1
|
Impact of low-frequency repetitive transcranial magnetic stimulation on functional network connectivity in schizophrenia patients with auditory verbal hallucinations. Psychiatry Res 2023; 320:114974. [PMID: 36587467 DOI: 10.1016/j.psychres.2022.114974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022]
Abstract
Auditory verbal hallucinations (AVH) are a key symptom of schizophrenia. Low-frequency repetitive transcranial magnetic stimulation (rTMS) has shown potential in the treatment of AVH. However, the underlying neural mechanismof rTMS in the treatment of AVH remains largely unknown. In this study, we used a static and dynamic functional network connectivity approach to investigate the connectivity changes among the brain functional networks in schizophrenia patients with AVH receiving 1 Hz rTMS treatment. The static functional network connectivity (sFNC) analysis revealed that patients at baseline had significantly decreased connectivity between the default mode network (DMN) and language network (LAN), and within the executive control network (ECN) as well as within the auditory network (AUD) compared to controls. However, the abnormal network connectivity patterns were normalized or restored after rTMS treatment in patients, instead of increased connectivity between the ECN and LAN, as well as within the AUD. Moreover, the dynamic functional network connectivity (dFNC) analysis showed that the patients at baseline spent more time in this state that was characterized by strongly negative connectivity between the ENC and AUD, as well as within the AUD relative to controls. While after rTMS treatment, the patients showed a higher occurrence rate in this state that was characterized by strongly positive connectivity among the LAN, DMN, and ENC, as well as within the ECN. In addition, the altered static and dynamic connectivity properties were associated with reduced severity of clinical symptoms. Both sFNC and dFNC analyses provided complementary information and suggested that low-frequency rTMS treatment could induce intrinsic functional network alternations and contribute to improvements in clinical symptoms in patients with AVH.
Collapse
|
2
|
Ebrahim AA, Tungu A. Neuromodulation for temporal lobe epilepsy: a scoping review. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractTemporal lobe epilepsy (TLE) is difficult to treat as it is often refractory to treatment. Apart from traditional medical treatment, surgical resection is also a choice of treatment, but it may be associated with significant cognitive deficits. As a result, treatment strategies using targeted and adjustable stimulation of malfunctioning brain circuits have been developed. These neuromodulatory therapies using approaches of electric and magnetic neuromodulation are already in clinical use for refractory epilepsy while others such as optogenetics, chemo-genetics and ultrasound modulation are being tested in pre-clinical TLE animal models. In this review, we conducted an in-depth literature search on the clinically available neuromodulatory approaches for TLE, focusing on the possible mechanism of action and the clinical outcomes including adverse effects. Techniques that are currently explored in preclinical animal models but may have therapeutic applications in future are also discussed. The efficacy and subsequent adverse effects vary among the different neuromodulatory approaches and some still have unclear mechanisms of action in TLE treatment. Further studies evaluating the benefits and potential limitations are needed. Continued research on the therapeutic mechanisms and the epileptic brain network is critical for improving therapies for TLE.
Collapse
|
3
|
Nowakowska M, Üçal M, Charalambous M, Bhatti SFM, Denison T, Meller S, Worrell GA, Potschka H, Volk HA. Neurostimulation as a Method of Treatment and a Preventive Measure in Canine Drug-Resistant Epilepsy: Current State and Future Prospects. Front Vet Sci 2022; 9:889561. [PMID: 35782557 PMCID: PMC9244381 DOI: 10.3389/fvets.2022.889561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Modulation of neuronal activity for seizure control using various methods of neurostimulation is a rapidly developing field in epileptology, especially in treatment of refractory epilepsy. Promising results in human clinical practice, such as diminished seizure burden, reduced incidence of sudden unexplained death in epilepsy, and improved quality of life has brought neurostimulation into the focus of veterinary medicine as a therapeutic option. This article provides a comprehensive review of available neurostimulation methods for seizure management in drug-resistant epilepsy in canine patients. Recent progress in non-invasive modalities, such as repetitive transcranial magnetic stimulation and transcutaneous vagus nerve stimulation is highlighted. We further discuss potential future advances and their plausible application as means for preventing epileptogenesis in dogs.
Collapse
Affiliation(s)
- Marta Nowakowska
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Muammer Üçal
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Sofie F. M. Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Small Animal Teaching Hospital, Ghent University, Merelbeke, Belgium
| | - Timothy Denison
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Heidrun Potschka
- Faculty of Veterinary Medicine, Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
4
|
Stengel C, Sanches C, Toba MN, Valero-Cabré A. Things you wanted to know (but might have been afraid to ask) about how and why to explore and modulate brain plasticity with non-invasive neurostimulation technologies. Rev Neurol (Paris) 2022; 178:826-844. [PMID: 35623940 DOI: 10.1016/j.neurol.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022]
Abstract
Brain plasticity can be defined as the ability of local and extended neural systems to organize either the structure and/or the function of their connectivity patterns to better adapt to changes of our inner/outer environment and optimally respond to new challenging behavioral demands. Plasticity has been traditionally conceived as a spontaneous phenomenon naturally occurring during pre and postnatal development, tied to learning and memory processes, or enabled following neural damage and their rehabilitation. Such effects can be easily observed and measured but remain hard to harness or to tame 'at will'. Non-invasive brain stimulation (NIBS) technologies offer the possibility to engage plastic phenomena, and use this ability to characterize the relationship between brain regions, networks and their functional connectivity patterns with cognitive process or disease symptoms, to estimate cortical malleability, and ultimately contribute to neuropsychiatric therapy and rehabilitation. NIBS technologies are unique tools in the field of fundamental and clinical research in humans. Nonetheless, their abilities (and also limitations) remain rather unknown and in the hands of a small community of experts, compared to widely established methods such as functional neuroimaging (fMRI) or electrophysiology (EEG, MEG). In the current review, we first introduce the features, mechanisms of action and operational principles of the two most widely used NIBS methods, Transcranial Magnetic Stimulation (TMS) and Transcranial Current Stimulation (tCS), for exploratory or therapeutic purposes, emphasizing their bearings on neural plasticity mechanisms. In a second step, we walk the reader through two examples of recent domains explored by our team to further emphasize the potential and limitations of NIBS to either explore or improve brain function in healthy individuals and neuropsychiatric populations. A final outlook will identify a series of future topics of interest that can foster progress in the field and achieve more effective manipulation of brain plasticity and interventions to explore and improve cognition and treat the symptoms of neuropsychiatric diseases.
Collapse
Affiliation(s)
- C Stengel
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, office 3.028, Paris Brain Institute (Institut du Cerveau), CNRS UMR 7225, Inserm UMRS 1127 and Sorbonne Université, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - C Sanches
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, office 3.028, Paris Brain Institute (Institut du Cerveau), CNRS UMR 7225, Inserm UMRS 1127 and Sorbonne Université, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - M N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France
| | - A Valero-Cabré
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, office 3.028, Paris Brain Institute (Institut du Cerveau), CNRS UMR 7225, Inserm UMRS 1127 and Sorbonne Université, 47, boulevard de l'Hôpital, 75013 Paris, France; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 700, Albany Street, Boston, MA W-702A, USA; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| |
Collapse
|
5
|
Precise Modulation Strategies for Transcranial Magnetic Stimulation: Advances and Future Directions. Neurosci Bull 2021; 37:1718-1734. [PMID: 34609737 DOI: 10.1007/s12264-021-00781-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a popular modulatory technique for the noninvasive diagnosis and therapy of neurological and psychiatric diseases. Unfortunately, current modulation strategies are only modestly effective. The literature provides strong evidence that the modulatory effects of TMS vary depending on device components and stimulation protocols. These differential effects are important when designing precise modulatory strategies for clinical or research applications. Developments in TMS have been accompanied by advances in combining TMS with neuroimaging techniques, including electroencephalography, functional near-infrared spectroscopy, functional magnetic resonance imaging, and positron emission tomography. Such studies appear particularly promising as they may not only allow us to probe affected brain areas during TMS but also seem to predict underlying research directions that may enable us to precisely target and remodel impaired cortices or circuits. However, few precise modulation strategies are available, and the long-term safety and efficacy of these strategies need to be confirmed. Here, we review the literature on possible technologies for precise modulation to highlight progress along with limitations with the goal of suggesting future directions for this field.
