1
|
Cai Y, Chen X, Ren F, Wang H, Yin Y, Zhu ZJ. Fast and broad-coverage lipidomics enabled by ion mobility-mass spectrometry. Analyst 2024; 149:5063-5072. [PMID: 39219503 DOI: 10.1039/d4an00751d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aberrant lipid metabolism has been widely recognized as a hallmark of various diseases. However, the comprehensive analysis of distinct lipids is challenging due to the complexity of lipid molecular structures, wide concentration ranges, and numerous isobaric and isomeric lipids. Usually, liquid chromatography-mass spectrometry (LC-MS)-based lipidomics requires a long time for chromatographic separation to achieve optimal separation and selectivity. Ion mobility (IM) adds a new separation dimension to LC-MS, significantly enhancing the coverage, sensitivity, and resolving power. We took advantage of the rapid separation provided by ion mobility and optimized a fast and broad-coverage lipidomics method using the LC-IM-MS technology. The method required only 8 minutes for separation and detected over 1000 lipid molecules in a single analysis of common biological samples. The high reproducibility and accurate quantification of this high-throughput lipidomics method were systematically characterized. We then applied the method to comprehensively measure dysregulated lipid metabolism in patients with colorectal cancer (CRC). Our results revealed 115 significantly changed lipid species between preoperative and postoperative plasma of patients with CRC and also disclosed associated differences in lipid classes such as phosphatidylcholines (PC), sphingomyelins (SM), and triglycerides (TG) regarding carbon number and double bond. Together, a fast and broad-coverage lipidomics method was developed using ion mobility-mass spectrometry. This method is feasible for large-scale clinical lipidomic studies, as it effectively balances the requirements of high-throughput and broad-coverage in clinical studies.
Collapse
Affiliation(s)
- Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
| | - Xi Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
| | - Hongmiao Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yandong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, 201210, P. R. China
| |
Collapse
|
2
|
Rudt E, Schneider S, Hayen H. Hyphenation of Liquid Chromatography and Trapped Ion Mobility - Mass Spectrometry for Characterization of Isomeric Phosphatidylethanolamines with Focus on N-Acylated Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1584-1593. [PMID: 38842006 DOI: 10.1021/jasms.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In prior research, hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) has demonstrated applicability for characterizing regioisomers in lipidomics studies, including phosphatidylglycerols (PG) and bis(monoacyl)glycerophosphates (BMP). However, there are other lipid regioisomers, such as phosphatidylethanolamines (PE) and lyso-N-acyl-PE (LNAPE), that have not been studied as extensively. Therefore, hyphenated mass spectrometric methods are needed to investigate PE and LNAPE regioisomers individually. The asymmetric structure of LNAPE favors isomeric species, which can result in coelution and chimeric MS/MS spectra. One way to address the challenge of chimeric MS/MS spectra is through mobility-resolved fragmentation using trapped ion mobility spectrometry (TIMS). Therefore, we developed a multidimensional HILIC-TIMS-MS/MS approach for the structural characterization of isomeric phosphatidylethanolamines in both negative and positive ionization modes. The study revealed the complementary fragmentation pattern and ion mobility behavior of LNAPE in both ionization modes, which was confirmed by a self-synthesized LNAPE standard. With this knowledge, a distinction of regioisomeric PE and LNAPE was achieved in human plasma samples. Furthermore, regioisomeric LNAPE species containing at least one unsaturated fatty acid were noted to exhibit a change in collision cross-section in positive ionization mode, leading to a lipid characterization with respect to fatty acyl positional level. Similar mobility behavior was also observed for the biological LNAPE precursor N-acyl-PE (NAPE). Application of this approach to plasma and cereal samples demonstrated its effectiveness in regioisomeric LNAPE and NAPE species' elucidation.
Collapse
Affiliation(s)
- Edward Rudt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Svenja Schneider
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| |
Collapse
|
3
|
Zeng T, Chen X, van de Lavoir M, Robeyns R, Zhao L, Delgado Povedano MDM, van Nuijs ALN, Zhu L, Covaci A. Serum untargeted lipidomic characterization in a general Chinese cohort with residual per-/polyfluoroalkyl substances by liquid chromatography-drift tube ion mobility-mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172483. [PMID: 38631629 DOI: 10.1016/j.scitotenv.2024.172483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) remain controversial due to their high persistency and potential human toxicity. Although occupational exposure to PFAS has been widely investigated, the implications of PFAS occurrence in the general population remain to be unraveled. Considering that serum from most people contains PFAS, the aim of this study was to characterize the lipidomic profile in human serum from a general cohort (n = 40) with residual PFAS levels. The geometric means of ∑PFAS (11.8 and 4.4 ng/mL) showed significant differences (p < 0.05) for the samples with the highest (n = 20) and lowest (n = 20) concentrations from the general population respectively. Reverse-phase liquid chromatography coupled to drift tube ion mobility and high-resolution mass spectrometry using dual polarity ionization was used to characterize the lipid profile in both groups. The structural elucidation involved the integration of various parameters, such as retention time, mass-to-charge ratio, tandem mass spectra and collision cross section values. This approach yielded a total of 20 potential biomarkers linked to the perturbed glycerophospholipid metabolism, energy metabolism and sphingolipid metabolism. Among these alterations, most lipids were down-regulated and some specific lipids (PC 36:5, PC 37:4 and PI O-34:2) exhibited a relatively strong Spearman correlation and predictive capacity for PFAS contamination. This study could support further toxicological assessments and mechanistic investigations into the effects of PFAS exposure on the lipidome.
Collapse
Affiliation(s)
- Ting Zeng
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Xin Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Maria van de Lavoir
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Rani Robeyns
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Lu Zhao
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | | | - Alexander L N van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium
| | - Lingyan Zhu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk 2610, Belgium.
| |
Collapse
|
4
|
Bianco M, Ventura G, Coniglio D, Monopoli A, Losito I, Cataldi TRI, Calvano CD. Development of a New Binary Matrix for the Comprehensive Analysis of Lipids and Pigments in Micro- and Macroalgae Using MALDI-ToF/ToF Mass Spectrometry. Int J Mol Sci 2024; 25:5919. [PMID: 38892117 PMCID: PMC11172705 DOI: 10.3390/ijms25115919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
While edible algae might seem low in fat, the lipids they contain are crucial for good health and preventing chronic diseases. This study introduces a binary matrix to analyze all the polar lipids in both macroalgae (Wakame-Undaria pinnatifida, Dulse-Palmaria palmata, and Nori-Porphyra spp.) and microalgae (Spirulina-Arthrospira platensis, and Chlorella-Chlorella vulgaris) using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The key lies in a new dual matrix made by combining equimolar amounts of 1,5-diaminonaphthalene (DAN) and 9-aminoacridine (9AA). This combination solves the limitations of single matrices: 9AA is suitable for sulfur-containing lipids and acidic phospholipids, while DAN excels as an electron-transfer secondary reaction matrix for intact chlorophylls and their derivatives. By employing the equimolar binary matrix, a wider range of algal lipids, including free fatty acids, phospholipids, glycolipids, pigments, and even rare arsenosugarphospholipids were successfully detected, overcoming drawbacks related to ion suppression from readily ionizable lipids. The resulting mass spectra exhibited a good signal-to-noise ratio at a lower laser fluence and minimized background noise. This improvement stems from the binary matrix's ability to mitigate in-source decay effects, a phenomenon often encountered for certain matrices. Consequently, the data obtained are more reliable, facilitating a faster and more comprehensive exploration of algal lipidomes using high-throughput MALDI-MS/MS analysis.
Collapse
Affiliation(s)
- Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale di Spettrometria di MAssa per Ricerche Tecnologiche (SMART), Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy
| | - Davide Coniglio
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
| | - Antonio Monopoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale di Spettrometria di MAssa per Ricerche Tecnologiche (SMART), Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale di Spettrometria di MAssa per Ricerche Tecnologiche (SMART), Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy
| | - Cosima D. Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy; (M.B.); (G.V.); (D.C.); (A.M.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale di Spettrometria di MAssa per Ricerche Tecnologiche (SMART), Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy
| |
Collapse
|
5
|
Kirkwood-Donelson KI, Chappel J, Tobin E, Dodds JN, Reif DM, DeWitt JC, Baker ES. Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 354:141654. [PMID: 38462188 PMCID: PMC10995748 DOI: 10.1016/j.chemosphere.2024.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jessie Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Emma Tobin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jamie C DeWitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin S Baker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
6
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
7
|
Sarkar S, Roy D, Chatterjee B, Ghosh R. Clinical advances in analytical profiling of signature lipids: implications for severe non-communicable and neurodegenerative diseases. Metabolomics 2024; 20:37. [PMID: 38459207 DOI: 10.1007/s11306-024-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Lipids play key roles in numerous biological processes, including energy storage, cell membrane structure, signaling, immune responses, and homeostasis, making lipidomics a vital branch of metabolomics that analyzes and characterizes a wide range of lipid classes. Addressing the complex etiology, age-related risk, progression, inflammation, and research overlap in conditions like Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and Cancer poses significant challenges in the quest for effective therapeutic targets, improved diagnostic markers, and advanced treatments. Mass spectrometry is an indispensable tool in clinical lipidomics, delivering quantitative and structural lipid data, and its integration with technologies like Liquid Chromatography (LC), Magnetic Resonance Imaging (MRI), and few emerging Matrix-Assisted Laser Desorption Ionization- Imaging Mass Spectrometry (MALDI-IMS) along with its incorporation into Tissue Microarray (TMA) represents current advances. These innovations enhance lipidomics assessment, bolster accuracy, and offer insights into lipid subcellular localization, dynamics, and functional roles in disease contexts. AIM OF THE REVIEW The review article summarizes recent advancements in lipidomic methodologies from 2019 to 2023 for diagnosing major neurodegenerative diseases, Alzheimer's and Parkinson's, serious non-communicable cardiovascular diseases and cancer, emphasizing the role of lipid level variations, and highlighting the potential of lipidomics data integration with genomics and proteomics to improve disease understanding and innovative prognostic, diagnostic and therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical lipidomic studies are a promising approach to track and analyze lipid profiles, revealing their crucial roles in various diseases. This lipid-focused research provides insights into disease mechanisms, biomarker identification, and potential therapeutic targets, advancing our understanding and management of conditions such as Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and specific cancers.
