1
|
Shirmovsky SE. On the possibility of implementing a quantum entanglement distribution in a biosystem: Microtubules. Biosystems 2024; 245:105320. [PMID: 39214493 DOI: 10.1016/j.biosystems.2024.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The paper considers the possibility of implementing a quantum entanglement distribution in the cell microtubule. It has been shown that a quantum entanglement distribution proposed in the paper determines the process of quantum state teleportation through microtubule tryptophan chain. The work shows that the system of tryptophans in a microtubule essentially is a quantum network that consists of: spatially spaced nodes - tryptophans, quantum communication channels connecting tryptophans and qubits transmitted through these communication channels. The connection between the process of quantum teleportation in living nature and its classical analogue is discussed. The quantum protocol established in the work determines the possible principle of quantum information transmission in biosystems and also in the similar nanostructures.
Collapse
Affiliation(s)
- Sergey E Shirmovsky
- Far Eastern Federal University, Institute of High Technologies and Advanced Materials, Department of General and Experimental Physics, 10Ajax settlement, Russkiy Island, Vladivostok, Primorsky Region, 690922, Russia; Far Eastern Federal University, Institute of Mathematics and Computer Technologies, Department of Information Security, 10Ajax settlement, Russkiy Island, Vladivostok, Primorsky Region, 690922, Russia.
| |
Collapse
|
2
|
Chen J, Hu J, Kapral R. Chemical Logic Gates on Active Colloids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305695. [PMID: 38450886 PMCID: PMC11095161 DOI: 10.1002/advs.202305695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/28/2023] [Indexed: 03/08/2024]
Abstract
Recent studies have shown that active colloidal motors using enzymatic reactions for propulsion hold special promise for applications in fields ranging from biology to material science. It will be desirable to have active colloids with capability of computation so that they can act autonomously to sense their surroundings and alter their own dynamics. It is shown how small chemical networks that make use of enzymatic chemical reactions on the colloid surface can be used to construct motor-based chemical logic gates. The basic features of coupled enzymatic reactions that are responsible for propulsion and underlie the construction and function of chemical gates are described using continuum theory and molecular simulation. Examples are given that show how colloids with specific chemical logic gates, can perform simple sensing tasks. Due to the diverse functions of different enzyme gates, operating alone or in circuits, the work presented here supports the suggestion that synthetic motors using such gates could be designed to operate in an autonomous way in order to complete complicated tasks.
Collapse
Affiliation(s)
- Jiang‐Xing Chen
- Department of PhysicsHangzhou Normal UniversityHangzhou311121China
| | - Jia‐Qi Hu
- Department of PhysicsHangzhou Normal UniversityHangzhou311121China
| | - Raymond Kapral
- Chemical Physics Theory GroupDepartment of ChemistryUniversity of TorontoTorontoOntarioM5S 3H6Canada
| |
Collapse
|
3
|
Farzin MA, Naghib SM, Rabiee N. Advancements in Bio-inspired Self-Powered Wireless Sensors: Materials, Mechanisms, and Biomedical Applications. ACS Biomater Sci Eng 2024; 10:1262-1301. [PMID: 38376103 DOI: 10.1021/acsbiomaterials.3c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The rapid maturation of smart city ecosystems is intimately linked to advances in the Internet of Things (IoT) and self-powered sensing technologies. Central to this evolution are battery-less sensors that are critical for applications such as continuous health monitoring through blood metabolites and vital signs, the recognition of human activity for behavioral analysis, and the operational enhancement of humanoid robots. The focus on biosensors that exploit the human body for energy-spanning wearable, attachable, and implantable variants has intensified, driven by their broad applicability in areas from underwater exploration to biomedical assays and earthquake monitoring. The heart of these sensors lies in their diverse energy harvesting mechanisms, including biofuel cells, and piezoelectric, triboelectric, and pyroelectric nanogenerators. Notwithstanding the wealth of research, the literature still lacks a holistic review that integrates the design challenges and implementation intricacies of such sensors. Our review seeks to fill this gap by thoroughly evaluating energy harvesting strategies from both material and structural perspectives and assessing their roles in powering an array of sensors for myriad uses. This exploration offers a comprehensive outlook on the state of self-powered sensing devices, tackling the nuances of their deployment and highlighting their potential to revolutionize data gathering in autonomous systems. The intent of this review is to chart the current landscape and future prospects, providing a pivotal reference point for ongoing research and innovation in self-powered wireless sensing technologies.
Collapse
Affiliation(s)
- Mohammad Ali Farzin
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran 13114-16846, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran 13114-16846, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
4
|
Shirmovsky SE. Modeling of the quantum entangled state transfer protocol in the cell microtubules. Biosystems 2024; 235:105100. [PMID: 38072337 DOI: 10.1016/j.biosystems.2023.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/15/2024]
Abstract
In the work based on the quantum gates representation, the modeling of the quantum entangled state transfer protocol in the cell microtubules is carried out. It has been proved that considered data transmission can be determined as a mechanism that ensures the transfer of information through a quantum channel in microtubule tryptophans chain. The influence of external factors on the formation of entangled states is investigated. It is shown that the influence of the external environment has an ambiguous character and can constructively influence the formation and dynamics of entangled states. The research conducted in the work allowed to conclude that the processes of qubits transmission in microtubules in the special case could be defined as an analogue of the superdense coding protocol for similar biosystems.