Collapse
|
6
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Momi D, Ozdemir RA, Tadayon E, Boucher P, Di Domenico A, Fasolo M, Shafi MM, Pascual-Leone A, Santarnecchi E. Perturbation of resting-state network nodes preferentially propagates to structurally rather than functionally connected regions. Sci Rep 2021; 11:12458. [PMID: 34127688 PMCID: PMC8203778 DOI: 10.1038/s41598-021-90663-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
Combining Transcranial Magnetic Stimulation (TMS) with electroencephalography (EEG) offers the opportunity to study signal propagation dynamics at high temporal resolution in the human brain. TMS pulse induces a local effect which propagates across cortical networks engaging distant cortical and subcortical sites. However, the degree of propagation supported by the structural compared to functional connectome remains unclear. Clarifying this issue would help tailor TMS interventions to maximize target engagement. The goal of this study was to establish the contribution of functional and structural connectivity in predicting TMSinduced
signal propagation after perturbation of two distinct brain networks. For this purpose,
24 healthy individuals underwent two identical TMS-EEG visits where neuronavigated TMS pulses were delivered to nodes of the default mode network (DMN) and the dorsal attention network (DAN). The functional and structural connectivity derived from each individual stimulation spot were characterized via functional magnetic resonance imaging (fMRI) and Diffusion Weighted Imaging (DWI), and signal propagation across these two metrics was compared. Direct comparison between the signal extracted from brain regions either functionally or structurally connected to the stimulation sites, shows a stronger activation over
cortical areas connected via white matter pathways, with a minor contribution of functional projections. This pattern was not observed when analyzing spontaneous resting state EEG activity. Overall, results suggest that structural links can predict network-level response to perturbation more accurately than functional connectivity. Additionally, DWI-based estimation of propagation patterns can be used to estimate off-target engagement of other networks and possibly guide target selection to maximize specificity.
Collapse
Affiliation(s)
- Davide Momi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Recep A Ozdemir
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ehsan Tadayon
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pierre Boucher
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences , University of Chieti-Pescara, Chieti, Italy
| | - Mirco Fasolo
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Mouhsin M Shafi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Guttmann Brain Health Institute, Barcelona, Spain
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. .,Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.
| |
Collapse
|
8
|
Theta-burst transcranial magnetic stimulation induced functional connectivity changes between dorsolateral prefrontal cortex and default-mode-network. Brain Imaging Behav 2021; 14:1955-1963. [PMID: 31197581 DOI: 10.1007/s11682-019-00139-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Functional connectivity (FC) is fundamental to brain function and has been implicated in many neuropsychological and neuropsychiatric disorders. It is then of great scientific and clinical interest to find a non-invasive approach to modulate FC. Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulational tool that can affect the target region and remote brain areas. While the distributed effects of TMS are postulated to be through either structural or functional connectivity, an understudied but of great scientific interest question is whether TMS can change the FC between these regions. The purpose of this study was to address this question in normal healthy brain using TMS with continuous theta burst stimulation (cTBS) pulses, which are known to have long-lasting inhibition function. FC was calculated from resting state fMRI before and after real and control (SHAM) stimulation. Compared to SHAM, the repetitive TMS (rTMS) reduces FC between the cTBS target: the left dorsolateral prefrontal cortex (lDLPFC) and brain regions within the default mode network (DMN), proving the effects of rTMS on FC. The reduction of FC might be the results of the inhibitory effects of cTBS rTMS.
Collapse
|
9
|
Causal modulation of right hemisphere fronto-parietal phase synchrony with Transcranial Magnetic Stimulation during a conscious visual detection task. Sci Rep 2021; 11:3807. [PMID: 33589681 PMCID: PMC7884390 DOI: 10.1038/s41598-020-79812-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Correlational evidence in non-human primates has reported increases of fronto-parietal high-beta (22-30 Hz) synchrony during the top-down allocation of visuo-spatial attention. But may inter-regional synchronization at this specific frequency band provide a causal mechanism by which top-down attentional processes facilitate conscious visual perception? To address this question, we analyzed electroencephalographic (EEG) signals from a group of healthy participants who performed a conscious visual detection task while we delivered brief (4 pulses) rhythmic (30 Hz) or random bursts of Transcranial Magnetic Stimulation (TMS) to the right Frontal Eye Field (FEF) prior to the onset of a lateralized target. We report increases of inter-regional synchronization in the high-beta band (25-35 Hz) between the electrode closest to the stimulated region (the right FEF) and right parietal EEG leads, and increases of local inter-trial coherence within the same frequency band over bilateral parietal EEG contacts, both driven by rhythmic but not random TMS patterns. Such increases were accompained by improvements of conscious visual sensitivity for left visual targets in the rhythmic but not the random TMS condition. These outcomes suggest that high-beta inter-regional synchrony can be modulated non-invasively and that high-beta oscillatory activity across the right dorsal fronto-parietal network may contribute to the facilitation of conscious visual perception. Our work supports future applications of non-invasive brain stimulation to restore impaired visually-guided behaviors by operating on top-down attentional modulatory mechanisms.
Collapse
|
10
|
Sanches C, Stengel C, Godard J, Mertz J, Teichmann M, Migliaccio R, Valero-Cabré A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front Aging Neurosci 2021; 12:578339. [PMID: 33551785 PMCID: PMC7854576 DOI: 10.3389/fnagi.2020.578339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Low birth rates and increasing life expectancy experienced by developed societies have placed an unprecedented pressure on governments and the health system to deal effectively with the human, social and financial burden associated to aging-related diseases. At present, ∼24 million people worldwide suffer from cognitive neurodegenerative diseases, a prevalence that doubles every five years. Pharmacological therapies and cognitive training/rehabilitation have generated temporary hope and, occasionally, proof of mild relief. Nonetheless, these approaches are yet to demonstrate a meaningful therapeutic impact and changes in prognosis. We here review evidence gathered for nearly a decade on non-invasive brain stimulation (NIBS), a less known therapeutic strategy aiming to limit cognitive decline associated with neurodegenerative conditions. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, two of the most popular NIBS technologies, use electrical fields generated non-invasively in the brain to long-lastingly enhance the excitability/activity of key brain regions contributing to relevant cognitive processes. The current comprehensive critical review presents proof-of-concept evidence and meaningful cognitive outcomes of NIBS in eight of the most prevalent neurodegenerative pathologies affecting cognition: Alzheimer's Disease, Parkinson's Disease, Dementia with Lewy Bodies, Primary Progressive Aphasias (PPA), behavioral variant of Frontotemporal Dementia, Corticobasal Syndrome, Progressive Supranuclear Palsy, and Posterior Cortical Atrophy. We analyzed a total of 70 internationally published studies: 33 focusing on Alzheimer's disease, 19 on PPA and 18 on the remaining neurodegenerative pathologies. The therapeutic benefit and clinical significance of NIBS remains inconclusive, in particular given the lack of a sufficient number of double-blind placebo-controlled randomized clinical trials using multiday stimulation regimes, the heterogeneity of the protocols, and adequate behavioral and neuroimaging response biomarkers, able to show lasting effects and an impact on prognosis. The field remains promising but, to make further progress, research efforts need to take in account the latest evidence of the anatomical and neurophysiological features underlying cognitive deficits in these patient populations. Moreover, as the development of in vivo biomarkers are ongoing, allowing for an early diagnosis of these neuro-cognitive conditions, one could consider a scenario in which NIBS treatment will be personalized and made part of a cognitive rehabilitation program, or useful as a potential adjunct to drug therapies since the earliest stages of suh diseases. Research should also integrate novel knowledge on the mechanisms and constraints guiding the impact of electrical and magnetic fields on cerebral tissues and brain activity, and incorporate the principles of information-based neurostimulation.
