1
|
Schifani C, Hawco C, Daskalakis ZJ, Rajji TK, Mulsant BH, Tan V, Dickie EW, Moxon-Emre I, Blumberger DM, Voineskos AN. Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment Reduces Variability in Brain Function in Schizophrenia: Data From a Double-Blind, Randomized, Sham-Controlled Trial. Schizophr Bull 2024:sbae166. [PMID: 39373168 DOI: 10.1093/schbul/sbae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
BACKGROUND/HYPOTHESIS There is increasing awareness of interindividual variability in brain function, with potentially major implications for repetitive transcranial magnetic stimulation (rTMS) efficacy. We perform a secondary analysis using data from a double-blind randomized controlled 4-week trial of 20 Hz active versus sham rTMS to dorsolateral prefrontal cortex (DLPFC) during a working memory task in participants with schizophrenia. We hypothesized that rTMS would change local functional activity and variability in the active group compared with sham. STUDY DESIGN 83 participants were randomized in the original trial, and offered neuroimaging pre- and post-treatment. Of those who successfully completed both scans (n = 57), rigorous quality control left n = 42 (active/sham: n = 19/23), who were included in this analysis. Working memory-evoked activity during an N-Back (3-Back vs 1-Back) task was contrasted. Changes in local brain activity were examined from an 8 mm ROI around the rTMS coordinates. Individual variability was examined as the mean correlational distance (MCD) in brain activity pattern from each participant to others within the same group. RESULTS We observed an increase in task-evoked left DLPFC activity in the active group compared with sham (F1,36 = 5.83, False Discovery Rate (FDR))-corrected P = .04). Although whole-brain activation patterns were similar in both groups, active rTMS reduced the MCD in activation pattern compared with sham (F1,36 = 32.57, P < .0001). Reduction in MCD was associated with improvements in attention performance (F1,16 = 14.82, P = .0014, uncorrected). CONCLUSIONS Active rTMS to DLPFC reduces individual variability of brain function in people with schizophrenia. Given that individual variability is typically higher in schizophrenia patients compared with controls, such reduction may "normalize" brain function during higher-order cognitive processing.
Collapse
Affiliation(s)
- Christin Schifani
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
| | - Colin Hawco
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego School of Medicine, San Diego, 92093, United States
| | - Tarek K Rajji
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| | - Benoit H Mulsant
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| | - Vinh Tan
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| | - Erin W Dickie
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| | - Iska Moxon-Emre
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
| | - Daniel M Blumberger
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, M6J 1H1, Canada
| | - Aristotle N Voineskos
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, M5T 1R8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A1, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S 3H2, Canada
| |
Collapse
|
2
|
Liao WY, Opie GM, Ziemann U, Semmler JG. Modulation of dorsal premotor cortex differentially influences visuomotor adaptation in young and older adults. Neurobiol Aging 2024; 141:34-45. [PMID: 38815412 DOI: 10.1016/j.neurobiolaging.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
The communication between dorsal premotor cortex (PMd) and primary motor cortex (M1) is important for visuomotor adaptation, but it is unclear how this relationship changes with advancing age. The present study recruited 21 young and 23 older participants for two experimental sessions during which intermittent theta burst stimulation (iTBS) or sham was applied over PMd. We assessed the effects of PMd iTBS on M1 excitability using motor evoked potentials (MEP) recorded from right first dorsal interosseous when single-pulse transcranial magnetic stimulation (TMS) was applied with posterior-anterior (PA) or anterior-posterior (AP) currents; and adaptation by quantifying error recorded during a visuomotor adaptation task (VAT). PMd iTBS potentiated PA (P < 0.0001) and AP (P < 0.0001) MEP amplitude in both young and older adults. PMd iTBS increased error in young adults during adaptation (P = 0.026), but had no effect in older adults (P = 0.388). Although PMd iTBS potentiated M1 excitability in both young and older adults, the intervention attenuated visuomotor adaptation specifically in young adults.
Collapse
Affiliation(s)
- Wei-Yeh Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Arias P, Adán-Arcay L, Madinabeitia-Mancebo E, Cudeiro J. Homeostatic metaplasticity induced by the combination of two inhibitory brain stimulation techniques: Continuous theta burst and transcranial static magnetic stimulation. Neuroscience 2024; 554:128-136. [PMID: 39019392 DOI: 10.1016/j.neuroscience.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Aftereffects of non-invasive brain stimulation techniques may be brain state-dependent. Either continuous theta-burst stimulation (cTBS) as transcranial static magnetic field stimulation (tSMS) reduce cortical excitability. Our objective was to explore the aftereffects of tSMS on a M1 previously stimulated with cTBS. The interaction effect of two inhibitory protocols on cortical excitability was tested on healthy volunteers (n = 20), in two different sessions. A first application cTBS was followed by real-tSMS in one session, or sham-tSMS in the other session. When intracortical inhibition was tested with paired-pulse transcranial magnetic stimulation, LICI (ie., long intracortical inhibition) increased, although the unconditioned motor-evoked potential (MEP) remained stable. These effects were observed in the whole sample of participants regardless of the type of static magnetic field stimulation (real or sham) applied after cTBS. Subsequently, we defined a group of good-responders to cTBS (n = 9) on whom the unconditioned MEP amplitude reduced after cTBS and found that application of real-tSMS (subsequent to cTBS) increased the unconditioned MEP. This MEP increase was not found when sham-tSMS followed cTBS. The interaction of tSMS with cTBS seems not to take place at inhibitory cortical interneurons tested by LICI, since LICI was not differently affected after real and sham tSMS. Our results indicate the existence of a process of homeostatic plasticity when tSMS is applied after cTBS. This work suggests that tSMS aftereffects arise at the synaptic level and supports further investigation into tSMS as a useful tool to restore pathological conditions with altered cortical excitability.
Collapse
Affiliation(s)
- Pablo Arias
- Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and CICA-Centro Interdisciplinar de Química e Bioloxía, Department of Biomedical Sciences, Medicine and Physiotherapy-INEF Galicia, A Coruña, Spain.
| | - Lucía Adán-Arcay
- Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and CICA-Centro Interdisciplinar de Química e Bioloxía, Department of Biomedical Sciences, Medicine and Physiotherapy-INEF Galicia, A Coruña, Spain
| | - Elena Madinabeitia-Mancebo
- Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and CICA-Centro Interdisciplinar de Química e Bioloxía, Department of Biomedical Sciences, Medicine and Physiotherapy-INEF Galicia, A Coruña, Spain
| | - Javier Cudeiro
- Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and CICA-Centro Interdisciplinar de Química e Bioloxía, Department of Biomedical Sciences, Medicine and Physiotherapy-INEF Galicia, A Coruña, Spain; Centro de Estimulación Cerebral de Galicia, A Coruña, Spain
| |
Collapse
|
4
|
Ross RE, Saladin ME, George MS, Gregory CM. Acute effects of aerobic exercise on corticomotor plasticity in individuals with and without depression. J Psychiatr Res 2024; 176:108-118. [PMID: 38852541 PMCID: PMC11283944 DOI: 10.1016/j.jpsychires.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Although complex in nature, the pathophysiology of depression involves reduced or impaired neuroplastic capabilities. Restoring or enhancing neuroplasticity may serve as a treatment target for developing therapies for depression. Aerobic exercise (AEx) has antidepressant benefits and may enhance neuroplasticity in depression although the latter has yet to be substantiated. Therefore, we sought to examine the acute effect of AEx on neuroplasticity in depression. METHODS Sixteen individuals with (DEP; 13 female; age = 28.5 ± 7.3; Montgomery-Äsberg Depression Rating Scale [MADRS] = 21.3 ± 5.2) and without depression (HC; 13 female; age 27.2 ± 7.5; MADRS = 0.8 ± 1.2) completed three experimental visits consisting of 15 min of low intensity AEx (LO) at 35% heart rate reserve (HRR), high intensity AEx (HI) at 70% HRR, or sitting (CON). Following AEx, excitatory paired associative stimulation (PAS25ms) was employed to probe neuroplasticity. Motor evoked potentials (MEP) were assessed via transcranial magnetic stimulation before and after PAS25ms to indicate acute changes in neuroplasticity. RESULTS PAS25ms primed with HI AEx led to significant increases in MEP amplitude compared to LO and CON. HI AEx elicited enhanced PAS25ms-induced neuroplasticity for up to 1-h post-PAS. There were no significant between-group differences. CONCLUSION HI AEx enhances PAS measured neuroplasticity in individuals with and without depression. HI AEx may have a potent influence on the brain and serve as an effective primer, or adjunct, to therapies that seek to harness neuroplasticity.