Collapse
Affiliation(s)
- Sutanu Sarkar
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Deotima Roy
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Bhaskar Chatterjee
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Rajgourab Ghosh
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
8
|
Xu Z, Yu K, Zhang M, Ju Y, He J, Jiang Y, Li Y, Jiang J. Accurate Clinical Detection of Vitamin D by Mass Spectrometry: A Review. Crit Rev Anal Chem 2024:1-25. [PMID: 38376891 DOI: 10.1080/10408347.2024.2316237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Vitamin D deficiency is thought to be associated with a wide range of diseases, including diabetes, cancer, depression, neurodegenerative diseases, and cardiovascular and cerebrovascular diseases. This vitamin D deficiency is a global epidemic affecting both developing and developed countries and therefore qualitative and quantitative analysis of vitamin D in a clinical context is essential. Mass spectrometry has played an increasingly important role in the clinical analysis of vitamin D because of its accuracy, sensitivity, specificity, and the ability to detect multiple substances at the same time. Despite their many advantages, mass spectrometry-based methods are not without analytical challenges. Front-end and back-end challenges such as protein precipitation, analyte extraction, derivatization, mass spectrometer functionality, must be carefully considered to provide accurate and robust analysis of vitamin D through a well-designed approach with continuous control by internal and external quality control. Therefore, the aim of this review is to provide a comprehensive overview of the development of mass spectrometry methods for vitamin D accurate analysis, including emphasis on status markers, deleterious effects of biological matrices, derivatization reactions, effects of ionization sources, contribution of epimers, standardization of assays between laboratories.
Collapse
Affiliation(s)
- Zhilong Xu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Yunuo Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
9
|
Merciai F, Basilicata MG, La Gioia D, Salviati E, Caponigro V, Ciaglia T, Musella S, Crescenzi C, Sommella E, Campiglia P. Sub-5-min RP-UHPLC-TIMS for high-throughput untargeted lipidomics and its application to multiple matrices. Anal Bioanal Chem 2024; 416:959-970. [PMID: 38078946 DOI: 10.1007/s00216-023-05084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
Untargeted lipidomics, with its ability to take a snapshot of the lipidome landscape, is an important tool to highlight lipid changes in pathology or drug treatment models. One of the shortcomings of most untargeted lipidomics based on UHPLC-HRMS is the low throughput, which is not compatible with large-scale screening. In this contribution, we evaluate the application of a sub-5-min high-throughput four-dimensional trapped ion mobility mass spectrometry (HT-4D-TIMS) platform for the fast profiling of multiple complex biological matrices. Human AC-16 cells and mouse brain, liver, sclera, and feces were used as samples. By using a fast 4-min RP gradient, the implementation of TIMS allows us to differentiate coeluting isomeric and isobaric lipids, with correct precursor ion isolation, avoiding co-fragmentation and chimeric MS/MS spectra. Globally, the HT-4D-TIMS allowed us to annotate 1910 different lipid species, 1308 at the molecular level and 602 at the sum composition level, covering 58 lipid subclasses, together with quantitation capability covering more than three orders of magnitude. Notably, TIMS values were highly comparable with respect to longer LC gradients (CV% = 0.39%). These results highlight how HT-4D-TIMS-based untargeted lipidomics possess high coverage and accuracy, halving the analysis time with respect to conventional UHPLC methods, and can be used for fast and accurate untargeted analysis of complex matrices to rapidly evaluate changes of lipid metabolism in disease models or drug discovery campaigns.
Collapse
Affiliation(s)
- Fabrizio Merciai
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 13284084, Fisciano, SA, Italy
| | | | - Danila La Gioia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 13284084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 13284084, Fisciano, SA, Italy
| | - Vicky Caponigro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 13284084, Fisciano, SA, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 13284084, Fisciano, SA, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 13284084, Fisciano, SA, Italy
| | - Carlo Crescenzi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 13284084, Fisciano, SA, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 13284084, Fisciano, SA, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 13284084, Fisciano, SA, Italy
| |
Collapse
|
10
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Poad BLJ, Jekimovs LJ, Young RSE, Wongsomboon P, Marshall DL, Hansen FKM, Fulloon T, Pfrunder MC, Dodgen T, Ritchie M, Wong SCC, Blanksby SJ. Revolutions in Lipid Isomer Resolution: Application of Ultrahigh-Resolution Ion Mobility to Reveal Lipid Diversity. Anal Chem 2023; 95:15917-15923. [PMID: 37847864 DOI: 10.1021/acs.analchem.3c02658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Many families of lipid isomers remain unresolved by contemporary liquid chromatography-mass spectrometry approaches, leading to a significant underestimation of the structural diversity within the lipidome. While ion mobility coupled to mass spectrometry has provided an additional dimension of lipid isomer resolution, some isomers require a resolving power beyond the capabilities of conventional platforms. Here, we present the application of high-resolution traveling-wave ion mobility for the separation of lipid isomers that differ in (i) the location of a single carbon-carbon double bond, (ii) the stereochemistry of the double bond (cis or trans), or, for glycerolipids, (iii) the relative substitution of acyl chains on the glycerol backbone (sn-position). Collisional activation following mobility separation allowed identification of the carbon-carbon double-bond position and sn-position, enabling confident interpretation of variations in mobility peak abundance. To demonstrate the applicability of this method, double-bond and sn-position isomers of an abundant phosphatidylcholine composition were resolved in extracts from a prostate cancer cell line and identified by comparison to pure isomer reference standards, revealing the presence of up to six isomers. These findings suggest that ultrahigh-resolution ion mobility has broad potential for isomer-resolved lipidomics and is attractive to consider for future integration with other modes of ion activation, thereby bringing together advanced orthogonal separations and structure elucidation to provide a more complete picture of the lipidome.
Collapse
Affiliation(s)
- Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Lachlan J Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Felicia K M Hansen
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Therese Fulloon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Michael C Pfrunder
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | | | | | | | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
12
|
Martín-Masot R, Jiménez-Muñoz M, Herrador-López M, Navas-López VM, Obis E, Jové M, Pamplona R, Nestares T. Metabolomic Profiling in Children with Celiac Disease: Beyond the Gluten-Free Diet. Nutrients 2023; 15:2871. [PMID: 37447198 DOI: 10.3390/nu15132871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Celiac disease (CD) is included in the group of complex or multifactorial diseases, i.e., those caused by the interaction of genetic and environmental factors. Despite a growing understanding of the pathophysiological mechanisms of the disease, diagnosis is still often delayed and there are no effective biomarkers for early diagnosis. The only current treatment, a gluten-free diet (GFD), can alleviate symptoms and restore intestinal villi, but its cellular effects remain poorly understood. To gain a comprehensive understanding of CD's progression, it is crucial to advance knowledge across various scientific disciplines and explore what transpires after disease onset. Metabolomics studies hold particular significance in unravelling the complexities of multifactorial and multisystemic disorders, where environmental factors play a significant role in disease manifestation and progression. By analyzing metabolites, we can gain insights into the reasons behind CD's occurrence, as well as better comprehend the impact of treatment initiation on patients. In this review, we present a collection of articles that showcase the latest breakthroughs in the field of metabolomics in pediatric CD, with the aim of trying to identify CD biomarkers for both early diagnosis and treatment monitoring. These advancements shed light on the potential of metabolomic analysis in enhancing our understanding of the disease and improving diagnostic and therapeutic strategies. More studies need to be designed to cover metabolic profiles in subjects at risk of developing the disease, as well as those analyzing biomarkers for follow-up treatment with a GFD.