Collapse
Affiliation(s)
- Clara Sanches
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Chloé Stengel
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Juliette Godard
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Justine Mertz
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Marc Teichmann
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Raffaella Migliaccio
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, United States
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia, Barcelona, Spain
| |
Collapse
|
11
|
Tremblay S, Tuominen L, Zayed V, Pascual-Leone A, Joutsa J. The study of noninvasive brain stimulation using molecular brain imaging: A systematic review. Neuroimage 2020; 219:117023. [DOI: 10.1016/j.neuroimage.2020.117023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
|
12
|
Klooster DC, Vos IN, Caeyenberghs K, Leemans A, David S, Besseling RM, Aldenkamp AP, Baeken C. Indirect frontocingulate structural connectivity predicts clinical response to accelerated rTMS in major depressive disorder. J Psychiatry Neurosci 2020; 45:243-252. [PMID: 31990490 PMCID: PMC7828925 DOI: 10.1503/jpn.190088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an established treatment for major depressive disorder (MDD), but its clinical efficacy remains rather modest. One reason for this could be that the propagation of rTMS effects via structural connections from the stimulated area to deeper brain structures (such as the cingulate cortices) is suboptimal. METHODS We investigated whether structural connectivity — derived from diffusion MRI data — could serve as a biomarker to predict treatment response. We hypothesized that stronger structural connections between the patient-specific stimulation position in the left dorsolateral prefrontal cortex (dlPFC) and the cingulate cortices would predict better clinical outcomes. We applied accelerated intermittent theta burst stimulation (aiTBS) to the left dlPFC in 40 patients with MDD. We correlated baseline structural connectivity, quantified using various metrics (fractional anisotropy, mean diffusivity, tract density, tract volume and number of tracts), with changes in depression severity scores after aiTBS. RESULTS Exploratory results (p < 0.05) showed that structural connectivity between the patient-specific stimulation site and the caudal and posterior parts of the cingulate cortex had predictive potential for clinical response to aiTBS. LIMITATIONS We used the diffusion tensor to perform tractography. A main limitation was that multiple fibre directions within voxels could not be resolved, which might have led to missing connections in some patients. CONCLUSION Stronger structural frontocingular connections may be of essence to optimally benefit from left dlPFC rTMS treatment in MDD. Even though the results are promising, further investigation with larger numbers of patients, more advanced tractography algorithms and classic daily rTMS treatment paradigms is warranted. CLINICAL TRIAL REGISTRATION http://clinicaltrials.gov/show/NCT01832805
Collapse
Affiliation(s)
- Deborah C.W. Klooster
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Iris N. Vos
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Karen Caeyenberghs
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Alexander Leemans
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Szabolcs David
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - René M.H. Besseling
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Albert P. Aldenkamp
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| | - Chris Baeken
- From the Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands (Klooster, Vos, Besseling, Aldenkamp); the Academic Center for Epileptology Kempenhaeghe, Department of Research and Development, Heeze, the Netherlands (Klooster, Aldenkamp); Ghent University, Ghent Experimental Psychiatry Laboratory, Ghent, Belgium (Baeken); the Australian Catholic University, Faculty of Health Sciences, Mary MacKillop Institute for Health Research, Melbourne, Australia (Caeyenberghs); the PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands (Leemans, David); the Brussel University Hospital, Department of Psychiatry, Brussels, Belgium (Baeken)
| |
Collapse
|
13
|
Miller JG, Xia G, Hastings PD. Right Temporoparietal Junction Involvement in Autonomic Responses to the Suffering of Others: A Preliminary Transcranial Magnetic Stimulation Study. Front Hum Neurosci 2020; 14:7. [PMID: 32047426 PMCID: PMC6997337 DOI: 10.3389/fnhum.2020.00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/09/2020] [Indexed: 01/10/2023] Open
Abstract
Functional neuroimaging studies have emphasized distinct networks for social cognition and affective aspects of empathy. However, studies have not considered whether substrates of social cognition, such as the right temporoparietal junction (TPJ), play a role in affective responses to complex empathy-related stimuli. Here, we used repetitive transcranial magnetic stimulation (TMS) to test whether the right TPJ contributes to psychophysiological responses to another person’s emotional suffering. We used a theory of mind functional localizer and image-guided TMS to target the sub-region of the right TPJ implicated in social cognition, and measured autonomic and subjective responses to an empathy induction video. We found evidence that TMS applied at 1 Hz over the right TPJ increased withdrawal of parasympathetic nervous system activity during the empathy induction (n = 32), but did not affect sympathetic nervous system activity (n = 27). Participants who received TMS over the right TPJ also reported feeling more irritation and annoyance, and were less likely to report feeling compassion over and above empathic sadness, than participants who received TMS over the vertex (N = 34). This study provides preliminary evidence for the role of right TPJ functioning in empathy-related psychophysiological and affective responding, potentially blurring the distinction between neural regions specific to social cognition vs. affective aspects of empathy.
Collapse
Affiliation(s)
- Jonas G Miller
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Guohua Xia
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Paul D Hastings
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Ishida T, Dierks T, Strik W, Morishima Y. Converging Resting State Networks Unravels Potential Remote Effects of Transcranial Magnetic Stimulation for Major Depression. Front Psychiatry 2020; 11:836. [PMID: 32973580 PMCID: PMC7468386 DOI: 10.3389/fpsyt.2020.00836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
Despite being a commonly used protocol to treat major depressive disorder (MDD), the underlying mechanism of repetitive transcranial magnetic stimulation (rTMS) on dorsolateral prefrontal cortex (DLPFC) remains unclear. In the current study, we investigated the resting-state fMRI data of 100 healthy subjects by exploring three overlapping functional networks associated with the psychopathologically MDD-related areas (the nucleus accumbens, amygdala, and ventromedial prefrontal cortex). Our results showed that these networks converged at the bilateral DLPFC, which suggested that rTMS over DLPFC might improve MDD by remotely modulating the MDD-related areas synergistically. Additionally, they functionally converged at the DMPFC and bilateral insula which are known to be associated with MDD. These two areas could also be potential targets for rTMS treatment. Dynamic causal modelling (DCM) and Granger causality analysis (GCA) revealed that all pairwise connections among bilateral DLPFC, DMPFC, bilateral insula, and three psychopathologically MDD-related areas contained significant causality. The DCM results also suggested that most of the functional interactions between MDD-related areas and bilateral DLPFC, DMPFC, and bilateral insula can predominantly be explained by the effective connectivity from the psychopathologically MDD-related areas to the rTMS stimulation sites. Finally, we found the conventional functional connectivity to be a more representative measure to obtain connectivity parameters compared to GCA and DCM analysis. Our research helped inspecting the convergence of the functional networks related to a psychiatry disorder. The results identified potential targets for brain stimulation treatment and contributed to the optimization of patient-specific brain stimulation protocols.
Collapse
Affiliation(s)
- Takuya Ishida
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Japan.,Department of Neuropsychiatry, Graduate School of Wakayama Medical University, Kimiidera, Japan.,Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Thomas Dierks
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Werner Strik
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Yosuke Morishima
- Division of Systems Neuroscience of Psychopathology, Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Snyder AZ, Bauer AQ. Mapping Structure-Function Relationships in the Brain. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:510-521. [PMID: 30528965 PMCID: PMC6488459 DOI: 10.1016/j.bpsc.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
Abstract
Mapping the structural and functional connectivity of the brain is a major focus of systems neuroscience research and will help to identify causally important changes in neural circuitry responsible for behavioral dysfunction. Several methods for examining brain activity in humans have been extended to rodent and monkey models in which molecular and genetic manipulations exist for linking to human disease. In this review, which is part of a special issue focused on bridging brain connectivity information across species and spatiotemporal scales, we address mapping brain activity and neural connectivity in rodents using optogenetics in conjunction with either functional magnetic resonance imaging or optical intrinsic signal imaging. We chose to focus on these techniques because they are capable of reporting spontaneous or evoked hemodynamic activity most closely linked to human neuroimaging studies. We discuss the capabilities and limitations of blood-based imaging methods, usage of optogenetic techniques to map neural systems in rodent models, and other powerful mapping techniques for examining neural connectivity over different spatial and temporal scales. We also discuss implementing strategies for mapping brain connectivity in humans with both basic and clinical applications, and conclude with how cross-species mapping studies can be utilized to influence preclinical imaging studies and clinical practices alike.
Collapse
Affiliation(s)
- Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
16
|
Valero-Cabré A, Toba MN, Hilgetag CC, Rushmore RJ. Perturbation-driven paradoxical facilitation of visuo-spatial function: Revisiting the 'Sprague effect'. Cortex 2019; 122:10-39. [PMID: 30905382 DOI: 10.1016/j.cortex.2019.01.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/17/2018] [Accepted: 01/30/2019] [Indexed: 01/29/2023]
Abstract
The 'Sprague Effect' described in the seminal paper of James Sprague (Science 153:1544-1547, 1966a) is an unexpected paradoxical effect in which a second brain lesion reversed functional deficits induced by an earlier lesion. It was observed initially in the cat where severe and permanent contralateral visually guided attentional deficits generated by the ablation of large areas of the visual cortex were reversed by the subsequent removal of the superior colliculus (SC) opposite to the cortical lesion or by the splitting of the collicular commissure. Physiologically, this effect has been explained in several ways-most notably by the reduction of the functional inhibition of the ipsilateral SC by the contralateral SC, and the restoration of normal interactions between cortical and midbrain structures after ablation. In the present review, we aim at reappraising the 'Sprague Effect' by critically analyzing studies that have been conducted in the feline and human brain. Moreover, we assess applications of the 'Sprague Effect' in the rehabilitation of visually guided attentional impairments by using non-invasive therapeutic approaches such as transcranial magnetic stimulation (TMS) and transcranial direct-current stimulation (tDCS). We also review theoretical models of the effect that emphasize the inhibition and balancing between the two hemispheres and show implications for lesion inference approaches. Last, we critically review whether the resulting inter-hemispheric rivalry theories lead toward an efficient rehabilitation of stroke in humans. We conclude by emphasizing key challenges in the field of 'Sprague Effect' applications in order to design better therapies for brain-damaged patients.
