1
|
Ning X, Wang L, Wang JS, Ji J, Jin S, Sun J, Ye Y, Mei S, Zhang Y, Cao J, Sun X. High-Coverage UHPLC-MS/MS Analysis of 67 Mycotoxins in Plasma for Male Infertility Exposure Studies. TOXICS 2024; 12:395. [PMID: 38922075 PMCID: PMC11209182 DOI: 10.3390/toxics12060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Mycotoxins are a class of exogenous metabolites that are major contributors to foodborne diseases and pose a potential threat to human health. However, little attention has been paid to trace mycotoxin co-exposure situations in vivo. To address this, we devised a novel analytical strategy, both highly sensitive and comprehensive, for quantifying 67 mycotoxins in human plasma samples. This method employs isotope dilution mass spectrometry (IDMS) for approximately 40% of the analytes and utilizes internal standard quantification for the rest. The mycotoxins were classified into three categories according to their physicochemical properties, facilitating the optimization of extraction and detection parameters to improve analytical performance. The lowest limits of detection and quantitation were 0.001-0.5 μg/L and 0.002-1 μg/L, respectively, the intra-day precision ranged from 1.8% to 11.9% RSD, and the intra-day trueness ranged from 82.7-116.6% for all mycotoxins except Ecl, DH-LYS, PCA, and EnA (66.4-129.8%), showing good analytical performance of the method for biomonitoring. A total of 40 mycotoxins (including 24 emerging mycotoxins) were detected in 184 plasma samples (89 from infertile males and 95 from healthy males) using the proposed method, emphasizing the widespread exposure of humans to both traditional and emerging mycotoxins. The most frequently detected mycotoxins were ochratoxin A, ochratoxin B, enniatin B, and citrinin. The incidence of exposure to multiple mycotoxins was significantly higher in infertile males than in healthy subjects, particularly levels of ochratoxin A, ochratoxin B, and citrinin, which were significantly increased. It is necessary to carry out more extensive biological monitoring to provide data support for further study of the relationship between mycotoxins and male infertility.
Collapse
Affiliation(s)
- Xiao Ning
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (L.W.); (S.J.)
| | - Lulu Wang
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (L.W.); (S.J.)
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA;
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
| | - Shaoming Jin
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (L.W.); (S.J.)
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China;
- Department of Clinical Pharmacology, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
| | - Jin Cao
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (L.W.); (S.J.)
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (J.J.); (J.S.); (Y.Y.); (Y.Z.)
| |
Collapse
|
2
|
Qiu Y, Yan J, Yue A, Lu Z, Tan J, Guo H, Ding Y, Lyu F, Fu Y. A comprehensive review of biodetoxification of trichothecenes: Mechanisms, limitations and novel strategies. Food Res Int 2024; 184:114275. [PMID: 38609252 DOI: 10.1016/j.foodres.2024.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Trichothecenes are Fusarium mycotoxins with sesquiterpenoid structure, which are widely occurred in grains. Due to high efficiency and environmental friendliness, biological detoxification methods have been of great interest to treat this global food and feed safety concern. This review summarized the biological detoxification methods of trichothecenes from three aspects, biosorption, biotransformation and biotherapy. The detoxification efficiency, characteristics, mechanisms and limitations of different strategies were discussed in detail. Computer-aided design will bring a new research paradigm for more efficient discovery of biodetoxifier. Integrating different detoxification approaches assisted with computational tools will become a promising research direction in the future, which will help to maximize the detoxification effect, or provide precise detoxification programs for the coexistence of various toxins at different levels in actual production. In addition, technical and regulatory issues in practical application were also discussed. These findings contribute to the exploration of efficient, applicable and sustainable methods for trichothecenes detoxification, ensuring the safety of food and feed to reduce the deleterious effects of trichothecenes on humans and animals.
Collapse
Affiliation(s)
- Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Tech Bank Food Co Ltd, Yuyao City, Zhejiang 315400, China
| | - Jiaping Yan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Aodong Yue
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhongchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianzhuang Tan
- Tech Bank Food Co Ltd, Yuyao City, Zhejiang 315400, China
| | - Hong Guo
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yan Fu
- Tech Bank Food Co Ltd, Yuyao City, Zhejiang 315400, China
| |
Collapse
|
3
|
Pedroni L, Perugino F, Kurtaga A, Galaverna G, Dall'Asta C, Dellafiora L. The bitter side of toxicity: A big data analysis spotted the interaction between trichothecenes and bitter receptors. Food Res Int 2023; 173:113284. [PMID: 37803597 DOI: 10.1016/j.foodres.2023.113284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 10/08/2023]
Abstract
The bitter taste perception evolved in human and animals to rapidly perceive and avoid potential toxic compounds. This is mediated by taste receptors type 2 (TAS2R), expressed in various tissues, which recently proved to be involved in roles beyond the bitter perception itself. With this study, the interaction between food-related toxic compounds and TAS2R46 has been investigated via computational approaches, starting with a virtual screening and moving to molecular docking and dynamics simulations. The virtual screening analysis identified trichothecolone and the trichothecenes class it belongs to, which includes mycotoxins widespread in several commodities raising food safety concerns, as possible TAS2R46 binders. Molecular docking and dynamics simulations were performed to further explore the trichotecenes-TAS2R46 interaction. The results indicated that deoxynivalenol and its 15-acetylated derivative could activate TAS2R46. Eventually, this study provided initial evidence supporting the involvement of TAS2R46 in the underpinning mechanisms of deoxynivalenol action highlighting the need of digging into the involvement of TAS2R46 and TAS2Rs in the adverse effects of deoxynivalenol and congeners.
Collapse
Affiliation(s)
- Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Florinda Perugino
- Department of Food and Drug, University of Parma, Parma, Italy; Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ambra Kurtaga
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
4
|
Modified Mycotoxins, a Still Unresolved Issue. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by filamentous microfungi on almost every agricultural commodity worldwide. After the infection of crop plants, mycotoxins are modified by plant enzymes or other fungi and often conjugated to more polar substances, like sugars. The formed—often less toxic—metabolites are stored in the vacuole in soluble form or bound to macromolecules. As these substances are usually not detected during routine analysis and no maximum limits are in force, they are called modified mycotoxins. While, in most cases, modified mycotoxins have lower intrinsic toxicity, they might be reactivated during mammalian metabolism. In particular, the polar group might be cleaved off (e.g., by intestinal bacteria), releasing the native mycotoxin. This review aims to provide an overview of the critical issues related to modified mycotoxins. The main conclusion is that analytical aspects, toxicological evaluation, and exposure assessment merit more investigation.
Collapse
|
5
|
Modification of Deoxynivalenol by a Fungal Laccase Paired with Redox Mediator TEMPO. Toxins (Basel) 2022; 14:toxins14080548. [PMID: 36006210 PMCID: PMC9413383 DOI: 10.3390/toxins14080548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins such as deoxynivalenol introduce a health risk to the food supply and are costly to manage or avoid. Technologies for reducing or eliminating the toxicity of deoxynivalenol could be useful in a variety of processes, such as in preserving the value as animal feed of byproducts of ethanol production. We characterized transformation products of deoxynivalenol that were formed by the combination of a fungal laccase paired with the chemical mediator 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), using chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. Alcohol groups at the C3 and C15 positions of deoxynivalenol were oxidized to ketones, and the chemical mediator became covalently linked to the C4 position. Conditions experienced during gas chromatography led to the dissociation of TEMPO, forming 3,15-diketodeoxynivalenol. Understanding the range of possible modifications to deoxynivalenol and other trichothecenes is a necessary step toward effective remediation of contaminated grain.
Collapse
|
6
|
Pierzgalski A, Bryła M, Kanabus J, Modrzewska M, Podolska G. Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins (Basel) 2021; 13:768. [PMID: 34822552 PMCID: PMC8619142 DOI: 10.3390/toxins13110768] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Mycotoxins are one of the most dangerous food and feed contaminants, hence they have significant influence on human and animal health. This study reviews the information reported over the last few years on the toxic effects of the most relevant and studied Fusarium toxins and their modified forms. Deoxynivalenol (DON) and its metabolites can induce intracellular oxidative stress, resulting in DNA damage. Recent studies have also revealed the capability of DON and its metabolites to disturb the cell cycle and alter amino acid expression. Several studies have attempted to explore the mechanism of action of T-2 and HT-2 toxins in anorexia induction. Among other findings, two neurotransmitters associated with this process have been identified, namely substance P and serotonin (5-hydroxytryptamine). For zearalenone (ZEN) and its metabolites, the literature points out that, in addition to their generally acknowledged estrogenic and oxidative potentials, they can also modify DNA by altering methylation patterns and histone acetylation. The ability of the compounds to induce alterations in the expression of major metabolic genes suggests that these compounds can contribute to the development of numerous metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
7
|
Hole A, Rud I, Sahlstrøm S, Ivanova L, Eriksen G, Divon H. Heat-induced reduction of deoxynivalenol and its modified forms during flaking and cooking of oat. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) and its modified forms deoxynivalenol-3-glucoside (DON-3G) and 3-acetyl-deoxynivalenol (3-ADON) are common contaminants in Norwegian oats. In order to provide more information about the fate of these mycotoxins during oat processing, the levels of DON, DON-3G, 3-ADON and the sum of them (total DON) were determined using LC-HRMS/MS at different processing steps. Oat groat was softened by either steaming or conditioning, rolled into flakes of two thicknesses, and subsequently cooked to produce flake porridges. Flour of oat groat (untreated or kilned) was cooked to flour porridges. The flaking process had major effect on the mycotoxin levels in resulting flakes, with significant impact for type of softening regime, but not for flake size. Steam-softening caused the largest reduction of DON, DON-3G and total DON in flakes, retaining 41, 60 and 46%, respectively, compared to oat groat. In contrast, 3-ADON in flakes was most reduced by conditioning, to 29% of the levels in oat groat. Cooking to porridge from flakes did not result in any additional mycotoxin reduction, though significant impact of flake size was shown in the final porridges, with highest reduction of total DON in the porridges originating from steamed thick flakes. Cooking porridge from untreated oat flour gave significant reduction in mycotoxin levels, however not for kilned oat flour which had already undergone reduction during kilning. In conclusion, the study shows that processes involving heat-treatment, i.e. kilning, steaming or cooking, efficiently reduced total DON in oats during flaking and porridge cooking, and reduction is dependent on previous processing steps.