Collapse
Affiliation(s)
- Rafael Martín-Masot
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
- Institute of Nutrition and Food Technology "José MataixVerdú" (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18071 Granada, Spain
| | - María Jiménez-Muñoz
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
| | - Marta Herrador-López
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
| | - Víctor Manuel Navas-López
- Pediatric Gastroenterology and Nutrition Unit, Hospital Regional Universitario de Malaga, 29010 Málaga, Spain
| | - Elia Obis
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198 Lleida, Spain
| | - Teresa Nestares
- Institute of Nutrition and Food Technology "José MataixVerdú" (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18071 Granada, Spain
- Department of Physiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
13
|
Kemperman RHJ, Chouinard CD, Yost RA. Characterization of Bile Acid Isomers and the Implementation of High-Resolution Demultiplexing with Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37319333 DOI: 10.1021/jasms.3c00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bile acids (BAs) are a complex suite of clinically relevant metabolites that include many isomers. Liquid chromatography coupled to mass spectrometry (LC-MS) is an increasingly popular technique due to its high specificity and sensitivity; nonetheless, acquisition times are generally 10-20 min, and isomers are not always resolved. In this study, the application of ion mobility (IM) spectrometry coupled to MS was investigated to separate, characterize, and measure BAs. A subset of 16 BAs was studied, including three groups of isomers belonging to unconjugated, glycine-conjugated, and taurine-conjugated BA classes. A variety of strategies were explored to increase BA isomer separation such as changing the drift gas, measuring different ionic species (i.e., multimers and cationized species), and enhancing the instrumental resolving power. In general, Ar, N2, and CO2 provided the best peak shape, resolving power (Rp), and separation, especially CO2; He and SF6 were less preferable. Furthermore, measuring dimers versus monomers improved isomer separation due to enhanced gas-phase structural differences. A variety of cation adducts other than sodium were characterized. Mobility arrival times and isomer separation were affected by the choice of adduct, which was shown to be used to target certain BAs. Finally, a novel workflow that involves high-resolution demultiplexing in combination with dipivaloylmethane ion-neutral clusters was implemented to improve Rp dramatically. A maximum Rp increase was observed with lower IM field strengths to obtain longer drift times, increasing Rp from 52 to 187. A combination of these separation enhancement strategies demonstrates great potential for rapid BA analysis.
Collapse
Affiliation(s)
- Robin H J Kemperman
- University of Florida, Department of Chemistry, Gainesville, Florida 32611, USA
| | | | - Richard A Yost
- University of Florida, Department of Chemistry, Gainesville, Florida 32611, USA
| |
Collapse
|
14
|
Shi Y, Jin HF, Jiao YH, Fei TH, Liu FM, Cao J. Enzyme activity- and chemometrics-assisted comprehensive two-dimensional liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry for the analysis of honeysuckle. J Chromatogr A 2023; 1702:464090. [PMID: 37245356 DOI: 10.1016/j.chroma.2023.464090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
A unique and effective comprehensive two-dimensional liquid chromatography system was established and applied for the analysis of bioactive components in honeysuckle. Under the optimal conditions, Eclipse Plus C18 (2.1 × 100 mm, 3.5 μm, Agilent) and SB-C18 (4.6 × 50 mm, 1.8 μm, Agilent) columns were chosen for the first dimension (1D) and the second dimension (2D) separation. The optimal flow rates of 1D and 2D were 0.12 mL/min and 2.0 mL/min, respectively. Additionally, the proportion of organic solution was optimized to enhance orthogonality and integrated shift, and full gradient elution mode was adopted to improve chromatographic resolution. Furthermore, a total of 57 compounds were identified by molecular weight, retention time and collision cross-section value obtained from ion mobility mass spectrometry. Based on the data obtained from the principal component analysis, partial least squares discriminant analysis, and hierarchical cluster analysis, the categories of honeysuckle in different regions were significantly different. Moreover, the half maximal inhibitory concentration values of most samples were between 0.37 and 1.55 mg/mL, and most samples were potent α-glucosidase inhibitors, which is better for the evaluation of the quality of drugs from two aspects of substance content and activity.
Collapse
Affiliation(s)
- Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yan-Hua Jiao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting-Hong Fei
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Fang-Ming Liu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
15
|
Mahrous E, Chen R, Zhao C, Farag MA. Lipidomics in food quality and authentication: A comprehensive review of novel trends and applications using chromatographic and spectroscopic techniques. Crit Rev Food Sci Nutr 2023; 64:9058-9081. [PMID: 37165484 DOI: 10.1080/10408398.2023.2207659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lipid analysis is an integral part of food authentication and quality control which provides consumers with the necessary information to make an informed decision about their lipid intake. Recent advancement in lipid analysis and lipidome scope represents great opportunities for food science. In this review we provide a comprehensive overview of available tools for extraction, analysis and interpretation of data related to dietary fats analyses. Different analytical platforms are discussed including GC, MS, NMR, IR and UV with emphasis on their merits and limitations alongside complementary tools such as chemometric models and lipid-targeted online databases. Applications presented here include quality control, authentication of organic and delicacy food, tracing dietary fat source and investigating the effect of heat/storage on lipids. A multitude of analytical methods with different sensitivity, affordability, reproducibility and ease of operation are now available to comprehensively analyze dietary fats. Application of these methods range from studies which favor the use of large data generating platforms such as MS-based methods, to routine quality control which demands easy to use affordable equipment as TLC and IR. Hence, this review provides a navigation tool for food scientists to help develop an optimal protocol for their future lipid analysis quest.
Collapse
Affiliation(s)
- Engy Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ruoxin Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci 2023; 10:1112521. [PMID: 37006618 PMCID: PMC10060977 DOI: 10.3389/fmolb.2023.1112521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.
Collapse
Affiliation(s)
- Sandra M. Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- *Correspondence: Ana Gradillas,
| |
Collapse
|
17
|
Zandl-Lang M, Plecko B, Köfeler H. Lipidomics-Paving the Road towards Better Insight and Precision Medicine in Rare Metabolic Diseases. Int J Mol Sci 2023; 24:ijms24021709. [PMID: 36675224 PMCID: PMC9866746 DOI: 10.3390/ijms24021709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Even though the application of Next-Generation Sequencing (NGS) has significantly facilitated the identification of disease-associated mutations, the diagnostic rate of rare diseases is still below 50%. This causes a diagnostic odyssey and prevents specific treatment, as well as genetic counseling for further family planning. Increasing the diagnostic rate and reducing the time to diagnosis in children with unclear disease are crucial for a better patient outcome and improvement of quality of life. In many cases, NGS reveals variants of unknown significance (VUS) that need further investigations. The delineation of novel (lipid) biomarkers is not only crucial to prove the pathogenicity of VUS, but provides surrogate parameters for the monitoring of disease progression and therapeutic interventions. Lipids are essential organic compounds in living organisms, serving as building blocks for cellular membranes, energy storage and signaling molecules. Among other disorders, an imbalance in lipid homeostasis can lead to chronic inflammation, vascular dysfunction and neurodegenerative diseases. Therefore, analyzing lipids in biological samples provides great insight into the underlying functional role of lipids in healthy and disease statuses. The method of choice for lipid analysis and/or huge assemblies of lipids (=lipidome) is mass spectrometry due to its high sensitivity and specificity. Due to the inherent chemical complexity of the lipidome and the consequent challenges associated with analyzing it, progress in the field of lipidomics has lagged behind other omics disciplines. However, compared to the previous decade, the output of publications on lipidomics has increased more than 17-fold within the last decade and has, therefore, become one of the fastest-growing research fields. Combining multiple omics approaches will provide a unique and efficient tool for determining pathogenicity of VUS at the functional level, and thereby identifying rare, as well as novel, genetic disorders by molecular techniques and biochemical analyses.
Collapse
Affiliation(s)
- Martina Zandl-Lang
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Barbara Plecko
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Harald Köfeler
- Core Facility Mass Spectrometry, ZMF, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
18
|
Mallah K, Zibara K, Kerbaj C, Eid A, Khoshman N, Ousseily Z, Kobeissy A, Cardon T, Cizkova D, Kobeissy F, Fournier I, Salzet M. Neurotrauma investigation through spatial omics guided by mass spectrometry imaging: Target identification and clinical applications. MASS SPECTROMETRY REVIEWS 2023; 42:189-205. [PMID: 34323300 DOI: 10.1002/mas.21719] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI) represents one of the major public health concerns worldwide due to the increase in TBI incidence as a result of injuries from daily life accidents such as sports and motor vehicle transportation as well as military-related practices. This type of central nervous system trauma is known to predispose patients to several neurological disorders such as Parkinson's disease, Alzheimer's disease, chronic trauamatic encephalopathy, and age-related Dementia. Recently, several proteomic and lipidomic platforms have been applied on different TBI studies to investigate TBI-related mechanisms that have broadened our understanding of its distinct neuropathological complications. In this study, we provide an updated comprehensive overview of the current knowledge and novel perspectives of the spatially resolved microproteomics and microlipidomics approaches guided by mass spectrometry imaging used in TBI studies and its applications in the neurotrauma field. In this regard, we will discuss the use of the spatially resolved microproteomics and assess the different microproteomic sampling methods such as laser capture microdissection, parafilm assisted microdissection, and liquid microjunction extraction as accurate and precise techniques in the field of neuroproteomics. Additionally, we will highlight lipid profiling applications and their prospective potentials in characterizing molecular processes involved in the field of TBI. Specifically, we will discuss the phospholipid metabolism acting as a precursor for proinflammatory molecules such as eicosanoids. Finally, we will survey the current state of spatial neuroproteomics and microproteomics applications and present the various studies highlighting their findings in these fields.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- PRASE, Lebanese University, Beirut, Lebanon
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Kazem Zibara
- PRASE, Lebanese University, Beirut, Lebanon
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Coline Kerbaj
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ali Eid
- Department of Basic Medical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Nour Khoshman
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Zahraa Ousseily
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Abir Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tristan Cardon
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Dasa Cizkova
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Center for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Isabelle Fournier
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
| | - Michel Salzet
- Univ.Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
19
|
Bioactive Compounds from Marine Sponges and Algae: Effects on Cancer Cell Metabolome and Chemical Structures. Int J Mol Sci 2022; 23:ijms231810680. [PMID: 36142592 PMCID: PMC9502410 DOI: 10.3390/ijms231810680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolomics represent the set of small organic molecules generally called metabolites, which are located within cells, tissues or organisms. This new “omic” technology, together with other similar technologies (genomics, transcriptomics and proteomics) is becoming a widely used tool in cancer research, aiming at the understanding of global biology systems in their physiologic or altered conditions. Cancer is among the most alarming human diseases and it causes a considerable number of deaths each year. Cancer research is one of the most important fields in life sciences. In fact, several scientific advances have been made in recent years, aiming to illuminate the metabolism of cancer cells, which is different from that of healthy cells, as suggested by Otto Warburg in the 1950s. Studies on sponges and algae revealed that these organisms are the main sources of the marine bioactive compounds involved in drug discovery for cancer treatment and prevention. In this review, we analyzed these two promising groups of marine organisms to focus on new metabolomics approaches for the study of metabolic changes in cancer cell lines treated with chemical extracts from sponges and algae, and for the classification of the chemical structures of bioactive compounds that may potentially prove useful for specific biotechnological applications.