Collapse
Affiliation(s)
- Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab Team, Brain and Spine Institute, ICM, Paris, France; CNRS UMR 7225, Inserm UMR S 1127, Sorbonne Universités, UPMC Paris 06, F-75013, IHU-A-ICM, Paris, France; Laboratory for Cerebral Dynamics, Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, USA.
| | - Monica N Toba
- Laboratory of Functional Neurosciences (EA 4559), University Hospital of Amiens and University of Picardy Jules Verne, Amiens, France
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany; Department of Health Sciences, Boston University, Boston, MA, USA
| | - R Jarrett Rushmore
- Laboratory for Cerebral Dynamics, Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
17
|
Herrero Babiloni A, De Beaumont L, Lavigne GJ. Transcranial Magnetic Stimulation. Sleep Med Clin 2018; 13:571-582. [DOI: 10.1016/j.jsmc.2018.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Hong I, Garrett A, Maker G, Mullaney I, Rodger J, Etherington SJ. Repetitive low intensity magnetic field stimulation in a neuronal cell line: a metabolomics study. PeerJ 2018; 6:e4501. [PMID: 29576970 PMCID: PMC5853602 DOI: 10.7717/peerj.4501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
Low intensity repetitive magnetic stimulation of neural tissue modulates neuronal excitability and has promising therapeutic potential in the treatment of neurological disorders. However, the underpinning cellular and biochemical mechanisms remain poorly understood. This study investigates the behavioural effects of low intensity repetitive magnetic stimulation (LI-rMS) at a cellular and biochemical level. We delivered LI-rMS (10 mT) at 1 Hz and 10 Hz to B50 rat neuroblastoma cells in vitro for 10 minutes and measured levels of selected metabolites immediately after stimulation. LI-rMS at both frequencies depleted selected tricarboxylic acid (TCA) cycle metabolites without affecting the main energy supplies. Furthermore, LI-rMS effects were frequency-specific with 1 Hz stimulation having stronger effects than 10 Hz. The observed depletion of metabolites suggested that higher spontaneous activity may have led to an increase in GABA release. Although the absence of organised neural circuits and other cellular contributors (e.g., excitatory neurons and glia) in the B50 cell line limits the degree to which our results can be extrapolated to the human brain, the changes we describe provide novel insights into how LI-rMS modulates neural tissue.
Collapse
Affiliation(s)
- Ivan Hong
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Andrew Garrett
- School of Biological Sciences, Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, WA, Australia
| | - Garth Maker
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Ian Mullaney
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity laboratory, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Sarah J Etherington
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
19
|
Shang YQ, Xie J, Peng W, Zhang J, Chang D, Wang Z. Network-wise cerebral blood flow redistribution after 20 Hz rTMS on left dorso-lateral prefrontal cortex. Eur J Radiol 2018; 101:144-148. [PMID: 29571788 DOI: 10.1016/j.ejrad.2018.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/24/2018] [Accepted: 02/13/2018] [Indexed: 12/17/2022]
Abstract
The repetitive application of transcranial magnetic stimulation (rTMS) on left dorsolateral prefrontal cortex (DLPFC) has been consistently shown to be beneficial for treating various neuropsychiatric or neuropsychological disorders, but its neural mechanisms still remain unclear. The purpose of this study was to measure the effects of high-frequency left DLPFC rTMS using cerebral blood flow (CBF) collected from 40 young healthy subjects before and after applying 20 Hz left DLPFC rTMS or SHAM stimulations. Relative CBF (rCBF) changes before and after 20 Hz rTMS or SHAM were assessed with paired-t test. The results show that 20 Hz DLPFC rTMS induced CBF redistribution in the default mode network, including increased rCBF in left medial temporal cortex (MTC)/hippocampus, but reduced rCBF in precuneus and cerebellum. Meanwhile, SHAM stimulation didn't produce any rCBF changes. After controlling SHAM effects, only the rCBF increase in MTC/hippocampus remained. Those data suggest that the beneficial effects of high-frequency rTMS may be through a within-network rCBF redistribution.
Collapse
Affiliation(s)
- Yuan-Qi Shang
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Jun Xie
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Wei Peng
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Jian Zhang
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Da Chang
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China
| | - Ze Wang
- Center for Cognition and Brain Disorders, Institutes of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310005, China; Department of Radiology, Temple University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Valero-Cabré A, Amengual JL, Stengel C, Pascual-Leone A, Coubard OA. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neurosci Biobehav Rev 2017; 83:381-404. [DOI: 10.1016/j.neubiorev.2017.10.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/13/2023]
|
21
|
Dockx R, Peremans K, Vlerick L, Van Laeken N, Saunders JH, Polis I, De Vos F, Baeken C. Anaesthesia, not number of sessions, influences the magnitude and duration of an aHF-rTMS in dogs. PLoS One 2017; 12:e0185362. [PMID: 28937993 PMCID: PMC5609759 DOI: 10.1371/journal.pone.0185362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Currently, the rat has been a useful animal model in brain stimulation research. Nevertheless, extrapolating results from rodent repetitive Transcranial Magnetic Stimulation (rTMS) research to humans contains several hurdles. This suggests the desperate need for a large animal model in translational rTMS research. The dog would be a valid choice, not only due to the fact that humans and dogs share a neurophysiological background, but a similar neuropathological background as well. HYPOTHESIS In order to evaluate the feasibility of the canine rTMS animal model, this study aimed to evaluate the neurophysiological response in dogs on a, clinically used, accelerated high frequency (aHF) rTMS protocol. This aHF-rTMS (20 Hz) protocol was performed under anaesthesia or sedation and either 20 sessions or 5 sessions were given to each dog. METHODS 21 healthy dogs were randomly subjected to one of the four aHF-rTMS protocols (1 sham and 3 active protocols). For each dog, the perfusion indices (PI), of a [99mTc]HMPAO scan at 4 time points, for the left frontal cortex (stimulation target) were calculated for each protocol. RESULTS Concerning sham stimulation, the average PI remained at the baseline level. The main result was the presence of a direct transitory increase in rCBF at the stimulation site, both under anaesthesia and sedation. Nevertheless the measured increase in rCBF was higher but shorter duration under sedation. The magnitude of this increase was not influenced by number of sessions. No changes in rCBF were found in remote brain regions. CONCLUSION This study shows that, despite the influence of anaesthesia and sedation, comparable and clinically relevant effects on the rCBF can be obtained in dogs. Since less methodological hurdles have to be overcome and comparable results can be obtained, it would be acceptable to put the dog forward as an alternative translational rTMS animal model.
Collapse
Affiliation(s)
- Robrecht Dockx
- Ghent Experimental Psychiatry (GHEP) lab, Department of Psychiatry and Medical Psychology, Ghent University, Ghent, East Flanders, Belgium
| | - Kathelijne Peremans
- Department of Veterinary medical imaging and small animal orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium
| | - Lise Vlerick
- Department of Veterinary medical imaging and small animal orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium
| | - Nick Van Laeken
- Laboratory of Radiopharmacy, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, East Flanders, Begium
| | - Jimmy H. Saunders
- Department of Veterinary medical imaging and small animal orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium
| | - Ingeborgh Polis
- Department of Small Animal, Faculty of Veterinary Medicine, Ghent University, Merelbeke, East Flanders, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, East Flanders, Begium
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) lab, Department of Psychiatry and Medical Psychology, Ghent University, Ghent, East Flanders, Belgium
| |
Collapse
|
22
|
Amengual JL, Vernet M, Adam C, Valero-Cabré A. Local entrainment of oscillatory activity induced by direct brain stimulation in humans. Sci Rep 2017; 7:41908. [PMID: 28256510 PMCID: PMC5335652 DOI: 10.1038/srep41908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/03/2017] [Indexed: 11/28/2022] Open
Abstract
In a quest for direct evidence of oscillation entrainment, we analyzed intracerebral electroencephalographic recordings obtained during intracranial electrical stimulation in a cohort of three medication-resistant epilepsy patients tested pre-surgically. Spectral analyses of non-epileptogenic cerebral sites stimulated directly with high frequency electrical bursts yielded episodic local enhancements of frequency-specific rhythmic activity, phase-locked to each individual pulse. These outcomes reveal an entrainment of physiological oscillatory activity within a frequency band dictated by the rhythm of the stimulation source. Our results support future uses of rhythmic stimulation to elucidate the causal contributions of synchrony to specific aspects of human cognition and to further develop the therapeutic manipulation of dysfunctional rhythmic activity subtending the symptoms of some neuropsychiatric conditions.
Collapse
Affiliation(s)
- Julià L Amengual
- CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, Cerebral Dynamics, Plasticity and Rehabilitaion Group, Frontlab, Paris, France
| | - Marine Vernet
- CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, Cerebral Dynamics, Plasticity and Rehabilitaion Group, Frontlab, Paris, France
| | - Claude Adam
- Epilepsy Unit, Dept. of Neurology, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Antoni Valero-Cabré
- CNRS UMR 7225, Institut du Cerveau et de la Moelle Epinière, Cerebral Dynamics, Plasticity and Rehabilitaion Group, Frontlab, Paris, France.,Department of Anatomy and Neurobiology, Laboratory of Cerebral Dynamics, Boston University School of Medicine, Boston, MA, USA.,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| |
Collapse
|
23
|
Kirton A. Advancing non-invasive neuromodulation clinical trials in children: Lessons from perinatal stroke. Eur J Paediatr Neurol 2017; 21:75-103. [PMID: 27470654 DOI: 10.1016/j.ejpn.2016.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/21/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022]
Abstract
Applications of non-invasive brain stimulation including therapeutic neuromodulation are expanding at an alarming rate. Increasingly established scientific principles, including directional modulation of well-informed cortical targets, are advancing clinical trial development. However, high levels of disease burden coupled with zealous enthusiasm may be getting ahead of rational research and evidence. Experience is limited in the developing brain where additional issues must be considered. Properly designed and meticulously executed clinical trials are essential and required to advance and optimize the potential of non-invasive neuromodulation without risking the well-being of children and families. Perinatal stroke causes most hemiplegic cerebral palsy and, as a focal injury of defined timing in an otherwise healthy brain, is an ideal human model of developmental plasticity. Advanced models of how the motor systems of young brains develop following early stroke are affording novel windows of opportunity for neuromodulation clinical trials, possibly directing neuroplasticity toward better outcomes. Reviewing the principles of clinical trial design relevant to neuromodulation and using perinatal stroke as a model, this article reviews the current and future issues of advancing such trials in children.