Collapse
Affiliation(s)
- A.S. Hole
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1433 Ås, Norway
| | - I. Rud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1433 Ås, Norway
| | - S. Sahlstrøm
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1433 Ås, Norway
| | - L. Ivanova
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433 Ås, Norway
| | - G.S. Eriksen
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433 Ås, Norway
| | - H.H. Divon
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433 Ås, Norway
| |
Collapse
|
8
|
Munkvold GP, Proctor RH, Moretti A. Mycotoxin Production in Fusarium According to Contemporary Species Concepts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:373-402. [PMID: 34077240 DOI: 10.1146/annurev-phyto-020620-102825] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium is one of the most important genera of plant-pathogenic fungi in the world and arguably the world's most important mycotoxin-producing genus. Fusarium species produce a staggering array of toxic metabolites that contribute to plant disease and mycotoxicoses in humans and other animals. A thorough understanding of the mycotoxin potential of individual species is crucial for assessing the toxicological risks associated with Fusarium diseases. There are thousands of reports of mycotoxin production by various species, and there have been numerous attempts to summarize them. These efforts have been complicated by competing classification systems based on morphology, sexual compatibility, and phylogenetic relationships. The current depth of knowledge of Fusarium genomes and mycotoxin biosynthetic pathways provides insights into how mycotoxin production is distributedamong species and multispecies lineages (species complexes) in the genus as well as opportunities to clarify and predict mycotoxin risks connected with known and newly described species. Here, we summarize mycotoxin production in the genus Fusarium and how mycotoxin risk aligns with current phylogenetic species concepts.
Collapse
Affiliation(s)
- Gary P Munkvold
- Department of Plant Pathology and Microbiology and Seed Science Center, Iowa State University, Ames, Iowa 50010, USA;
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, Illinois 61604, USA;
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy;
| |
Collapse
|
9
|
Optimization and Validation of an Analytical Method for the Determination of Free and Hidden Fumonisins in Corn and Corn Products by UHPLC-MS/MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
He Y, Yin X, Dong J, Yang Q, Wu Y, Gong Z. Transcriptome Analysis of Caco-2 Cells upon the Exposure of Mycotoxin Deoxynivalenol and Its Acetylated Derivatives. Toxins (Basel) 2021; 13:167. [PMID: 33671637 PMCID: PMC7927021 DOI: 10.3390/toxins13020167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) are type B trichothecenes; one of the major pollutants in food and feed products. Although the toxicity of DON has been well documented, information on the toxicity of its acetylated derivative remains incomplete. To acquire more detailed insight into 3-ADON and 15-ADON, Caco-2 cells under 0.5 µM DON, 3-ADON and 15-ADON treatment for 24 h were subjected to RNA-seq analysis. In the present study, 2656, 3132 and 2425 differentially expressed genes (DEGs) were selected, respectively, and were enriched utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) database. The upregulation of ataxia-telangiectasia mutated kinase (ATM), WEE1 homolog 2 (WEE2) and downregulation of proliferating cell nuclear antigen (PCNA), minichromosome maintenance (MCMs), cyclin dependent kinase (CDKs), and E2Fs indicate that the three toxins induced DNA damage, inhibition of DNA replication and cell cycle arrest in Caco-2 cells. Additionally, the upregulation of sestrin (SENEs) and NEIL1 implied that the reason for DNA damage may be attributable to oxidative stress. Our study provides insight into the toxic mechanism of 3-ADON and 15-ADON.
Collapse
Affiliation(s)
- Yuyun He
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Xiaoyao Yin
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Jingjing Dong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, Beijing 100000, China;
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (X.Y.); (J.D.); (Q.Y.)
| |
Collapse
|
11
|
Hoffmann A, Lischeid G, Koch M, Lentzsch P, Sommerfeld T, Müller MEH. Co-Cultivation of Fusarium, Alternaria, and Pseudomonas on Wheat-Ears Affects Microbial Growth and Mycotoxin Production. Microorganisms 2021; 9:microorganisms9020443. [PMID: 33672702 PMCID: PMC7924320 DOI: 10.3390/microorganisms9020443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Mycotoxigenic fungal pathogens Fusarium and Alternaria are a leading cause of loss in cereal production. On wheat-ears, they are confronted by bacterial antagonists such as pseudomonads. Studies on these groups’ interactions often neglect the infection process’s temporal aspects and the associated priority effects. In the present study, the focus was on how the first colonizer affects the subsequent ones. In a climate chamber experiment, wheat-ears were successively inoculated with two different strains (Alternaria tenuissima At625, Fusarium graminearum Fg23, or Pseudomonas simiae Ps9). Over three weeks, microbial abundances and mycotoxin concentrations were analyzed and visualized via Self Organizing Maps with Sammon Mapping (SOM-SM). All three strains revealed different characteristics and strategies to deal with co-inoculation: Fg23, as the first colonizer, suppressed the establishment of At625 and Ps9. Nevertheless, primary inoculation of At625 reduced all of the Fusarium toxins and stopped Ps9 from establishing. Ps9 showed priority effects in delaying and blocking the production of the fungal mycotoxins. The SOM-SM analysis visualized the competitive strengths: Fg23 ranked first, At625 second, Ps9 third. Our findings of species-specific priority effects in a natural environment and the role of the mycotoxins involved are relevant for developing biocontrol strategies.
Collapse
Affiliation(s)
- Annika Hoffmann
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (G.L.); (P.L.); (M.E.H.M.)
- Institute for Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
- Correspondence:
| | - Gunnar Lischeid
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (G.L.); (P.L.); (M.E.H.M.)
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
- Institute for Environmental Sciences and Geography, University of Potsdam, 14476 Potsdam, Germany
| | - Matthias Koch
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany; (M.K.); (T.S.)
| | - Peter Lentzsch
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (G.L.); (P.L.); (M.E.H.M.)
| | - Thomas Sommerfeld
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany; (M.K.); (T.S.)
| | - Marina E. H. Müller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (G.L.); (P.L.); (M.E.H.M.)
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| |
Collapse
|
12
|
Lu Q, Qin JA, Fu YW, Luo JY, Lu JH, Logrieco AF, Yang MH. Modified mycotoxins in foodstuffs, animal feed, and herbal medicine: A systematic review on global occurrence, transformation mechanism and analysis methods. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Xie L, Xiao D, Wang X, Wang C, Bai J, Yue Q, Yue H, Li Y, Molnár I, Xu Y, Zhang L. Combinatorial Biosynthesis of Sulfated Benzenediol Lactones with a Phenolic Sulfotransferase from Fusarium graminearum PH-1. mSphere 2020; 5:e00949-20. [PMID: 33239367 PMCID: PMC7690957 DOI: 10.1128/msphere.00949-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
Total biosynthesis or whole-cell biocatalytic production of sulfated small molecules relies on the discovery and implementation of appropriate sulfotransferase enzymes. Although fungi are prominent biocatalysts and have been used to sulfate drug-like phenolics, no gene encoding a sulfotransferase enzyme has been functionally characterized from these organisms. Here, we identify a phenolic sulfotransferase, FgSULT1, by genome mining from the plant-pathogenic fungus Fusarium graminearum PH-1. We expressed FgSULT1 in a Saccharomyces cerevisiae chassis to modify a broad range of benzenediol lactones and their nonmacrocyclic congeners, together with an anthraquinone, with the resulting unnatural natural product (uNP) sulfates displaying increased solubility. FgSULT1 shares low similarity with known animal and plant sulfotransferases. Instead, it forms a sulfotransferase family with putative bacterial and fungal enzymes for phase II detoxification of xenobiotics and allelochemicals. Among fungi, putative FgSULT1 homologues are encoded in the genomes of Fusarium spp. and a few other genera in nonsyntenic regions, some of which may be related to catabolic sulfur recycling. Computational structure modeling combined with site-directed mutagenesis revealed that FgSULT1 retains the key catalytic residues and the typical fold of characterized animal and plant sulfotransferases. Our work opens the way for the discovery of hitherto unknown fungal sulfotransferases and provides a synthetic biological and enzymatic platform that can be adapted to produce bioactive sulfates, together with sulfate ester standards and probes for masked mycotoxins, precarcinogenic toxins, and xenobiotics.IMPORTANCE Sulfation is an expedient strategy to increase the solubility, bioavailability, and bioactivity of nutraceuticals and clinically important drugs. However, chemical or biological synthesis of sulfoconjugates is challenging. Genome mining, heterologous expression, homology structural modeling, and site-directed mutagenesis identified FgSULT1 of Fusarium graminearum PH-1 as a cytosolic sulfotransferase with the typical fold and active site architecture of characterized animal and plant sulfotransferases, despite low sequence similarity. FgSULT1 homologues are sparse in fungi but form a distinct clade with bacterial sulfotransferases. This study extends the functionally characterized sulfotransferase superfamily to the kingdom Fungi and demonstrates total biosynthetic and biocatalytic synthetic biological platforms to produce unnatural natural product (uNP) sulfoconjugates. Such uNP sulfates may be utilized for drug discovery in human and veterinary medicine and crop protection. Our synthetic biological methods may also be adapted to generate masked mycotoxin standards for food safety and environmental monitoring applications and to expose precarcinogenic xenobiotics.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Dongliang Xiao
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaojing Wang
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jing Bai
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province, People's Republic of China
| | - Qun Yue
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Haitao Yue
- Department of Biology and Biotechnology, Xinjiang University, Urumqi, People's Republic of China
| | - Ye Li
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
- National Engineering Lab for Cereal Fermentation Technology, Jiangnan University, Wuxi, People's Republic of China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson, Arizona, USA
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
14
|
An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 2020; 94:3645-3669. [PMID: 32910237 DOI: 10.1007/s00204-020-02899-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3',4'-dihydroxy-T-2 toxin and 4',4'-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3'-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2-3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2-3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, "immune evasion" activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2-4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.