Collapse
Affiliation(s)
- Sergey E Shirmovsky
- Far Eastern Federal University, Institute of Mathematics and Computer Technologies, Department of Information Security, 10Ajax settlement, Russkiy Island, Vladivostok, Primorsky Region, 690922, Russia.
| |
Collapse
|
5
|
Lin PH, Tsai ST, Chang YC, Chou YJ, Yeh YC. Harnessing split fluorescent proteins in modular protein logic for advanced whole-cell detection. Anal Chim Acta 2023; 1275:341593. [PMID: 37524469 DOI: 10.1016/j.aca.2023.341593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Whole-cell biosensors have demonstrated promising capabilities in detecting target molecules. However, their limited selectivity and precision can be attributed to the broad substrate tolerance of natural proteins. In this study, we aim to enhance the performance of whole-cell biosensors by incorporating of logic AND gates. Specifically, we utilize the HrpR/S system, a widely employed hetero-regulation module from Pseudomonas syringae in synthetic biology, to construct an orthogonal AND gate in Escherichia coli. To accomplish this, we compare the HrpR/S system with self-associating split fluorescent proteins using the Spy Tag/Spy Catcher system. Our objective is to selectively activate a reporter gene in the presence of both IPTG and Hg(II) ions. Through systematic genetic engineering and evaluation of various biological parts under diverse working conditions, our research demonstrates the utility of self-associating split fluorescent proteins in developing high-performance whole-cell biosensors. This approach offers advantages such as engineering simplicity, reduced basal activity, and improved selectivity. Furthermore, the comparison with the HrpR/S system serves as a valuable control model, providing insights into the relative advantages and limitations of each approach. These findings present a systematic and adaptable strategy to overcome the substrate tolerance challenge faced by whole-cell biosensors.
Collapse
Affiliation(s)
- Ping-Heng Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Ssu-Tzu Tsai
- Department of Chemistry, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Yu-Chia Chang
- Department of Chemistry, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Yi-Ju Chou
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan.
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei, 116, Taiwan.
| |
Collapse
|
6
|
Welden M, Poghossian A, Vahidpour F, Wendlandt T, Keusgen M, Christina Wege, Schöning MJ. Capacitive field-effect biosensor modified with a stacked bilayer of weak polyelectrolyte and plant virus particles as enzyme nanocarriers. Bioelectrochemistry 2023; 151:108397. [PMID: 36906982 DOI: 10.1016/j.bioelechem.2023.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
This work presents a new approach for the development of field-effect biosensors based on an electrolyte-insulator-semiconductor capacitor (EISCAP) modified with a stacked bilayer of weak polyelectrolyte and tobacco mosaic virus (TMV) particles as enzyme nanocarriers. With the aim to increase the surface density of virus particles and thus, to achieve a dense immobilization of enzymes, the negatively charged TMV particles were loaded onto the EISCAP surface modified with a positively charged poly(allylamine hydrochloride) (PAH) layer. The PAH/TMV bilayer was prepared on the Ta2O5-gate surface by means of layer-by-layer technique. The bare and differently modified EISCAP surfaces were physically characterized by fluorescence microscopy, zeta-potential measurements, atomic force microscopy and scanning electron microscopy. Transmission electron microscopy was used to scrutinize the PAH effect on TMV adsorption in a second system. Finally, a highly sensitive TMV-assisted EISCAP antibiotics biosensor was realized by immobilizing the enzyme penicillinase onto the TMV surface. This PAH/TMV bilayer-modified EISCAP biosensor was electrochemically characterized in solutions with different penicillin concentrations via capacitance-voltage and constant-capacitance methods. The biosensor possessed a mean penicillin sensitivity of 113 mV/dec in a concentration range from 0.1 mM to 5 mM.
Collapse
Affiliation(s)
- Melanie Welden
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany.
| | | | - Farnoosh Vahidpour
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany.
| | - Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany.