Collapse
Affiliation(s)
- Adam Kirton
- Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, 2888 Shaganappi Trail NW, Calgary, AB T3B6A8, Canada.
| |
Collapse
|
24
|
Cazzoli D, Chechlacz M. A matter of hand: Causal links between hand dominance, structural organization of fronto-parietal attention networks, and variability in behavioural responses to transcranial magnetic stimulation. Cortex 2017; 86:230-246. [DOI: 10.1016/j.cortex.2016.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/24/2016] [Accepted: 06/16/2016] [Indexed: 01/15/2023]
|
25
|
Thomas F, Moulier V, Valéro-Cabré A, Januel D. Brain connectivity and auditory hallucinations: In search of novel noninvasive brain stimulation therapeutic approaches for schizophrenia. Rev Neurol (Paris) 2016; 172:653-679. [PMID: 27742234 DOI: 10.1016/j.neurol.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
Auditory verbal hallucinations (AVH) are among the most characteristic symptoms of schizophrenia and have been linked to likely disturbances of structural and functional connectivity within frontal, temporal, parietal and subcortical networks involved in language and auditory functions. Resting-state functional magnetic resonance imaging (fMRI) has shown that alterations in the functional connectivity activity of the default-mode network (DMN) may also subtend hallucinations. Noninvasive neurostimulation techniques such as repetitive transcranial magnetic stimulation (rTMS) have the ability to modulate activity of targeted cortical sites and their associated networks, showing a high potential for modulating altered connectivity subtending schizophrenia. Notwithstanding, the clinical benefit of these approaches remains weak and variable. Further studies in the field should foster a better understanding concerning the status of networks subtending AVH and the neural impact of rTMS in relation with symptom improvement. Additionally, the identification and characterization of clinical biomarkers able to predict response to treatment would be a critical asset allowing better care for patients with schizophrenia.
Collapse
Affiliation(s)
- F Thomas
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne cedex, France.
| | - V Moulier
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne cedex, France
| | - A Valéro-Cabré
- UMR 7225 CRICM CNRS, Université Pierre-et-Marie-Curie, Groupe Hospitalier Pitié-Salpêtrière, 47, boulevard de l'Hôpital, 75013 Paris, France; Université Pierre-et-Marie-Curie, CNRS UMR 7225-Inserm UMRS S975, Centre de Recherche de l'Institut du Cerveau et la Moelle (ICM), 75013 Paris, France; Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, USA; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| | - D Januel
- Unité de Recherche Clinique, Établissement Public de Santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne cedex, France
| |
Collapse
|
26
|
Vaessen MJ, Saj A, Lovblad KO, Gschwind M, Vuilleumier P. Structural white-matter connections mediating distinct behavioral components of spatial neglect in right brain-damaged patients. Cortex 2016; 77:54-68. [PMID: 26922504 DOI: 10.1016/j.cortex.2015.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/03/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
Abstract
Spatial neglect is a neuropsychological syndrome in which patients fail to perceive and orient to stimuli located in the space contralateral to the lesioned hemisphere. It is characterized by a wide heterogeneity in clinical symptoms which can be grouped into distinct behavioral components correlating with different lesion sites. Moreover, damage to white-matter (WM) fiber tracts has been suggested to disconnect brain networks that mediate different functions associated with spatial cognition and attention. However, it remains unclear what WM pathways are associated with functionally dissociable neglect components. In this study we examined nine patients with a focal right hemisphere stroke using a series of neuropsychological tests and diffusion tensor imaging (DTI) in order to disentangle the role of specific WM pathways in neglect symptoms. First, following previous work, the behavioral test scores of patients were factorized into three independent components reflecting perceptual, exploratory, and object-centered deficits in spatial awareness. We then examined the structural neural substrates of these components by correlating indices of WM integrity (fractional anisotropy) with the severity of deficits along each profile. Several locations in the right parietal and frontal WM correlated with neuropsychological scores. Fiber tracts projecting from these locations indicated that posterior parts of the superior longitudinal fasciculus (SLF), as well as nearby callosal fibers connecting ipsilateral and contralateral parietal areas, were associated with perceptual spatial deficits, whereas more anterior parts of SLF and inferior fronto-occipital fasciculus (IFOF) were predominantly associated with object-centered deficits. In addition, connections between frontal areas and superior colliculus were found to be associated with the exploratory deficits. Our results provide novel support to the view that neglect may result from disconnection lesions in distributed brain networks, but also extend these notions by highlighting the role of dissociable circuits in different functional components of the neglect syndrome. However these preliminary findings require replication with larger samples of patients.
Collapse
Affiliation(s)
- Maarten J Vaessen
- Laboratory for Neurology and Imaging of Cognition, Department of Neurosciences, University Medical Centre, Geneva, Switzerland; Department of Clinical Neurology, University Hospital of Geneva, Geneva, Switzerland.
| | - Arnaud Saj
- Laboratory for Neurology and Imaging of Cognition, Department of Neurosciences, University Medical Centre, Geneva, Switzerland; Department of Clinical Neurology, University Hospital of Geneva, Geneva, Switzerland
| | - Karl-Olof Lovblad
- Department of Radiology, University Hospital of Geneva, Geneva, Switzerland
| | - Markus Gschwind
- Laboratory for Neurology and Imaging of Cognition, Department of Neurosciences, University Medical Centre, Geneva, Switzerland; Department of Clinical Neurology, University Hospital of Geneva, Geneva, Switzerland
| | - Patrik Vuilleumier
- Laboratory for Neurology and Imaging of Cognition, Department of Neurosciences, University Medical Centre, Geneva, Switzerland; Department of Clinical Neurology, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Krall SC, Volz LJ, Oberwelland E, Grefkes C, Fink GR, Konrad K. The right temporoparietal junction in attention and social interaction: A transcranial magnetic stimulation study. Hum Brain Mapp 2015; 37:796-807. [PMID: 26610283 DOI: 10.1002/hbm.23068] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 01/25/2023] Open
Abstract
The right temporoparietal junction (rTPJ) has been associated with the ability to reorient attention to unexpected stimuli and the capacity to understand others' mental states (theory of mind [ToM]/false belief). Using activation likelihood estimation meta-analysis we previously unraveled that the anterior rTPJ is involved in both, reorienting of attention and ToM, possibly indicating a more general role in attention shifting. Here, we used neuronavigated transcranial magnetic stimulation to directly probe the role of the rTPJ across attentional reorienting and false belief. Task performance in a visual cueing paradigm and false belief cartoon task was investigated after application of continuous theta burst stimulation (cTBS) over anterior rTPJ (versus vertex, for control). We found that attentional reorienting was significantly impaired after rTPJ cTBS compared with control. For the false belief task, error rates in trials demanding a shift in mental state significantly increased. Of note, a significant positive correlation indicated a close relation between the stimulation effect on attentional reorienting and false belief trials. Our findings extend previous neuroimaging evidence by indicating an essential overarching role of the anterior rTPJ for both cognitive functions, reorienting of attention and ToM. Hum Brain Mapp 37:796-807, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah C Krall
- Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Child and Adolescent Psychiatry, University Hospital Aachen, Aachen, Germany
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Psychological and Brain Sciences and UCSB Brain Imaging Center, University of California, Santa Barbara, California
| | - Eileen Oberwelland
- Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Child and Adolescent Psychiatry, University Hospital Aachen, Aachen, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Kerstin Konrad
- Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany.,Department of Child and Adolescent Psychiatry, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
28
|
Lindholm P, Lamusuo S, Taiminen T, Pesonen U, Lahti A, Virtanen A, Forssell H, Hietala J, Hagelberg N, Pertovaara A, Parkkola R, Jääskeläinen S. Right secondary somatosensory cortex-a promising novel target for the treatment of drug-resistant neuropathic orofacial pain with repetitive transcranial magnetic stimulation. Pain 2015; 156:1276-1283. [PMID: 25830924 DOI: 10.1097/j.pain.0000000000000175] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) of the motor cortex has analgesic effect; however, the efficacy of other cortical targets and the mode of action remain unclear. We examined the effects of rTMS in neuropathic orofacial pain, and compared 2 cortical targets against placebo. Furthermore, as dopaminergic mechanisms modulate pain responses, we assessed the influence of the functional DRD2 gene polymorphism (957C>T) and the catechol-O-methyltransferase (COMT) Val158Met polymorphism on the analgesic effect of rTMS. Sixteen patients with chronic drug-resistant neuropathic orofacial pain participated in this randomized, placebo-controlled, crossover study. Navigated high-frequency rTMS was given to the sensorimotor (S1/M1) and the right secondary somatosensory (S2) cortices. All subjects were genotyped for the DRD2 957C>T and COMT Val158Met polymorphisms. Pain, mood, and quality of life were monitored throughout the study. The numerical rating scale pain scores were significantly lower after the S2 stimulation than after the S1/M1 (P = 0.0071) or the sham (P = 0.0187) stimulations. The Brief Pain Inventory scores were also lower 3 to 5 days after the S2 stimulation than those at pretreatment baseline (P = 0.0127 for the intensity of pain and P = 0.0074 for the interference of pain) or after the S1/M1 (P = 0.001 and P = 0.0001) and sham (P = 0.0491 and P = 0.0359) stimulations. No correlations were found between the genetic polymorphisms and the analgesic effect in the present small clinical sample. The right S2 cortex is a promising new target for the treatment of neuropathic orofacial pain with high-frequency rTMS.
