opioid receptor antagonist naltrexone, the 5-HT2C/1B receptor agonist mCPP and their combination. METHODS Behavioural profiling techniques, including the behavioural satiety sequence (BSS), were used to examine acute drug effects in non-deprived male rats tested with palatable mash. Experiment 1 characterised the dose-response profile of mCPP (0.1-3.0 mg/kg), while experiment 2 assessed the effects of combined treatment with a sub-anorectic dose of mCPP (0.1 mg/kg) and one of two low doses of naltrexone (0.1 and 1.0 mg/kg). RESULTS Experiment 1 confirmed the dose-dependent anorectic efficacy of mCPP, with robust effects on intake and feeding-related measures observed at 3.0 mg/kg. However, that dose was also associated with other behavioural alterations including increased grooming, reductions in locomotion and sniffing, and disruption of the BSS. In experiment 2, naltrexone dose-dependently reduced food intake and time spent feeding, effects accompanied by a behaviourally selective acceleration in the BSS. However, the addition of 0.1 mg/kg mCPP did not significantly alter the behavioural changes observed in response to either dose of naltrexone given alone. CONCLUSIONS In contrast to recently reported positive anorectic interactions involving low-dose combinations of opioid receptor antagonists or mCPP with cannabinoid CB1 receptor antagonists, present results would not appear to provide any support for potentially clinically relevant anorectic interactions between opioid and 5-HT2C/1B receptor mechanisms.
Collapse
Affiliation(s)
- F L Wright
- Behavioural Neuroscience Laboratory, Institute of Psychological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
19
|
Casteels C, Gérard N, van Kuyck K, Pottel L, Nuttin B, Bormans G, Van Laere K. Small animal PET imaging of the type 1 cannabinoid receptor in a rodent model for anorexia nervosa. Eur J Nucl Med Mol Imaging 2013; 41:308-21. [PMID: 24006151 DOI: 10.1007/s00259-013-2522-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/11/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE Several lines of evidence strongly implicate a dysfunctional endocannabinoid system (ECS) in eating disorders. Using [(18)F]MK-9470 and small animal positron emission tomography (PET), we investigated for the first time cerebral changes in type 1 cannabinoid (CB1) receptor binding in vivo in the activity-based rat model of anorexia (ABA), in comparison to distinct motor- and food-related control conditions and in relation to gender and behavioural variables. METHODS In total, experiments were conducted on 80 Wistar rats (23 male and 57 female). Male rats were assigned to the cross-sectional conditions: ABA (n = 12) and CONTROL (n = 11), whereas female rats were divided between two settings: (1) a cross-sectional design using ABA (n = 13), CONTROL (n = 9), and two extra control conditions for each of the variables manipulated in ABA, i.e. DIET (n = 8) and WHEEL (n = 9), and (2) a longitudinal one using ABA (n = 10) and CONTROL (n = 8) studied at baseline, during the model and upon recovery. The ABA group was subjected to food restriction in the presence of a running wheel, the DIET group to food restriction without wheel, the WHEEL group to a normal diet with wheel and CONTROL animals had a normal diet and no running wheel. Parametric CB1 receptor images of each group were spatially normalized to Paxinos space and analysed voxel-wise. RESULTS In the ABA model, absolute [(18)F]MK-9470 binding was significantly increased in all cortical and subcortical brain areas as compared to control conditions (male +67 %; female >51%, all p cluster < 6.3×10(-6)) that normalized towards baseline values after weight gain. Additionally, relative [(18)F]MK-9470 binding was increased in the hippocampus, inferior colliculus and entorhinal cortex of female ABA (+4.6%; p cluster < 1.3×10(-6)), whereas no regional differences were observed in male subjects. Again, relative [(18)F]MK-9470 binding values normalized upon weight gain. CONCLUSION These data point to a widespread transient disturbance of the endocannabinoid transmission, specifically for CB1 receptors in the ABA model. Our data also suggest (1) gender effects on regional CB1 receptor binding in the hippocampus and (2) add further proof to the validity of the ABA model to mimic aspects of human disease.
Collapse
Affiliation(s)
- Cindy Casteels
- Division of Nuclear Medicine, University Hospital and KU Leuven, Herestraat 49 bus 7003, 3000, Leuven, Belgium,
| | | | | | | | | | | | | |
Collapse
|
20
|
Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior. Neurosci Biobehav Rev 2013; 37:1985-98. [PMID: 23466532 DOI: 10.1016/j.neubiorev.2013.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/12/2013] [Accepted: 02/22/2013] [Indexed: 11/21/2022]
Abstract
Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing implications for understanding disorders of "non-homeostatic" feeding.
Collapse
|
21
|
Tolerance to hypophagia induced by prolonged treatment with a CB1 antagonist is related to the reversion of anorexigenic neuropeptide gene expression in the hypothalamus. ACTA ACUST UNITED AC 2013; 182:12-8. [DOI: 10.1016/j.regpep.2012.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 10/01/2012] [Accepted: 12/17/2012] [Indexed: 12/23/2022]
|
22
|
Wright FL, Rodgers RJ. Low dose naloxone attenuates the pruritic but not anorectic response to rimonabant in male rats. Psychopharmacology (Berl) 2013; 226:415-31. [PMID: 23142959 DOI: 10.1007/s00213-012-2916-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
RATIONALE Previous research suggests that the acute anorectic effect of cannabinoid CB1 receptor antagonist/inverse agonists may be secondary to response competition from the compulsive scratching and grooming syndrome characteristic of these agents. OBJECTIVES As the pruritic effect of rimonabant can be attenuated by the opioid receptor antagonist naloxone, these studies test the prediction that naloxone co-treatment should prevent acute rimonabant anorexia. METHODS Two experiments comprehensively profiled the behavioural effects of an anorectic dose of rimonabant (1.5 mg/kg) in the absence or presence of naloxone (experiment 1: 0.01 or 0.1 mg/kg; experiment 2: 0.05 mg/kg). RESULTS In both experiments, rimonabant not only significantly suppressed food intake and time spent eating but also induced compulsive scratching and grooming. In experiment 1, although the lower dose of naloxone seemed to weakly attenuate the effects of rimonabant both on ingestive and compulsive behaviours, the higher dose more strongly suppressed the compulsive elements but did not significantly affect the anorectic response. The results of experiment 2 showed that naloxone at a dose which markedly attenuated rimonabant-induced grooming and scratching did not alter the effects of the compound on food intake or time spent feeding. The apparent independence of the ingestive and compulsive effects of rimonabant was confirmed by the observation that despite a 'normalising' effect of naloxone co-treatment on behavioural structure (BSS), the opioid antagonist did not impact the suppressant effect of rimonabant on peak feeding. CONCLUSION The acute anorectic response to rimonabant would not appear to be secondary to compulsive scratching and grooming.