Collapse
|
20
|
Carbonell-Rozas L, Hernández-Mesa M, Righetti L, Monteau F, Lara FJ, Gámiz-Gracia L, Bizec BL, Dall'Asta C, García-Campaña AM, Dervilly G. Ion mobility-mass spectrometry to extend analytical performance in the determination of ergot alkaloids in cereal samples. J Chromatogr A 2022; 1682:463502. [PMID: 36174373 DOI: 10.1016/j.chroma.2022.463502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
This work evaluates the potential of ion mobility spectrometry (IMS) to improve the analytical performance of current liquid chromatography-mass spectrometry (LC-MS) workflows applied to the determination of ergot alkaloids (EAs) in cereal samples. Collision cross section (CCS) values for EA epimers are reported for the first time to contribute to their unambiguous identification. Additionally, CCS values have been inter-laboratory cross-validated and compared with CCS values predicted by machine-learning models. Slight differences were observed in terms of CCS values for ergotamine, ergosine and ergocristine and their corresponding epimers (from 3.3 to 4%), being sufficient to achieve a satisfactory peak-to-peak resolution for their unequivocal identification. A LC-travelling wave ion mobility (TWIM)-MS method has been developed for the analysis of EAs in barley and wheat samples. Signal-to-noise ratio (S/N) was improved between 2.5 and 4-fold compared to the analog LC-TOF-MS method. The quality of the extracted ion chromatograms was also improved by using IMS.
Collapse
Affiliation(s)
- Laura Carbonell-Rozas
- Oniris, INRAE, LABERCA, 44300 Nantes, France; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
| | - Maykel Hernández-Mesa
- Oniris, INRAE, LABERCA, 44300 Nantes, France; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | | | - Francisco J Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
| | | | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
| | | |
Collapse
|
21
|
Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. MASS SPECTROMETRY REVIEWS 2022; 41:722-765. [PMID: 33522625 DOI: 10.1002/mas.21686] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.
Collapse
Affiliation(s)
- Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Andrew J Smith
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
22
|
A re-calibration procedure for interoperable lipid collision cross section values measured by traveling wave ion mobility spectrometry. Anal Chim Acta 2022; 1226:340236. [DOI: 10.1016/j.aca.2022.340236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022]
|
23
|
Kirkwood KI, Pratt BS, Shulman N, Tamura K, MacCoss MJ, MacLean BX, Baker ES. Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions. Nat Protoc 2022; 17:2415-2430. [PMID: 35831612 DOI: 10.1038/s41596-022-00714-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2022] [Indexed: 12/26/2022]
Abstract
Lipidomics studies suffer from analytical and annotation challenges because of the great structural similarity of many of the lipid species. To improve lipid characterization and annotation capabilities beyond those afforded by traditional mass spectrometry (MS)-based methods, multidimensional separation methods such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation and MS (LC-IMS-CID-MS) may be used. Although LC-IMS-CID-MS and other multidimensional methods offer valuable hydrophobicity, structural and mass information, the files are also complex and difficult to assess. Thus, the development of software tools to rapidly process and facilitate confident lipid annotations is essential. In this Protocol Extension, we use the freely available, vendor-neutral and open-source software Skyline to process and annotate multidimensional lipidomic data. Although Skyline ( https://skyline.ms/skyline.url ) was established for targeted processing of LC-MS-based proteomics data, it has since been extended such that it can be used to analyze small-molecule data as well as data containing the IMS dimension. This protocol uses Skyline's recently expanded capabilities, including small-molecule spectral libraries, indexed retention time and ion mobility filtering, and provides a step-by-step description for importing data, predicting retention times, validating lipid annotations, exporting results and editing our manually validated 500+ lipid library. Although the time required to complete the steps outlined here varies on the basis of multiple factors such as dataset size and familiarity with Skyline, this protocol takes ~5.5 h to complete when annotations are rigorously verified for maximum confidence.
Collapse
Affiliation(s)
- Kaylie I Kirkwood
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Brian S Pratt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nicholas Shulman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kaipo Tamura
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA. .,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
24
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
25
|
Phetsanthad A, Li G, Jeon CK, Ruotolo BT, Li L. Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:944-951. [PMID: 35508074 PMCID: PMC9167759 DOI: 10.1021/jasms.2c00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Structural analysis by native ion mobility-mass spectrometry provides a direct means to characterize protein interactions, stability, and other biophysical properties of disease-associated biomolecules. Such information is often extracted from collision-induced unfolding (CIU) experiments, performed by ramping a voltage used to accelerate ions entering a trap cell prior to an ion mobility separator. Traditionally, to simplify data analysis and achieve confident ion identification, precursor ion selection with a quadrupole is performed prior to collisional activation. Only one charge state can be selected at one time, leading to an imbalance between the total time required to survey CIU data across all protein charge states and the resulting structural analysis efficiency. Furthermore, the arbitrary selection of a single charge state can inherently bias CIU analyses. We herein aim to compare two conformation sampling methods for protein gas-phase unfolding: (1) traditional quadrupole selection-based CIU and (2) nontargeted, charge selection-free and shotgun workflow, all ion unfolding (AIU). Additionally, we provide a new data interpretation method that integrates across all charge states to project collisional cross section (CCS) data acquired over a range of activation voltages to produce a single unfolding fingerprint, regardless of charge state distributions. We find that AIU in combination with CCS accumulation across all charges offers an opportunity to maximize protein conformational information with minimal time cost, where additional benefits include (1) an improved signal-to-noise ratios for unfolding fingerprints and (2) a higher tolerance to charge state shifts induced by either operating parameters or other factors that affect protein ionization efficiency.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Gongyu Li
- Research Center for Analytical Science and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Corresponding authors: Prof. Dr. Gongyu Li, ; Prof. Dr. Lingjun Li,
| | - Chae Kyung Jeon
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lingjun Li
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Corresponding authors: Prof. Dr. Gongyu Li, ; Prof. Dr. Lingjun Li,
| |
Collapse
|
26
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
27
|
Accelerating prototyping experiments for traveling wave structures for lossless ion manipulations. Talanta 2022; 244:123446. [PMID: 35397327 DOI: 10.1016/j.talanta.2022.123446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
Abstract
Traveling wave structures for lossless ion manipulation (TW-SLIM) has proven a valuable tool for the separation and study of gas-phase ions. Unfortunately, many of the traditional components of TW-SLIM experiments manifest practical and financial barriers to the technique's broad implementation. To this end, a series of technological innovations and methodologies are presented which enable for simplified SLIM experimentation and more rapid TW-SLIM prototyping. In addition to the use of multiple independent board sets that comprise the present SLIM system, we introduce a low-cost, multifunctional traveling wave generator to produce TW within the TW-SLIM. This square-wave producing unit proved effective in realizing TW-SLIM separations compared to traditional approaches. Maintaining a focus on lowering barriers to implementation, the present set of experiments explores the use of on-board injection (OBI) methods, which offer potential alternatives to ion funnel traps. These OBI techniques proved feasible and the ability of this simplified TW-SLIM platform to enhance ion accumulation was established. Further experimentation regarding ion accumulation revealed a complexity to ion accumulation within TW-SLIM that has yet to be expounded upon. Lastly, the ability of the presented TW-SLIM platform to store ions for extended periods (1 s) without significant loss (<10%) was demonstrated. The aforementioned experiments clearly establish the efficacy of a simplified TW-SLIM platform which promises to expand adoption and experimentation of the technique.