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
7
|
Han J, Ding Y, Lv X, Zhang Y, Fan D. Integration of G-Quadruplex and Pyrene as a Simple and Efficient Ratiometric Fluorescent Platform That Programmed by Contrary Logic Pair for Highly Sensitive and Selective Coralyne (COR) Detection. BIOSENSORS 2023; 13:bios13040489. [PMID: 37185564 PMCID: PMC10136222 DOI: 10.3390/bios13040489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
The effective and accurate detection of the anticancer drug coralyne (COR) is highly significant for drug quality control, medication safety and good health. Although various COR sensors have been reported in recent years, previous ones can only exhibit single-signal output (turn ON or turn OFF) with poor reliability and anti-interference ability. Therefore, exploring novel platform with dual-signal response for COR detection is urgently needed. Herein, we reported the first ratiometric fluorescent platform for highly sensitive and selective COR detection by integrating G-quadruplex (G4) and Pyrene (Py) as signal probes and harnessing A-COR-A interaction. In the absence of COR, the platform shows a low fluorescence signal of PPIX (F642) and a high one of Py monomer (F383). With the addition of COR, two delicately designed poly-A ssDNAs will hybridize with each other via A-COR-A coordination to form complete G4, yielding the increased fluorescence signal of PPIX and the decreased one of Py due to the formation of Py excimer. Based on the above mechanism, we constructed a simple and efficient sensor that could realize the ratiometric fluorescent detection of COR with high sensitivity and selectivity. A linear relationship between F642/F383 and COR's concentration is obtained in the range from 1 nM to 8 μM. And the limit of detection of COR could reach to as low as 0.63 nM without any amplification, which is much lower than that of most COR sensors reported so far. Notably, the logical analysis of COR can be carried out under the control of a "YES-NOT" contrary logic pair, enabling the smart dual-channel response with an adequate S/N ratio and improved reliability and anti-interference ability. Moreover, this system also presents satisfactory performance in fetal bovine serum (FBS) samples.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yaru Ding
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuwei Zhang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
8
|
Yoon J, Lim J, Shin M, Lee JY, Choi JW. Recent progress in nanomaterial-based bioelectronic devices for biocomputing system. Biosens Bioelectron 2022; 212:114427. [PMID: 35653852 DOI: 10.1016/j.bios.2022.114427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Bioelectronic devices have received the massive attention because of their huge potential to develop the core electronic components for biocomputing system. Up to now, numerous bioelectronic devices have been reported such as biomemory and biologic gate by employment of biomolecules including metalloproteins and nucleic acids. However, the intrinsic limitations of biomolecules such as instability and low signal production hinder the development of novel bioelectronic devices capable of performing various novel computing functions. As a way to overcome these limitations, nanomaterials have the great potential and wide applicability to grant and extend the electronic functions, and improve the inherent properties from biomolecules. Accordingly, lots of nanomaterials including the conductive metal, graphene, and transition metal dichalcogenide nanomaterials are being used to develop the remarkable functional bioelectronic devices like the multi-bit biomemory and resistive random-access biomemory. This review discusses the nanomaterial-based superb bioelectronic devices including the biomemory, biologic gates, and bioprocessors. In conclusion, this review will provide the interdisciplinary information about utilization of various novel nanomaterials applicable for biocomputing system.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Field-Effect Capacitors Decorated with Ligand-Stabilized Gold Nanoparticles: Modeling and Experiments. BIOSENSORS 2022; 12:bios12050334. [PMID: 35624635 PMCID: PMC9139043 DOI: 10.3390/bios12050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Nanoparticles are recognized as highly attractive tunable materials for designing field-effect biosensors with enhanced performance. In this work, we present a theoretical model for electrolyte-insulator-semiconductor capacitors (EISCAP) decorated with ligand-stabilized charged gold nanoparticles. The charged AuNPs are taken into account as additional, nanometer-sized local gates. The capacitance-voltage (C–V) curves and constant-capacitance (ConCap) signals of the AuNP-decorated EISCAPs have been simulated. The impact of the AuNP coverage on the shift of the C–V curves and the ConCap signals was also studied experimentally on Al–p-Si–SiO2 EISCAPs decorated with positively charged aminooctanethiol-capped AuNPs. In addition, the surface of the EISCAPs, modified with AuNPs, was characterized by scanning electron microscopy for different immobilization times of the nanoparticles.
Collapse
|
10
|
Welden M, Poghossian A, Vahidpour F, Wendlandt T, Keusgen M, Wege C, Schöning MJ. Towards Multi-Analyte Detection with Field-Effect Capacitors Modified with Tobacco Mosaic Virus Bioparticles as Enzyme Nanocarriers. BIOSENSORS 2022; 12:bios12010043. [PMID: 35049671 PMCID: PMC8773754 DOI: 10.3390/bios12010043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 05/07/2023]
Abstract
Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO2-Ta2O5 layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1-3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta2O5-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.
Collapse
Affiliation(s)
- Melanie Welden
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (M.W.); (F.V.)
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany;
| | | | - Farnoosh Vahidpour
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (M.W.); (F.V.)
| | - Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany; (T.W.); (C.W.)
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany;
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany; (T.W.); (C.W.)
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (M.W.); (F.V.)
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Correspondence:
| |
Collapse
|
11
|
Poghossian A, Welden R, Buniatyan VV, Schöning MJ. An Array of On-Chip Integrated, Individually Addressable Capacitive Field-Effect Sensors with Control Gate: Design and Modelling. SENSORS 2021; 21:s21186161. [PMID: 34577368 PMCID: PMC8473037 DOI: 10.3390/s21186161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/21/2022]
Abstract
The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed.