Collapse
Affiliation(s)
- Ryan E Ross
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA.
| | - Michael E Saladin
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Chris M Gregory
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
Siddique U, Frazer AK, Avela J, Walker S, Ahtiainen JP, Tanel M, Uribe S, Akalu Y, Rostami M, Tallent J, Kidgell DJ. Differential modulation of corticomotor excitability in older compared to young adults following a single bout of strength -exercise. Arch Gerontol Geriatr 2024; 122:105384. [PMID: 38394740 DOI: 10.1016/j.archger.2024.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Evidence shows corticomotor plasticity diminishes with age. Nevertheless, whether strength-training, a proven intervention that induces corticomotor plasticity in younger adults, also takes effect in older adults, remains untested. This study examined the effect of a single-session of strength-exercise on corticomotor plasticity in older and younger adults. Thirteen older adults (72.3 ± 6.5 years) and eleven younger adults (29.9 ± 6.9 years), novice to strength-exercise, participated. Strength-exercise involved four sets of 6-8 repetitions of a dumbbell biceps curl at 70-75% of their one-repetition maximum (1-RM). Muscle strength, cortical, corticomotor and spinal excitability, before and up to 60-minutes after the strength-exercise session were assessed. We observed significant changes over time (p < 0.05) and an interaction between time and age group (p < 0.05) indicating a decrease in corticomotor excitability (18% p < 0.05) for older adults at 30- and 60-minutes post strength-exercise and an increase (26% and 40%, all p < 0.05) in younger adults at the same time points. Voluntary activation (VA) declined in older adults immediately post and 60-minutes post strength-exercise (36% and 25%, all p < 0.05). Exercise had no effect on the cortical silent period (cSP) in older adults however, in young adults cSP durations were shorter at both 30- and 60- minute time points (17% 30-minute post and 9% 60-minute post, p < 0.05). There were no differences in short-interval cortical inhibition (SICI) or intracortical facilitation (ICF) between groups. Although the corticomotor responses to strength-exercise were different within groups, overall, the neural responses seem to be independent of age.
Collapse
Affiliation(s)
- Ummatul Siddique
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Ashlyn K Frazer
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Juha P Ahtiainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Meghan Tanel
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sergio Uribe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Care, Monash University, Clayton, Australia
| | - Yonas Akalu
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia; Department of Human Physiology, School of Medicine, University of Gondar, Gondar, Ethiopia
| | - Mohamad Rostami
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia
| | - Jamie Tallent
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia; School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Dawson J Kidgell
- Monash University Exercise Neuroplasticity Research Unit, School of Primary and Allied Care, Monash University, Frankston, Australia.
| |
Collapse
|
6
|
Liao WY, Opie GM, Ziemann U, Semmler JG. The effects of intermittent theta burst stimulation over dorsal premotor cortex on primary motor cortex plasticity in young and older adults. Eur J Neurosci 2024; 60:4019-4033. [PMID: 38757748 DOI: 10.1111/ejn.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Previous transcranial magnetic stimulation (TMS) research suggests that the dorsal premotor cortex (PMd) influences neuroplasticity within the primary motor cortex (M1) through indirect (I) wave interneuronal circuits. However, it is unclear how the influence of PMd on the plasticity of M1 I-waves changes with advancing age. This study therefore investigated the neuroplastic effects of intermittent theta burst stimulation (iTBS) to M1 early and late I-wave circuits when preceded by iTBS (PMd iTBS-M1 iTBS) or sham stimulation (PMd sham-M1 iTBS) to PMd in 15 young and 16 older adults. M1 excitability was assessed with motor evoked potentials (MEP) recorded from the right first dorsal interosseous using posterior-anterior (PA) and anterior-posterior (AP) current TMS at standard stimulation intensities (PA1mV, AP1mV) and reduced stimulation intensities (PA0.5mV, early I-waves; AP0.5mV, late I-waves). PMd iTBS-M1 iTBS lowered the expected facilitation of PA0.5mV (to M1 iTBS) in young and older adults (P = 0.009), whereas the intervention had no effect on AP0.5mV facilitation in either group (P = 0.305). The modulation of PA0.5mV following PMd iTBS-M1 iTBS may reflect a specific influence of PMd on different I-wave circuits that are involved in M1 plasticity within young and older adults.
Collapse
Affiliation(s)
- Wei-Yeh Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
7
|
Shah M, Suresh S, Paddick J, Mellow ML, Rees A, Berryman C, Stanton TR, Smith AE. Age-related changes in responsiveness to non-invasive brain stimulation neuroplasticity paradigms: A systematic review with meta-analysis. Clin Neurophysiol 2024; 162:53-67. [PMID: 38579515 DOI: 10.1016/j.clinph.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVES We aimed to summarise and critically appraise the available evidence for the effect of age on responsiveness to non-invasive brain stimulation (NBS) paradigms delivered to the primary motor cortex. METHODS Four databases (Medline, Embase, PsycINFO and Scopus) were searched from inception to February 7, 2023. Studies investigating age group comparisons and associations between age and neuroplasticity induction from NBS paradigms were included. Only studies delivering neuroplasticity paradigms to the primary motor cortex and responses measured via motor-evoked potentials (MEPs) in healthy adults were considered. RESULTS 39 studies, encompassing 40 experiments and eight NBS paradigms were included: paired associative stimulation (PAS; n = 12), repetitive transcranial magnetic stimulation (rTMS; n = 2), intermittent theta burst stimulation (iTBS; n = 8), continuous theta burst stimulation (cTBS; n = 7), transcranial direct and alternating current stimulation ((tDCS; n = 7; tACS; n = 2)), quadripulse stimulation (QPS; n = 1) and i-wave periodic transcranial magnetic stimulation (iTMS; n = 1). Pooled findings from PAS paradigms suggested older adults have reduced post-paradigm responses, although there was considerable heterogeneity. Mixed results were observed across all other NBS paradigms and post-paradigm timepoints. CONCLUSIONS/SIGNIFICANCE Whilst age-dependent reduction in corticospinal excitability is possible, there is extensive inter- and intra-individual variability both within and between studies, making it difficult to draw meaningful conclusions from pooled analyses.