Collapse
Affiliation(s)
- Pauliina Lindholm
- Department of Neurology, Turku University Hospital, Salo Hospital, University of Turku, Turku, Finland Departments of Clinical Neurophysiology, and Psychiatry, Turku University Hospital, University of Turku, Turku, Finland Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland Department of Statistics, University of Turku, Turku, Finland Institute of Dentistry, University of Turku, Turku, Finland Pain Clinic, Turku University Hospital, University of Turku, Turku, Finland Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland Department of Diagnostic Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cocchi L, Sale MV, Lord A, Zalesky A, Breakspear M, Mattingley JB. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics. J Neurophysiol 2015; 113:3375-85. [PMID: 25717162 DOI: 10.1152/jn.00850.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/21/2015] [Indexed: 12/12/2022] Open
Abstract
Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs.
Collapse
Affiliation(s)
- Luca Cocchi
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia;
| | - Martin V Sale
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Anton Lord
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Melbourne School of Engineering, The University of Melbourne, Melbourne, Australia; and
| | | | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; School of Psychology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
30
|
Seemungal BM. The Components of Vestibular Cognition — Motion Versus Spatial Perception. Multisens Res 2015; 28:507-24. [DOI: 10.1163/22134808-00002507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vestibular cognition can be divided into two main functions — a primary vestibular sensation of self-motion and a derived sensation of spatial orientation. Although the vestibular system requires calibration from other senses for optimal functioning, both vestibular spatial and vestibular motion perception are typically employed when navigating without vision. A recent important finding is the cerebellar mediation of the uncoupling of reflex (i.e., the vestibular-ocular reflex) from vestibular motion perception (Perceptuo-Reflex Uncoupling). The brain regions that mediate vestibular motion and vestibular spatial perception is an area of on-going research activity. However, there is data to support the notion that vestibular motion perception is mediated by multiple brain regions. In contrast, vestibular spatial perception appears to be mediated by posterior brain areas although currently the exact locus is unclear. I will discuss the experimental evidence that support this functional dichotomy in vestibular cognition (i.e., motion processingvs.spatial orientation). Along the way I will highlight relevant practical technical tips in testing vestibular cognition.
Collapse
Affiliation(s)
- Barry M. Seemungal
- Room 10L16, Division of Brain Sciences, Imperial College London, Charing Cross Hospital, London W6 8RF, UK
| |
Collapse
|
31
|
Grehl S, Viola HM, Fuller-Carter PI, Carter KW, Dunlop SA, Hool LC, Sherrard RM, Rodger J. Cellular and Molecular Changes to Cortical Neurons Following Low Intensity Repetitive Magnetic Stimulation at Different Frequencies. Brain Stimul 2015; 8:114-23. [DOI: 10.1016/j.brs.2014.09.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 09/05/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022] Open
|
32
|
Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice. J Neurosci 2014; 34:10780-92. [PMID: 25100609 DOI: 10.1523/jneurosci.0723-14.2014] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5(-/-) (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5(-/-) mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5(-/-) mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5(-/-) mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS.
Collapse
|
33
|
Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci U S A 2014; 111:E4367-75. [PMID: 25267639 DOI: 10.1073/pnas.1405003111] [Citation(s) in RCA: 400] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Brain stimulation, a therapy increasingly used for neurological and psychiatric disease, traditionally is divided into invasive approaches, such as deep brain stimulation (DBS), and noninvasive approaches, such as transcranial magnetic stimulation. The relationship between these approaches is unknown, therapeutic mechanisms remain unclear, and the ideal stimulation site for a given technique is often ambiguous, limiting optimization of the stimulation and its application in further disorders. In this article, we identify diseases treated with both types of stimulation, list the stimulation sites thought to be most effective in each disease, and test the hypothesis that these sites are different nodes within the same brain network as defined by resting-state functional-connectivity MRI. Sites where DBS was effective were functionally connected to sites where noninvasive brain stimulation was effective across diseases including depression, Parkinson's disease, obsessive-compulsive disorder, essential tremor, addiction, pain, minimally conscious states, and Alzheimer's disease. A lack of functional connectivity identified sites where stimulation was ineffective, and the sign of the correlation related to whether excitatory or inhibitory noninvasive stimulation was found clinically effective. These results suggest that resting-state functional connectivity may be useful for translating therapy between stimulation modalities, optimizing treatment, and identifying new stimulation targets. More broadly, this work supports a network perspective toward understanding and treating neuropsychiatric disease, highlighting the therapeutic potential of targeted brain network modulation.
Collapse
|
34
|
Vernet M, Quentin R, Chanes L, Mitsumasu A, Valero-Cabré A. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front Integr Neurosci 2014; 8:66. [PMID: 25202241 PMCID: PMC4141567 DOI: 10.3389/fnint.2014.00066] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023] Open
Abstract
The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review focuses on the Frontal Eye Field (FEF) a “hub” region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI), Magneto-encephalography (MEG) and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS) are described and the variability of FEF localization across individuals and mapping techniques are discussed. In the second part of this review, we will address the role of the FEF. We explore its involvement both in the physiology of fixation, saccade, pursuit, and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic, and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space are discussed.
Collapse
Affiliation(s)
- Marine Vernet
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Romain Quentin
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Lorena Chanes
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Andres Mitsumasu
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Antoni Valero-Cabré
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France ; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, School of Medicine, Boston University Boston, MA, USA ; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia Barcelona, Spain
| |
Collapse
|
35
|
Quentin R, Chanes L, Vernet M, Valero-Cabré A. Fronto-Parietal Anatomical Connections Influence the Modulation of Conscious Visual Perception by High-Beta Frontal Oscillatory Activity. Cereb Cortex 2014; 25:2095-101. [PMID: 24554730 DOI: 10.1093/cercor/bhu014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
May white matter connectivity influence rhythmic brain activity underlying visual cognition? We here employed diffusion imaging to reconstruct the fronto-parietal white matter pathways in a group of healthy participants who displayed frequency-specific ameliorations of visual sensitivity during the entrainment of high-beta oscillatory activity by rhythmic transcranial magnetic stimulation over their right frontal eye field. Our analyses reveal a strong tract-specific association between the volume of the first branch of the superior longitudinal fasciculus and improvements of conscious visual detection driven by frontal beta oscillation patterns. These data indicate that the architecture of specific white matter pathways has the ability to influence the distributed effects of rhythmic spatio-temporal activity, and suggest a potentially relevant role for long-range connectivity in the synchronization of oscillatory patterns across fronto-parietal networks subtending the modulation of conscious visual perception.
Collapse
Affiliation(s)
- Romain Quentin
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle epiniére, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Lorena Chanes
- Institut du Cerveau et de la Moelle Epinière, ICM, CNRS UMR 7225, INSERM U 1127 and Université Pierre et Marie Curie, Paris, France
| | - Marine Vernet
- Institut du Cerveau et de la Moelle Epinière, ICM, CNRS UMR 7225, INSERM U 1127 and Université Pierre et Marie Curie, Paris, France
| | - Antoni Valero-Cabré
- Institut du Cerveau et de la Moelle Epinière, ICM, CNRS UMR 7225, INSERM U 1127 and Université Pierre et Marie Curie, Paris, France Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, Boston, MA, USA Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| |
Collapse
|
36
|
Deffieux T, Younan Y, Wattiez N, Tanter M, Pouget P, Aubry JF. Low-Intensity Focused Ultrasound Modulates Monkey Visuomotor Behavior. Curr Biol 2013; 23:2430-3. [DOI: 10.1016/j.cub.2013.10.029] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 11/24/2022]
|
37
|
Jacquet PO, Avenanti A. Perturbing the action observation network during perception and categorization of actions' goals and grips: state-dependency and virtual lesion TMS effects. Cereb Cortex 2013; 25:598-608. [PMID: 24084126 DOI: 10.1093/cercor/bht242] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Watching others grasping and using objects activates an action observation network (AON), including inferior frontal (IFC), anterior intraparietal (AIP), and somatosensory cortices (S1). Yet, causal evidence of the differential involvement of such AON sensorimotor nodes in representing high- and low-level action components (i.e., end-goals and grip type) is meager. To address this issue, we used transcranial magnetic stimulation-adaptation (TMS-A) during 2 novel action perception tasks. Participants were shown adapting movies displaying a demonstrator performing goal-directed actions with a tool, using either power or precision grips. They were then asked to match the end-goal (Goal-recognition task) or the grip (Grip-recognition task) of actions shown in test pictures to the adapting movies. TMS was administered over IFC, AIP, or S1 during presentation of test pictures. Virtual lesion-like effects were found in the Grip-recognition task where IFC stimulation induced a general performance decrease, suggesting a critical role of IFC in perceiving grips. In the Goal-recognition task, IFC and S1 stimulation differently affected the processing of "adapted" and "nonadapted" goals. These "state-dependent" effects suggest that the overall goal of seen actions is encoded into functionally distinct and spatially overlapping neural populations in IFC-S1 and such encoding is critical for recognizing and understanding end-goals.