Collapse
|
28
|
Shotgun Lipidomic Analysis for Differentiation of Niche Cold Pressed Oils. Molecules 2022; 27:molecules27061848. [PMID: 35335212 PMCID: PMC8949066 DOI: 10.3390/molecules27061848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
The fast-growing food industry is bringing significant number of new products to the market. To protect consumers’ health and rights, it is crucial that food control laboratories are able to ensure reliable quality testing, including product authentication and detection of adulterations. In our study, we applied a fast and eco-friendly method based on shotgun-lipidomic mass spectrometry for the authentication of niche edible oils. Comprehensive lipid profiles of camelina (CA), flax (FL) and hemp (HP) seed oils were obtained. With the aid of principal component analysis (PCA), it was possible to detect and distinguish each of them based on their lipid profiles. Lipidomic markers characteristic ofthe oils were also identified, which can be used as targets and expedite development of new multiplexed testing methods.
Collapse
|
29
|
Rontani JF. Use of Gas Chromatography-Mass Spectrometry Techniques (GC-MS, GC-MS/MS and GC-QTOF) for the Characterization of Photooxidation and Autoxidation Products of Lipids of Autotrophic Organisms in Environmental Samples. Molecules 2022; 27:1629. [PMID: 35268730 PMCID: PMC8911584 DOI: 10.3390/molecules27051629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/27/2022] [Indexed: 01/21/2023] Open
Abstract
This paper reviews applications of gas chromatography-mass spectrometry techniques for the characterization of photooxidation and autoxidation products of lipids of senescent phototrophic organisms. Particular attention is given to: (i) the selection of oxidation products that are sufficiently stable under environmental conditions and specific to each lipid class and degradation route; (ii) the description of electron ionization mass fragmentation of trimethylsilyl derivatives of these compounds; and (iii) the use of specific fragment ions for monitoring the oxidation of the main unsaturated lipid components of phototrophs. The techniques best geared for this task were gas chromatography-quadrupole-time of flight to monitor fragment ions with very high resolution and accuracy, and gas chromatography-tandem mass spectrometry to monitor very selective transitions in multiple reaction monitoring mode. The extent of the degradation processes can only be estimated if the oxidation products are unaffected by fast secondary oxidation reactions, as it is notably the case of ∆5-sterols, monounsaturated fatty acids, chlorophyll phytyl side-chain, and di- and triterpenoids. In contrast, the primary degradation products of highly branched isoprenoid alkenes possessing more than one trisubstituted double bond, alkenones, carotenoids and polyunsaturated fatty acids, appear to be too unstable with respect to secondary oxidation or other reactions to serve for quantification in environmental samples.
Collapse
Affiliation(s)
- Jean-François Rontani
- Mediterranean Institute of Oceanography (MIO), Aix Marseille University, Université de Toulon, CNRS, IRD, UM 110, 13288 Marseille, France
| |
Collapse
|
30
|
Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, Jarmusch AK, Dorrestein PC. Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol 2022; 20:143-160. [PMID: 34552265 PMCID: PMC9578303 DOI: 10.1038/s41579-021-00621-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Microbiotas are a malleable part of ecosystems, including the human ecosystem. Microorganisms affect not only the chemistry of their specific niche, such as the human gut, but also the chemistry of distant environments, such as other parts of the body. Mass spectrometry-based metabolomics is one of the key technologies to detect and identify the small molecules produced by the human microbiota, and to understand the functional role of these microbial metabolites. This Review provides a foundational introduction to common forms of untargeted mass spectrometry and the types of data that can be obtained in the context of microbiome analysis. Data analysis remains an obstacle; therefore, the emphasis is placed on data analysis approaches and integrative analysis, including the integration of microbiome sequencing data.
Collapse
Affiliation(s)
- Anelize Bauermeister
- Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Helena Mannochio-Russo
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, SP, Brazil,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | | | - Alan K. Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, CA, USA
| |
Collapse
|
31
|
Odenkirk M, Horman BM, Dodds JN, Patisaul HB, Baker ES. Combining Micropunch Histology and Multidimensional Lipidomic Measurements for In-Depth Tissue Mapping. ACS MEASUREMENT SCIENCE AU 2022; 2:67-75. [PMID: 35647605 PMCID: PMC9139744 DOI: 10.1021/acsmeasuresciau.1c00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While decades of technical and analytical advancements have been utilized to discover novel lipid species, increase speciation, and evaluate localized lipid dysregulation at subtissue, cellular, and subcellular levels, many challenges still exist. One limitation is that the acquisition of both in-depth spatial information and comprehensive lipid speciation is extremely difficult, especially when biological material is limited or lipids are at low abundance. In neuroscience, for example, it is often desired to focus on only one brain region or subregion, which can be well under a square millimeter for rodents. Herein, we evaluate a micropunch histology method where cortical brain tissue at 2.0, 1.25, 1.0, 0.75, 0.5, and 0.25 mm diameter sizes and 1 mm depth was collected and analyzed with multidimensional liquid chromatography, ion mobility spectrometry, collision induced dissociation, and mass spectrometry (LC-IMS-CID-MS) measurements. Lipid extraction was optimized for the small sample sizes, and assessment of lipidome coverage for the 2.0 to 0.25 mm diameter sizes showed a decline from 304 to 198 lipid identifications as validated by all 4 analysis dimensions (~35% loss in coverage for ~88% less tissue). While losses were observed, the ~200 lipids and estimated 4630 neurons contained within the 0.25 punch still provided in-depth characterization of the small tissue region. Furthermore, while localization routinely achieved by mass spectrometry imaging (MSI) and single cell analyses is greater, this diameter is sufficiently small to isolate subcortical, hypothalamic, and other brain regions in adult rats, thereby increasing the coverage of lipids within relevant spatial windows without sacrificing speciation. Therefore, micropunch histology enables in-depth, region-specific lipid evaluations, an approach that will prove beneficial to a variety of lipidomic applications.
Collapse
Affiliation(s)
- Melanie
T. Odenkirk
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brian M. Horman
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - James N. Dodds
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Heather B. Patisaul
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S. Baker
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
32
|
Kirkwood KI, Christopher MW, Burgess JL, Littau SR, Foster K, Richey K, Pratt BS, Shulman N, Tamura K, MacCoss MJ, MacLean BX, Baker ES. Development and Application of Multidimensional Lipid Libraries to Investigate Lipidomic Dysregulation Related to Smoke Inhalation Injury Severity. J Proteome Res 2022; 21:232-242. [PMID: 34874736 PMCID: PMC8741653 DOI: 10.1021/acs.jproteome.1c00820] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The implication of lipid dysregulation in diseases, toxic exposure outcomes, and inflammation has brought great interest to lipidomic studies. However, lipids have proven to be analytically challenging due to their highly isomeric nature and vast concentration ranges in biological matrices. Therefore, multidimensional techniques such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (LC-IMS-CID-MS) have been implemented to separate lipid isomers as well as provide structural information and increased identification confidence. These data sets are however extremely large and complex, resulting in challenges for data processing and annotation. Here, we have overcome these challenges by developing sample-specific multidimensional lipid libraries using the freely available software Skyline. Specifically, the human plasma library developed for this work contains over 500 unique lipids and is combined with adapted Skyline functions such as indexed retention time (iRT) for retention time prediction and IMS drift time filtering for enhanced selectivity. For comparison with other studies, this database was used to annotate LC-IMS-CID-MS data from a NIST SRM 1950 extract. The same workflow was then utilized to assess plasma and bronchoalveolar lavage fluid (BALF) samples from patients with varying degrees of smoke inhalation injury to identify lipid-based patient prognostic and diagnostic markers.
Collapse
Affiliation(s)
- Kaylie I Kirkwood
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael W Christopher
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85721, United States
| | - Sally R Littau
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Foster
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Karen Richey
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Brian S Pratt
- Arizona Burn Center, Valleywise Health, Phoenix, Arizona 85008, United States
| | - Nicholas Shulman
- Arizona Burn Center, Valleywise Health, Phoenix, Arizona 85008, United States
| | - Kaipo Tamura
- Arizona Burn Center, Valleywise Health, Phoenix, Arizona 85008, United States
| | - Michael J MacCoss
- Arizona Burn Center, Valleywise Health, Phoenix, Arizona 85008, United States
| | - Brendan X MacLean
- Arizona Burn Center, Valleywise Health, Phoenix, Arizona 85008, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
33
|
Wang JY, Yin YH, Zheng JY, Liu LF, Yao ZP, Xin GZ. Least absolute shrinkage and selection operator-based prediction of collision cross section values for ion mobility mass spectrometric analysis of lipids. Analyst 2022; 147:1236-1244. [DOI: 10.1039/d1an02161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A least absolute shrinkage and selection operator (LASSO)-based prediction method was developed for the prediction of lipids’ CCS values.