Collapse
Affiliation(s)
- F L Wright
- Behavioural Neuroscience Laboratory, Institute of Psychological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
23
|
Wiley JL, Marusich JA, Zhang Y, Fulp A, Maitra R, Thomas BF, Mahadevan A. Structural analogs of pyrazole and sulfonamide cannabinoids: effects on acute food intake in mice. Eur J Pharmacol 2012; 695:62-70. [PMID: 22975289 DOI: 10.1016/j.ejphar.2012.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 12/31/2022]
Abstract
Obesity contributes to a multitude of serious health problems. Given the demonstrated role of the endogenous cannabinoid system in appetite regulation, the purpose of the present study was to evaluate structural analogs of two cannabinoids, rimonabant (cannabinoid CB(1) receptor antagonist) and O-2050 (sulfonamide analog of Δ(8)-tetrahydrocannabinol), that showed appetite suppressant effects in previous studies. Structure-activity relationships of these two lead compounds were examined in several assays, including cannabinoid CB(1) and CB(2) receptor binding, food intake, and an in vivo test battery (locomotor activity, antinociception, ring immobility, and body temperature) in mice. Rimonabant and O-2050 reliably decreased feeding in mice; however, their analogs decreased feeding only at higher doses, even though some compounds had quite good cannabinoid CB(1) binding affinity. Results of the in vivo test battery were inconsistent, with some of the compounds producing effects characteristic of cannabinoid agonists while other compounds were inactive or were antagonists against an active dose of Δ(9)-tetrahydrocannabinol. These results demonstrate that reduction of food intake is not a characteristic effect of pyrazole and sulfonamide cannabinoid analogs with favorable cannabinoid CB(1) binding affinity, suggesting that development of these classes of cannabinoids for the treatment of obesity will require evaluation of their effects in a broad spectrum of pharmacological assays.
Collapse
Affiliation(s)
- Jenny L Wiley
- Research Triangle Institute, 3040 Cornwallis Drive, Research Triangle Park, NC 27709-2194, U.S.A.
| | | | | | | | | | | | | |
Collapse
|
24
|
De Luca MA, Solinas M, Bimpisidis Z, Goldberg SR, Di Chiara G. Cannabinoid facilitation of behavioral and biochemical hedonic taste responses. Neuropharmacology 2012; 63:161-8. [PMID: 22063718 PMCID: PMC3705914 DOI: 10.1016/j.neuropharm.2011.10.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/17/2011] [Accepted: 10/25/2011] [Indexed: 11/20/2022]
Abstract
Cannabinoid receptor agonists are known to stimulate feeding in humans and animals and this effect is thought to be related to an increase in food palatability. On the other hand, highly palatable food stimulates dopamine (DA) transmission in the shell of the nucleus accumbens (NAc) and this effect undergoes one trial habituation. In order to investigate the relationship between the affective properties of tastes and the response of NAc shell DA we studied the effect of delta-9-tetrahydrocannabinol (THC) on behavioral taste reactivity to intraoral infusion of appetitive (sucrose solutions) and aversive (quinine and saturated NaCl solutions) tastes and on the response of in vivo DA transmission in the NAc shell to intraoral sucrose. Rats were implanted with intraoral cannulae and the effect of systemic administration of THC on the behavioral reactions to intraoral infusion of sucrose and of quinine or saturated NaCl solutions were scored. THC increased the hedonic reactions to sucrose but did not affect the aversive reactions to quinine and NaCl. The effects of THC were completely blocked by the CB1 receptor inverse agonist/antagonist rimonabant given at doses that do not affect taste reactivity to sucrose. In rats implanted with microdialysis probes and with intraoral cannulae, THC, made sucrose effective in raising dialysate DA in the shell of the NAc. As in the case of highly palatable food (Fonzies, sweet chocolate), the stimulatory effect of sucrose on shell DA under THC underwent one trial habituation. Altogether, these findings demonstrate that stimulation of CB1 receptors specifically increases the palatability of hedonic taste without affecting that of aversive tastes. Consistent with the ability of THC to increase sucrose palatability is the observation that under THC pretreatment sucrose acquires the ability to induce a release of DA in the shell of the NAc and this property undergoes adaptation after repeated exposure to the taste (habituation). This article is part of a Special Issue entitled 'Central Control of Food Intake'.
Collapse
Affiliation(s)
- M A De Luca
- Department of Toxicology, University of Cagliari, Italy.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Obesity has become a major health and economic burden, and the development of new treatments is urgently needed. Initially, such treatments involve use of animal models, and the purpose of this chapter is to describe some of the most useful models, why one might be chosen over another to address a particular question, and any procedural pitfalls. I restrict the discussion to rats and mice, used in the overwhelming majority of preclinical studies, and more specifically to protocols of diet-induced obesity and those that emulate binge eating.