Collapse
Affiliation(s)
- Pierre O Jacquet
- Department of Psychology, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, 69676 Bron cedex, France
| | - Alessio Avenanti
- Department of Psychology, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy Centro studi e ricerche in Neuroscienze Cognitive, Campus di Cesena, University of Bologna, 47521 Cesena, Italy Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179 Roma, Italy
| |
Collapse
|
38
|
Bourgeois A, Chica AB, Valero-Cabré A, Bartolomeo P. Cortical control of inhibition of return: Causal evidence for task-dependent modulations by dorsal and ventral parietal regions. Cortex 2013; 49:2229-38. [DOI: 10.1016/j.cortex.2012.10.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
39
|
Fa Z, Zhang P, Wu W, Wang Z, Huang F, Yang L, Chang H, Xu R, Wen Z, Zhang J, Zeng Y, Jiang X. Functional mapping of rat brain activation following rTMS using activity-induced manganese-dependent contrast. Neurol Res 2013; 33:563-71. [DOI: 10.1179/1743132810y.0000000009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Kirton A. Can noninvasive brain stimulation measure and modulate developmental plasticity to improve function in stroke-induced cerebral palsy? Semin Pediatr Neurol 2013; 20:116-26. [PMID: 23948686 DOI: 10.1016/j.spen.2013.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The permanent nature of motor deficits is a consistent cornerstone of cerebral palsy definitions. Such pessimism is disheartening to children, families, and researchers alike and may no longer be appropriate for it ignores the fantastic plastic potential of the developing brain. Perinatal stroke is presented as the ideal human model of developmental neuroplasticity following distinct, well-defined, focal perinatal brain injury. Elegant animal models are merging with human applied technology methods, including noninvasive brain stimulation for increasingly sophisticated models of plastic motor development following perinatal stroke. In this article, how potential central therapeutic targets are identified and potentially modulated to enhance motor function within these models is discussed. Also, future directions and emerging clinical trials are reviewed.
Collapse
Affiliation(s)
- Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, Section of Neurology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
41
|
Fronto-tectal white matter connectivity mediates facilitatory effects of non-invasive neurostimulation on visual detection. Neuroimage 2013; 82:344-54. [PMID: 23707586 DOI: 10.1016/j.neuroimage.2013.05.083] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/30/2013] [Accepted: 05/17/2013] [Indexed: 11/22/2022] Open
Abstract
The causal ability of pre-target FEF activity to modulate visual detection for perithreshold stimuli has been recently demonstrated in humans by means of non-invasive neurostimulation. Yet in spite of the network-distributed effects of these type of techniques, the white matter (WM) tracts and distant visual nodes contributing to such behavioral impact remain unknown. We hereby used individual data from a group of healthy human subjects, who received time-locked pulses of active or sham Transcranial Magnetic Stimulation (TMS) to the right Frontal Eye Field (FEF) region, and experienced increases in visual detection sensitivity. We then studied the extent to which interindividual differences in visual modulation might be dependent on the WM patterns linking the targeted area to other regions relevant for visuo-attentional behaviors. We report a statistically significant correlation between the probability of connection in a right fronto-tectal pathway (FEF-Superior Colliculus) and the modulation of visual sensitivity during a detection task. Our findings support the potential contribution of this pathway and the superior colliculus in the mediation of visual performance from frontal regions in humans. Furthermore, we also show the ability of a TMS/DTI correlational approach to contribute to the disambiguation of the specific long-range pathways driving network-wide neurostimulatory effects on behavior, anticipating their future role in guiding a more efficient use of focal neurostimulation.
Collapse
|
42
|
Avenanti A, Candidi M, Urgesi C. Vicarious motor activation during action perception: beyond correlational evidence. Front Hum Neurosci 2013; 7:185. [PMID: 23675338 PMCID: PMC3653126 DOI: 10.3389/fnhum.2013.00185] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 04/23/2013] [Indexed: 12/26/2022] Open
Abstract
Neurophysiological and imaging studies have shown that seeing the actions of other individuals brings about the vicarious activation of motor regions involved in performing the same actions. While this suggests a simulative mechanism mediating the perception of others' actions, one cannot use such evidence to make inferences about the functional significance of vicarious activations. Indeed, a central aim in social neuroscience is to comprehend how vicarious activations allow the understanding of other people's behavior, and this requires to use stimulation or lesion methods to establish causal links from brain activity to cognitive functions. In the present work, we review studies investigating the effects of transient manipulations of brain activity or stable lesions in the motor system on individuals' ability to perceive and understand the actions of others. We conclude there is now compelling evidence that neural activity in the motor system is critical for such cognitive ability. More research using causal methods, however, is needed in order to disclose the limits and the conditions under which vicarious activations are required to perceive and understand actions of others as well as their emotions and somatic feelings.
Collapse
Affiliation(s)
- Alessio Avenanti
- Dipartimento di Psicologia, Alma Mater Studiorum, Università di Bologna Bologna, Italy ; Centro Studi e Ricerche in Neuroscienze Cognitive, Campus di Cesena Cesena, Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia Roma, Italy
| | | | | |
Collapse
|
43
|
Evolution of premotor cortical excitability after cathodal inhibition of the primary motor cortex: a sham-controlled serial navigated TMS study. PLoS One 2013; 8:e57425. [PMID: 23437385 PMCID: PMC3578858 DOI: 10.1371/journal.pone.0057425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/22/2013] [Indexed: 11/24/2022] Open
Abstract
Background Premotor cortical regions (PMC) play an important role in the orchestration of motor function, yet their role in compensatory mechanisms in a disturbed motor system is largely unclear. Previous studies are consistent in describing pronounced anatomical and functional connectivity between the PMC and the primary motor cortex (M1). Lesion studies consistently show compensatory adaptive changes in PMC neural activity following an M1 lesion. Non-invasive brain modification of PMC neural activity has shown compensatory neurophysiological aftereffects in M1. These studies have contributed to our understanding of how M1 responds to changes in PMC neural activity. Yet, the way in which the PMC responds to artificial inhibition of M1 neural activity is unclear. Here we investigate the neurophysiological consequences in the PMC and the behavioral consequences for motor performance of stimulation mediated M1 inhibition by cathodal transcranial direct current stimulation (tDCS). Purpose The primary goal was to determine how electrophysiological measures of PMC excitability change in order to compensate for inhibited M1 neural excitability and attenuated motor performance. Hypothesis Cathodal inhibition of M1 excitability leads to a compensatory increase of ipsilateral PMC excitability. Methods We enrolled 16 healthy participants in this randomized, double-blind, sham-controlled, crossover design study. All participants underwent navigated transcranial magnetic stimulation (nTMS) to identify PMC and M1 corticospinal projections as well as to evaluate electrophysiological measures of cortical, intracortical and interhemispheric excitability. Cortical M1 excitability was inhibited using cathodal tDCS. Finger-tapping speeds were used to examine motor function. Results Cathodal tDCS successfully reduced M1 excitability and motor performance speed. PMC excitability was increased for longer and was the only significant predictor of motor performance. Conclusion The PMC compensates for attenuated M1 excitability and contributes to motor performance maintenance.
Collapse
|
44
|
Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci 2013. [PMID: 23197741 DOI: 10.1523/jneurosci.0409-12.2012] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an in vitro model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission.
Collapse
|
45
|
Kirton A. Modeling developmental plasticity after perinatal stroke: defining central therapeutic targets in cerebral palsy. Pediatr Neurol 2013; 48:81-94. [PMID: 23337000 DOI: 10.1016/j.pediatrneurol.2012.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/02/2012] [Indexed: 01/18/2023]
Abstract
Perinatal stroke is presented as the ideal human model of developmental neuroplasticity. The precise timing, mechanisms, and locations of specific perinatal stroke diseases provide common examples of well defined, focal, perinatal brain injuries. Motor disability (hemiparetic cerebral palsy) constitutes the primary adverse outcome and the focus of models explaining how motor systems develop in health and after early injury. Combining basic science animal work with human applied technology (functional magnetic resonance imaging, diffusion tensor imaging, and transcranial magnetic stimulation), a model of plastic motor development after perinatal stroke is presented. Potential central therapeutic targets are revealed. The means to measure and modulate these targets, including evidence-based rehabilitation therapies and noninvasive brain stimulation, are suggested. Implications for clinical trials and future directions are discussed.