Collapse
Affiliation(s)
- Arshak Poghossian
- MicroNanoBio, Liebigstr. 4, 40479 Düsseldorf, Germany
- Correspondence: (A.P.); (M.J.S.)
| | - Rene Welden
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany;
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Vahe V. Buniatyan
- Department of Microelectronics and Biomedical Devices, National Polytechnic University of Armenia (NPUA), 105 Teryan St., NPUA, Yerevan 0009, Armenia;
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany;
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Correspondence: (A.P.); (M.J.S.)
| |
Collapse
|
12
|
Jablonski M, Poghossian A, Keusgen M, Wege C, Schöning MJ. Detection of plant virus particles with a capacitive field-effect sensor. Anal Bioanal Chem 2021; 413:5669-5678. [PMID: 34244834 PMCID: PMC8270236 DOI: 10.1007/s00216-021-03448-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 10/25/2022]
Abstract
Plant viruses are major contributors to crop losses and induce high economic costs worldwide. For reliable, on-site and early detection of plant viral diseases, portable biosensors are of great interest. In this study, a field-effect SiO2-gate electrolyte-insulator-semiconductor (EIS) sensor was utilized for the label-free electrostatic detection of tobacco mosaic virus (TMV) particles as a model plant pathogen. The capacitive EIS sensor has been characterized regarding its TMV sensitivity by means of constant-capacitance method. The EIS sensor was able to detect biotinylated TMV particles from a solution with a TMV concentration as low as 0.025 nM. A good correlation between the registered EIS sensor signal and the density of adsorbed TMV particles assessed from scanning electron microscopy images of the SiO2-gate chip surface was observed. Additionally, the isoelectric point of the biotinylated TMV particles was determined via zeta potential measurements and the influence of ionic strength of the measurement solution on the TMV-modified EIS sensor signal has been studied.
Collapse
Affiliation(s)
- Melanie Jablonski
- Institute of Nano- and Biotechnologies, FH Aachen, Heinrich-Mußmann-Str. 1, 52428, Jülich, Germany
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6-10, 35032, Marburg, Germany
| | | | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6-10, 35032, Marburg, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies, FH Aachen, Heinrich-Mußmann-Str. 1, 52428, Jülich, Germany.
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
13
|
Synthesis Strategy of Reversible Circuits on DNA Computers. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA computers and quantum computers are gaining attention as alternatives to classical digital computers. DNA is a biological material that can be reprogrammed to perform computing functions. Quantum computing performs reversible computations by nature based on the laws of quantum mechanics. In this paper, DNA computing and reversible computing are combined to propose novel theoretical methods to implement reversible gates and circuits in DNA computers based on strand displacement reactions, since the advantages of reversible logic gates can be exploited to improve the capabilities and functionalities of DNA computers. This paper also proposes a novel universal reversible gate library (URGL) for synthesizing n-bit reversible circuits using DNA to reduce the average length and cost of the constructed circuits when compared with previous methods. Each n-bit URGL contains building blocks to generate all possible permutations of a symmetric group of degree n. Our proposed group (URGL) in the paper is a permutation group. The proposed implementation methods will improve the efficiency of DNA computer computations as the results of DNA implementations are better in terms of quantum cost, DNA cost, and circuit length.
Collapse
|
14
|
Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles. MICROMACHINES 2021; 12:mi12010057. [PMID: 33418949 PMCID: PMC7825068 DOI: 10.3390/mi12010057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta2O5-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta2O5-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles.
Collapse
|
15
|
Poghossian A, Schöning MJ. Capacitive Field-Effect EIS Chemical Sensors and Biosensors: A Status Report. SENSORS 2020; 20:s20195639. [PMID: 33023133 PMCID: PMC7584023 DOI: 10.3390/s20195639] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed.
Collapse
Affiliation(s)
- Arshak Poghossian
- MicroNanoBio, Liebigstr. 4, 40479 Düsseldorf, Germany
- Correspondence: (A.P.); (M.J.S.)
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany
- Correspondence: (A.P.); (M.J.S.)
| |
Collapse
|
16
|
|
17
|
Adachi T, Kitazumi Y, Shirai O, Kano K. Development Perspective of Bioelectrocatalysis-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4826. [PMID: 32858975 PMCID: PMC7506675 DOI: 10.3390/s20174826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
Abstract
Bioelectrocatalysis provides the intrinsic catalytic functions of redox enzymes to nonspecific electrode reactions and is the most important and basic concept for electrochemical biosensors. This review starts by describing fundamental characteristics of bioelectrocatalytic reactions in mediated and direct electron transfer types from a theoretical viewpoint and summarizes amperometric biosensors based on multi-enzymatic cascades and for multianalyte detection. The review also introduces prospective aspects of two new concepts of biosensors: mass-transfer-controlled (pseudo)steady-state amperometry at microelectrodes with enhanced enzymatic activity without calibration curves and potentiometric coulometry at enzyme/mediator-immobilized biosensors for absolute determination.