Collapse
Affiliation(s)
- Neil E Rowland
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
26
|
Olarte-Sánchez CM, Valencia Torres L, Body S, Cassaday HJ, Bradshaw CM, Szabadi E. Effect of orexin-B-saporin-induced lesions of the lateral hypothalamus on performance on a progressive ratio schedule. J Psychopharmacol 2012; 26:871-86. [PMID: 21926428 DOI: 10.1177/0269881111409607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been suggested that a sub-population of orexinergic neurones whose somata lie in the lateral hypothalamic area (LHA) play an important role in regulating the reinforcing value of both food and drugs. This experiment examined the effect of disruption of orexinergic mechanisms in the LHA on performance on the progressive ratio schedule of reinforcement, in which the response requirement increases progressively for successive reinforcers. The data were analysed using a mathematical model which yields a quantitative index of reinforcer value and dissociates effects of interventions on motor and motivational processes. Rats were trained under a progressive ratio schedule using food-pellet reinforcement. They received bilateral injections of conjugated orexin-B-saporin (OxSap) into the LHA or sham lesions. Training continued for a further 40 sessions after surgery. Equations were fitted to the response rate data from each rat, and the parameters of the model were derived for successive blocks of 10 sessions. The OxSap lesion reduced the number of orexin-containing neurones in the LHA by approximately 50% compared with the sham-lesioned group. The parameter expressing the incentive value of the reinforcer was not significantly altered by the lesion. However, the parameter related to the maximum response rate was significantly affected, suggesting that motor capacity was diminished in the OxSap-lesioned group. The results indicate that OxSap lesions of the LHA disrupted food-reinforced responding on the progressive ratio schedule. It is suggested that this disruption was brought about by a change in non-motivational (motor) processes.
Collapse
Affiliation(s)
- C M Olarte-Sánchez
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
27
|
Rohrbach K, Thomas MA, Glick S, Fung EN, Wang V, Watson L, Gregory P, Antel J, Pelleymounter MA. Ibipinabant attenuates β-cell loss in male Zucker diabetic fatty rats independently of its effects on body weight. Diabetes Obes Metab 2012; 14:555-64. [PMID: 22268426 DOI: 10.1111/j.1463-1326.2012.01563.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIM To test the antidiabetic efficacy of ibipinabant, this new cannabinoid receptor 1 (CB1) antagonist was compared with food-restriction-induced weight loss, rosiglitazone (4 mg/kg) and rimonabant (3 and 10 mg/kg), using parameters of glycaemic control in male Zucker diabetic fatty (ZDF) rats. METHODS Body weight, food and water intake, fasted and non-fasted glucose and insulin, glucose tolerance and glycosylated haemoglobin (HbA1c) were all assessed over the course of the 9-week study. Pancreatic insulin content and islet area were also evaluated. RESULTS At the end of the study, vehicle-treated ZDF rats were severely hyperglycaemic and showed signs of β-cell decline, including dramatic reductions in unfasted insulin levels. Ibipinanbant (10 mg/kg) reduced the following relative to vehicle controls: fasting glucose (-61%), glucose excursion area under the curve (AUC) in an oral glucose tolerance test (OGTT, -44%) and HbA1c (-50%). Furthermore, non-fasting insulin, islet area and islet insulin content were all increased (71, 40 and 76%, respectively) relative to vehicle controls by the end of the study. All of these effects were similar to those of rimonabant and rosiglitazone, where ibipinabant was slightly more effective than rimonabant at the lowest dose and somewhat less effective than rosiglitazone at all doses. These antidiabetic effects appear independent of weight loss because none of the parameters above were consistently improved by the comparable weight loss induced by food restriction. CONCLUSIONS Ibipinabant may have weight loss-independent antidiabetic effects and may have the potential to attenuate β-cell loss in a model of progressive β-cell dysfunction.
Collapse
Affiliation(s)
- K Rohrbach
- Department of Metabolic Research, Bristol-Myers Squibb Co., Hopewell, NJ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vickers SP, Clifton PG. Animal models to explore the effects of CNS drugs on food intake and energy expenditure. Neuropharmacology 2012; 63:124-31. [PMID: 22710443 DOI: 10.1016/j.neuropharm.2012.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/06/2012] [Accepted: 04/02/2012] [Indexed: 12/26/2022]
Abstract
Obesity has reached epidemic proportions globally with an increasing incidence not just in Western cultures but also Mexico, Brazil, China and parts of Africa. In terms of pharmacological intervention, the track record of drug treatments for obesity is poor, especially in the case of centrally acting medicines, and there remains an unmet need for the development of safer compounds delivering superior efficacy. Animal models are of importance not only in detecting changes in food intake, energy expenditure and body weight but also providing confidence that these changes are behaviourally specific and not a result of drug-induced side effects. We review animal models of feeding behaviour that are used to aid our understanding of the control of body weight and energy regulation with special reference to CNS-acting drugs. The use of such models in the discovery of new drugs for the treatment of obesity is given particular emphasis. This article is part of a Special Issue entitled 'Central Control of Food Intake'.
Collapse
Affiliation(s)
- Steven P Vickers
- RenaSci Consultancy Ltd., BioCity, Pennyfoot Street, Nottingham NG1 1GF, UK.
| | | |
Collapse
|
29
|
Bermudez-Silva FJ, Cardinal P, Cota D. The role of the endocannabinoid system in the neuroendocrine regulation of energy balance. J Psychopharmacol 2012; 26:114-24. [PMID: 21824982 DOI: 10.1177/0269881111408458] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Animal and human studies carried out so far have established a role for the endocannabinoid system (ECS) in the regulation of energy balance. Here we critically discuss the role of the endocannabinoid signalling in brain structures, such as the hypothalamus and reward-related areas, and its interaction with neurotransmitter and neuropeptide systems involved in the regulation of food intake and body weight. The ECS has been found to interact with peripheral signals, like leptin, insulin, ghrelin and satiety hormones and the resulting effects on both central and peripheral mechanisms affecting energy balance and adiposity will be described. Furthermore, ECS dysregulation has been associated with the development of dyslipidemia, glucose intolerance and obesity; phenomena that are often accompanied by a plethora of neuroendocrine alterations which might play a causal role in determining ECS dysregulation. Despite the withdrawal of the first generation of cannabinoid type 1 receptor (CB1) antagonists from the pharmaceutical market due to the occurrence of psychiatric adverse events, new evidence suggests that peripherally restricted CB1 antagonists might be efficacious for the treatment of obesity and its associated metabolic disorders. Thus, a perspective on new promising strategies to selectively target the ECS in the context of energy balance regulation is given.