Collapse
Affiliation(s)
- Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital Research Institute, and Section of Neurology, Department of Pediatrics and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
46
|
Abstract
Transcranial magnetic stimulation (TMS) is a neurostimulation and neuromodulation technique that has provided over two decades of data in focal, non-invasive brain stimulation based on the principles of electromagnetic induction. Its minimal risk, excellent tolerability and increasingly sophisticated ability to interrogate neurophysiology and plasticity make it an enviable technology for use in pediatric research with future extension into therapeutic trials. While adult trials show promise in using TMS as a novel, non-invasive, non-pharmacologic diagnostic and therapeutic tool in a variety of nervous system disorders, its use in children is only just emerging. TMS represents an exciting advancement to better understand and improve outcomes from disorders of the developing brain.
Collapse
|
47
|
Ricci R, Salatino A, Li X, Funk AP, Logan SL, Mu Q, Johnson KA, Bohning DE, George MS. Imaging the neural mechanisms of TMS neglect-like bias in healthy volunteers with the interleaved TMS/fMRI technique: preliminary evidence. Front Hum Neurosci 2012; 6:326. [PMID: 23251130 PMCID: PMC3523259 DOI: 10.3389/fnhum.2012.00326] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/22/2012] [Indexed: 11/23/2022] Open
Abstract
Applying a precisely timed pulse of transcranial magnetic stimulation (TMS) over the right posterior parietal cortex (PPC) can produce temporary visuo-spatial neglect-like effects. Although the TMS is applied over PPC, it is not clear what other brain regions are involved. We applied TMS within a functional magnetic resonance imaging (fMRI) scanner to investigate brain activity during TMS induction of neglect-like bias in three healthy volunteers, while they performed a line bisection judgment task (i.e., the landmark task). Single-pulse TMS at 115% of motor threshold was applied 150 ms after the visual stimulus onset. Participants completed two different TMS/fMRI sessions while performing this task: one session while single-pulse TMS was intermittently and time-locked applied to the right PPC and a control session with TMS positioned over the vertex. Perceptual rightward bias was observed when TMS was delivered over the right PPC. During neglect-like behavior, the fMRI maps showed decreased neural activity within parieto-frontal areas, which are often lesioned or dysfunctional in patients with left neglect. Vertex TMS induced behavioral effects compatible with leftward response bias and increased BOLD signal in the left caudate (a site which has been linked to response bias). These results are discussed in relation to recent findings on neural networks subserving attention in space.
Collapse
Affiliation(s)
- Raffaella Ricci
- Brain Stimulation Laboratory, Department of Psychiatry and Behavioral Sciences, Medical University of South CarolinaCharleston, SC, USA
- Department of Psychology and Neuroscience Institute of Turin, University of TurinTurin, Italy
| | - Adriana Salatino
- Brain Stimulation Laboratory, Department of Psychiatry and Behavioral Sciences, Medical University of South CarolinaCharleston, SC, USA
- Department of Psychology and Neuroscience Institute of Turin, University of TurinTurin, Italy
| | - Xingbao Li
- Brain Stimulation Laboratory, Department of Psychiatry and Behavioral Sciences, Medical University of South CarolinaCharleston, SC, USA
- The Center for Advanced Imaging Research, Medical University of South CarolinaCharleston, SC, USA
| | - Agnes P. Funk
- Brain Stimulation Laboratory, Department of Psychiatry and Behavioral Sciences, Medical University of South CarolinaCharleston, SC, USA
| | - Sarah L. Logan
- Brain Stimulation Laboratory, Department of Psychiatry and Behavioral Sciences, Medical University of South CarolinaCharleston, SC, USA
| | - Qiwen Mu
- Brain Stimulation Laboratory, Department of Psychiatry and Behavioral Sciences, Medical University of South CarolinaCharleston, SC, USA
| | - Kevin A. Johnson
- Brain Stimulation Laboratory, Department of Psychiatry and Behavioral Sciences, Medical University of South CarolinaCharleston, SC, USA
- Stanford Systems Neuroscience and Pain Laboratory, Stanford School of MedicinePalo Alto, CA, USA
| | - Daryl E. Bohning
- The Center for Advanced Imaging Research, Medical University of South CarolinaCharleston, SC, USA
| | - Mark S. George
- Brain Stimulation Laboratory, Department of Psychiatry and Behavioral Sciences, Medical University of South CarolinaCharleston, SC, USA
- The Center for Advanced Imaging Research, Medical University of South CarolinaCharleston, SC, USA
| |
Collapse
|
48
|
Afifi L, Jarrett Rushmore R, Valero-Cabré A. Benefit of multiple sessions of perilesional repetitive transcranial magnetic stimulation for an effective rehabilitation of visuospatial function. Eur J Neurosci 2012; 37:441-54. [PMID: 23167832 DOI: 10.1111/ejn.12055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 12/28/2022]
Abstract
Noninvasive neurostimulation techniques have been used alone or in conjunction with rehabilitation therapy to treat the neurological sequelae of brain damage with rather variable therapeutic outcomes. One potential factor limiting a consistent success for such techniques may be the limited number of sessions carried out in patients, despite reports that their accrual may play a key role in alleviating neurological deficits long-term. In this study, we tested the effects of seventy consecutive sessions of perilesional high-frequency (10 Hz) repetitive transcranial magnetic stimulation (rTMS) in the treatment of chronic neglect deficits in a well-established feline model of visuospatial neglect. Under identical rTMS parameters and visuospatial testing regimes, half of the subjects improved in visuospatial orienting performance. The other half experienced either none or extremely moderate ameliorations in the neglected hemispace and displayed transient patterns of maladaptive visuospatial behavior. Detailed analyses suggest that lesion location and extent did not account for the behavioral differences observed between these two groups of animals. We conclude that multi-session perilesional rTMS regimes have the potential to induce functional ameliorations following focal chronic brain injury, and that behavioral performance prior to the onset of the rTMS treatment is the factor that best predicts positive outcomes for noninvasive neurostimulation treatments in visuospatial neglect.
Collapse
Affiliation(s)
- Linda Afifi
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
| | | | | |
Collapse
|
49
|
Fox MD, Liu H, Pascual-Leone A. Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. Neuroimage 2012; 66:151-60. [PMID: 23142067 DOI: 10.1016/j.neuroimage.2012.10.082] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 10/17/2012] [Accepted: 10/31/2012] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) to the left dorsolateral prefrontal cortex (DLPFC) is used clinically for the treatment of depression however outcomes vary greatly between patients. We have shown that average clinical efficacy of different left DLPFC TMS sites is related to intrinsic functional connectivity with remote regions including the subgenual cingulate and suggested that functional connectivity with these remote regions might be used to identify optimized left DLPFC targets for TMS. However it remains unclear if and how this connectivity-based targeting approach should be applied at the single-subject level to potentially individualize therapy to specific patients. In this article we show that individual differences in DLPFC connectivity are large, reproducible across sessions, and can be used to generate individualized DLPFC TMS targets that may prove clinically superior to those selected on the basis of group-average connectivity. Factors likely to improve individualized targeting including the use of seed maps and the focality of stimulation are investigated and discussed. The techniques presented here may be applicable to individualized targeting of focal brain stimulation across a range of diseases and stimulation modalities and can be experimentally tested in clinical trials.
Collapse
Affiliation(s)
- Michael D Fox
- Partners Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA.
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Institut Guttmann, Hospital de Neurorehabilitació, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
50
|
Krause V, Bashir S, Pollok B, Caipa A, Schnitzler A, Pascual-Leone A. 1 Hz rTMS of the left posterior parietal cortex (PPC) modifies sensorimotor timing. Neuropsychologia 2012; 50:3729-35. [PMID: 23103789 DOI: 10.1016/j.neuropsychologia.2012.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 09/20/2012] [Accepted: 10/19/2012] [Indexed: 11/20/2022]
Abstract
In order to investigate the relevance of the left posterior parietal cortex (PPC) for precise sensorimotor timing we applied 1 Hz repetitive transcranial magnetic stimulation (rTMS) over left PPC, right PPC and visual cortex of healthy participants for 10 min, respectively. The impact on sensorimotor timing of the right hand was assessed using a synchronization task that required subjects to synchronize their right index finger taps with respect to constant auditory, visual or auditory-visual pacing. Our results reveal reduced negative tap-to-pacer asynchronies following rTMS of the left PPC in all pacing conditions. This effect lasted for about 5 min after cessation of rTMS. Right PPC and visual cortex stimulation did not yield any significant behavioural effects. Since suppression of left PPC modified right-hand synchronization accuracy independent of the pacing signal's modality, the present data support the significance of left PPC for anticipatory motor control over a primary role in multisensory integration. The present data suggest that 1 Hz rTMS might interrupt a matching process of anticipated and real sensorimotor feedback within PPC. Alternatively, downregulation of left PPC activity may affect M1 excitability via functional connections leading to a delay in motor output and, thus, smaller tap-to-pacer asynchronies.
Collapse
Affiliation(s)
- Vanessa Krause
- Heinrich-Heine-University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | | | | | | | | | | |
Collapse
|