Collapse
Affiliation(s)
- Mahima Shah
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
| | - Suraj Suresh
- Brain Stimulation, Imaging and Cognition Laboratory, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Johanna Paddick
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia; Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI)
| | - Maddison L Mellow
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
| | - Amy Rees
- Discipline of Physiology, School of Biomedicine. The University of Adelaide, Adelaide 5000, Australia
| | - Carolyn Berryman
- Brain Stimulation, Imaging and Cognition Laboratory, The University of Adelaide, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; South Australian Health and Medical Research Institute (SAHMRI), North Tce, Adelaide 5000, Australia; IIMPACT in Health, University of South Australia, Adelaide 5000, Australia
| | - Tasha R Stanton
- Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI); IIMPACT in Health, University of South Australia, Adelaide 5000, Australia
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity (ARENA) Research Centre, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia.
| |
Collapse
|
8
|
Cadwallader CJ, Curtin D, Taylor EM, de Moel T, Jarvis H, Hutchison C, Hendrikse J, Chong TTJ, Coxon JP. Exercise-induced cortical disinhibition mediates the relationship between fitness and memory in older adults. J Physiol 2024; 602:2945-2959. [PMID: 38747052 DOI: 10.1113/jp285537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Regular exercise benefits learning and memory in older adults, but the neural mechanisms mediating these effects remain unclear. Evidence in young adults indicates that acute exercise creates a favourable environment for synaptic plasticity by enhancing cortical disinhibition. As such, we investigated whether plasticity-related disinhibition mediated the relationship between cardiorespiratory fitness and memory function in healthy older adults (n = 16, mean age = 66.06). Participants completed a graded maximal exercise test and assessments of visual and verbal memory, followed by two counterbalanced sessions involving 20 min of either high-intensity interval training exercise or rest. Disinhibition was measured following intermittent theta burst stimulation via paired-pulse transcranial magnetic stimulation. In line with our hypotheses, we observed a positive correlation between cardiorespiratory fitness and verbal memory, which was mediated by plasticity-related cortical disinhibition. Our novel finding implicates cortical disinhibition as a mechanism through which the effects of acute bouts of exercise may translate to improved memory in older adults. This finding extends current understanding of the physiological mechanisms underlying the positive influence of cardiorespiratory fitness for memory function in older adults, and further highlights the importance of promoting exercise engagement to maintain cognitive health in later life. KEY POINTS: There are well established benefits of regular exercise for memory function in older adults, but the mechanisms are unclear. Cortical disinhibition is important for laying down new memories, and is enhanced following acute exercise in young adults, suggesting it is a potential mechanism underlying these benefits in ageing. Older adults completed a fitness test and assessments of memory, followed by two sessions involving either 20 min of exercise or rest. Disinhibition was measured following intermittent theta burst stimulation via paired-pulse transcranial magnetic stimulation. Cardiorespiratory fitness was positively associated with memory performance. Higher fitness was associated with enhanced cortical disinhibition following acute exercise. Cortical disinhibition completely mediated the relationship between fitness and memory. This novel finding provides a mechanistic account for the positive influence of cardiorespiratory fitness on memory in later life, and emphasises the importance of regular exercise for cognitive health in older populations.
Collapse
Affiliation(s)
- Claire J Cadwallader
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Dylan Curtin
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Eleanor M Taylor
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Tamar de Moel
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Huw Jarvis
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Christopher Hutchison
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
- Cognitive, Dementia and Memory Service, Peninsula Health, Victoria, Australia
| | - Joshua Hendrikse
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Trevor T-J Chong
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
- Department of Neurology, Alfred Health, Victoria, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Victoria, Australia
| | - James P Coxon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| |
Collapse
|
9
|
Oberman LM, Benussi A. Transcranial Magnetic Stimulation Across the Lifespan: Impact of Developmental and Degenerative Processes. Biol Psychiatry 2024; 95:581-591. [PMID: 37517703 PMCID: PMC10823041 DOI: 10.1016/j.biopsych.2023.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a pivotal noninvasive technique for investigating cortical excitability and plasticity across the lifespan, offering valuable insights into neurodevelopmental and neurodegenerative processes. In this review, we explore the impact of TMS applications on our understanding of normal development, healthy aging, neurodevelopmental disorders, and adult-onset neurodegenerative diseases. By presenting key developmental milestones and age-related changes in TMS measures, we provide a foundation for understanding the maturation of neurotransmitter systems and the trajectory of cognitive functions throughout the lifespan. Building on this foundation, the paper delves into the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, and adolescent depression. Highlighting recent findings on altered neurotransmitter circuits and dysfunctional cortical plasticity, we underscore the potential of TMS as a valuable tool for unraveling underlying mechanisms and informing future therapeutic interventions. We also review the emerging role of TMS in investigating and treating the most common adult-onset neurodegenerative disorders and late-onset depression. By outlining the therapeutic applications of noninvasive brain stimulation techniques in these disorders, we discuss the growing body of evidence supporting their use as therapeutic tools for symptom management and potentially slowing disease progression. The insights gained from TMS studies have advanced our understanding of the underlying mechanisms in both healthy and disease states, ultimately informing the development of more targeted diagnostic and therapeutic strategies for a wide range of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Lindsay M Oberman
- National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
10
|
Curtin D, Cadwallader CJ, Taylor EM, Andrews SC, Stout JC, Hendrikse JJ, Chong TTJ, Coxon JP. Ageing attenuates exercise-enhanced motor cortical plasticity. J Physiol 2023; 601:5733-5750. [PMID: 37917116 DOI: 10.1113/jp285243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiorespiratory exercise is known to modulate motor cortical plasticity in young adults, but the influence of ageing on this relationship is unknown. Here, we compared the effects of a single session of cardiorespiratory exercise on motor cortical plasticity in young and older adults. We acquired measures of cortical excitatory and inhibitory activity of the primary motor cortex using transcranial magnetic stimulation (TMS) from 20 young (mean ± SD = 25.30 ± 4.00 years, 14 females) and 20 older (mean ± SD = 64.10 ± 6.50 years, 11 females) healthy adults. Single- and paired-pulse TMS measurements were collected before and after a 20 min bout of high-intensity interval cycling exercise or an equivalent period of rest, and again after intermittent theta burst stimulation (iTBS). In both young (P = 0.027, Cohen's d = 0.87) and older adults (P = 0.006, Cohen's d = 0.85), there was an increase in glutamatergic excitation and a reduction in GABAergic inhibition from pre- to postexercise. However, in contrast to younger adults, older adults showed an attenuated plasticity response to iTBS following exercise (P = 0.011, Cohen's d = 0.85). These results demonstrate an age-dependent decline in cortical plasticity and indicate that a preceding bout of high-intensity interval exercise might be less effective for enhancing primary motor cortex plasticity in older adults. Our findings align with the hypothesis that the capacity for cortical plasticity is altered in older age. KEY POINTS: Exercise enhances motor cortical plasticity in young adults, but how ageing influences this effect is unknown. Here, we compared primary motor cortical plasticity responses in young and older adults before and after a bout of high-intensity interval exercise and again after a plasticity-inducing protocol, intermittent theta burst stimulation. In both young and older adults, exercise led to an increase in glutamatergic excitation and a reduction in GABAergic inhibition. Our key result was that older adults showed an attenuated plasticity response to theta burst stimulation following exercise, relative to younger adults. Our findings demonstrate an age-dependent decline in exercise-enhanced cortical plasticity and indicate that a preceding bout of high-intensity interval exercise might be less effective for enhancing primary motor cortex plasticity in older adults.