Collapse
|
15
|
Holanda DM, Kim SW. Efficacy of Mycotoxin Detoxifiers on Health and Growth of Newly-Weaned Pigs under Chronic Dietary Challenge of Deoxynivalenol. Toxins (Basel) 2020; 12:E311. [PMID: 32397551 PMCID: PMC7290511 DOI: 10.3390/toxins12050311] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022] Open
Abstract
The efficacy of yeast-based mycotoxin detoxifiers on health and growth performance of newly-weaned pigs (27-d-old) fed diets naturally contaminated with deoxynivalenol was investigated. Sixty pigs were individually assigned to five treatments for 34 d: NC (negative control, 1.2 mg/kg of deoxynivalenol); PC (positive control, 3.2 mg/kg of deoxynivalenol); CYC (PC + clay/yeast culture-based product, 0.2%); CYE (PC + clay/yeast cell wall/plant extracts/antioxidants-based product, 0.2%); and CYB (PC + clay/inactivated yeast/botanicals/antioxidants-based product, 0.2%). Blood and jejunal mucosa were sampled, and data were analyzed using Proc Mixed of SAS with pre-planned contrasts. Deoxynivalenol reduced the average daily gain (ADG) in phase 3. Pigs fed CYC had greater overall ADG, average daily feed intake during phase 3, and gain to feed ratio during phase 2 than PC. At d 14, deoxynivalenol reduced blood urea nitrogen/creatinine and tended to reduce blood urea nitrogen. Pigs fed CYB tended to have greater aspartate aminotransferase than PC. At d 34, pigs fed CYC and CYB tended to have lower serum creatine phosphokinase than PC. Pigs fed CYE had lower blood urea nitrogen/creatinine than PC. In jejunal mucosa, deoxynivalenol tended to increase malondialdehydes and decrease glutathione. Pigs fed CYE and CYB had lower malondialdehydes, pigs fed CYB had greater glutathione and tended to have lower immunoglobulin A than PC. Pigs fed CYC and CYE tended to have lower interleukin 8 than PC. In summary, deoxynivalenol challenge (1.2 vs. 3.2 mg/kg) mildly compromised growth performance and increased the oxidative stress of pigs. Mycotoxin detoxifiers could partially overcome deoxynivalenol toxicity enhancing liver health, whereas CYE and CYB reduced oxidative stress, and CYC and CYB reduced immune activation. In conclusion, yeast-based detoxifiers with functional components as clay/inactivated yeast/botanicals/antioxidants had increased detoxifying properties in newly-weaned pigs challenged with deoxynivalenol, potentially by enhancing adsorbability, immune function, gut health, and reducing oxidative stress.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
16
|
Rausch AK, Brockmeyer R, Schwerdtle T. Development and Validation of a QuEChERS-Based Liquid Chromatography Tandem Mass Spectrometry Multi-Method for the Determination of 38 Native and Modified Mycotoxins in Cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4657-4669. [PMID: 32216338 DOI: 10.1021/acs.jafc.9b07491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, a reliable and sensitive method for the determination of 38 (modified) mycotoxins was developed. Using a QuEChERS-based extraction method [acetonitrile/water/formic acid (75:20:5, v/v/v)], followed by two runs of high performance liquid chromatography tandem mass spectrometry with different conditions, relevant mycotoxins in cereals were analyzed. The method was validated according to the performance criteria defined by the European Commission (EC) in Commission Decision no. 657/2002. Limits of quantification ranged from 0.05 to 150 μg/kg. Good linearity (R2 > 0.99), recovery (61-120%), repeatability (RSDr < 15%), and reproducibility (RSDR < 20%) were obtained for most mycotoxins. However, validation results for Alternaria toxins and fumonisins were unsatisfying. Matrix effects (-69 to +59%) were compensated for using standard addition. Application on reference materials gave correct results while analysis of samples from local retailers revealed contamination, especially with deoxynivalenol, deoxynivalenol-3-glucoside, fumonisins, and zearalenone, in concentrations up to 369, 58, 1002, and 21 μg/kg, respectively.
Collapse
Affiliation(s)
- Ann-Kristin Rausch
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Eurofins SOFIA GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | | | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| |
Collapse
|
17
|
Flasch M, Bueschl C, Woelflingseder L, Schwartz-Zimmermann HE, Adam G, Schuhmacher R, Marko D, Warth B. Stable Isotope-Assisted Metabolomics for Deciphering Xenobiotic Metabolism in Mammalian Cell Culture. ACS Chem Biol 2020; 15:970-981. [PMID: 32167285 PMCID: PMC7171601 DOI: 10.1021/acschembio.9b01016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Xenobiotics are ubiquitous in the environment and modified
in the human body by phase I and II metabolism. Liquid chromatography
coupled to high resolution mass spectrometry is a powerful tool to
investigate these biotransformation products. We present a workflow
based on stable isotope-assisted metabolomics and the bioinformatics
tool MetExtract II for deciphering xenobiotic metabolites produced
by human cells. Its potential was demonstrated by the investigation
of the metabolism of deoxynivalenol (DON), an abundant food contaminant,
in a liver carcinoma cell line (HepG2) and a model for colon carcinoma
(HT29). Detected known metabolites included DON-3-sulfate, DON-10-sulfonate
2, and DON-10-glutathione as well as DON-cysteine. Conjugation with
amino acids and an antibiotic was confirmed for the first time. The
approach allows the untargeted elucidation of human xenobiotic products
in tissue culture. It may be applied to other fields of research including
drug metabolism, personalized medicine, exposome research, and systems
biology to better understand the relevance of in vitro experiments.
Collapse
Affiliation(s)
- Mira Flasch
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Heidi E. Schwartz-Zimmermann
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
18
|
Righetti L, Damiani T, Rolli E, Galaverna G, Suman M, Bruni R, Dall'Asta C. Exploiting the potential of micropropagated durum wheat organs as modified mycotoxin biofactories: The case of deoxynivalenol. PHYTOCHEMISTRY 2020; 170:112194. [PMID: 31731239 DOI: 10.1016/j.phytochem.2019.112194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the potential of in vitro wheat model as biofactory for masked mycotoxin production. Micropropagated durum wheat organs (leaves and roots) were treated during a 14-day time span on a proper medium spiked with deoxynivalenol (DON). After the treatment, DON absorption from culture media was evaluated while roots and leaves were profiled by UHPLC-HRMS to investigate the DON biotransformation products. A total of 10 metabolites have been annotated in both roots and leaves. In particular, 5 phase I metabolites never reported before were putatively identified, suggesting the viability of the model as a tool to investigate the interplay between mycotoxins and wheat. In addition, 5 phase II metabolites previously reported in wheat grown under open field conditions, were identified in both roots and leaves, thus demonstrating the reliability of the cultured organs as model system for wheat plants. An organ-dependent difference in DON uptake and biotransformation was observed, since roots contained a high amount of untransformed DON, while leaves were able to effectively biotransform DON to its glycosylated form and other relevant metabolites. With the perspective of using cultured organs as biofactories for modified mycotoxin production, leaves seemed therefore to offer the best absorption and production yield.
Collapse
Affiliation(s)
- Laura Righetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
| | - Tito Damiani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Enrico Rolli
- Deparment of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Via Università 12, 43121, Parma, Italy
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Michele Suman
- Barilla G.R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, Parma, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
19
|
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins (Basel) 2019; 11:toxins11110664. [PMID: 31739566 PMCID: PMC6891594 DOI: 10.3390/toxins11110664] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection.