Collapse
|
30
|
Andries A, Støving RK. Cannabinoid-1 receptor agonists: a therapeutic option in severe, chronic anorexia nervosa? ACTA ACUST UNITED AC 2011. [DOI: 10.2217/npy.11.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Orio L, Crespo I, López-Moreno J, Reyes-Cabello C, Rodríguez de Fonseca F, Gómez de Heras R. Additive effects of cannabinoid CB1 receptors blockade and cholecystokinin on feeding inhibition. Pharmacol Biochem Behav 2011; 98:220-6. [DOI: 10.1016/j.pbb.2010.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/27/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
|
32
|
Magalhães CP, de Freitas MFL, Nogueira MI, Campina RCDF, Takase LF, de Souza SL, de Castro RM. Modulatory role of serotonin on feeding behavior. Nutr Neurosci 2011; 13:246-55. [PMID: 21040622 DOI: 10.1179/147683010x12611460764723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The appearance, the odor, and the flavor of foods, all send messages to the encephalic area of the brain. The hypothalamus, in particular, plays a key role in the mechanisms that control the feeding behavior. These signals modulate the expression and the action of anorexigenic or orexigenic substances that influence feeding behavior. The serotonergic system of neurotransmission consists of neurons that produce and liberate serotonin as well as the serotonin-specific receptor. It has been proven that some serotonergic drugs are effective in modulating the mechanisms of control of feeding behavior. Obesity and its associated illnesses have become significant public health problems. Some drugs that manipulate the serotonergic systems have been demonstrated to be effective interventions in the treatment of obesity. The complex interplay between serotonin and its receptors, and the resultant effects on feeding behavior have become of great interest in the scientific community.
Collapse
Affiliation(s)
- Carolina Peixoto Magalhães
- Centro Acadêmico de Vitoria/Universidade Federal de Pernambuco, Rua do Alto do Reservatório, S/N - Bela Vista - CEP 55608-680, Vitória de Santo Antão, PE, Brasil.
| | | | | | | | | | | | | |
Collapse
|
33
|
Effects of cannabinoids on neuropeptide Y and β-endorphin expression in the rat hypothalamic arcuate nucleus. Br J Nutr 2010; 105:654-60. [PMID: 21134330 DOI: 10.1017/s0007114510004095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The control of appetite and satiety is extremely complex and involves a balance between neurotransmitters and neuropeptides to stimulate and/or inhibit feeding behaviour. The effect of cannabinoids on food intake is well established, but little is known about the mechanism of action underlying their activity. In the present report, the effect of pharmacological manipulation of the cannabinoid receptor on the expression of hypothalamic neuropeptides is investigated. We used an immunohistochemical approach to examine the effect of intracerebroventricular administration of the cannabinoid receptor agonist WIN55,212-2 and the inverse agonist AM251 on neuropeptide Y (NPY) and the β-endorphin (β-end) neuronal hypothalamic systems. Double immunohistochemistry (c-fos/β-end) was used to assess the number of β-end neurons activated by the cannabinoid agonist. The present results showed that 1 μg WIN 55,212-2 increases β-end immunoreactivity within the arcuate nucleus while no significant changes were noted in the NPY-immunoreactive nerve fibres network in comparison to the control group. Injection of 1 μg AM251 decreases both NPY and β-end immunoreactivity within the arcuate nucleus. The number of β-end neurons exhibiting c-fos increased significantly in WIN 55,212-2 compared with the control group. These results suggest that cannabinoids affect the expression of hypothalamic neuropeptides, notably the NPY and β-end systems, which may have implications in the orexigenic action of cannabinoids.
Collapse
|
34
|
Roth JD, Trevaskis JL, Turek VF, Parkes DG. “Weighing in” on synergy: Preclinical research on neurohormonal anti-obesity combinations. Brain Res 2010; 1350:86-94. [DOI: 10.1016/j.brainres.2010.01.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 01/01/2023]
|
35
|
Skelly MJ, Guy EG, Howlett AC, Pratt WE. CB1 receptors modulate the intake of a sweetened-fat diet in response to μ-opioid receptor stimulation of the nucleus accumbens. Pharmacol Biochem Behav 2010; 97:144-51. [PMID: 20562021 DOI: 10.1016/j.pbb.2010.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 05/13/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
Abstract
Previous research has demonstrated that concurrent systemic administration of CB(1) cannabinoid and mu-opioid receptor agonists increases feeding in rats. However, the possible neural loci of this cooperative effect have yet to be identified. These studies tested whether the nucleus accumbens shell may be one site of the interactive effects of opioid and cannabinoid ligands on feeding. Injection of the mu-opioid agonist DAMGO (at 0, 0.025, 0.25, or 2.5 µg/0.5 µl/side) directly into the rat nucleus accumbens shell increased feeding on a sweetened-fat diet, and this effect was blocked by pretreatment with either the mu-opioid antagonist naltrexone (20 µg/0.5 µl/side) or the CB(1) antagonist SR141716 (0.5 µg/0.5 µl/side). Activation of nucleus accumbens shell CB(1) receptors with WIN55212-2 alone (at 0.1 or 0.5 µg/0.5 µl/side) had no apparent effect on food intake. However, local injections of the low dose of DAMGO (.025 µg/0.5 µl/side) in this region along with WIN55212-2 (at 0.25 or 0.50 µg/0.5 µl/side) increased feeding above that induced by DAMGO alone. These data suggest an important modulatory role for cannabinoid receptors in the expression of feeding behaviors in response to mu-opioid receptor activation of the nucleus accumbens shell.