Collapse
Affiliation(s)
- Dylan Curtin
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Claire J Cadwallader
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Eleanor M Taylor
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sophie C Andrews
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Julie C Stout
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joshua J Hendrikse
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Trevor T-J Chong
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - James P Coxon
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Garcia-Sanz S, Serra Grabulosa JM, Cohen Kadosh R, Muñóz Aguilar N, Marín Gutiérrez A, Redolar Ripoll D. Effects of prefrontal and parietal neuromodulation on magnitude processing and integration. PROGRESS IN BRAIN RESEARCH 2023; 282:95-121. [PMID: 38035911 DOI: 10.1016/bs.pbr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Numerical cognition is an essential skill for survival, which includes the processing of discrete and continuous quantities, involving a mainly right fronto-parietal network. However, the neurocognitive systems underlying the processing and integration of discrete and continuous quantities are currently under debate. Noninvasive brain stimulation techniques have been used in the study of the neural basis of numerical cognition with a spatial, temporal and functional resolution superior to other neuroimaging techniques. The present randomized sham-controlled single-blinded trial addresses the involvement of the right dorsolateral prefrontal cortex and the right intraparietal sulcus in magnitude processing and integration. Multifocal anodal transcranial direct current stimulation was applied online during the execution of magnitude comparison tasks in three conditions: right prefrontal, right parietal and sham stimulation. The results show that prefrontal stimulation produced a moderated decrease in response times in all magnitude processing and integration tasks compared to sham condition. While parietal stimulation had no significant effect on any of the tasks. The effect found is interpreted as a generalized improvement in processing speed and magnitude integration due to right prefrontal neuromodulation, which may be attributable to domain-general or domain-specific factors.
Collapse
Affiliation(s)
- Sara Garcia-Sanz
- Faculty of Psychology and Education, Universidad del Atlantico Medio, Las Palmas, Spain; Child Development Research Group, Universidad de La Sabana, Chía, Colombia.
| | | | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | | | - Diego Redolar Ripoll
- Cognitive Neurolab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
12
|
Hernandez-Pavon JC, Schneider-Garces N, Begnoche JP, Miller LE, Raij T. Targeted Modulation of Human Brain Interregional Effective Connectivity With Spike-Timing Dependent Plasticity. Neuromodulation 2023; 26:745-754. [PMID: 36404214 PMCID: PMC10188658 DOI: 10.1016/j.neurom.2022.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The ability to selectively up- or downregulate interregional brain connectivity would be useful for research and clinical purposes. Toward this aim, cortico-cortical paired associative stimulation (ccPAS) protocols have been developed in which two areas are repeatedly stimulated with a millisecond-level asynchrony. However, ccPAS results in humans using bifocal transcranial magnetic stimulation (TMS) have been variable, and the mechanisms remain unproven. In this study, our goal was to test whether ccPAS mechanism is spike-timing-dependent plasticity (STDP). MATERIALS AND METHODS Eleven healthy participants received ccPAS to the left primary motor cortex (M1) → right M1 with three different asynchronies (5 milliseconds shorter, equal to, or 5 milliseconds longer than the 9-millisecond transcallosal conduction delay) in separate sessions. To observe the neurophysiological effects, single-pulse TMS was delivered to the left M1 before and after ccPAS while cortico-cortical evoked responses were extracted from the contralateral M1 using source-resolved electroencephalography. RESULTS Consistent with STDP mechanisms, the effects on synaptic strengths flipped depending on the asynchrony. Further implicating STDP, control experiments suggested that the effects were unidirectional and selective to the targeted connection. CONCLUSION The results support the idea that ccPAS induces STDP and may selectively up- or downregulate effective connectivity between targeted regions in the human brain.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | | | | | - Lee E Miller
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Limb Motor Control Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Tommi Raij
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
13
|
Fischer P, Piña-Fuentes D, Kassavetis P, Sadnicka A. Physiology of dystonia: Human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:137-162. [PMID: 37482391 DOI: 10.1016/bs.irn.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In this chapter, we discuss neurophysiological techniques that have been used in the study of dystonia. We examine traditional disease models such as inhibition and excessive plasticity and review the evidence that these play a causal role in pathophysiology. We then review the evidence for sensory and peripheral influences within pathophysiology and look at an emergent literature that tries to probe how oscillatory brain activity may be linked to dystonia pathophysiology.
Collapse
Affiliation(s)
- Petra Fischer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Dan Piña-Fuentes
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands; Department of Neurology, OLVG, Amsterdam, The Netherlands
| | | | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, United Kingdom; Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
14
|
Van Dam JM, Graetz L, Pitcher JB, Goldsworthy MR. The effects of age and biological sex on the association between I-wave recruitment and the response to cTBS: an exploratory study. Brain Res 2023; 1810:148359. [PMID: 37030620 DOI: 10.1016/j.brainres.2023.148359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
The neuroplastic response to continuous theta burst stimulation (cTBS) is inherently variable. The measurement of I-wave latencies has been shown to strongly predict the magnitude and direction of the response to cTBS, whereby longer latencies are associated with stronger long-term depression-like responses. However, potential differences in this association relating to age and sex have not been explored. We performed cTBS and measured I-wave recruitment (via MEP latencies) in 66 participants (31 female) ranging in age from 11 to 78 years. The influence of age and sex on the association between I-wave recruitment and the response to cTBS was tested using linear regression models. In contrast to previous studies, there was not a significant association between I-wave latencies and cTBS response at the group level (p = 0.142, R2 = 0.033). However, there were interactions between I-waves and both age and sex when predicting cTBS response. Subgroup analysis revealed that preferential late I-wave recruitment predicted cTBS response in adolescent females, but not in adolescent or adult males or adult females. These data suggest that the generalisability of I-wave measurement in predicting the response to cTBS may be lower than initially believed. Prediction models should include age and sex, rather than I-wave latencies alone, as our findings suggest that, while each factor alone is not a strong predictor, these factors interact to influence the response to cTBS.
Collapse
Affiliation(s)
- Jago M Van Dam
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia; Lifespan Human Neurophysiology Group, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Lynton Graetz
- Lifespan Human Neurophysiology Group, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Julia B Pitcher
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia; Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5000, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia.
| |
Collapse
|
15
|
Pinto TP, Inácio JC, de Aguiar Ferreira E, de Sá Ferreira A, Sudo FK, Tovar-Moll F, Rodrigues E. Prefrontal tDCS modulates autonomic responses in COVID-19 inpatients. Brain Stimul 2023; 16:657-666. [PMID: 36940750 PMCID: PMC10027235 DOI: 10.1016/j.brs.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND maladaptive changes in the autonomic nervous system (ANS) have been observed in short and long-term phases of COVID-19 infection. Identifying effective treatments to modulate autonomic imbalance could be a strategy for preventing and reducing disease severity and induced complications. OBJECTIVE to investigate the efficacy, safety, and feasibility of a single session of bihemispheric prefrontal tDCS on indicators of cardiac autonomic regulation and mood of COVID-19 inpatients. METHODS patients were randomized to receive a single 30-minute session of bihemispheric active tDCS over the dorsolateral prefrontal cortex (2mA; n = 20) or sham (n = 20). Changes in time [post-pre intervention] in heart rate variability (HRV), mood, heart rate, respiratory rate, and oxygen saturation were compared between groups. Additionally, clinical worsening indicators and the occurrence of falls and skin injuries were evaluated. The Brunoni Adverse Effects Questionary was employed after the intervention. RESULTS there was a large effect size (Hedges' g = 0.7) of intervention on HRV frequency parameters, suggesting alterations in cardiac autonomic regulation. An increment in oxygen saturation was observed in the active group but not in the sham after the intervention (P = 0.045). There were no group differences regarding mood, incidence and intensity of adverse effects, no occurrence of skin lesions, falls, or clinical worsening. CONCLUSIONS a single prefrontal tDCS session is safe and feasible to modulate indicators of cardiac autonomic regulation in acute COVID-19 inpatients. Further research comprising a thorough assessment of autonomic function and inflammatory biomarkers is required to verify its potential to manage autonomic dysfunctions, mitigate inflammatory responses and enhance clinical outcomes.