Collapse
Affiliation(s)
- Jian-Ying Wang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ying-Hao Yin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Jia-Yi Zheng
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China
| |
Collapse
|
34
|
Dubland JA. Lipid analysis by ion mobility spectrometry combined with mass spectrometry: A brief update with a perspective on applications in the clinical laboratory. J Mass Spectrom Adv Clin Lab 2022; 23:7-13. [PMID: 34988541 PMCID: PMC8703053 DOI: 10.1016/j.jmsacl.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
Ion mobility spectrometry (IMS) is an analytical technique where ions are separated in the gas phase based on their mobility through a buffer gas in the presence of an electric field. An ion passing through an IMS device has a characteristic collisional cross section (CCS) value that depends on the buffer gas used. IMS can be coupled with mass spectrometry (MS), which characterizes an ion based on a mass-to-charge ratio (m/z), to increase analytical specificity and provide further physicochemical information. In particular, IMS-MS is of ever-increasing interest for the analysis of lipids, which can be problematic to accurately identify and quantify in bodily fluids by liquid chromatography (LC) with MS alone due to the presence of isomers, isobars, and structurally similar analogs. IMS provides an additional layer of separation when combined with front-end LC approaches, thereby, enhancing peak capacity and analytical specificity. CCS (and also ion mobility drift time) can be plotted against m/z ion intensity and/or LC retention time in order to generate in-depth molecular profiles of a sample. Utilization of IMS-MS for routine clinical laboratory testing remains relatively unexplored, but areas do exist for potential implementation. A brief update is provided here on lipid analysis using IMS-MS with a perspective on some applications in the clinical laboratory.
Collapse
Key Words
- CCS, collisional cross section
- CV, compensation voltage
- CVD, cardiovascular disease
- Clinical analysis
- DG, diacylglycerol
- DMS, differential mobility spectrometry
- DTIMS, drift tube ion mobility spectrometry
- EV, elution voltage
- FAIMS, field asymmetric waveform ion mobility spectrometry
- FIA, flow injection analysis
- FTICR, fourier-transform ion cyclotron resonance
- HDL, high-density-lipoprotein
- HRMS, high-resolution mass spectrometry
- IMS, ion mobility spectrometry
- IMS-MS, ion mobility spectrometry-mass spectrometry
- Ion mobility spectrometry
- LC, liquid chromatography
- LDL, low-density-lipoprotein
- LPC, lysophosphatidylcholine
- Lipids
- MALDI, matrix-assisted laser desorption/ionization
- MS, mass spectrometry
- Mass spectrometry
- NBS, newborn screening
- PC, glycerophosphocholine
- PE, phosphatidylethanolamine
- PG, phosphatidylglycerol
- RF, radio frequency
- SLIM, structures for loss less ion manipulations
- SM, sphingomyelin
- SV, separation voltage
- TG, triglyceride
- TIMS, trapped ion mobility spectrometry
- TOF, time-of-flight
- TWIMS, traveling wave ion mobility spectrometry
- VLDL, very-low-density lipoprotein
- m/z, mass-to-charge ratio
Collapse
Affiliation(s)
- Joshua A. Dubland
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Law KP, He W, Tao J, Zhang C. A Novel Approach to Characterize the Lipidome of Marine Archaeon Nitrosopumilus maritimus by Ion Mobility Mass Spectrometry. Front Microbiol 2021; 12:735878. [PMID: 34925256 PMCID: PMC8674956 DOI: 10.3389/fmicb.2021.735878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Archaea are differentiated from the other two domains of life by their biomolecular characteristics. One such characteristic is the unique structure and composition of their lipids. Characterization of the whole set of lipids in a biological system (the lipidome) remains technologically challenging. This is because the lipidome is innately complex, and not all lipid species are extractable, separable, or ionizable by a single analytical method. Furthermore, lipids are structurally and chemically diverse. Many lipids are isobaric or isomeric and often indistinguishable by the measurement of mass or even their fragmentation spectra. Here we developed a novel analytical protocol based on liquid chromatography ion mobility mass spectrometry to enhance the coverage of the lipidome and characterize the conformations of archaeal lipids by their collision cross-sections (CCSs). The measurements of ion mobility revealed the gas-phase ion chemistry of representative archaeal lipids and provided further insights into their attributions to the adaptability of archaea to environmental stresses. A comprehensive characterization of the lipidome of mesophilic marine thaumarchaeon, Nitrosopumilus maritimus (strain SCM1) revealed potentially an unreported phosphate- and sulfate-containing lipid candidate by negative ionization analysis. It was the first time that experimentally derived CCS values of archaeal lipids were reported. Discrimination of crenarchaeol and its proposed stereoisomer was, however, not achieved with the resolving power of the SYNAPT G2 ion mobility system, and a high-resolution ion mobility system may be required for future work. Structural and spectral libraries of archaeal lipids were constructed in non-vendor-specific formats and are being made available to the community to promote research of Archaea by lipidomics.
Collapse
Affiliation(s)
- Kai P Law
- Southern University of Science and Technology, SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Tao
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
36
|
Ward AV, Anderson SM, Sartorius CA. Advances in Analyzing the Breast Cancer Lipidome and Its Relevance to Disease Progression and Treatment. J Mammary Gland Biol Neoplasia 2021; 26:399-417. [PMID: 34914014 PMCID: PMC8883833 DOI: 10.1007/s10911-021-09505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Abnormal lipid metabolism is common in breast cancer with the three main subtypes, hormone receptor (HR) positive, human epidermal growth factor 2 (HER2) positive, and triple negative, showing common and distinct lipid dependencies. A growing body of studies identify altered lipid metabolism as impacting breast cancer cell growth and survival, plasticity, drug resistance, and metastasis. Lipids are a class of nonpolar or polar (amphipathic) biomolecules that can be produced in cells via de novo synthesis or acquired from the microenvironment. The three main functions of cellular lipids are as essential components of membranes, signaling molecules, and nutrient storage. The use of mass spectrometry-based lipidomics to analyze the global cellular lipidome has become more prevalent in breast cancer research. In this review, we discuss current lipidomic methodologies, highlight recent breast cancer lipidomic studies and how these findings connect to disease progression and therapeutic development, and the potential use of lipidomics as a diagnostic tool in breast cancer. A better understanding of the breast cancer lipidome and how it changes during drug resistance and tumor progression will allow informed development of diagnostics and novel targeted therapies.
Collapse
Affiliation(s)
- Ashley V Ward
- Cancer Biology Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Steven M Anderson
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Carol A Sartorius
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
37
|
Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, Holčapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021; 62:100138. [PMID: 34662536 PMCID: PMC8585648 DOI: 10.1016/j.jlr.2021.100138] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.
Collapse
Affiliation(s)
- Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria.
| | - Robert Ahrends
- Department for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Inst Longev & Aging Studies, Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX, USA
| | - Nils Hoffmann
- Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
38
|
Letertre MPM, Giraudeau P, de Tullio P. Nuclear Magnetic Resonance Spectroscopy in Clinical Metabolomics and Personalized Medicine: Current Challenges and Perspectives. Front Mol Biosci 2021; 8:698337. [PMID: 34616770 PMCID: PMC8488110 DOI: 10.3389/fmolb.2021.698337] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Personalized medicine is probably the most promising area being developed in modern medicine. This approach attempts to optimize the therapies and the patient care based on the individual patient characteristics. Its success highly depends on the way the characterization of the disease and its evolution, the patient’s classification, its follow-up and the treatment could be optimized. Thus, personalized medicine must combine innovative tools to measure, integrate and model data. Towards this goal, clinical metabolomics appears as ideally suited to obtain relevant information. Indeed, the metabolomics signature brings crucial insight to stratify patients according to their responses to a pathology and/or a treatment, to provide prognostic and diagnostic biomarkers, and to improve therapeutic outcomes. However, the translation of metabolomics from laboratory studies to clinical practice remains a subsequent challenge. Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are the two key platforms for the measurement of the metabolome. NMR has several advantages and features that are essential in clinical metabolomics. Indeed, NMR spectroscopy is inherently very robust, reproducible, unbiased, quantitative, informative at the structural molecular level, requires little sample preparation and reduced data processing. NMR is also well adapted to the measurement of large cohorts, to multi-sites and to longitudinal studies. This review focus on the potential of NMR in the context of clinical metabolomics and personalized medicine. Starting with the current status of NMR-based metabolomics at the clinical level and highlighting its strengths, weaknesses and challenges, this article also explores how, far from the initial “opposition” or “competition”, NMR and MS have been integrated and have demonstrated a great complementarity, in terms of sample classification and biomarker identification. Finally, a perspective discussion provides insight into the current methodological developments that could significantly raise NMR as a more resolutive, sensitive and accessible tool for clinical applications and point-of-care diagnosis. Thanks to these advances, NMR has a strong potential to join the other analytical tools currently used in clinical settings.