Collapse
|
20
|
Doppler M, Kluger B, Bueschl C, Steiner B, Buerstmayr H, Lemmens M, Krska R, Adam G, Schuhmacher R. Stable Isotope-Assisted Plant Metabolomics: Investigation of Phenylalanine-Related Metabolic Response in Wheat Upon Treatment With the Fusarium Virulence Factor Deoxynivalenol. FRONTIERS IN PLANT SCIENCE 2019; 10:1137. [PMID: 31736983 PMCID: PMC6831647 DOI: 10.3389/fpls.2019.01137] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/20/2019] [Indexed: 05/03/2023]
Abstract
The major Fusarium mycotoxin deoxynivalenol (DON) is a virulence factor in wheat and has also been shown to induce defense responses in host plant tissue. In this study, global and tracer labeling with 13C were combined to annotate the overall metabolome of wheat spikes and to evaluate the response of phenylalanine-related pathways upon treatment with DON. At anthesis, spikes of resistant and susceptible cultivars as well as two related near isogenic wheat lines (NILs) differing in the presence/absence of the major resistance QTL Fhb1 were treated with 1 mg DON or water (control), and samples were collected at 0, 12, 24, 48, and 96 h after treatment (hat). A total of 172 Phe-derived wheat constituents were detected with our untargeted approach employing 13C-labeled phenylalanine and subsequently annotated as flavonoids, lignans, coumarins, benzoic acid derivatives, hydroxycinnamic acid amides (HCAAs), as well as peptides. Ninety-six hours after the DON treatment, up to 30% of the metabolites biosynthesized from Phe showed significantly increased levels compared to the control samples. Major metabolic changes included the formation of precursors of compounds implicated in cell wall reinforcement and presumed antifungal compounds. In addition, also dipeptides, which presumably are products of proteolytic degradation of truncated proteins generated in the presence of the toxin, were significantly more abundant upon DON treatment. An in-depth comparison of the two NILs with correlation clustering of time course profiles revealed some 70 DON-responsive Phe derivatives. While several flavonoids had constitutively different abundance levels between the two NILs differing in resistance, other Phe-derived metabolites such as HCAAs and hydroxycinnamoyl quinates were affected differently in the two NILs after treatment with DON. Our results suggest a strong activation of the general phenylpropanoid pathway and that coumaroyl-CoA is mainly diverted towards HCAAs in the presence of Fhb1, whereas the metabolic route to monolignol(-conjugates), lignans, and lignin seems to be favored in the absence of the Fhb1 resistance quantitative trait loci.
Collapse
Affiliation(s)
- Maria Doppler
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Bernhard Kluger
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Marc Lemmens
- Department of Agrobiotechnology (IFA-Tulln), Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
21
|
Niermans K, Woyzichovski J, Kröncke N, Benning R, Maul R. Feeding study for the mycotoxin zearalenone in yellow mealworm (Tenebrio molitor) larvae-investigation of biological impact and metabolic conversion. Mycotoxin Res 2019; 35:231-242. [PMID: 30864055 PMCID: PMC6611894 DOI: 10.1007/s12550-019-00346-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
Edible insects as additional food and/or feed source may represent one important component to solve the problem of food security for a growing human population. Especially for covering the rising demand for protein of animal origin, seven insect species currently allowed as feed constituents in the European Union are gaining more interest. However, before considering insects such as yellow mealworm larvae (Tenebrio molitor) as suitable for, e.g. human consumption, the possible presence and accumulation of contaminants must be elucidated. The present work investigates the effects of the mycotoxin zearalenone (ZEN) and its metabolites on insect larvae. Seven different diets were prepared: toxin-free control, spiked and artificially contaminated (both containing approx.500 μg/kg and approx. 2000 μg/kg of ZEN) as well as two naturally contaminated diets (600 μg/kg and 900 μg/kg ZEN). The diets were used in a multiple-week feeding trial using T. molitor larvae as model insects. The amount of ZEN and its metabolites in the feed, larvae and the residue were measured by HPLC-MS/MS. A significantly enhanced individual larval weight was found for the insects fed on the naturally contaminated diets compared to the other feeding groups after 8 weeks of exposure. No ZEN or ZEN metabolites were detected in the T. molitor larvae after harvest. However, ZEN, α- and β-stereoisomers of zearalenol were found in the residue samples indicating an intense metabolism of ZEN in the larvae. No further ZEN metabolites could be detected in any sample. Thus, ZEN is not retained to any significant amount in T. molitor larvae.
Collapse
Affiliation(s)
- Kelly Niermans
- BfR - German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jan Woyzichovski
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Nina Kröncke
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Rainer Benning
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Ronald Maul
- BfR - German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany.
| |
Collapse
|
22
|
Gunatilake S, Seneff S, Orlando L. Glyphosate's Synergistic Toxicity in Combination with Other Factors as a Cause of Chronic Kidney Disease of Unknown Origin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2734. [PMID: 31370256 PMCID: PMC6695815 DOI: 10.3390/ijerph16152734] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Chronic kidney disease of unknown etiology (CKDu) is a global epidemic. Sri Lanka has experienced a doubling of the disease every 4 or 5 years since it was first identified in the North Central province in the mid-1990s. The disease primarily affects people in agricultural regions who are missing the commonly known risk factors for CKD. Sri Lanka is not alone: health workers have reported prevalence of CKDu in Mexico, Nicaragua, El Salvador, and the state of Andhra Pradesh in India. A global search for the cause of CKDu has not identified a single factor, but rather many factors that may contribute to the etiology of the disease. Some of these factors include heat stroke leading to dehydration, toxic metals such as cadmium and arsenic, fluoride, low selenium, toxigenic cyanobacteria, nutritionally deficient diet and mycotoxins from mold exposure. Furthermore, exposure to agrichemicals, particularly glyphosate and paraquat, are likely compounding factors, and may be the primary factors. Here, we argue that glyphosate in particular is working synergistically with most of the other factors to increase toxic effects. We propose, further, that glyphosate causes insidious harm through its action as an amino acid analogue of glycine, and that this interferes with natural protective mechanisms against other exposures. Glyphosate's synergistic health effects in combination with exposure to other pollutants, in particular paraquat, and physical labor in the ubiquitous high temperatures of lowland tropical regions, could result in renal damage consistent with CKDu in Sri Lanka.
Collapse
Affiliation(s)
- Sarath Gunatilake
- Health Science Department, California State University Long Beach, Long Beach, CA 90840, USA
| | - Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Laura Orlando
- Environmental Health Department, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
23
|
Mastanjević K, Lukinac J, Jukić M, Šarkanj B, Krstanović V, Mastanjević K. Multi-(myco)toxins in Malting and Brewing By-Products. Toxins (Basel) 2019; 11:E30. [PMID: 30634499 PMCID: PMC6356641 DOI: 10.3390/toxins11010030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/18/2022] Open
Abstract
Fungi, yeasts, and bacteria are common microorganisms on cereals used in malting and brewing industries. These microorganisms are mostly associated with the safety and quality of malt and beer, but also with the health safety of by-products used in animal nutrition. The real problem is their harmful metabolites-toxins that, due to their thermostable properties, can easily be transferred to malting and brewing by-products. Besides fungal metabolites, other toxins originating from plants can be harmful to animal health. Precise and accurate analytical techniques broadened the spectrum of known toxins originating from microorganisms and plants that can pose a threat to animal health. Multi-(myco)toxin analyses are advanced and useful tools for the assessment of product safety, and legislation should follow up and make some important changes to regulate yet unregulated, but highly occurring, microbial and plant toxins in malting and brewing by-products used for animal feed.
Collapse
Affiliation(s)
- Kristina Mastanjević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia.
| | - Jasmina Lukinac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia.
| | - Marko Jukić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia.
| | - Bojan Šarkanj
- Department of Food Technology, University North, University Center Koprivnica, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia.
| | - Vinko Krstanović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia.
| | - Krešimir Mastanjević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia.
| |
Collapse
|
24
|
Mastanjević K, Šarkanj B, Warth B, Krska R, Sulyok M, Mastanjević K, Šantek B, Krstanović V. Fusarium culmorum multi-toxin screening in malting and brewing by-products. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Yesterday masked, today modified; what do mycotoxins bring next? Arh Hig Rada Toksikol 2018; 69:196-214. [DOI: 10.2478/aiht-2018-69-3108] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mycotoxins are secondary metabolites produced by toxigenic fungi in crops worldwide. In (micro)organisms such as plants, fungi, bacteria, or animals they may be further metabolised and modified, but this is also true for food processing, which may lead to a wide range of masked mycotoxin forms. These often remain undetected by analytical methods and are the culprits for underestimates in risk assessments. Furthermore, once ingested, modified mycotoxins can convert back to their parent forms. This concern has raised the need for analytical methods that can detect and quantify modified mycotoxins as essential for accurate risk assessment. The promising answer is liquid chromatography-mass spectrometry. New masked mycotoxin forms are now successfully detected by iontrap, time-of-flight, or high-resolution orbitrap mass spectrometers. However, the toxicological relevance of modified mycotoxins has not been fully clarified.
Collapse
|
26
|
Del Favero G, Woelflingseder L, Braun D, Puntscher H, Kütt ML, Dellafiora L, Warth B, Pahlke G, Dall’Asta C, Adam G, Marko D. Response of intestinal HT-29 cells to the trichothecene mycotoxin deoxynivalenol and its sulfated conjugates. Toxicol Lett 2018; 295:424-437. [DOI: 10.1016/j.toxlet.2018.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 11/30/2022]
|
27
|
Bryła M, Waśkiewicz A, Ksieniewicz-Woźniak E, Szymczyk K, Jędrzejczak R. Modified Fusarium Mycotoxins in Cereals and Their Products-Metabolism, Occurrence, and Toxicity: An Updated Review. Molecules 2018; 23:E963. [PMID: 29677133 PMCID: PMC6017960 DOI: 10.3390/molecules23040963] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 02/03/2023] Open
Abstract
Mycotoxins are secondary fungal metabolites, toxic to humans, animals and plants. Under the influence of various factors, mycotoxins may undergo modifications of their chemical structure. One of the methods of mycotoxin modification is a transformation occurring in plant cells or under the influence of fungal enzymes. This paper reviews the current knowledge on the natural occurrence of the most important trichothecenes and zearalenone in cereals/cereal products, their metabolism, and the potential toxicity of the metabolites. Only very limited data are available for the majority of the identified mycotoxins. Most studies concern biologically modified trichothecenes, mainly deoxynivalenol-3-glucoside, which is less toxic than its parent compound (deoxynivalenol). It is resistant to the digestion processes within the gastrointestinal tract and is not absorbed by the intestinal epithelium; however, it may be hydrolysed to free deoxynivalenol or deepoxy-deoxynivalenol by the intestinal microflora. Only one zearalenone derivative, zearalenone-14-glucoside, has been extensively studied. It appears to be more reactive than deoxynivalenol-3-glucoside. It may be readily hydrolysed to free zearalenone, and the carbonyl group in its molecule may be easily reduced to α/β-zearalenol and/or other unspecified metabolites. Other derivatives of deoxynivalenol and zearalenone are poorly characterised. Moreover, other derivatives such as glycosides of T-2 and HT-2 toxins have only recently been investigated; thus, the data related to their toxicological profile and occurrence are sporadic. The topics described in this study are crucial to ensure food and feed safety, which will be assisted by the provision of widespread access to such studies and obtained results.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland.