Collapse
Affiliation(s)
- Talita P Pinto
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rua Diniz Cordeiro 30, Botafogo, 22281-100, Rio de Janeiro, Brazil.
| | - Jacqueline Cunha Inácio
- Programa de Pós-Graduação Em Ciências da Reabilitação, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil.
| | - Erivelton de Aguiar Ferreira
- Programa de Pós-Graduação Em Ciências da Reabilitação, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil.
| | - Arthur de Sá Ferreira
- Programa de Pós-Graduação Em Ciências da Reabilitação, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil.
| | - Felipe Kenji Sudo
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rua Diniz Cordeiro 30, Botafogo, 22281-100, Rio de Janeiro, Brazil.
| | - Fernanda Tovar-Moll
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rua Diniz Cordeiro 30, Botafogo, 22281-100, Rio de Janeiro, Brazil.
| | - Erika Rodrigues
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rua Diniz Cordeiro 30, Botafogo, 22281-100, Rio de Janeiro, Brazil; Programa de Pós-Graduação Em Ciências da Reabilitação, Centro Universitário Augusto Motta - UNISUAM, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
The times they are a-changin': a proposal on how brain flexibility goes beyond the obvious to include the concepts of "upward" and "downward" to neuroplasticity. Mol Psychiatry 2023; 28:977-992. [PMID: 36575306 PMCID: PMC10005965 DOI: 10.1038/s41380-022-01931-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Since the brain was found to be somehow flexible, plastic, researchers worldwide have been trying to comprehend its fundamentals to better understand the brain itself, make predictions, disentangle the neurobiology of brain diseases, and finally propose up-to-date treatments. Neuroplasticity is simple as a concept, but extremely complex when it comes to its mechanisms. This review aims to bring to light an aspect about neuroplasticity that is often not given enough attention as it should, the fact that the brain's ability to change would include its ability to disconnect synapses. So, neuronal shrinkage, decrease in spine density or dendritic complexity should be included within the concept of neuroplasticity as part of its mechanisms, not as an impairment of it. To that end, we extensively describe a variety of studies involving topics such as neurodevelopment, aging, stress, memory and homeostatic plasticity to highlight how the weakening and disconnection of synapses organically permeate the brain in so many ways as a good practice of its intrinsic physiology. Therefore, we propose to break down neuroplasticity into two sub-concepts, "upward neuroplasticity" for changes related to synaptic construction and "downward neuroplasticity" for changes related to synaptic deconstruction. With these sub-concepts, neuroplasticity could be better understood from a bigger landscape as a vector in which both directions could be taken for the brain to flexibly adapt to certain demands. Such a paradigm shift would allow a better understanding of the concept of neuroplasticity to avoid any data interpretation bias, once it makes clear that there is no morality with regard to the organic and physiological changes that involve dynamic biological systems as seen in the brain.
Collapse
|
17
|
Therrien-Blanchet JM, Ferland MC, Badri M, Rousseau MA, Merabtine A, Boucher E, Hofmann LH, Lepage JF, Théoret H. The neurophysiological aftereffects of brain stimulation in human primary motor cortex: a Sham-controlled comparison of three protocols. Cereb Cortex 2023:7030623. [PMID: 36749004 DOI: 10.1093/cercor/bhad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 02/08/2023] Open
Abstract
Paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are non-invasive brain stimulation methods that are used to modulate cortical excitability. Whether one technique is superior to the others in achieving this outcome and whether individuals that respond to one intervention are more likely to respond to another remains largely unknown. In the present study, the neurophysiological aftereffects of three excitatory neurostimulation protocols were measured with transcranial magnetic stimulation (TMS). Twenty minutes of PAS at an ISI of 25 ms, anodal tDCS, 20-Hz tACS, and Sham stimulation were administered to 31 healthy adults in a repeated measures design. Compared with Sham, none of the stimulation protocols significantly modulated corticospinal excitability (input/ouput curve and slope, TMS stimulator intensity required to elicit MEPs of 1-mV amplitude) or intracortical excitability (short- and long-interval intracortical inhibition, intracortical facilitation, cortical silent period). Sham-corrected responder analysis estimates showed that an average of 41 (PAS), 39 (tDCS), and 39% (tACS) of participants responded to the interventions with an increase in corticospinal excitability. The present data show that three stimulation protocols believed to increase cortical excitability are associated with highly heterogenous and variable aftereffects that may explain a lack of significant group effects.
Collapse
Affiliation(s)
| | | | - Meriem Badri
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Amira Merabtine
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Emelie Boucher
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Lydia Helena Hofmann
- Department of Psychology and Neuroscience, Maastricht University, Maastricht 6229, The Netherlands
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke, Centre de Recherche du CHU Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
18
|
Paired corticomotoneuronal stimulation of the preactivated ankle dorsiflexor: an open-label study of magnetic and electrical painless protocols. Exp Brain Res 2023; 241:629-647. [PMID: 36637488 DOI: 10.1007/s00221-022-06534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023]
Abstract
Paired corticomotoneuronal stimulation (or electrical PCMS: ePCMS) is the repetitive pairing of an electrical stimulus to a nerve with a transcranial magnetic stimulation of the primary motor cortex (TMS-of-M1) to noninvasively influence spinal plasticity. We compared ePCMS with the new painless PCMS protocol pairing a magnetic stimulus to the nerve with TMS-of-M1 (mPCMS) in the preactivated tibial anterior muscle (TA). Sixteen healthy adults participated in two sessions (mPCMS, ePCMS), each with 180 pairs of [low-intensity TMS-of-M1 + nerve stimulation] at 0.2 Hz. TA motor-evoked potentials (MEP) to single-pulse TMS at pre-PCMS, immediately and 30 min after PCMS, were cluster-analyzed to discriminate responders and non-responders. Paired-pulse TMS-of-M1 and F-waves were also tested and BDNF polymorphism influence was explored. Both PCMS protocols significantly increased MEP amplitudes (n = 9 responders each), but the time-course differed with mPCMS inducing larger MEP increase over time. The number of BDNF-methionine carriers tended to be larger than Val66Val in mPCMS and the reverse in ePCMS, thus warranting further investigations. The MEP changes of the preactivated TA likely occurred at the pre-motoneuronal level and larger mPCMS after-effects over time may be related to the afferents recruited. mPCMS seems relevant to be tested in future studies as a painless noninvasive approach to induce sustained pre-motoneuronal plasticity in spinal cord injury.
Collapse
|
19
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
20
|
Intraclass Correlation in Paired Associative Stimulation and Metaplasticity. NEUROSCI 2022. [DOI: 10.3390/neurosci3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paired associative stimulation (PAS) is a widely used noninvasive brain stimulation protocol to assess neural plasticity. Its reproducibility, however, has been rarely tested and with mixed results. With two consecutive studies, we aimed to provide further tests and a more systematic assessment of PAS reproducibility. We measured intraclass correlation coefficients (ICCs)—a widely used tool to assess whether groups of measurements resemble each other—in two PAS studies on healthy volunteers. The first study included five PAS sessions recording 10 MEPS every 10 min for an hour post-PAS. The second study included two PAS sessions recording 50 MEPS at 20 and 50 min post-PAS, based on analyses from the first study. In both studies PAS sessions were spaced one week apart. Within sessions ICC was fair to excellent for both studies, yet between sessions ICC was poor for both studies. We suggest that long term meta-plasticity effects (longer than one week) may interfere with between sessions reproducibility.