Collapse
Affiliation(s)
| | | | - Pascal de Tullio
- Metabolomics Group, Center for Interdisciplinary Research of Medicine (CIRM), Department of Pharmacy, Université de Liège, Liège, Belgique
| |
Collapse
|
39
|
Reveglia P, Paolillo C, Ferretti G, De Carlo A, Angiolillo A, Nasso R, Caputo M, Matrone C, Di Costanzo A, Corso G. Challenges in LC-MS-based metabolomics for Alzheimer's disease early detection: targeted approaches versus untargeted approaches. Metabolomics 2021; 17:78. [PMID: 34453619 PMCID: PMC8403122 DOI: 10.1007/s11306-021-01828-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/06/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most common causes of dementia in old people. Neuronal deficits such as loss of memory, language and problem-solving are severely compromised in affected patients. The molecular features of AD are Aβ deposits in plaques or in oligomeric structures and neurofibrillary tau tangles in brain. However, the challenge is that Aβ is only one piece of the puzzle, and recent findings continue to support the hypothesis that their presence is not sufficient to predict decline along the AD outcome. In this regard, metabolomic-based techniques are acquiring a growing interest for either the early diagnosis of diseases or the therapy monitoring. Mass spectrometry is one the most common analytical platforms used for detection, quantification, and characterization of metabolic biomarkers. In the past years, both targeted and untargeted strategies have been applied to identify possible interesting compounds. AIM OF REVIEW The overall goal of this review is to guide the reader through the most recent studies in which LC-MS-based metabolomics has been proposed as a powerful tool for the identification of new diagnostic biomarkers in AD. To this aim, herein studies spanning the period 2009-2020 have been reported. Advantages and disadvantages of targeted vs untargeted metabolomic approaches have been outlined and critically discussed.
Collapse
Affiliation(s)
- Pierluigi Reveglia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Carmela Paolillo
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Gabriella Ferretti
- Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131, Napoli, Italy
| | - Armando De Carlo
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
- Policlinico Riuniti University Hospital, 71122, Foggia, Italy
| | - Antonella Angiolillo
- Department of Medicine and Health Sciences, Center for Research and Training in Aging Medicine, University of Molise, 86100, Campobasso, Italy
| | - Rosarita Nasso
- Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131, Napoli, Italy
| | - Mafalda Caputo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131, Napoli, Italy
| | - Carmela Matrone
- Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131, Napoli, Italy
| | - Alfonso Di Costanzo
- Department of Medicine and Health Sciences, Center for Research and Training in Aging Medicine, University of Molise, 86100, Campobasso, Italy
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy.
- Policlinico Riuniti University Hospital, 71122, Foggia, Italy.
| |
Collapse
|
40
|
Han X, Ye H. Overview of Lipidomic Analysis of Triglyceride Molecular Species in Biological Lipid Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8895-8909. [PMID: 33606510 PMCID: PMC8374006 DOI: 10.1021/acs.jafc.0c07175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Triglyceride (TG) is a class of neutral lipids, which functions as an energy storage depot and is important for cellular growth, metabolism, and function. The composition and content of TG molecular species are crucial factors for nutritional aspects in food chemistry and are directly associated with several diseases, including atherosclerosis, diabetes, obesity, stroke, etc. As a result of the complexities of aliphatic moieties and their different connections/locations to the glycerol backbone in TG molecules, accurate identification of individual TG molecular species and quantitative assessment of TG composition and content are particularly challenging, even at the current stage of lipidomics development. Herein, methods developed for analysis of TG species, such as liquid chromatography-mass spectrometry with a variety of columns and different mass spectrometric techniques, shotgun lipidomics approaches, and ion-mobility-based analysis, are reviewed. Moreover, the potential limitations of the methods are discussed. It is our sincere hope that the overviews and discussions can provide some insights for researchers to select an appropriate approach for TG analysis and can serve as the basis for those who would like to establish a methodology for TG analysis or develop a new method when novel tools become available. Biologically accurate analysis of TG species with an enabling method should lead us toward improving the nutritional quality, revealing the effects of TG on diseases, and uncovering the underlying biochemical mechanisms related to these diseases.
Collapse
Affiliation(s)
- Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
- Departments of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Hongping Ye
- Department of Medicine - Nephrology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
41
|
Witting M, Schmidt U, Knölker HJ. UHPLC-IM-Q-ToFMS analysis of maradolipids, found exclusively in Caenorhabditis elegans dauer larvae. Anal Bioanal Chem 2021; 413:2091-2102. [PMID: 33575816 PMCID: PMC7943524 DOI: 10.1007/s00216-021-03172-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 12/29/2022]
Abstract
Lipid identification is one of the current bottlenecks in lipidomics and lipid profiling, especially for novel lipid classes, and requires multidimensional data for correct annotation. We used the combination of chromatographic and ion mobility separation together with data-independent acquisition (DIA) of tandem mass spectrometric data for the analysis of lipids in the biomedical model organism Caenorhabditis elegans. C. elegans reacts to harsh environmental conditions by interrupting its normal life cycle and entering an alternative developmental stage called dauer stage. Dauer larvae show distinct changes in metabolism and morphology to survive unfavorable environmental conditions and are able to survive for a long time without feeding. Only at this developmental stage, dauer larvae produce a specific class of glycolipids called maradolipids. We performed an analysis of maradolipids using ultrahigh performance liquid chromatography-ion mobility spectrometry-quadrupole-time of flight-mass spectrometry (UHPLC-IM-Q-ToFMS) using drift tube ion mobility to showcase how the integration of retention times, collisional cross sections, and DIA fragmentation data can be used for lipid identification. The obtained results show that combination of UHPLC and IM separation together with DIA represents a valuable tool for initial lipid identification. Using this analytical tool, a total of 45 marado- and lysomaradolipids have been putatively identified and 10 confirmed by authentic standards directly from C. elegans dauer larvae lipid extracts without the further need for further purification of glycolipids. Furthermore, we putatively identified two isomers of a lysomaradolipid not known so far. ![]()
Collapse
Affiliation(s)
- Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany. .,Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany. .,Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Ulrike Schmidt
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Hans-Joachim Knölker
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| |
Collapse
|
42
|
Helmer PO, Nordhorn ID, Korf A, Behrens A, Buchholz R, Zubeil F, Karst U, Hayen H. Complementing Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Imaging with Chromatography Data for Improved Assignment of Isobaric and Isomeric Phospholipids Utilizing Trapped Ion Mobility-Mass Spectrometry. Anal Chem 2021; 93:2135-2143. [PMID: 33416303 DOI: 10.1021/acs.analchem.0c03942] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lipids, such for example the multifaceted category of glycerophospholipids (GP), play a major role in many biological processes. High-resolution mass spectrometry is able to identify these highly diverse lipid species in combination with fragmentation experiments (MS/MS) on the basis of the accurate m/z and fragmentation pattern. However, for the differentiation of isomeric lipids or isobaric interferences, more elaborate separation methods are required. Especially for imaging techniques, such as matrix-assisted laser desorption/ionization (MALDI)-MS imaging, the identification is often exclusively based on the accurate m/z. Fragmentation via MS/MS increases the confidence in lipid annotation in imaging approaches. However, this is sometimes not feasible due to insufficient sensitivity and significantly prolonged analysis time. The use of a separation dimension such as trapped ion mobility spectrometry (TIMS) after ionization strengthens the confidence of the identification based on the collision cross section (CCS). Since CCS libraries are limited, a tissue-specific database was initially generated using hydrophilic interaction liquid chromatography-TIMS-MS. Using this database, the identification of isomeric lipid classes as well as isobaric interferences in a lipid class was performed using a mouse spleen sample in a workflow described in this study. Besides a CCS-based identification as an additional identification criterion for GP in general, the focus was on the distinction of the isomeric GP classes phosphatidylglycerol and bis(monoacylglycero)phosphate, as well as the differentiation of possible isobaric interferences based on the formation of adducts by MALDI-TIMS-MS imaging on a molecular level.
Collapse
Affiliation(s)
- Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Ilona D Nordhorn
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Ansgar Korf
- Bruker Daltonik GmbH, Fahrenheitstraße 4, Bremen 28359, Germany
| | - Arne Behrens
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Florian Zubeil
- Bruker Daltonik GmbH, Fahrenheitstraße 4, Bremen 28359, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster 48149, Germany
| |
Collapse
|
43
|
Masike K, Stander MA, de Villiers A. Recent applications of ion mobility spectrometry in natural product research. J Pharm Biomed Anal 2021; 195:113846. [PMID: 33422832 DOI: 10.1016/j.jpba.2020.113846] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique capable of extracting complementary structural information to chromatography and mass spectrometry (MS). IMS, especially in combination with MS, has experienced inordinate growth in recent years as an analytical technique, and elicited intense interest in many research fields. In natural product analysis, IMS shows promise as an additional tool to enhance the performance of analytical methods used to identify promising drug candidates. Potential benefits of the incorporation of IMS into analytical workflows currently used in natural product analysis include the discrimination of structurally similar secondary metabolites, improving the quality of mass spectral data, and the use of mobility-derived collision cross-section (CCS) values as an additional identification criterion in targeted and untargeted analyses. This review aims to provide an overview of the application of IMS to natural product analysis over the last six years. Instrumental aspects and the fundamental background of IMS will be briefly covered, and recent applications of the technique for natural product analysis will be discussed to demonstrate the utility of the technique in this field.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Maria A Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
44
|
Rose BS, Leaptrot KL, Harris RA, Sherrod SD, May JC, McLean JA. High Confidence Shotgun Lipidomics Using Structurally Selective Ion Mobility-Mass Spectrometry. Methods Mol Biol 2021; 2306:11-37. [PMID: 33954937 PMCID: PMC10127451 DOI: 10.1007/978-1-0716-1410-5_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion mobility (IM) is a gas phase separation strategy that can either supplement or serve as a high-throughput alternative to liquid chromatography (LC) in shotgun lipidomics. Incorporating the IM dimension in untargeted lipidomics workflows can help resolve isomeric lipids, and the collision cross section (CCS) values obtained from the IM measurements can provide an additional molecular descriptor to increase lipid identification confidence. This chapter provides a broad overview of an untargeted ion mobility-mass spectrometry (IM-MS) workflow using a commercial drift tube ion mobility-quadrupole-time-of-flight mass spectrometer (IM-QTOF) for high confidence lipidomics.