Collapse
|
18
|
Kim DM, Yoo SM. DNA-modifying enzyme reaction-based biosensors for disease diagnostics: recent biotechnological advances and future perspectives. Crit Rev Biotechnol 2020; 40:787-803. [DOI: 10.1080/07388551.2020.1764485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
19
|
PQQ-GDH - Structure, function and application in bioelectrochemistry. Bioelectrochemistry 2020; 134:107496. [PMID: 32247165 DOI: 10.1016/j.bioelechem.2020.107496] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
This review summarizes the basic features of the PQQ-GDH enzyme as one of the sugar converting biocatalysts. Focus is on the membrane -bound and the soluble form. Furthermore, the main principles of enzymatic catalysis as well as studies on the physiological importance are reviewed. A short overview is given on developments in protein engineering. The major part, however, deals with the different fields of application in bioelectrochemistry. This includes approaches for enzyme-electrode communication such as direct electron transfer, mediator-based systems, redox polymers or conducting polymers and holoenzyme reconstitution, and covers applied areas such as biosensing, biofuel cells, recycling schemes, enzyme competition, light-directed sensing, switchable detection schemes, logical operations by enzyme electrodes and immune sensing.
Collapse
|
20
|
Bollella P, Edwardraja S, Guo Z, Alexandrov K, Katz E. Control of allosteric electrochemical protein switch using magnetic signals. Chem Commun (Camb) 2020; 56:9206-9209. [PMID: 32662462 DOI: 10.1039/d0cc04284f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The artificial chimeric enzyme with allosteric features was activated with a magnetic field applied at a distance.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance
- ARC Centre of Excellence in Synthetic Biology
- Centre for Agriculture and the Bioeconomy
- Institute of Health and Biomedical Innovation
- Institute for Future Environments
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance
- ARC Centre of Excellence in Synthetic Biology
- Centre for Agriculture and the Bioeconomy
- Institute of Health and Biomedical Innovation
- Institute for Future Environments
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
21
|
Yoon J, Lee T, Choi JW. Development of Bioelectronic Devices Using Bionanohybrid Materials for Biocomputation System. MICROMACHINES 2019; 10:mi10050347. [PMID: 31137779 PMCID: PMC6562802 DOI: 10.3390/mi10050347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Bioelectronic devices have been researched widely because of their potential applications, such as information storage devices, biosensors, diagnosis systems, organism-mimicking processing system cell chips, and neural-mimicking systems. Introducing biomolecules including proteins, DNA, and RNA on silicon-based substrates has shown the powerful potential for granting various functional properties to chips, including specific functional electronic properties. Until now, to extend and improve their properties and performance, organic and inorganic materials such as graphene and gold nanoparticles have been combined with biomolecules. In particular, bionanohybrid materials that are composed of biomolecules and other materials have been researched because they can perform core roles of information storage and signal processing in bioelectronic devices using the unique properties derived from biomolecules. This review discusses bioelectronic devices related to computation systems such as biomemory, biologic gates, and bioprocessors based on bionanohybrid materials with a selective overview of recent research. This review contains a new direction for the development of bioelectronic devices to develop biocomputation systems using biomolecules in the future.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea.
| |
Collapse
|
22
|
Poghossian A, Geissler H, Schöning MJ. Rapid methods and sensors for milk quality monitoring and spoilage detection. Biosens Bioelectron 2019; 140:111272. [PMID: 31170654 DOI: 10.1016/j.bios.2019.04.040] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 11/24/2022]
Abstract
Monitoring of food quality, in particular, milk quality, is critical in order to maintain food safety and human health. To guarantee quality and safety of milk products and at the same time deliver those as soon as possible, rapid analysis methods as well as sensitive, reliable, cost-effective, easy-to-use devices and systems for process control and milk spoilage detection are needed. In this paper, we review different rapid methods, sensors and commercial systems for milk spoilage and microorganism detection. The main focus lies on chemical sensors and biosensors for detection/monitoring of the well-known indicators associated with bacterial growth and milk spoilage such as changes in pH value, conductivity/impedance, adenosine triphosphate level, concentration of dissolved oxygen and produced CO2. These sensors offer several advantages, like high sensitivity, fast response time, minimal sample preparation, miniaturization and ability for real-time monitoring of milk spoilage. In addition, electronic-nose- and electronic-tongue systems for the detection of characteristic volatile and non-volatile compounds related to microbial growth and milk spoilage are described. Finally, wireless sensors and color indicators for intelligent packaging are discussed.