Collapse
Affiliation(s)
- Mary Jane Skelly
- Department of Psychology, Wake Forest University, Winston-Salem, NC 27109, USA.
| | | | | | | |
Collapse
|
36
|
Dodd GT, Mancini G, Lutz B, Luckman SM. The peptide hemopressin acts through CB1 cannabinoid receptors to reduce food intake in rats and mice. J Neurosci 2010; 30:7369-76. [PMID: 20505104 PMCID: PMC6632410 DOI: 10.1523/jneurosci.5455-09.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 11/21/2022] Open
Abstract
Hemopressin is a short, nine amino acid peptide (H-Pro-Val-Asn-Phe-Lys-Leu-Leu-Ser-His-OH) isolated from rat brain that behaves as an inverse agonist at the cannabinoid receptor CB(1), and is shown here to inhibit agonist-induced receptor internalization in a heterologous cell model. Since this peptide occurs naturally in the rodent brain, we determined its effect on appetite, an established central target of cannabinoid signaling. Hemopressin dose-dependently decreases night-time food intake in normal male rats and mice, as well as in obese ob/ob male mice, when administered centrally or systemically, without causing any obvious adverse side effects. The normal, behavioral satiety sequence is maintained in male mice fasted overnight, though refeeding is attenuated. The anorectic effect is absent in CB(1) receptor null mutant male mice, and hemopressin can block CB(1) agonist-induced hyperphagia in male rats, providing strong evidence for antagonism of the CB(1) receptor in vivo. We speculate that hemopressin may act as an endogenous functional antagonist at CB(1) receptors and modulate the activity of appetite pathways in the brain.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal
- Benzoxazines/pharmacology
- COS Cells
- Chlorocebus aethiops
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Cyclohexanols
- Dose-Response Relationship, Drug
- Drinking Behavior/drug effects
- Dronabinol/pharmacology
- Drug Administration Routes
- Eating/drug effects
- Eating/genetics
- Food Deprivation/physiology
- Green Fluorescent Proteins/genetics
- Hemoglobins/pharmacology
- Hyperphagia/chemically induced
- Hyperphagia/drug therapy
- Leptin/deficiency
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Peptide Fragments/pharmacology
- Piperidines/pharmacology
- Protein Transport/drug effects
- Psychotropic Drugs/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/metabolism
- Rimonabant
- Time Factors
- Transfection/methods
Collapse
Affiliation(s)
- Garron T. Dodd
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, and
| | - Giacomo Mancini
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | - Simon M. Luckman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, and
| |
Collapse
|
37
|
Piccinetti CC, Migliarini B, Petrosino S, Di Marzo V, Carnevali O. Anandamide and AM251, via water, modulate food intake at central and peripheral level in fish. Gen Comp Endocrinol 2010; 166:259-67. [PMID: 19800340 DOI: 10.1016/j.ygcen.2009.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/25/2009] [Indexed: 11/26/2022]
Abstract
The endocannabinoid system is a major regulator of food intake in many animal species. Studies conducted so far have mostly focused on mammals, and, therefore, in this study, the role of the endocannabinoid system in food intake in the sea bream Sparus aurata was investigated. The effect of different doses of the endocannabinoid anandamide (AEA), administered via water, was evaluated after different exposure times (30, 60 and 120 min) at both physiological and molecular levels. The results obtained indicate that fish exposed to AEA via water present approximately 1000-fold higher levels of AEA in both the brain and liver, which correlated with a significant increase in food intake and with the elevation of cannabinoid receptor 1 (CB(1)) and neuropeptide Y (NPY) mRNA levels in the brain. A peripheral effect of AEA was also observed, since a time-dependent increase in hepatic CB(1) mRNA and protein levels was detected. These effects were attenuated by the administration, again via water, of a selective cannabinoid CB(1) receptor antagonist (AM251). These findings indicate that the endocannabinoid AEA, at doses that stimulate food intake in fish, concomitantly stimulates the expression of the orexigenic peptide NPY as well that of its own receptor, thereby potentially enhancing its effect on food consumption. In agreement with a role of AEA in food intake in S. aurata, we found increased brain levels of both this and the other endocannabinoid, 2-arachidonoylglycerol (2-AG), following food deprivation.
Collapse
Affiliation(s)
- Chiara Carla Piccinetti
- Department of Marine Science, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | | |
Collapse
|
38
|
Abstract
Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known orexigenic mediators that act via CB(1) receptors in hypothalamus and limbic forebrain to induce appetite and stimulate food intake. Circulating endocannabinoid levels inversely correlate with plasma levels of leptin, an anorexigenic mediator that reduces food intake by acting on hypothalamic receptors. Recently, taste has been found to be a peripheral target of leptin. Leptin selectively suppresses sweet taste responses in wild-type mice but not in leptin receptor-deficient db/db mice. Here, we show that endocannabinoids oppose the action of leptin to act as enhancers of sweet taste. We found that administration of AEA or 2-AG increases gustatory nerve responses to sweeteners in a concentration-dependent manner without affecting responses to salty, sour, bitter, and umami compounds. The cannabinoids increase behavioral responses to sweet-bitter mixtures and electrophysiological responses of taste receptor cells to sweet compounds. Mice genetically lacking CB(1) receptors show no enhancement by endocannnabinoids of sweet taste responses at cellular, nerve, or behavioral levels. In addition, the effects of endocannabinoids on sweet taste responses of taste cells are diminished by AM251, a CB(1) receptor antagonist, but not by AM630, a CB(2) receptor antagonist. Immunohistochemistry shows that CB(1) receptors are expressed in type II taste cells that also express the T1r3 sweet taste receptor component. Taken together, these observations suggest that the taste organ is a peripheral target of endocannabinoids. Reciprocal regulation of peripheral sweet taste reception by endocannabinoids and leptin may contribute to their opposing actions on food intake and play an important role in regulating energy homeostasis.
Collapse
|
39
|
Tallett AJ, Blundell JE, Rodgers RJ. Effects of acute low-dose combined treatment with rimonabant and sibutramine on appetite and weight gain in rats. Pharmacol Biochem Behav 2009; 97:92-100. [PMID: 20026165 DOI: 10.1016/j.pbb.2009.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/16/2009] [Accepted: 12/14/2009] [Indexed: 12/13/2022]
Abstract
In view of its potential advantages, drug polytherapy is currently attracting significant interest in the field of obesity research. In this context, concurrent manipulation of serotonergic and cannabinoid pathways in rodents has been found to reduce food and fluid intake in both an additive or synergistic manner. To further assess the value of this polytherapeutic approach, the current study examined the acute effects of low-dose combinations of the cannabinoid CB1 receptor antagonist/inverse agonist rimonabant (0.5 mg/kg) and the dual serotonin- and noradrenaline-reuptake inhibitor sibutramine (0.125 and 0.25 mg/kg) in male rats. Ethological analysis was used to generate comprehensive behavioural profiles, including the behavioural satiety sequence (BSS). Findings confirmed that, although neither drug given alone significantly altered food intake, feeding behaviour or weight gain, rimonabant per se tended to reduce consumption and time spent feeding while significantly increasing scratching and grooming responses. However, none of these effects of the CB1 receptor antagonist/inverse agonist was significantly altered by the presence of either dose of sibutramine. In striking contrast to recent reports of acute low-dose interactions (enhanced appetite suppression and reduced side-effects) between rimonabant and naloxone, present results would not appear to support the clinical potential of rimonabant/sibutramine polytherapy for obesity.