Collapse
|
21
|
Neurochemical profiles of the anterior temporal lobe predict response of repetitive transcranial magnetic stimulation on semantic processing. Neuroimage 2022; 258:119386. [PMID: 35709948 DOI: 10.1016/j.neuroimage.2022.119386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique used to modulate cortical excitability in the human brain. However, one major challenge with rTMS is that the responses to stimulation are highly variable across individuals. The underlying reasons why responses to rTMS are highly variable between individuals still remain unclear. Here, we investigated whether the response to continuous theta-burst stimulation (cTBS) - an effective rTMS protocol for decreasing cortical excitability - is related to individual differences in glutamate and GABA neurotransmission. We acquired resting-state magnetic resonance spectroscopy (MRS) and functional magnetic resonance imaging (fMRI) during semantic processing. Then, we applied cTBS over the anterior temporal lobe (ATL), a hub for semantic representation, to explore the relationship between the baseline neurochemical profiles in this region and the response to cTBS. We found that the baseline excitation-inhibition balance (glutamate + glutamine/GABA ratio) in the ATL was associated with individual cTBS responsiveness during semantic processing. Specifically, individuals with lower excitation-inhibition balance showed stronger inhibitory effect - poorer semantic performance. Our results revealed that non-responders (subjects who did not show an inhibitory effect of cTBS on subsequent semantic performance) had higher excitatory-inhibitory balance in the ATL, which led to up-regulated task-induced regional activity as well as increased ATL-connectivity with other semantic regions compared to responders. These results disclose that the baseline neurochemical state of a cortical region can be a significant factor in predicting responses to cTBS.
Collapse
|
22
|
Turrini S, Fiori F, Chiappini E, Santarnecchi E, Romei V, Avenanti A. Gradual enhancement of corticomotor excitability during cortico-cortical paired associative stimulation. Sci Rep 2022; 12:14670. [PMID: 36038605 PMCID: PMC9424198 DOI: 10.1038/s41598-022-18774-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cortico-cortical paired associative stimulation (ccPAS) is an effective transcranial magnetic stimulation (TMS) method for inducing associative plasticity between interconnected brain areas in humans. Prior ccPAS studies have focused on protocol’s aftereffects. Here, we investigated physiological changes induced “online” during ccPAS administration. We tested 109 participants receiving ccPAS over left ventral premotor cortex (PMv) and primary motor cortex (M1) using a standard procedure (90 paired-pulses with 8-ms interstimulus interval, repeated at 0.1 Hz frequency). On each paired-pulse, we recorded a motor-evoked potential (MEP) to continuously trace the emergence of corticomotor changes. Participant receiving forward-ccPAS (on each pair, a first TMS pulse was administered over PMv, second over M1, i.e., PMv-to-M1) showed a gradual and linear increase in MEP size that did not reach a plateau at the end of the protocol and was greater in participants with low motor threshold. Participants receiving reverse-ccPAS (i.e., M1-to-PMv) showed a trend toward inhibition. Our study highlights the facilitatory and inhibitory modulations that occur during ccPAS administration and suggest that online MEP monitoring could provide insights into the malleability of the motor system and protocol’s effectiveness. Our findings open interesting prospects about ccPAS potential optimization in experimental and clinical settings.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,NeXT: Unità di ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Università Campus Bio-Medico, Rome, Italy
| | - Emilio Chiappini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,Institut für Klinische und Gesundheitspsychologie, Universität Wien, Wien, Austria
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy. .,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
23
|
After 55 Years of Neurorehabilitation, What Is the Plan? Brain Sci 2022; 12:brainsci12080982. [PMID: 35892423 PMCID: PMC9330852 DOI: 10.3390/brainsci12080982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Neurological disorders often cause severe long-term disabilities with substantial activity limitations and participation restrictions such as community integration, family functioning, employment, social interaction and participation. Increasing understanding of brain functioning has opened new perspectives for more integrative interventions, boosting the intrinsic central nervous system neuroplastic capabilities in order to achieve efficient behavioral restitution. Neurorehabilitation must take into account the many aspects of the individual through a comprehensive analysis of actual and potential cognitive, behavioral, emotional and physical skills, while increasing awareness and understanding of the new self of the person being dealt with. The exclusive adoption by the rehabilitator of objective functional measures often overlooks the values and goals of the disabled person. Indeed, each individual has their own rhythm, unique life history and personality construct. In this challenging context, it is essential to deepen the assessment through subjective measures, which more adequately reflect the patient’s perspective in order to shape genuinely tailored instead of standardized neurorehabilitation approaches. In this overly complex panorama, where confounding and prognostic factors also strongly influence potential functional recovery, the healthcare community needs to rethink neurorehabilitation formats.
Collapse
|
24
|
Sasaki R, Watanabe H, Onishi H. Therapeutic benefits of noninvasive somatosensory cortex stimulation on cortical plasticity and somatosensory function: a systematic review. Eur J Neurosci 2022; 56:4669-4698. [PMID: 35804487 DOI: 10.1111/ejn.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Optimal limb coordination requires efficient transmission of somatosensory information to the sensorimotor cortex. The primary somatosensory cortex (S1) is frequently damaged by stroke, resulting in both somatosensory and motor impairments. Noninvasive brain stimulation (NIBS) to the primary motor cortex is thought to induce neural plasticity that facilitates neurorehabilitation. Several studies have also examined if NIBS to the S1 can enhance somatosensory processing as assessed by somatosensory-evoked potentials (SEPs) and improve behavioral task performance, but it remains uncertain if NIBS can reliably modulate S1 plasticity or even whether SEPs can reflect this plasticity. This systematic review revealed that NIBS has relatively minor effects on SEPs or somatosensory task performance, but larger early SEP changes after NIBS can still predict improved performance. Similarly, decreased paired-pulse inhibition in S1 post-NIBS is associated with improved somatosensory performance. However, several studies still debate the role of inhibitory function in somatosensory performance after NIBS in terms of the direction of the change (that, disinhibition or inhibition). Altogether, early SEP and paired-pulse inhibition (particularly inter-stimulus intervals of 30-100 ms) may become useful biomarkers for somatosensory deficits, but improved NIBS protocols are required for therapeutic applications.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
25
|
Parchure S, Harvey DY, Shah-Basak PP, DeLoretta L, Wurzman R, Sacchetti D, Faseyitan O, Lohoff FW, Hamilton RH. Brain-Derived Neurotrophic Factor Gene Polymorphism Predicts Response to Continuous Theta Burst Stimulation in Chronic Stroke Patients. Neuromodulation 2022; 25:569-577. [PMID: 35667772 PMCID: PMC8913155 DOI: 10.1111/ner.13495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The efficacy of repetitive transcranial magnetic stimulation (rTMS) in clinically relevant neuroplasticity research depends on the degree to which stimulation induces robust, reliable effects. The high degree of interindividual and intraindividual variability observed in response to rTMS protocols, such as continuous theta burst stimulation (cTBS), therefore represents an obstacle to its utilization as treatment for neurological disorders. Brain-derived neurotrophic factor (BDNF) is a protein involved in human synaptic and neural plasticity, and a common polymorphism in the BDNF gene (Val66Met) may influence the capacity for neuroplastic changes that underlie the effects of cTBS and other rTMS protocols. While evidence from healthy individuals suggests that Val66Met polymorphism carriers may show diminished or facilitative effects of rTMS compared to their homozygous Val66Val counterparts, this has yet to be demonstrated in the patient populations where neuromodulatory therapies are most relevant. MATERIALS AND METHODS We examined the effects of BDNF Val66Met polymorphism on cTBS aftereffects in stroke patients. We compared approximately 30 log-transformed motor-evoked potentials (LnMEPs) obtained per time point: at baseline and at 0, 10, 20, and 30 min after cTBS-600, from 18 patients with chronic stroke using single TMS pulses. We used linear mixed-effects regression with trial-level data nested by subject for higher statistical power. RESULTS We found a significant interaction between BDNF genotype and pre-/post-cTBS LnMEPs. Val66Val carriers showed decrease in cortical excitability, whereas Val66Met carriers exhibited a modest increase in cortical excitability for 20 min poststimulation, followed by inhibition 30 min after cTBS-600. CONCLUSIONS Our findings strongly suggest that BDNF genotype differentially affects neuroplastic responses to TMS in individuals with chronic stroke. This provides novel insight into potential sources of variability in cTBS response in patients, which has important implications for optimizing the utility of this neuromodulation approach. Incorporating BDNF polymorphism genetic screening to stratify patients prior to use of cTBS as a neuromodulatory technique in therapy or research may optimize response rates.