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Krystyna Szymczyk
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Renata Jędrzejczak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| |
Collapse
|
28
|
Michlmayr H, Varga E, Malachová A, Fruhmann P, Piątkowska M, Hametner C, Šofrová J, Jaunecker G, Häubl G, Lemmens M, Berthiller F, Adam G. UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-d-glucosides. Toxins (Basel) 2018; 10:E111. [PMID: 29509722 PMCID: PMC5869399 DOI: 10.3390/toxins10030111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 11/17/2022] Open
Abstract
Trichothecene toxins are confirmed or suspected virulence factors of various plant-pathogenic Fusarium species. Plants can detoxify these to a variable extent by glucosylation, a reaction catalyzed by UDP-glucosyltransferases (UGTs). Due to the unavailability of analytical standards for many trichothecene-glucoconjugates, information on such compounds is limited. Here, the previously identified deoxynivalenol-conjugating UGTs HvUGT13248 (barley), OsUGT79 (rice) and Bradi5g03300 (Brachypodium), were expressed in E. coli, affinity purified, and characterized towards their abilities to glucosylate the most relevant type A and B trichothecenes. HvUGT13248, which prefers nivalenol over deoxynivalenol, is also able to conjugate C-4 acetylated trichothecenes (e.g., T-2 toxin) to some degree while OsUGT79 and Bradi5g03300 are completely inactive with C-4 acetylated derivatives. The type A trichothecenes HT-2 toxin and T-2 triol are the kinetically preferred substrates in the case of HvUGT13248 and Bradi5g03300. We glucosylated several trichothecenes with OsUGT79 (HT-2 toxin, T-2 triol) and HvUGT13248 (T-2 toxin, neosolaniol, 4,15-diacetoxyscirpenol, fusarenon X) in the preparative scale. NMR analysis of the purified glucosides showed that exclusively β-D-glucosides were formed regio-selectively at position C-3-OH of the trichothecenes. These synthesized standards can be used to investigate the occurrence and toxicological properties of these modified mycotoxins.
Collapse
Affiliation(s)
- Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, (BOKU), Konrad Lorenz Str. 24, 3430 Tulln, Austria.
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria.
| | - Elisabeth Varga
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Alexandra Malachová
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Philipp Fruhmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
- CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie GmbH, Viktor-Kaplan-Str. 2, 2700 Wiener Neustadt, Austria.
| | - Marta Piątkowska
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Jana Šofrová
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | | | - Georg Häubl
- Romerlabs Division Holding GmbH, Technopark 1, 3430 Tulln, Austria.
| | - Marc Lemmens
- Biotechnology in Plant Production, IFA-Tulln, BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, (BOKU), Konrad Lorenz Str. 24, 3430 Tulln, Austria.
| |
Collapse
|
29
|
Weber J, Vaclavikova M, Wiesenberger G, Haider M, Hametner C, Fröhlich J, Berthiller F, Adam G, Mikula H, Fruhmann P. Chemical synthesis of culmorin metabolites and their biologic role in culmorin and acetyl-culmorin treated wheat cells. Org Biomol Chem 2018; 16:2043-2048. [PMID: 29465119 DOI: 10.1039/c7ob02460f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Fusarium metabolite culmorin (1) is receiving increased attention as an "emerging mycotoxin". It co-occurs with trichothecene mycotoxins and potentially influences their toxicity. Its ecological role and fate in plants is unknown. We synthesized sulfated and glucosylated culmorin conjugates as potential metabolites, which are expected to be formed in planta, and used them as reference compounds. An efficient procedure for the synthesis of culmorin sulfates was developed. Diastereo- and regioselective glucosylation of culmorin (1) was achieved by exploiting or preventing unexpected acyl transfer when using different glucosyl donors. The treatment of a wheat suspension culture with culmorin (1) revealed an in planta conversion of culmorin into culmorin-8-glucoside (6) and culmorin acetate, but no sulfates or culmorin-11-glucoside (7) was found. The treatment of wheat cells with the fungal metabolite 11-acetylculmorin (2) revealed its rapid deacetylation, but also showed the formation of 11-acetylculmorin-8-glucoside (8). These results show that plants are capable of extensively metabolizing culmorin.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria.
| | - Marta Vaclavikova
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Maximilian Haider
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria.
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria.
| | - Johannes Fröhlich
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria.
| | - Franz Berthiller
- Department of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria.
| | - Philipp Fruhmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Austria. and Center for Electrochemical Surface Technology (CEST), Wiener Neustadt, Austria
| |
Collapse
|
30
|
Khaneghah AM, Martins LM, von Hertwig AM, Bertoldo R, Sant’Ana AS. Deoxynivalenol and its masked forms: Characteristics, incidence, control and fate during wheat and wheat based products processing - A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.10.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Kim SH, Vujanovic V. Biodegradation and biodetoxification of Fusarium mycotoxins by Sphaerodes mycoparasitica. AMB Express 2017; 7:145. [PMID: 28687037 PMCID: PMC5500597 DOI: 10.1186/s13568-017-0446-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 11/10/2022] Open
Abstract
A fungus Sphaerodes mycoparasitica SMCD 2220-01 is a host specific mycoparasite against plant pathogenic Fusarium species. Fusarium spp. are producing a plethora of mycotoxins including zearalenone (ZEN), deoxynivalenol (DON) and its acetylated derivatives, 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON). The SMCD 2220-01 strain substantially reduced DON, 3-ADON, 15-ADON, and ZEN production capacity in co-culture system. Degradation and detoxification of the pure mycotoxins were also achieved when exposed to SMCD 2220-01 in shake flasks. The thin layer chromatography (TLC) combined with high performance liquid chromatography-electrospray ionization-high resolution mass spectrometry (HPLC-ESI-HRMS) revealed that the amount of mycotoxins exposed to SMCD 2220-01 was considerably reduced compared to control. ZEN level was decreased by 97%, while zearalenone sulfate ([M-H+SO3]- at m/z 397.1052 C18H21O8S1) was detected as a metabolite of ZEN converted to less toxic molecule by the mycoparasite. Further, the mycoparasite appeared to degrade DON, 3-ADON, and 15-ADON by 89, 58, and 72%, respectively. The deoxynivalenol sulfate ([M-COCH3+SO3-CH2O]- at m/z 345.2300 C14H17O8S1) was detected as a less toxic metabolic product of DON and 3-ADON. These findings report the SMCD 2220-01 effectiveness to lower mycotoxins-producing capacities of Fusarium, degrade pure mycotoxins and transform them to less toxic metabolites, opening new opportunities for research and innovation for detoxification of mycotoxins.
Collapse
|
32
|
Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem Toxicol 2017; 111:189-205. [PMID: 29158197 DOI: 10.1016/j.fct.2017.11.021] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
Abstract
Modified mycotoxins are metabolites that normally remain undetected during the testing for parent mycotoxin. These modified forms of mycotoxins can be produced by fungi or generated as part of the defense mechanism of the infected plant. In some cases, they are formed during food processing. The various processing steps greatly affect mycotoxin levels present in the final product (free and modified), although the results are still controversial regarding the increase or reduction of these levels, being strongly related to the type of process and the composition of the food in question. Evidence exists that some modified mycotoxins can be converted into the parent mycotoxin during digestion in humans and animals, potentially leading to adverse health effects. Some of these formed compounds can be even more toxic, in case they have higher bioaccessibility and bioavailability than the parent mycotoxin. The modified mycotoxins can occur simultaneously with the free mycotoxin, and, in some cases, the concentration of modified mycotoxins may exceed the level of free mycotoxin in processed foods. Even though toxicological data are scarce, the possibility of modified mycotoxin conversion to its free form may result in a potential risk to human and animal health. This review aims to update information on the formation, detection, occurrence, and toxic effects caused by modified mycotoxin.
Collapse
|
33
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017; 15:e04718. [PMID: 32625635 PMCID: PMC7010102 DOI: 10.2903/j.efsa.2017.4718] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 μg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 μg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink.
Collapse
|
34
|
Selectivity of commercial immunoaffinity columns for modified forms of the mycotoxin 4-deoxynivalenol (DON). J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:322-326. [PMID: 28780485 DOI: 10.1016/j.jchromb.2017.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/25/2017] [Accepted: 07/09/2017] [Indexed: 11/20/2022]
Abstract
Commercial immunoaffinity columns (IACs) are today available for all major mycotoxins. However, manufacturers give usually no or very limited information on the epitope, i.e. the specific part of the toxin molecule that binds to the antibody. 4-Deoxynivalenol (DON) is a trichothecene mycotoxin that is produced by plant pathogenic field fungi and is regulated in many countries worldwide. DON was shown to be biotransformed via different metabolic pathways, and thus many different biotransformation products may be found in different products or organisms. In addition, several structurally similar mycotoxins may co-occur with DON. We compared five commercial IACs for their retention of a range of DON derivatives modified in the C-3, C-8, C-10, C-13 or C-15 positions, as well as nivalenol (NIV) and T-2 tetraol. The DON-derivatives were deepoxy-DON, DON 3-, 8- and 15-O-β-d-glucuronides, 3- and 15-O-acetyl-DON, DON-3-O-β-d-glucoside, 10- and 13-cysteinyl-adducts of DON, and the 13-mercaptoethanol and 10,13-dimercaptoethanol adducts of DON. The C-3 derivatives and deepoxy-DON were retained by most of the columns. Only one of the five IACs retained C-15 and C-8 derivatives, but it did not retain C-3 derivatives or deepoxy-DON. The antibodies in two of the IACs bound C-10 conjugates, but C-13 derivatives were not retained by any of the columns. This study shows that all of the antibodies in commercial IACs bind a range of DON derivatives, especially those that are modified at C-3. NIV was retained by three of the columns, and T-2 tetraol was partially retained by one IAC.