Collapse
Affiliation(s)
- A J Tallett
- Institute of Psychological Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
40
|
Fong TM, Addy C, Erondu N, Heymsfield SB. CB1 receptor inverse agonist pharmacotherapy for metabolic disorders. Drug Dev Res 2009. [DOI: 10.1002/ddr.20335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Age-dependent effects of the cannabinoid CB1 antagonist SR141716A on food intake, body weight change, and pruritus in rats. Psychopharmacology (Berl) 2009; 206:155-65. [PMID: 19575185 DOI: 10.1007/s00213-009-1592-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Accepted: 06/13/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE The cannabinoid CB1 selective antagonist SR141716A (Rimonabant) has been shown to decrease body weight in laboratory animals and humans. Furthermore, SR141716A can elicit scratching behavior in rodents, a behavior that has been hypothesized to contribute to SR141716A-induced decrease in food intake. Although childhood obesity is a rising health issue, it is unknown whether SR141716A is equipotent at modulating food intake and other CB1-mediated behaviors in younger subjects. OBJECTIVE To determine whether CB1 receptor blockade is equipotent at modulating food and water intake, body weight, and scratching behavior, the effect of a range of SR141716A doses on these behaviors in food-restricted postnatal day (P) 18, 28, and 60 male rats was investigated. Brain concentrations of SR141716A were determined in each age group. RESULTS SR141716A dose- and age-dependently suppressed food and water intake and body weight gain and elicited head scratching, with the most potent effects observed in P18 and P28 rats. Brain concentrations of SR141716A were significantly elevated in P18 rats relative to P28 and P60 rats. SR141716A-elicited head scratching was attenuated by the 5-HT(2A/2C) antagonist ketanserin. CONCLUSIONS SR141716A is more potent at modulating food intake and head scratching in very young animals; these differences can be attributed to an increase in brain penetration of SR141716A for P18 but not for P28 and P60 rats. In addition, SR141716-elicited head scratching is modulated by 5HT receptor antagonism and is not a contributing factor to SR141716A's anorectic effects.
Collapse
|
42
|
Mathes CM, Ferrara M, Rowland NE. Selection of a palatable dietary option is not preferentially reduced by cannabinoid CB1 receptor antagonist AM251 in female C57Bl/6J mice. Pharmacol Biochem Behav 2009; 94:119-23. [PMID: 19660493 DOI: 10.1016/j.pbb.2009.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 07/15/2009] [Accepted: 07/28/2009] [Indexed: 11/27/2022]
Abstract
We previously showed in female rats that administration of the cannabinoid CB1 receptor antagonist AM251 reduced energy intake by selectively decreasing consumption of a palatable dietary option in comparison to a standard maintenance chow. In the present study we sought to generalize these findings to mice. We presented 6 week old female C57Bl/6J mice with daily 8 h access to a sugar fat whip dietary option along with ad libitum access to moist chow. Mice were injected daily with either vehicle (equal parts polyethylene glycol and saline, 2 ml/kg) or one of three doses of AM251 (1, 3, or 10 mg/kg). Food intake and body weight were measured daily for 21 days. Although 8 h access to sugar fat whip did not induce overconsumption in female mice, AM251 reduced their energy intake and body weight in a dose-dependent manner. The decrease in energy intake occurred for both chow and sugar fat whip. This difference from results in rats suggests that the effect of AM251 on palatable food intake may only be evident in models that induce overconsumption and/or that rats and mice may react differently to CB1 receptor antagonists.
Collapse
Affiliation(s)
- Clare M Mathes
- Department of Psychology, University of Florida, PO Box 112250, Gainesville, FL 32611-2250, USA.
| | | | | |
Collapse
|
43
|
Delta-9-tetrahydrocannabinol enhances food reinforcement in a mouse operant conflict test. Psychopharmacology (Berl) 2009; 205:475-87. [PMID: 19452141 DOI: 10.1007/s00213-009-1557-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/23/2009] [Indexed: 02/05/2023]
Abstract
RATIONALE Cannabinoid compounds are known to regulate feeding behavior by modulating the hedonic and/or the incentive properties of food. OBJECTIVES The aim of this work was to determine the involvement of the cannabinoid system in food reinforcement associated with a conflict situation generated by stress. METHODS Mice were trained on a fixed ratio 1 schedule of reinforcement to obtain standard, chocolate-flavored or fat-enriched pellets. Once the acquisition criteria were achieved, the reinforced lever press was paired with foot-shock exposure, and the effects of Delta(9)-tetrahydrocannabinol (THC; 1 mg/kg) were evaluated in this conflict paradigm. RESULTS THC did not modify the operant response in mice trained with standard pellets. In contrast, THC improved the instrumental performance of mice trained with chocolate-flavored and fat-enriched pellets. However, the cannabinoid agonist did not fully restore the baseline responses obtained previous to foot-shock delivery. THC ameliorated the performance to obtain high palatable food in this conflict test in both food-restricted and sated mice. The effects of THC on food reinforcement seem to be long-lasting since mice previously treated with this compound showed a better recovery of the instrumental behavior after foot-shock exposure. CONCLUSIONS These findings reveal that the cannabinoid system is involved in the regulation of goal-directed responses towards high palatable and high caloric food under stressful situations.