Collapse
Affiliation(s)
- Shreya Parchure
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise Y Harvey
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyanka P Shah-Basak
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Laura DeLoretta
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Wurzman
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniela Sacchetti
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Olufunsho Faseyitan
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Falk W Lohoff
- National Institute for Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Roy H Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Dresang HC, Harvey DY, Xie SX, Shah-Basak PP, DeLoretta L, Wurzman R, Parchure SY, Sacchetti D, Faseyitan O, Lohoff FW, Hamilton RH. Genetic and Neurophysiological Biomarkers of Neuroplasticity Inform Post-Stroke Language Recovery. Neurorehabil Neural Repair 2022; 36:371-380. [PMID: 35428413 PMCID: PMC9133188 DOI: 10.1177/15459683221096391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND There is high variability in post-stroke aphasia severity and predicting recovery remains imprecise. Standard prognostics do not include neurophysiological indicators or genetic biomarkers of neuroplasticity, which may be critical sources of variability. OBJECTIVE To evaluate whether a common polymorphism (Val66Met) in the gene for brain-derived neurotrophic factor (BDNF) contributes to variability in post-stroke aphasia, and to assess whether BDNF polymorphism interacts with neurophysiological indicators of neuroplasticity (cortical excitability and stimulation-induced neuroplasticity) to improve estimates of aphasia severity. METHODS Saliva samples and motor-evoked potentials (MEPs) were collected from participants with chronic aphasia subsequent to left-hemisphere stroke. MEPs were collected prior to continuous theta burst stimulation (cTBS; index for cortical excitability) and 10 minutes following cTBS (index for stimulation-induced neuroplasticity) to the right primary motor cortex. Analyses assessed the extent to which BDNF polymorphism interacted with cortical excitability and stimulation-induced neuroplasticity to predict aphasia severity beyond established predictors. RESULTS Val66Val carriers showed less aphasia severity than Val66Met carriers, after controlling for lesion volume and time post-stroke. Furthermore, Val66Val carriers showed expected effects of age on aphasia severity, and positive associations between severity and both cortical excitability and stimulation-induced neuroplasticity. In contrast, Val66Met carriers showed weaker effects of age and negative associations between cortical excitability, stimulation-induced neuroplasticity and aphasia severity. CONCLUSIONS Neurophysiological indicators and genetic biomarkers of neuroplasticity improved aphasia severity predictions. Furthermore, BDNF polymorphism interacted with cortical excitability and stimulation-induced neuroplasticity to improve predictions. These findings provide novel insights into mechanisms of variability in stroke recovery and may improve aphasia prognostics.
Collapse
Affiliation(s)
- Haley C. Dresang
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104,Moss Rehabilitation Research Institute, Einstein Medical Center, 50 Township Line Road, Philadelphia, PA 19027,Corresponding author:, Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Denise Y. Harvey
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Sharon Xiangwen Xie
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Perelman School of Medicine, 607 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104
| | - Priyanka P. Shah-Basak
- Medical College of Wisconsin, Department of Neurology, 8701 Watertown Plank Road Milwaukee, WI 53226
| | - Laura DeLoretta
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Rachel Wurzman
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Shreya Y. Parchure
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Daniela Sacchetti
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Olufunsho Faseyitan
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| | - Falk W. Lohoff
- National Institute for Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), 10 Center Drive (10CRC/2-2352), Bethesda, MD 20892
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, 3710 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
27
|
King EM, Edwards LL, Borich MR. Short-term arm immobilization modulates excitability of inhibitory circuits within, and between, primary motor cortices. Physiol Rep 2022; 10:e15359. [PMID: 35757848 PMCID: PMC9234616 DOI: 10.14814/phy2.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023] Open
Abstract
Previous research has suggested that short-term immobilization of the arm may be a low-cost, non-invasive strategy to enhance the capacity for long-term potentiation (LTP)-like plasticity in primary motor cortex (M1). Short-term immobilization reduces corticospinal excitability (CSE) in the contralateral M1, and interhemispheric inhibition (IHI) from ipsi- onto contralateral M1 is increased. However, it is unclear whether reduced CSE and increased IHI are associated with changes in intracortical inhibition, which has been shown to be important for regulating neuroplasticity in M1. The current study used transcranial magnetic stimulation to evaluate the effects of short-term (6 h) arm immobilization on CSE, IHI, and intracortical inhibition measured bilaterally in 43 neurotypical young adults (23 immobilized). We replicated previous findings demonstrating that immobilization decreased CSE in, and increased IHI onto, the immobilized hemisphere, but a significant change in intracortical inhibition was not observed at the group level. Across individuals, decreased CSE was associated with a decreased short-interval intracortical inhibition, an index of GABAA -ergic inhibition, within the immobilized hemisphere only in the immobilization group. Previous research has demonstrated that decreases in GABAA -ergic inhibition are necessary for the induction of LTP-like plasticity in M1; therefore, decreased intracortical inhibition after short-term arm immobilization may provide a novel mechanism to enhance the capacity for LTP-like plasticity within M1 and may be a potential target for strategies to augment plasticity capacity to enhance motor learning in health and disease.