Collapse
Affiliation(s)
- Arshak Poghossian
- Institute of Nano- and Biotechnologies, FH Aachen, Campus Jülich, 52428, Jülich, Germany.
| | | | - Michael J Schöning
- Institute of Nano- and Biotechnologies, FH Aachen, Campus Jülich, 52428, Jülich, Germany.
| |
Collapse
|
23
|
Ferrand-Drake Del Castillo G, Koenig M, Müller M, Eichhorn KJ, Stamm M, Uhlmann P, Dahlin A. Enzyme Immobilization in Polyelectrolyte Brushes: High Loading and Enhanced Activity Compared to Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3479-3489. [PMID: 30742441 DOI: 10.1021/acs.langmuir.9b00056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Catalysis by enzymes on surfaces has many applications. However, strategies for efficient enzyme immobilization with preserved activity are still in need of further development. In this work, we investigate polyelectrolyte brushes prepared by both grafting-to and grafting-from with the aim to achieve high catalytic activity. For comparison, self-assembled monolayers that bind enzymes with the same chemical interactions are included. We use the model enzyme glucose oxidase and two kinds of polymers: anionic poly(acrylic acid) and cationic poly(diethylamino)methyl methacrylate. Surface plasmon resonance and spectroscopic ellipsometry are used for accurate quantification of surface coverage. Besides binding more enzymes, the "3D-like" brush environment enhances the specific activity compared to immobilization on self-assembled monolayers. For grafting-from brushes, multilayers of enzymes were spontaneously and irreversibly immobilized without conjugation chemistry. When the pH was between the pI of the enzyme and the p Ka of the polymer, binding was considerable (thousands of ng/cm2 or up to 50% of the polymer mass), even at physiological ionic strength. However, binding was observed also when the brushes were neutrally charged. For acidic brushes (both grafting-to and grafting-from), the activity was higher for covalent immobilization compared to noncovalent. For grafting-from brushes, a fully preserved specific activity compared to enzymes in the liquid bulk was achieved, both with covalent (acidic brush) and noncovalent (basic brush) immobilization. Catalytic activity of hundreds of pmol cm-2 s-1 was easily obtained for polybasic brushes only tens of nanometers in dry thickness. This study provides new insights for designing functional interfaces based on enzymatic catalysis.
Collapse
Affiliation(s)
| | - Meike Koenig
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Martin Müller
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Technische Universität Dresden, Physical Chemistry of Polymer Materials, Dresden , Germany
| | - Klaus-Jochen Eichhorn
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Manfred Stamm
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Technische Universität Dresden, Physical Chemistry of Polymer Materials, Dresden , Germany
| | - Petra Uhlmann
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Department of Chemistry , University of Nebraska-Lincoln , Hamilton Hall, 639 North 12th Street , Lincoln , Nebraska 68588 , United States
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 41296 Göteborg , Sweden
| |
Collapse
|
24
|
Hoque J, Sangaj N, Varghese S. Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. Macromol Biosci 2019; 19:e1800259. [PMID: 30295012 PMCID: PMC6333493 DOI: 10.1002/mabi.201800259] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Supramolecular hydrogels are a class of self-assembled network structures formed via non-covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol-gel and/or gel-sol transition upon subtle changes in their surroundings. Such stimuli-responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli-responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self-assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC,
| | - Nivedita Sangaj
- Department of Orthopaedic Surgery, Duke University, Durham 27710, NC
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, Department of Mechanical Engineering and Materials Science, Duke University, Durham 27710, NC
| |
Collapse
|
25
|
Han Y, Niu Y, Liu M, Niu F, Xu Y. A rational strategy to develop a boron nitride quantum dot-based molecular logic gate and fluorescent assay of alkaline phosphatase activity. J Mater Chem B 2019; 7:897-902. [DOI: 10.1039/c8tb02948b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
By comparing the percentage of FL quenching and recovery of the BNQDs, a Fe3+-mediated FL quenching of BNQDs system was rationally designed for efficient ALP assay. Moreover, the aforementioned ensemble was exploited to newly construct a 2D-QD-based INH logic gate.