Collapse
|
35
|
Deng Y, Wang Y, Zhang X, Sun L, Wu C, Shi Q, Wang R, Sun X, Bi S, Gooneratne R. Effects of T-2 Toxin on Pacific White Shrimp Litopenaeus vannamei: Growth, and Antioxidant Defenses and Capacity and Histopathology in the Hepatopancreas. JOURNAL OF AQUATIC ANIMAL HEALTH 2017; 29:15-25. [PMID: 28166479 DOI: 10.1080/08997659.2016.1249577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Modified-masked T-2 toxin (mT-2) formed during metabolism in edible aquatic animals may go undetected by traditional analytical methods, thereby underestimating T-2 toxicity. The effects of T-2 on growth and antioxidant capacity and histopathological changes in the hepatopancreas were studied in Pacific white shrimp Litopenaeus vannamei exposed for 20 d to 0, 0.5, 1.2, 2.4, 4.8, and 12.2 mg/kg of T-2 in their feed. The concentration of mT-2 in the hepatopancreas was detected by liquid chromatography-tandem mass spectrophotometry before and after trifluoroacetic acid (TFA) treatment that converted mT-2 to free T-2. A dose-dependent increase in mT-2 concentration was observed in the hepatopancreas. Dietary exposure to T-2 significantly decreased (P < 0.05) shrimp growth and survival rate compared with the controls. The malondialdehyde (MDA) concentration was significantly increased in shrimp exposed to feed with ≥2.4 mg/kg T-2 (P < 0.05). The antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GPx), total antioxidant capacity (T-AOC), and also glutathione (GSH) content increased in shrimp dosed with 2.4-4.8 mg/kg T-2 but declined at the highest dose (12.2 mg/kg), probably indicating an inability to cope with high concentrations of reactive oxygen species (ROS) as evident from a marked increase in MDA (P < 0.05) culminating in cellular toxicity. Histopathological changes in the hepatopancreas were dose dependent, with cell autophagy evident at the highest exposure dose. This is the first report in shrimp of a dose-dependent increase in ROS, SOD enzyme activity, and T-AOC at low T-2 exposures, and associated histopathological changes in the hepatopancreas, in response to dietary T-2. Received January 26, 2016; accepted October 9, 2016.
Collapse
Affiliation(s)
- Yijia Deng
- a College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Yaling Wang
- a College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Xiaodi Zhang
- a College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Lijun Sun
- a College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Chaojin Wu
- a College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Qi Shi
- a College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Rundong Wang
- a College of Food Science and Technology, Guangdong Ocean University , Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution , Zhanjiang 524088 , China
| | - Xiaodong Sun
- b College of Environment and Resources , Dalian Nationalities University , Dalian , 116600 , China
| | - Siyuan Bi
- c Shenzhen Bioeasy Biotechnologies Company Ltd ., Shenzhen , 518102 , China
| | - Ravi Gooneratne
- d Centre for Food Research and Innovation, Department of Wine, Food and Molecular Biosciences , Lincoln University , Lincoln 7647 , Canterbury , New Zealand
| |
Collapse
|
36
|
Do Plant-Bound Masked Mycotoxins Contribute to Toxicity? Toxins (Basel) 2017; 9:toxins9030085. [PMID: 28264486 PMCID: PMC5371840 DOI: 10.3390/toxins9030085] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
Masked mycotoxins are plant metabolites of mycotoxins which co-contaminate common cereal crops. Since their discovery, the question has arisen if they contribute to toxicity either directly or indirectly through the release of the parent mycotoxins. Research in this field is rapidly emerging and the aim of this review is to summarize the latest knowledge on the fate of masked mycotoxins upon ingestion. Fusarium mycotoxins are the most prevalent masked mycotoxins and evidence is mounting that DON3Glc and possibly other masked trichothecenes are stable in conditions prevailing in the upper gut and are not absorbed intact. DON3Glc is also not toxic per se, but is hydrolyzed by colonic microbes and further metabolized to DOM-1 in some individuals. Masked zearalenone is rather more bio-reactive with some evidence on gastric and small intestinal hydrolysis as well as hydrolysis by intestinal epithelium and components of blood. Microbial hydrolysis of ZEN14Glc is almost instantaneous and further metabolism also occurs. Identification of zearalenone metabolites and their fate in the colon are still missing as is further clarification on whether or not masked zearalenone is hydrolyzed by mammalian cells. New masked mycotoxins continuously emerge and it is crucial that we gain detailed understanding of their individual metabolic fate in the body before we can assess synergistic effects and extrapolate the additive risk of all mycotoxins present in food.
Collapse
|
37
|
Michlmayr H, Varga E, Lupi F, Malachová A, Hametner C, Berthiller F, Adam G. Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077. Toxins (Basel) 2017; 9:E58. [PMID: 28208765 PMCID: PMC5331437 DOI: 10.3390/toxins9020058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 01/25/2023] Open
Abstract
Zearalenone (ZEN) is an estrogenic mycotoxin occurring in Fusarium-infected cereals. Glucosylation is an important plant defense mechanism and generally reduces the acute toxicity of mycotoxins to humans and animals. Toxicological information about ZEN-glucosides is limited due to the unavailability of larger amounts required for animal studies. HvUGT14077, a recently-validated ZEN-conjugating barley UDP-glucosyltransferase was expressed in Escherichia coli, affinity purified, and characterized. HvUGT14077 possesses high affinity (Km = 3 µM) and catalytic efficiency (kcat/Km = 190 s-1·mM-1) with ZEN. It also efficiently glucosylates the phase-I ZEN-metabolites α-zearalenol and β-zearalenol, with kcat/Km of 40 and 74 s-1·mM-1, respectively. HvUGT14077 catalyzes O-glucosylation at C-14 and C-16 with preference of 14-glucoside synthesis. Furthermore, relatively slow consecutive formation of 14,16-di-glucosides was observed; their structures were tentatively identified by mass spectrometry and for ZEN-14,16-di-glucoside confirmed by nuclear magnetic resonance spectroscopy. Recombinant HvUGT14077 allowed efficient preparative synthesis of ZEN-glucosides, yielding about 90% ZEN-14-glucoside and 10% ZEN-16-glucoside. The yield of ZEN-16-glucoside could be increased to 85% by co-incubation with a β-glucosidase highly selective for ZEN-14-glucoside. Depletion of the co-substrate UDP-glucose was counteracted by a sucrose synthase based regeneration system. This strategy could also be of interest to increase the yield of minor glucosides synthesized by other glucosyltransferases.
Collapse
Affiliation(s)
- Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria.
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria.
| | - Elisabeth Varga
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Francesca Lupi
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via-Napoli 25, 71122 Foggia, Italy.
| | - Alexandra Malachová
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Franz Berthiller
- Center for Analytical Chemistry and Christian Doppler Laboratory for Mycotoxin Metabolism, Department of Agrobiotechnology (IFA-Tulln), BOKU, Konrad Lorenz Straße 20, 3430 Tulln, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, 3430 Tulln, Austria.
| |
Collapse
|
38
|
Knutsen HK, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald I, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Gutleb A, Metzler M, Oswald I, Parent-Massin D, Binaglia M, Steinkellner H, Alexander J. Appropriateness to set a group health based guidance value for T2 and HT2 toxin and its modified forms. EFSA J 2017; 15:e04655. [PMID: 32625252 PMCID: PMC7010130 DOI: 10.2903/j.efsa.2017.4655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The EFSA Panel on Contaminants in the Food Chain (CONTAM) established a tolerable daily intake (TDI) for T2 and HT2 of 0.02 μg/kg body weight (bw) per day based on a new in vivo subchronic toxicity study in rats that confirmed that immune- and haematotoxicity are the critical effects of T2 and using a reduction in total leucocyte count as the critical endpoint. An acute reference dose (ARfD) of 0.3 μg for T2 and HT2/kg bw was established based on acute emetic events in mink. Modified forms of T2 and HT2 identified are phase I metabolites mainly formed through hydrolytic cleavage of one or more of the three ester groups of T2. Less prominent hydroxylation reactions occur predominantly at the side chain. Phase II metabolism involves conjugation with glucose, modified glucose, sulfate, feruloyl and acetyl groups. The few data on occurrence of modified forms indicate that grain products are their main source. The CONTAM Panel found it appropriate to establish a group TDI and a group ARfD for T2 and HT2 and its modified forms. Potency factors relative to T2 for the modified forms were used to account for differences in acute and chronic toxic potencies. It was assumed that conjugates (phase II metabolites of T2, HT2 and their phase I metabolites), which are not toxic per se, would be cleaved releasing their aglycones. These metabolites were assigned the relative potency factors (RPFs) of their respective aglycones. The RPFs assigned to the modified forms were all either 1 or less than 1. The uncertainties associated with the present assessment are considered as high. Using the established group, ARfD and TDI would overestimate any risk of modified T2 and HT2.