Collapse
|
44
|
Riedel G, Fadda P, McKillop-Smith S, Pertwee RG, Platt B, Robinson L. Synthetic and plant-derived cannabinoid receptor antagonists show hypophagic properties in fasted and non-fasted mice. Br J Pharmacol 2009; 156:1154-66. [PMID: 19378378 DOI: 10.1111/j.1476-5381.2008.00107.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Obesity is a severe health problem in the modernized world and understanding the central nervous mechanisms underlying food-seeking behaviour and reward are at the forefront of medical research. Cannabinoid receptors have proven an efficient target to suppress hunger and weight gain by their pharmacological inactivation. EXPERIMENTAL APPROACH A standard fasted protocol and a novel long-term home-cage observation system with free-feeding animals were used to assess the feeding behaviour of mice treated with the CB1 antagonist AM251. Similarly, the effects of the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV), which behaves like a CB1 antagonist, were also determined in free-feeding animals. KEY RESULTS AM251 suppressed food intake and weight gain in fasted and non-fasted animals. The suppression of food intake by AM251 (10 mg.kg-1) endured for a period of 6-8 h when administered acutely, and was continuous when injected for four consecutive days. Pure Delta9-THCV also induced hypophagia and weight reduction at doses as low as 3 mg.kg-1. No rebound was observed on the following day with all drug groups returning to normal activity and feeding regimes. However, a Delta9-THCV-rich cannabis-extract failed to suppress food intake and weight gain, possibly due to residual Delta9-tetrahydrocannabinol (Delta9-THC) in the extract. This Delta9-THC effect was overcome by the co-administration of cannabidiol. CONCLUSIONS AND IMPLICATIONS The data strongly suggest (i) the long-term home-cage observation system is a sensitive and obesity-relevant tool, and (ii) the phytocannabinoid Delta9-THCV is a novel compound with hypophagic properties and a potential treatment for obesity
Collapse
Affiliation(s)
- Gernot Riedel
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions. Int J Obes (Lond) 2009; 33:947-55. [PMID: 19597516 DOI: 10.1038/ijo.2009.132] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rimonabant and taranabant are two extensively studied cannabinoid-1 receptor (CB1R) inverse agonists. Their effects on in vivo peripheral tissue metabolism are generally well replicated. The central nervous system site of action of taranabant or rimonabant is firmly established based on brain receptor occupancy studies. At the whole-body level, the mechanism of action of CB1R inverse agonists includes a reduction in food intake and an increase in energy expenditure. At the tissue level, fat mass reduction, liver lipid reduction and improved insulin sensitivity have been shown. These effects on tissue metabolism are readily explained by CB1R inverse agonist acting on brain CB1R and indirectly influencing the tissue metabolism through the autonomic nervous system. It has also been hypothesized that rimonabant acts directly on adipocytes, hepatocytes, pancreatic islets or skeletal muscle in addition to acting on brain CB1R, although strong support for the contribution of peripherally located CB1R to in vivo efficacy is still lacking. This review will carefully examine the published literature and provide a perspective on what new tools and studies are required to address the peripheral site of action hypothesis.
Collapse
|
46
|
Zarate J, Churruca I, Pascual J, Casis L, Sallés J, Echevarría E. Brain endocannabinoid system is involved in fluoxetine-induced anorexia. Nutr Neurosci 2009; 11:111-8. [PMID: 18616867 DOI: 10.1179/147683008x301496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In order to describe the effects of chronic fluoxetine administration on the brain endocannabinoid system in lean and obese Zucker rats, brain immunostaining for the CB1 and CB1-phosphorylated cannabinoid receptors was carried out. Obese Zucker rats showed significantly increased the numbers of neural cells positively immunostained for the CB1-phosphorylated receptor in the striatum, compared to their lean litter-mates. Chronic fluoxetine administration decreased the number of neural cells immunostained for CB1-phosphorylated receptor in several striatal and hippocampal regions of obese Zucker rats, compared to controls treated with saline. In contrast, no change in CB1-phosphorylated receptor immunostaining was observed in fluoxetine-treated lean rats, with respect to controls. Taken together, these results suggest the involvement of the hippocampal and striatal endocannabinoid receptor system in fluoxetine-induced anorexia in lean and obese Zucker rats.
Collapse
Affiliation(s)
- Jon Zarate
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country, Vitoria-Gasteiz, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Tallett A, Blundell J, Rodgers R. Effects of acute low-dose combined treatment with naloxone and AM 251 on food intake, feeding behaviour and weight gain in rats. Pharmacol Biochem Behav 2009; 91:358-66. [DOI: 10.1016/j.pbb.2008.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/04/2008] [Accepted: 08/06/2008] [Indexed: 01/08/2023]
|
48
|
Miner P, Abayev Y, Kandova E, Gerges M, Styler E, Wapniak R, Touzani K, Sclafani A, Bodnar RJ. Role of systemic endocannabinoid CB-1 receptor antagonism in the acquisition and expression of fructose-conditioned flavor-flavor preferences in rats. Pharmacol Biochem Behav 2008; 90:318-24. [PMID: 18407342 PMCID: PMC4560860 DOI: 10.1016/j.pbb.2008.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/27/2008] [Accepted: 03/05/2008] [Indexed: 11/20/2022]
Abstract
Rats learn to prefer a flavor mixed into a fructose-saccharin solution over a different flavor mixed into a saccharin-only solution which is considered to be a form of flavor-flavor conditioning. Fructose-conditioned flavor preferences are impaired by systemic dopamine D1 and to a lesser degree, D2 receptor antagonism as well as by NMDA, but not opioid, receptor antagonism. Given the emerging role of the endocannabinoid system in mediating hedonically-driven food intake, the present study examined whether systemic administration of the inverse CB-1 receptor agonist, AM-251 would alter fructose-conditioned flavor preferences. In Experiment 1, food-restricted rats were trained over 10 sessions (30 min/day) to drink a fructose-saccharin solution mixed with one flavor (CS+/Fs) and a less-preferred saccharin-only solution mixed with another flavor (CS-/s). Subsequent two-bottle tests with the two flavors in saccharin (CS+/s, CS-/s) occurred 15 min following counterbalanced pairs of AM-251 doses of 0, 0.1, 1 or 3 mg/kg. Preference for CS+/s over CS-/s following vehicle treatment (74%) was significantly reduced by the 0.1 (67%) and 1 (65%) AM-251 doses, whereas CS+/s, but not CS-/s intake was significantly reduced by the 1 and 3 mg/kg AM-251 doses. In Experiment 2, rats received systemic injections of AM-251 (1 mg/kg) or vehicle prior to the 10 CS+/Fs and CS-/s training sessions. In subsequent two-bottle tests (drug-free) the AM-251 and control groups displayed similar preferences for the CS+ flavor (66% vs. 69%). Experiment 3 demonstrated that AM-251 significantly decreased chow intake (24 h), and 1-h intakes of fructose-saccharin and saccharin-only solutions in ad libitum-fed rats. These data indicate that functional CB-1 receptor antagonism significantly reduces the expression, but not the acquisition of fructose-conditioned flavor-flavor preferences. The endogenous endocannabinoid system is therefore implicated in the maintenance of this form of learned flavor preferences.