Collapse
Affiliation(s)
- Yaqian Han
- Institute for Graphene Applied Technology Innovation
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yusheng Niu
- College of Life Sciences
- Qingdao University
- Qingdao 266003
- China
| | - Mengli Liu
- Institute for Graphene Applied Technology Innovation
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Fushang Niu
- Institute for Graphene Applied Technology Innovation
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yuanhong Xu
- Institute for Graphene Applied Technology Innovation
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
26
|
Conzuelo F, Marković N, Ruff A, Schuhmann W. Über die Leerlaufspannung von Biobrennstoffzellen: Nernstverschiebung bei pseudokapazitiven Elektroden. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Felipe Conzuelo
- Analytische Chemie - Zentrum für Elektrochemie (CES); Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Deutschland
| | - Nikola Marković
- Analytische Chemie - Zentrum für Elektrochemie (CES); Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Deutschland
| | - Adrian Ruff
- Analytische Chemie - Zentrum für Elektrochemie (CES); Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Deutschland
| | - Wolfgang Schuhmann
- Analytische Chemie - Zentrum für Elektrochemie (CES); Fakultät für Chemie und Biochemie; Ruhr-Universität Bochum; Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
27
|
Construction of Multiple Switchable Sensors and Logic Gates Based on Carboxylated Multi-Walled Carbon Nanotubes/Poly( N, N-Diethylacrylamide). SENSORS 2018; 18:s18103358. [PMID: 30297654 PMCID: PMC6211007 DOI: 10.3390/s18103358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
In this work, binary hydrogel films based on carboxylated multi-walled carbon nanotubes/poly(N,N-diethylacrylamide) (c-MWCNTs/PDEA) were successfully polymerized and assembled on a glassy carbon (GC) electrode surface. The electroactive drug probes matrine and sophoridine in solution showed reversible thermal-, salt-, methanol- and pH-responsive switchable cyclic voltammetric (CV) behaviors at the film electrodes. The control experiments showed that the pH-responsive property of the system could be ascribed to the drug components of the solutions, whereas the thermal-, salt- and methanol-sensitive behaviors were attributed to the PDEA constituent of the films. The CV signals particularly, of matrine and sophoridine were significantly amplified by the electrocatalysis of c-MWCNTs in the films at 1.02 V and 0.91 V, respectively. Moreover, the addition of esterase, urease, ethyl butyrate, and urea to the solution also changed the pH of the system, and produced similar CV peaks as with dilution by HCl or NaOH. Based on these experiments, a 6-input/5-output logic gate system and 2-to-1 encoder were successfully constructed. The present system may lead to the development of novel types of molecular computing systems.
Collapse
|
28
|
An enzymatic calculation system based on electrochemiluminescence and fluorescence of luminol and cyclic voltammetry of ferrocene methanol. Biosens Bioelectron 2018; 118:44-50. [DOI: 10.1016/j.bios.2018.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
|
29
|
Conzuelo F, Marković N, Ruff A, Schuhmann W. The Open Circuit Voltage in Biofuel Cells: Nernstian Shift in Pseudocapacitive Electrodes. Angew Chem Int Ed Engl 2018; 57:13681-13685. [DOI: 10.1002/anie.201808450] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Felipe Conzuelo
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Faculty of Chemistry and Biochemistry; Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| | - Nikola Marković
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Faculty of Chemistry and Biochemistry; Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| | - Adrian Ruff
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Faculty of Chemistry and Biochemistry; Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Faculty of Chemistry and Biochemistry; Ruhr-Universität Bochum; Universitätsstrasse 150 44780 Bochum Germany
| |
Collapse
|
30
|
Molinnus D, Muschallik L, Gonzalez LO, Bongaerts J, Wagner T, Selmer T, Siegert P, Keusgen M, Schöning MJ. Development and characterization of a field-effect biosensor for the detection of acetoin. Biosens Bioelectron 2018; 115:1-6. [PMID: 29783080 DOI: 10.1016/j.bios.2018.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 11/19/2022]
Abstract
A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO2/Ta2O5/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.
Collapse
Affiliation(s)
- Denise Molinnus
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany; Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Wilhelm-Roser-Str. 2, 35032 Marburg, Germany
| | - Lukas Muschallik
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany
| | - Laura Osorio Gonzalez
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany
| | - Torsten Wagner
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany
| | - Thorsten Selmer
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Wilhelm-Roser-Str. 2, 35032 Marburg, Germany
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB), FH Aachen, Campus Jülich, Heinrich-Mußmannstr. 1, 52428 Jülich, Germany; Institute of Complex Systems 8 (ICS-8), Research Center Jülich, Wilhelm-Johnen-Str. 6, 52425 Jülich, Germany.
| |
Collapse
|
31
|
A resettable and reprogrammable keypad lock based on electrochromic Prussian blue films and biocatalysis of immobilized glucose oxidase in a bipolar electrode system. Biosens Bioelectron 2018; 99:163-169. [DOI: 10.1016/j.bios.2017.07.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/08/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
|
32
|
Filipov Y, Gamella M, Katz E. Nano-species Release System Activated by Enzyme-based XOR Logic Gate. ELECTROANAL 2017. [DOI: 10.1002/elan.201700742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yaroslav Filipov
- Department of Chemistry and Biomolecular Science
- Department of Physics; Clarkson University; Potsdam, NY 13699 USA
| | | | - Evgeny Katz
- Department of Chemistry and Biomolecular Science
| |
Collapse
|
33
|
Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthc Mater 2017; 6. [PMID: 29045017 DOI: 10.1002/adhm.201700789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD 21228 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
34
|
Lu JY, Zhang XX, Huang WT, Zhu QY, Ding XZ, Xia LQ, Luo HQ, Li NB. Boolean Logic Tree of Label-Free Dual-Signal Electrochemical Aptasensor System for Biosensing, Three-State Logic Computation, and Keypad Lock Security Operation. Anal Chem 2017; 89:9734-9741. [PMID: 28809114 DOI: 10.1021/acs.analchem.7b01498] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.