Collapse
|
39
|
Tian Y, Tan Y, Liu N, Yan Z, Liao Y, Chen J, de Saeger S, Yang H, Zhang Q, Wu A. Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma when Confronted with Fusarium graminearum. Toxins (Basel) 2016; 8:toxins8110335. [PMID: 27854265 PMCID: PMC5127131 DOI: 10.3390/toxins8110335] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 01/06/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin mainly produced by the Fusarium graminearum complex, which are important phytopathogens that can infect crops and lead to a serious disease called Fusarium head blight (FHB). As the most common B type trichothecene mycotoxin, DON has toxic effects on animals and humans, which poses a risk to food security. Thus, efforts have been devoted to control DON contamination in different ways. Management of DON production by Trichoderma strains as a biological control-based strategy has drawn great attention recently. In our study, eight selected Trichoderma strains were evaluated for their antagonistic activities on F. graminearum by dual culture on potato dextrose agar (PDA) medium. As potential antagonists, Trichoderma strains showed prominent inhibitory effects on mycelial growth and mycotoxin production of F. graminearum. In addition, the modified mycotoxin deoxynivalenol-3-glucoside (D3G), which was once regarded as a detoxification product of DON in plant defense, was detected when Trichoderma were confronted with F. graminearum. The occurrence of D3G in F. graminearum and Trichoderma interaction was reported for the first time, and these findings provide evidence that Trichoderma strains possess a self-protection mechanism as plants to detoxify DON into D3G when competing with F. graminearum.
Collapse
Affiliation(s)
- Ye Tian
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| | - Yanglan Tan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Chen
- Department of Resources and Environment Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Sarah de Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Hua Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qiaoyan Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| |
Collapse
|
40
|
Lemmens M, Steiner B, Sulyok M, Nicholson P, Mesterhazy A, Buerstmayr H. Masked mycotoxins: does breeding for enhanced Fusarium head blight resistance result in more deoxynivalenol-3-glucoside in new wheat varieties? WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.2029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
From economic and environmental points of view, enhancing resistance to Fusarium head blight (FHB) in wheat is regarded as the best option to reduce fungal colonisation and the concomitant mycotoxin contamination. This review focuses on the effect of FHB resistance on deoxynivalenol (DON) and the masked metabolite deoxynivalenol-3-glucoside (DON-3-glucoside) in wheat. Based on published information complemented with our own results we draw the following conclusions: (1) All investigated wheat cultivars can convert DON to DON-3-glucoside. Hence, detoxification of DON to DON-3-glucoside is not a new trait introduced by recent resistance breeding against FHB. (2) The amount of DON-3-glucoside relative to DON contamination can be substantial (up to 35%) and is among other things dependent on genetic and environmental factors. (3) Correlation analyses showed a highly significant relationship between the amount of FHB symptoms and DON contamination: breeding for FHB resistance reduces DON contamination. (4) DON contamination data are highly correlated with DON-3-glucoside concentration data: in other words, reduction of DON content through resistance breeding results in a concomitant reduction in DON-3-glucoside content. (5) The DON-3-glucoside/DON ratio increases with decreasing DON contamination: the most resistant lines with the lowest DON contamination show the highest relative level of DON-3-glucoside to DON. In summary, introgressing FHB resistance reduces both DON and DON-3-glucoside levels in the grain, but the reduction is lower for the masked toxin. DON-3-glucoside can represent a possible hazard to human and animal health, especially in wheat samples contaminated with DON close to permitted limits.
Collapse
Affiliation(s)
- M. Lemmens
- Institute for Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - B. Steiner
- Institute for Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - M. Sulyok
- Center for Analytical Chemistry, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - P. Nicholson
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - A. Mesterhazy
- Cereal Research non-profit Ltd., 6701 Szeged, P.O. Box 391, Hungary
| | - H. Buerstmayr
- Institute for Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| |
Collapse
|
41
|
Warth B, Del Favero G, Wiesenberger G, Puntscher H, Woelflingseder L, Fruhmann P, Sarkanj B, Krska R, Schuhmacher R, Adam G, Marko D. Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells. Sci Rep 2016; 6:33854. [PMID: 27659167 PMCID: PMC5034337 DOI: 10.1038/srep33854] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/02/2016] [Indexed: 11/10/2022] Open
Abstract
The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority.
Collapse
Affiliation(s)
- Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstr. 38, 1090 Vienna, Austria.,University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Giorgia Del Favero
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstr. 38, 1090 Vienna, Austria
| | - Gerlinde Wiesenberger
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Applied Genetics and Cell Biology, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Hannes Puntscher
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstr. 38, 1090 Vienna, Austria
| | - Lydia Woelflingseder
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstr. 38, 1090 Vienna, Austria
| | - Philipp Fruhmann
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Applied Genetics and Cell Biology, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria.,Vienna University of Technology, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Bojan Sarkanj
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.,Josip Juraj Strossmayer University, Department of Applied Chemistry and Ecology, Faculty of Food Technology, 31000 Osijek, Croatia
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department IFA-Tulln, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Gerhard Adam
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Applied Genetics and Cell Biology, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstr. 38, 1090 Vienna, Austria
| |
Collapse
|
42
|
Stanic A, Uhlig S, Sandvik M, Rise F, Wilkins AL, Miles CO. Characterization of Deoxynivalenol-Glutathione Conjugates Using Nuclear Magnetic Resonance Spectroscopy and Liquid Chromatography-High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6903-6910. [PMID: 27548277 DOI: 10.1021/acs.jafc.6b02853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glutathione (GSH) conjugates of the mycotoxin 4-deoxynivalenol (DON), 1, have been detected in plants by LC-MS, but their identities were not confirmed due to a lack of standards. We have synthesized DON-GSH conjugates in alkaline solution. The major products 2 and 5 were isolated and their structures determined by mass spectrometry and NMR spectroscopy as GSH adducts at C-13 and C-10 (via epoxide and Michael addition, respectively) of 1. Other Michael addition products were also tentatively identified by LC-MS. Concentrations of 2 and 5 were determined by quantitative NMR and are suitable for use as quantitative standards for LC-MS studies of plant and animal metabolism of 1. LC-MS showed that in the presence of human glutathione S-transferases of the alpha and mu classes, the reaction of DON and GSH proceeded with a half-life of 17 h, identical with the rate of the uncatalyzed reaction rate, indicating an absence of catalysis.
Collapse
Affiliation(s)
- Ana Stanic
- Norwegian Veterinary Institute , P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Silvio Uhlig
- Norwegian Veterinary Institute , P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - Morten Sandvik
- Norwegian Veterinary Institute , P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Alistair L Wilkins
- Norwegian Veterinary Institute , P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
- Chemistry Department, University of Waikato , Private Bag 3105, 3240 Hamilton, New Zealand
| | - Christopher O Miles
- Norwegian Veterinary Institute , P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| |
Collapse
|
43
|
Lu P, Wang Y, Wang Y, Wu C, Sun L, Xu D, Sun X, Li J, Gooneratne R. In vitrosynthesis of a type A trichothecenes complete antigen from T-2 toxin. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1202205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
44
|
The lager yeast Saccharomyces pastorianus removes and transforms Fusarium trichothecene mycotoxins during fermentation of brewer’s wort. Food Chem 2016; 203:448-455. [DOI: 10.1016/j.foodchem.2016.02.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/22/2016] [Accepted: 02/09/2016] [Indexed: 02/01/2023]
|
45
|
Chemical Synthesis of Deoxynivalenol-3-β-d-[(13)C₆]-glucoside and Application in Stable Isotope Dilution Assays. Molecules 2016; 21:molecules21070838. [PMID: 27355938 PMCID: PMC6274488 DOI: 10.3390/molecules21070838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
Modified mycotoxins have been gaining importance in recent years and present a certain challenge in LC-MS/MS analysis. Due to the previous lack of a labeled isotopologue of the modified mycotoxin deoxynivalenol-3-glucoside, in our study we synthesized the first (13)C-labeled internal standard. Therefore, we used the Königs-Knorr method to synthesize deoxynivalenol-3-β-d-[(13)C₆]-glucoside originated from unlabeled deoxynivalenol and [(13)C₆]-labeled glucose. Using the synthesized isotopically-labeled standard deoxynivalenol-3-β-d-[(13)C₆]-glucoside and the purchased labeled standard [(13)C15]-deoxynivalenol, a stable isotope dilution LC-MS/MS method was firstly developed for deoxynivalenol-3-glucoside and deoxynivalenol in beer. The preparation and purification of beer samples was based on a solid phase extraction. The validation data of the newly developed method gave satisfying results. Intra- and interday precision studies revealed relative standard deviations below 0.5% and 7%, respectively. The recoveries ranged for both analytes between 97% and 112%. The stable isotope dilution assay was applied to various beer samples from four different countries. In summary, deoxynivalenol-3-glucoside and deoxynivalenol mostly appeared together in varying molar ratios but were quantified in rather low contents in the investigated beers.