Collapse
Affiliation(s)
- Patricia Miner
- Neuropsychology Doctoral Sub-Program, The Graduate Center, City University of New York, United States
| | - Yana Abayev
- Department of Psychology, Queens College, City University of New York, United States
| | - Ester Kandova
- Department of Psychology, Queens College, City University of New York, United States
| | - Meri Gerges
- Department of Psychology, Queens College, City University of New York, United States
| | - Esther Styler
- Department of Psychology, Queens College, City University of New York, United States
| | - Rachel Wapniak
- Department of Psychology, Queens College, City University of New York, United States
| | - Khalid Touzani
- Department of Psychology, Brooklyn College, City University of New York, United States
| | - Anthony Sclafani
- Neuropsychology Doctoral Sub-Program, The Graduate Center, City University of New York, United States
- Cognition, Brain and Behavior Doctoral Sub-Program, The Graduate Center, City University of New York, United States
- Department of Psychology, Brooklyn College, City University of New York, United States
| | - Richard J. Bodnar
- Neuropsychology Doctoral Sub-Program, The Graduate Center, City University of New York, United States
- Department of Psychology, Queens College, City University of New York, United States
| |
Collapse
|
49
|
Ward SJ, Lefever TW, Jackson C, Tallarida RJ, Walker EA. Effects of a Cannabinoid1 receptor antagonist and Serotonin2C receptor agonist alone and in combination on motivation for palatable food: a dose-addition analysis study in mice. J Pharmacol Exp Ther 2008; 325:567-76. [PMID: 18256173 DOI: 10.1124/jpet.107.131771] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
The cannabinoid and serotonin systems modulate feeding behavior in humans and laboratory animals. The present study assessed whether a cannabinoid (CB)(1) receptor antagonist and a serotonin (5-HT)(2C) receptor agonist alone and in combination attenuate motivation for the liquid nutritional drink Ensure as measured by a progressive ratio (PR) schedule of reinforcement in male C57BL/6 mice. Pretreatment (15 min i.p.) with either the CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716) (SR; Rimonabant or Acomplia) or the 5-HT(2C) receptor agonist m-chlorophenylpiperazine (mCPP) dose-dependently decreased the maximum ratio completed under the PR schedule (break point) in mice. ED(25) values for SR and mCPP to decrease break point were determined, and the relative potency of each drug alone was quantified. Fixed dose-ratio pairs of SR/mCPP based on their relative potency were then administered. Dose-addition analysis comparing the experimentally determined potency for SR/mCPP combinations with their predicted additive potency revealed that SR/mCPP combinations in 1:1 and 2:1 ratios based on relative potency produced significant synergistic attenuation of break point for Ensure. The ED(25) values for decreasing break point were consistently lower than ED(25) values for decreasing response rate, and synergistic effects of SR/mCPP combinations on break point were seen independent of synergistic effects on response rate. These results indicate that cannabinoid CB(1) and serotonin 5-HT(2C) receptors are involved in motivated feeding behavior in mice and that these compounds can synergistically modulate motivation for palatable food with the synergy dependent upon the ratio of SR/mCPP in the combination.
Collapse
Affiliation(s)
- Sara Jane Ward
- Department of Pharmaceutical Sciences, 3307 North Broad Street, Temple University School of Pharmacy, Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
50
|
Jelsing J, Larsen PJ, Vrang N. Identification of cannabinoid type 1 receptor expressing cocaine amphetamine-regulated transcript neurons in the rat hypothalamus and brainstem using in situ hybridization and immunohistochemistry. Neuroscience 2008; 154:641-52. [PMID: 18472225 DOI: 10.1016/j.neuroscience.2008.03.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 03/06/2008] [Accepted: 03/20/2008] [Indexed: 11/30/2022]
Abstract
Recent data have indicated that the neuropeptide cocaine amphetamine-regulated transcript (CART) may be a downstream mediator of the effect of CB1 receptor antagonist on appetite regulation. In order to identify possible interactions between CART and central CB1R expressing neurons, a detailed mapping of CART and CB1R expression and immunoreactivity in the brain was initiated. Single radioactive in situ hybridizations revealed a predominant overlap between CART and CB1R mRNA in hypothalamic and lower brainstem nuclei. Using double in situ hybridization, co-localization between CART and CB1R mRNA expressing neurons was observed to be most pronounced in the retrochiasmatic and lateral hypothalamic areas, as well as in all parts of the dorsal vagal complex. Further attempts to immunohistochemically characterize the distribution of CB1R were, however, deemed impossible as any of eight commercially available antibodies/antisera gave rise to non-specific staining patterns. Furthermore, the staining pattern obtained was not discriminate between CB1R knockout mice and wild type mice. Collectively, we demonstrate at the messenger level that CB1R expressing perikarya colocalize with CART expressing neurons in hypothalamic and brainstem areas known to be important in appetite control, whereas interactions at the protein level necessitate a demand for cautious interpretations of immunohistochemical results.
Collapse
Affiliation(s)
- J Jelsing
- Rheoscience A/S, Basic Research, Glerupvej 2, Rødovre, Denmark.
| | | | | |
Collapse
|