Collapse
Affiliation(s)
- Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Xin Xing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Hong Qun Luo
- Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| |
Collapse
|
35
|
Massey M, Medintz IL, Ancona MG, Algar WR. Time-Gated FRET and DNA-Based Photonic Molecular Logic Gates: AND, OR, NAND, and NOR. ACS Sens 2017; 2:1205-1214. [PMID: 28787151 DOI: 10.1021/acssensors.7b00355] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular logic devices (MLDs) constructed from DNA are promising for applications in bioanalysis, computing, and other applications requiring Boolean logic. These MLDs accept oligonucleotide inputs and generate fluorescence output through changes in structure. Although fluorescent dyes are most common in MLD designs, nontraditional luminescent materials with unique optical properties can potentially enhance MLD capabilities. In this context, luminescent lanthanide complexes (LLCs) have been largely overlooked. Here, we demonstrate a set of high-contrast DNA photonic logic gates based on toehold-mediated strand displacement and time-gated FRET. The gates include NAND, NOR, OR, and AND designs that accept two unlabeled target oligonucleotide sequences as inputs. Bright "true" output states utilize time-gated, FRET-sensitized emission from an Alexa Fluor 546 (A546) dye acceptor paired with a luminescent terbium cryptate (Tb) donor. Dark "false" output states are generated through either displacement of the A546, or through competitive and sequential quenching of the Tb or A546 by a dark quencher. Time-gated FRET and the long luminescence lifetime and spectrally narrow emission lines of the Tb donor enable 4-10-fold contrast between Boolean outputs, ≤10% signal variation for a common output, multicolor implementation of two logic gates in parallel, and effective performance in buffer and serum. These metrics exceed those reported for many other logic gate designs with only fluorescent dyes and with other non-LLC materials. Preliminary three-input AND and NAND gates are also demonstrated. The powerful combination of an LLC FRET donor with DNA-based logic gates is anticipated to have many future applications in bioanalysis.
Collapse
Affiliation(s)
- Melissa Massey
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
36
|
User Authorization at the Molecular Scale. Chemphyschem 2017; 18:1678-1687. [DOI: 10.1002/cphc.201700506] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/01/2017] [Indexed: 12/31/2022]
|
37
|
Molinnus D, Poghossian A, Keusgen M, Katz E, Schöning MJ. Coupling of Biomolecular Logic Gates with Electronic Transducers: From Single Enzyme Logic Gates to Sense/Act/Treat Chips. ELECTROANAL 2017. [DOI: 10.1002/elan.201700208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Denise Molinnus
- Institute of Nano- and Biotechnologies (INB); FH Aachen; Campus Jülich Heinrich-Mußmannstr. 1 52428 Jülich Germany
- Institute of Pharmaceutical Chemistry; Philipps-University Marburg; Wilhelm-Roser-Str. 2 35032 Marburg Germany
| | - Arshak Poghossian
- Institute of Nano- and Biotechnologies (INB); FH Aachen; Campus Jülich Heinrich-Mußmannstr. 1 52428 Jülich Germany
- Peter Grünberg Institute (PGI-8, Bioelectronics); Research Center Jülich; Wilhelm-Johnen-Str. 6 52425 Jülich Germany
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry; Philipps-University Marburg; Wilhelm-Roser-Str. 2 35032 Marburg Germany
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science; Clarkson University, NY; 13699-5810 Potsdam USA
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies (INB); FH Aachen; Campus Jülich Heinrich-Mußmannstr. 1 52428 Jülich Germany
- Peter Grünberg Institute (PGI-8, Bioelectronics); Research Center Jülich; Wilhelm-Johnen-Str. 6 52425 Jülich Germany
| |
Collapse
|
38
|
Enzyme‐Based Logic Gates and Networks with Output Signals Analyzed by Various Methods. Chemphyschem 2017; 18:1688-1713. [DOI: 10.1002/cphc.201601402] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 01/16/2023]
|
39
|
Campbell EA, Peterson E, Kolpashchikov DM. Self-Assembling Molecular Logic Gates Based on DNA Crossover Tiles. Chemphyschem 2017; 18:1730-1734. [PMID: 28234410 DOI: 10.1002/cphc.201700109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 02/02/2023]
Abstract
DNA-based computational hardware has attracted ever-growing attention due to its potential to be useful in the analysis of complex mixtures of biological markers. Here we report the design of self-assembling logic gates that recognize DNA inputs and assemble into crossover tiles when the output signal is high; the crossover structures disassemble to form separate DNA stands when the output is low. The output signal can be conveniently detected by fluorescence using a molecular beacon probe as a reporter. AND, NOT, and OR logic gates were designed. We demonstrate that the gates can connect to each other to produce other logic functions.
Collapse
Affiliation(s)
- Eleanor A Campbell
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Evan Peterson
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, College of Medicine and National Center for Forensic Science, University of Central Florida, Orlando, FL, 32816, USA)An invited contribution to a Special Issue on Molecular Logic
| |
Collapse
|