Collapse
Affiliation(s)
- Bailey S Rose
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Katrina L Leaptrot
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Rachel A Harris
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Stacy D Sherrod
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
45
|
Addepalli RV, Mullangi R. A concise review on lipidomics analysis in biological samples. ADMET AND DMPK 2020; 9:1-22. [PMID: 35299875 PMCID: PMC8923307 DOI: 10.5599/admet.913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Lipids are a complex and critical heterogeneous molecular entity, playing an intricate and key role in understanding biological activities and disease processes. Lipidomics aims to quantitatively define the lipid classes, including their molecular species. The analysis of the biological tissues and fluids are challenging due to the extreme sample complexity and occurrence of the molecular species as isomers or isobars. This review documents the overview of lipidomics workflow, beginning from the approaches of sample preparation, various analytical techniques and emphasizing the state-of-the-art mass spectrometry either by shotgun or coupled with liquid chromatography. We have considered the latest ion mobility spectroscopy technologies to deal with the vast number of structural isomers, different imaging techniques. All these techniques have their pitfalls and we have discussed how to circumvent them after reviewing the power of each technique with examples..
Collapse
Affiliation(s)
| | - Ramesh Mullangi
- Laxai Life Sciences Pvt Ltd, MN Park, Genome Valley, Shamirpet, Hyderabad-500 078, India
| |
Collapse
|
46
|
Li A, Conant CR, Zheng X, Bloodsworth KJ, Orton DJ, Garimella SVB, Attah IK, Nagy G, Smith RD, Ibrahim YM. Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations. Anal Chem 2020; 92:14976-14982. [PMID: 33136380 DOI: 10.1021/acs.analchem.0c02829] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0-p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1-2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.
Collapse
Affiliation(s)
- Ailin Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher R Conant
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
47
|
Fraga-Corral M, Carpena M, Garcia-Oliveira P, Pereira AG, Prieto MA, Simal-Gandara J. Analytical Metabolomics and Applications in Health, Environmental and Food Science. Crit Rev Anal Chem 2020; 52:712-734. [DOI: 10.1080/10408347.2020.1823811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - A. G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| |
Collapse
|
48
|
Couvillion SP, Agrawal N, Colby SM, Brandvold KR, Metz TO. Who Is Metabolizing What? Discovering Novel Biomolecules in the Microbiome and the Organisms Who Make Them. Front Cell Infect Microbiol 2020; 10:388. [PMID: 32850487 PMCID: PMC7410922 DOI: 10.3389/fcimb.2020.00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Even as the field of microbiome research has made huge strides in mapping microbial community composition in a variety of environments and organisms, explaining the phenotypic influences on the host by microbial taxa-both known and unknown-and their specific functions still remain major challenges. A pressing need is the ability to assign specific functions in terms of enzymes and small molecules to specific taxa or groups of taxa in the community. This knowledge will be crucial for advancing personalized therapies based on the targeted modulation of microbes or metabolites that have predictable outcomes to benefit the human host. This perspective article advocates for the combined use of standards-free metabolomics and activity-based protein profiling strategies to address this gap in functional knowledge in microbiome research via the identification of novel biomolecules and the attribution of their production to specific microbial taxa.
Collapse
Affiliation(s)
- Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Neha Agrawal
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Sean M. Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kristoffer R. Brandvold
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
49
|
Hellhake S, Meckelmann SW, Empl MT, Rentmeister K, Wißdorf W, Steinberg P, Schmitz OJ, Benter T, Schebb NH. Non-targeted and targeted analysis of oxylipins in combination with charge-switch derivatization by ion mobility high-resolution mass spectrometry. Anal Bioanal Chem 2020; 412:5743-5757. [PMID: 32699965 PMCID: PMC7413910 DOI: 10.1007/s00216-020-02795-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Eicosanoids and other oxylipins play an important role in mediating inflammation as well as other biological processes. For the investigation of their biological role(s), comprehensive analytical methods are necessary, which are able to provide reliable identification and quantification of these compounds in biological matrices. Using charge-switch derivatization with AMPP (N-(4-aminomethylphenyl)pyridinium chloride) in combination with liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry (LC-IM-QTOF-MS), we developed a non-target approach to analyze oxylipins in plasma, serum, and cells. The developed workflow makes use of an ion mobility resolved fragmentation to pinpoint derivatized molecules based on the cleavage of AMPP, which yields two specific fragment ions. This allows a reliable identification of known and unknown eicosanoids and other oxylipins. We characterized the workflow using 52 different oxylipins and investigated their fragmentation patterns and ion mobilities. Limits of detection ranged between 0.2 and 10.0 nM (1.0-50 pg on column), which is comparable with other state-of-the-art methods using LC triple quadrupole (QqQ) MS. Moreover, we applied this strategy to analyze oxylipins in different biologically relevant matrices, as cultured cells, human plasma, and serum. Graphical abstract.
Collapse
Affiliation(s)
- Stefan Hellhake
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Kristina Rentmeister
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Walter Wißdorf
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitätsstr. 5-7, 45141, Essen, Germany
| | - Thorsten Benter
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Nils Helge Schebb
- School of Mathematics and Natural Sciences, University of Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
50
|
Nagai K, Uranbileg B, Chen Z, Fujioka A, Yamazaki T, Matsumoto Y, Tsukamoto H, Ikeda H, Yatomi Y, Chiba H, Hui S, Nakazawa T, Saito R, Koshiba S, Aoki J, Saigusa D, Tomioka Y. Identification of novel biomarkers of hepatocellular carcinoma by high-definition mass spectrometry: Ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry and desorption electrospray ionization mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8551. [PMID: 31412144 PMCID: PMC7154627 DOI: 10.1002/rcm.8551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 05/13/2023]
Abstract
RATIONALE Hepatocellular carcinoma (HCC) is a highly malignant disease for which the development of prospective or prognostic biomarkers is urgently required. Although metabolomics is widely used for biomarker discovery, there are some bottlenecks regarding the comprehensiveness of detected features, reproducibility of methods, and identification of metabolites. In addition, information on localization of metabolites in tumor tissue is needed for functional analysis. Here, we developed a wide-polarity global metabolomics (G-Met) method, identified HCC biomarkers in human liver samples by high-definition mass spectrometry (HDMS), and demonstrated localization in cryosections using desorption electrospray ionization MS imaging (DESI-MSI) analysis. METHODS Metabolic profiling of tumor (n = 38) and nontumor (n = 72) regions in human livers of HCC was performed by an ultrahigh-performance liquid chromatography quadrupole time-of-flight MS (UHPLC/QTOFMS) instrument equipped with a mixed-mode column. The HCC biomarker candidates were extracted by multivariate analyses and identified by matching values of the collision cross section and their fragment ions on the mass spectra obtained by HDMS. Cryosections of HCC livers, which included both tumor and nontumor regions, were analyzed by DESI-MSI. RESULTS From the multivariate analysis, m/z 904.83 and m/z 874.79 were significantly high and low, respectively, in tumor samples and were identified as triglyceride (TG) 16:0/18:1(9Z)/20:1(11Z) and TG 16:0/18:1(9Z)/18:2(9Z,12Z) using the synthetic compounds. The TGs were clearly localized in the tumor or nontumor areas of the cryosection. CONCLUSIONS Novel biomarkers for HCC were identified by a comprehensive and reproducible G-Met method with HDMS using a mixed-mode column. The combination analysis of UHPLC/QTOFMS and DESI-MSI revealed that the different molecular species of TGs were associated with tumor distribution and were useful for characterizing the progression of tumor cells and discovering prospective biomarkers.
Collapse
Affiliation(s)
- Koshi Nagai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | | | - Zhen Chen
- Faculty of Health ScienceHokkaido UniversityJapan
| | - Amane Fujioka
- Department of OphthalmologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Takahiro Yamazaki
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory MedicineUniversity of TokyoJapan
| | - Yutaka Yatomi
- Department of Clinical Laboratory MedicineUniversity of TokyoJapan
| | | | - Shu‐Ping Hui
- Faculty of Health ScienceHokkaido UniversityJapan
| | - Toru Nakazawa
- Department of OphthalmologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine
| | - Ritsumi Saito
- Department of Integrative GenomicsTohoku University Tohoku Medical Megabank OrganizationSendaiJapan
- Medical BiochemistryTohoku University Graduate School of MedicineSendaiJapan
| | - Seizo Koshiba
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine
- Department of Integrative GenomicsTohoku University Tohoku Medical Megabank OrganizationSendaiJapan
- Medical BiochemistryTohoku University Graduate School of MedicineSendaiJapan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Daisuke Saigusa
- Department of Integrative GenomicsTohoku University Tohoku Medical Megabank OrganizationSendaiJapan
- Medical BiochemistryTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| |
Collapse
|