Collapse
|
46
|
Walravens J, Mikula H, Rychlik M, Asam S, Devos T, Njumbe Ediage E, Diana Di Mavungu J, Jacxsens L, Van Landschoot A, Vanhaecke L, De Saeger S. Validated UPLC-MS/MS Methods To Quantitate Free and Conjugated Alternaria Toxins in Commercially Available Tomato Products and Fruit and Vegetable Juices in Belgium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5101-5109. [PMID: 27180605 DOI: 10.1021/acs.jafc.6b01029] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ultraperformance liquid chromatography tandem mass spectrometry and Quick, Easy, Cheap, Effective, Rugged, and Safe based analytical methodologies to quantitate both free (alternariol (1), alternariol monomethyl ether (2), tenuazonic acid (3), tentoxin (4), altenuene (5), altertoxin-I (6)) and conjugated (sulfates and glucosides of 1 and 2) Alternaria toxins in fruit and vegetable juices and tomato products were developed and validated. Acceptable limits of quantitation (0.7-5.7 μg/kg), repeatability (RSDr < 15.7%), reproducibility (RSDR < 17.9%), and apparent recovery (87.0-110.6%) were obtained for all analytes in all matrices investigated. 129 commercial foodstuffs were analyzed, and 3 was detected in 100% of tomato product samples (<LOQ to 333 μg/kg), while 1, 2, 4, and 5 were also frequently detected (21-86%, <LOQ to 62 μg/kg). Moreover, low levels (<LOQ to 9.9 μg/kg) of modified Alternaria toxins (sulfates of 1 and 2) were repeatedly detected. A deterministic dietary exposure assessment revealed the possible risk for human health related to the presence of 1 and 2 in tomato based foodstuffs, whereas 3 is unlikely to be of human health concern.
Collapse
Affiliation(s)
- Jeroen Walravens
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Vienna University of Technology , Getreidemarkt 9, 1060 Vienna, Austria
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technische Universität München , Alte Akademie 10, 85354 Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technische Universität München , Alte Akademie 10, 85354 Freising, Germany
| | - Tom Devos
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Emmanuel Njumbe Ediage
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - José Diana Di Mavungu
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Liesbeth Jacxsens
- Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | - Anita Van Landschoot
- Faculty of Bioscience Engineering, Laboratory of Biochemistry and Brewing, Ghent University , Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Lynn Vanhaecke
- Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
47
|
Stanic A, Uhlig S, Solhaug A, Rise F, Wilkins AL, Miles CO. Preparation and Characterization of Cysteine Adducts of Deoxynivalenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4777-4785. [PMID: 27229448 DOI: 10.1021/acs.jafc.6b01158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conjugation with the biologically relevant thiol glutathione is one of the metabolic pathways for the mycotoxin deoxynivalenol (DON) in wheat. The occurrence of putative DON-cysteine conjugates has also been shown in wheat, likely in part as a result of degradation of the glutathione conjugates. It was reported that thiols react in vitro with DON at two positions: reversibly at C-10 of the α,β-unsaturated ketone and irreversibly at C-13 of the epoxy group. We synthesized pure DON-cysteine adducts and made analytical standards using quantitative NMR experiments. Compounds were characterized using NMR and LC-HRMS/MS and tested in vitro for toxicity. Cysteine conjugates were much less toxic than DON at the same concentration, and LC-HRMS analysis demonstrated that there was no detectable metabolism of the conjugates in human monocytes or human macrophages.
Collapse
Affiliation(s)
- Ana Stanic
- Norwegian Veterinary Institute , P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Silvio Uhlig
- Norwegian Veterinary Institute , P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - Anita Solhaug
- Norwegian Veterinary Institute , P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Alistair L Wilkins
- Norwegian Veterinary Institute , P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
- Chemistry Department, University of Waikato , Private Bag 3105, 3240 Hamilton, New Zealand
| | - Christopher O Miles
- Norwegian Veterinary Institute , P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| |
Collapse
|
48
|
Schmeitzl C, Varga E, Warth B, Kugler KG, Malachová A, Michlmayr H, Wiesenberger G, Mayer KFX, Mewes HW, Krska R, Schuhmacher R, Berthiller F, Adam G. Identification and Characterization of Carboxylesterases from Brachypodium distachyon Deacetylating Trichothecene Mycotoxins. Toxins (Basel) 2015; 8:E6. [PMID: 26712789 PMCID: PMC4728528 DOI: 10.3390/toxins8010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/03/2022] Open
Abstract
Increasing frequencies of 3-acetyl-deoxynivalenol (3-ADON)-producing strains of Fusarium graminearum (3-ADON chemotype) have been reported in North America and Asia. 3-ADON is nearly nontoxic at the level of the ribosomal target and has to be deacetylated to cause inhibition of protein biosynthesis. Plant cells can efficiently remove the acetyl groups of 3-ADON, but the underlying genes are yet unknown. We therefore performed a study of the family of candidate carboxylesterases (CXE) genes of the monocot model plant Brachypodium distachyon. We report the identification and characterization of the first plant enzymes responsible for deacetylation of trichothecene toxins. The product of the BdCXE29 gene efficiently deacetylates T-2 toxin to HT-2 toxin, NX-2 to NX-3, both 3-ADON and 15-acetyl-deoxynivalenol (15-ADON) into deoxynivalenol and, to a lesser degree, also fusarenon X into nivalenol. The BdCXE52 esterase showed lower activity than BdCXE29 when expressed in yeast and accepts 3-ADON, NX-2, 15-ADON and, to a limited extent, fusarenon X as substrates. Expression of these Brachypodium genes in yeast increases the toxicity of 3-ADON, suggesting that highly similar genes existing in crop plants may act as susceptibility factors in Fusarium head blight disease.
Collapse
Affiliation(s)
- Clemens Schmeitzl
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
| | - Elisabeth Varga
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
- Christian Doppler Laboratory for Mycotoxin Metabolism, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Benedikt Warth
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Karl G Kugler
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | - Alexandra Malachová
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
- Christian Doppler Laboratory for Mycotoxin Metabolism, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Herbert Michlmayr
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | - Hans-Werner Mewes
- Genome oriented Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Am Forum 1, 85354 Freising, Germany.
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Rainer Schuhmacher
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Franz Berthiller
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
- Christian Doppler Laboratory for Mycotoxin Metabolism, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
| |
Collapse
|
49
|
Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins (Basel) 2015; 7:4706-29. [PMID: 26569307 PMCID: PMC4663529 DOI: 10.3390/toxins7114706] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
Recently, deoxynivalenol-3-sulfate (DON-3-sulfate) was proposed as a major DON metabolite in poultry. In the present work, the first LC-MS/MS based method for determination of DON-3-sulfate, deepoxy-DON-3-sulfate (DOM-3-sulfate), DON, DOM, DON sulfonates 1, 2, 3, and DOM sulfonate 2 in excreta samples of chickens and turkeys was developed and validated. To this end, DOM-3-sulfate was chemically synthesized and characterized by NMR and LC-HR-MS/MS measurements. Application of the method to excreta and chyme samples of four feeding trials with turkeys, chickens, pullets, and roosters confirmed DON-3-sulfate as the major DON metabolite in all poultry species studied. Analogously to DON-3-sulfate, DOM-3-sulfate was formed after oral administration of DOM both in turkeys and in chickens. In addition, pullets and roosters metabolized DON into DOM-3-sulfate. In vitro transcription/translation assays revealed DOM-3-sulfate to be 2000 times less toxic on the ribosome than DON. Biological recoveries of DON and DOM orally administered to broiler chickens, turkeys, and pullets were 74%–106% (chickens), 51%–72% (roosters), and 131%–151% (pullets). In pullets, DON-3-sulfate concentrations increased from jejunum chyme samples to excreta samples by a factor of 60. This result, put into context with earlier studies, indicates fast and efficient absorption of DON between crop and jejunum, conversion to DON-3-sulfate in intestinal mucosa, liver, and possibly kidney, and rapid elimination into excreta via bile and urine.
Collapse
|
50
|
Warth B, Siegwart G, Lemmens M, Krska R, Adam G, Schuhmacher R. Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the quantification of uridine diphosphate-glucose, uridine diphosphate-glucuronic acid, deoxynivalenol and its glucoside: In-house validation and application to wheat. J Chromatogr A 2015; 1423:183-9. [PMID: 26554298 DOI: 10.1016/j.chroma.2015.10.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 11/17/2022]
Abstract
Nucleotide sugars, the activated forms of monosaccharides, are important metabolites involved in a multitude of cellular processes including glycosylation of xenobiotics. Especially in plants, UDP-glucose is one of the most prominent members among these nucleotide-sugars, as it is involved in the formation of glucose conjugates of xenobiotics, including mycotoxins, but also holds a central role in the interconversion of energized sugars such as the formation of UDP-glucuronic acid required for cell wall biosynthesis. Here, we present the first HILIC-LC-ESI-TQ-MS/MS method for the quantification of UDP-glucose and UDP-glucuronic acid together with the Fusarium toxin deoxynivalenol (DON) and its major plant detoxification product DON-3-O-glucoside (DON-3-Glc) utilizing a polymer-based column. For sample preparation a time-effective and straightforward 'dilute and shoot' protocol was applied. The chromatographic run time was minimized to 9min including proper column re-equilibration. In-house validation of the method verified its linear range, intra- (1-7%) and interday (8-20%) precision, instrumental LODs between 0.6 and 10ngmL(-1), selectivity and moderate matrix effects with mean recoveries of 85-103%. To prove the methods applicability, we analyzed two sets of wheat extracts obtained from different cultivars grown under standardized greenhouse conditions. The results clearly demonstrated the suitability of the developed method to quantify UDP-glucose, DON and its masked form D3G in diluted wheat extracts. We observed differing concentration levels of UDP-glucose in the two wheat cultivars showing different resistance to the severe plant disease Fusarium head blight. We propose that the higher ability to detoxify DON into DON-3-Glc might be a consequence of the higher cellular UDP-glucose pool in the resistant cultivar.
Collapse
Affiliation(s)
- Benedikt Warth
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, A-3430 Tulln, Austria
| | - Gerald Siegwart
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Marc Lemmens
- Institute for Biotechnology in Plant Production, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, A-3430 Tulln, Austria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, A-3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, A-3430 Tulln, Austria.
| |
Collapse
|