Collapse
Affiliation(s)
- Erin M. King
- Neuroscience Graduate ProgramGraduate Division of Biological and Biomedical SciencesEmory UniversityAtlantaGeorgiaUSA
- Department of Rehabilitation MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Lauren L. Edwards
- Department of Rehabilitation MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Michael R. Borich
- Department of Rehabilitation MedicineEmory UniversityAtlantaGeorgiaUSA
- Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
28
|
Garcia-Sanz S, Ghotme KA, Hedmont D, Arévalo-Jaimes MY, Cohen Kadosh R, Serra-Grabulosa JM, Redolar-Ripoll D. Use of transcranial magnetic stimulation for studying the neural basis of numerical cognition: A systematic review. J Neurosci Methods 2022; 369:109485. [DOI: 10.1016/j.jneumeth.2022.109485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/08/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023]
|
29
|
Al Qasem W, Abubaker M, Kvašňák E. Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges. Front Psychol 2022; 13:822545. [PMID: 35237214 PMCID: PMC8882605 DOI: 10.3389/fpsyg.2022.822545] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/06/2022] Open
Abstract
Working memory (WM) is a cognitive process that involves maintaining and manipulating information for a short period of time. WM is central to many cognitive processes and declines rapidly with age. Deficits in WM are seen in older adults and in patients with dementia, schizophrenia, major depression, mild cognitive impairment, Alzheimer's disease, etc. The frontal, parietal, and occipital cortices are significantly involved in WM processing and all brain oscillations are implicated in tackling WM tasks, particularly theta and gamma bands. The theta/gamma neural code hypothesis assumes that retained memory items are recorded via theta-nested gamma cycles. Neuronal oscillations can be manipulated by sensory, invasive- and non-invasive brain stimulations. Transcranial alternating-current stimulation (tACS) and repetitive transcranial magnetic stimulation (rTMS) are frequency-tuned non-invasive brain stimulation (NIBS) techniques that have been used to entrain endogenous oscillations in a frequency-specific manner. Compared to rTMS, tACS demonstrates superior cost, tolerability, portability, and safety profile, making it an attractive potential tool for improving cognitive performance. Although cognitive research with tACS is still in its infancy compared to rTMS, a number of studies have shown a promising WM enhancement effect, especially in the elderly and patients with cognitive deficits. This review focuses on the various methods and outcomes of tACS on WM in healthy and unhealthy human adults and highlights the established findings, unknowns, challenges, and perspectives important for translating laboratory tACS into realistic clinical settings. This will allow researchers to identify gaps in the literature and develop frequency-tuned tACS protocols with promising safety and efficacy outcomes. Therefore, research efforts in this direction should help to consider frequency-tuned tACS as a non-pharmacological tool of cognitive rehabilitation in physiological aging and patients with cognitive deficits.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Praha, Czechia
| | | | | |
Collapse
|
30
|
Jannati A, Ryan MA, Kaye HL, Tsuboyama M, Rotenberg A. Biomarkers Obtained by Transcranial Magnetic Stimulation in Neurodevelopmental Disorders. J Clin Neurophysiol 2022; 39:135-148. [PMID: 34366399 PMCID: PMC8810902 DOI: 10.1097/wnp.0000000000000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation that is based on the principle of electromagnetic induction where small intracranial electric currents are generated by a powerful fluctuating magnetic field. Over the past three decades, TMS has shown promise in the diagnosis, monitoring, and treatment of neurological and psychiatric disorders in adults. However, the use of TMS in children has been more limited. We provide a brief introduction to the TMS technique; common TMS protocols including single-pulse TMS, paired-pulse TMS, paired associative stimulation, and repetitive TMS; and relevant TMS-derived neurophysiological measurements including resting and active motor threshold, cortical silent period, paired-pulse TMS measures of intracortical inhibition and facilitation, and plasticity metrics after repetitive TMS. We then discuss the biomarker applications of TMS in a few representative neurodevelopmental disorders including autism spectrum disorder, fragile X syndrome, attention-deficit hyperactivity disorder, Tourette syndrome, and developmental stuttering.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary A. Ryan
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Harper Lee Kaye
- Behavioral Neuroscience Program, Division of Medical Sciences, Boston University School of Medicine, Boston, USA
| | - Melissa Tsuboyama
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Suppa A, Asci F, Guerra A. Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:73-89. [PMID: 35034759 DOI: 10.1016/b978-0-12-819410-2.00005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activity-dependent synaptic plasticity is the main theoretical framework to explain mechanisms of learning and memory. Synaptic plasticity can be explored experimentally in animals through various standardized protocols for eliciting long-term potentiation and long-term depression in hippocampal and cortical slices. In humans, several non-invasive protocols of repetitive transcranial magnetic stimulation and transcranial direct current stimulation have been designed and applied to probe synaptic plasticity in the primary motor cortex, as reflected by long-term changes in motor evoked potential amplitudes. These protocols mimic those normally used in animal studies for assessing long-term potentiation and long-term depression. In this chapter, we first discuss the physiologic basis of theta-burst stimulation, paired associative stimulation, and transcranial direct current stimulation. We describe the current biophysical and theoretical models underlying the molecular mechanisms of synaptic plasticity and metaplasticity, defined as activity-dependent changes in neural functions that modulate subsequent synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), in the human motor cortex including calcium-dependent plasticity, spike-timing-dependent plasticity, the role of N-methyl-d-aspartate-related transmission and gamma-aminobutyric-acid interneuronal activity. We also review the putative microcircuits responsible for synaptic plasticity in the human motor cortex. We critically readdress the issue of variability in studies investigating synaptic plasticity and propose available solutions. Finally, we speculate about the utility of future studies with more advanced experimental approaches.
Collapse
Affiliation(s)
- Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy.
| | | | | |
Collapse
|
32
|
Janssens SEW, Sack AT. Spontaneous Fluctuations in Oscillatory Brain State Cause Differences in Transcranial Magnetic Stimulation Effects Within and Between Individuals. Front Hum Neurosci 2021; 15:802244. [PMID: 34924982 PMCID: PMC8674306 DOI: 10.3389/fnhum.2021.802244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) can cause measurable effects on neural activity and behavioral performance in healthy volunteers. In addition, TMS is increasingly used in clinical practice for treating various neuropsychiatric disorders. Unfortunately, TMS-induced effects show large intra- and inter-subject variability, hindering its reliability, and efficacy. One possible source of this variability may be the spontaneous fluctuations of neuronal oscillations. We present recent studies using multimodal TMS including TMS-EMG (electromyography), TMS-tACS (transcranial alternating current stimulation), and concurrent TMS-EEG-fMRI (electroencephalography, functional magnetic resonance imaging), to evaluate how individual oscillatory brain state affects TMS signal propagation within targeted networks. We demonstrate how the spontaneous oscillatory state at the time of TMS influences both immediate and longer-lasting TMS effects. These findings indicate that at least part of the variability in TMS efficacy may be attributable to the current practice of ignoring (spontaneous) oscillatory fluctuations during TMS. Ignoring this state-dependent spread of activity may cause great individual variability which so far is poorly understood and has proven impossible to control. We therefore also compare two technical solutions to directly account for oscillatory state during TMS, namely, to use (a) tACS to externally control these oscillatory states and then apply TMS at the optimal (controlled) brain state, or (b) oscillatory state-triggered TMS (closed-loop TMS). The described multimodal TMS approaches are paramount for establishing more robust TMS effects, and to allow enhanced control over the individual outcome of TMS interventions aimed at modulating information flow in the brain to achieve desirable changes in cognition, mood, and behavior.
Collapse
Affiliation(s)
- Shanice E. W. Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
| | - Alexander T. Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Centre for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
33
|
Bonotis K, Anargyros K, Liaskopoulos N, Barlogianni AM. Evaluation of memory performance in patients with brain disorders following rTMS treatment. A systematic review. Clin Neurophysiol 2021; 135:126-153. [DOI: 10.1016/j.clinph.2021.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 12/01/2022]
|
34
|
Brisson V, Tremblay P. Improving speech perception in noise in young and older adults using transcranial magnetic stimulation. BRAIN AND LANGUAGE 2021; 222:105009. [PMID: 34425411 DOI: 10.1016/j.bandl.2021.105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Normal aging is associated with speech perception in noise (SPiN) difficulties. The objective of this study was to determine if SPiN performance can be enhanced by intermittent theta-burst stimulation (iTBS) in young and older adults. METHOD We developed a sub-lexical SPiN test to evaluate the contribution of age, hearing, and cognition to SPiN performance in young and older adults. iTBS was applied to the left posterior superior temporal sulcus (pSTS) and the left ventral premotor cortex (PMv) to examine its impact on SPiN performance. RESULTS Aging was associated with reduced SPiN accuracy. TMS-induced performance gain was greater after stimulation of the PMv compared to the pSTS. Participants with lower scores in the baseline condition improved the most. DISCUSSION SPiN difficulties can be reduced by enhancing activity within the left speech-processing network in adults. This study paves the way for the development of TMS-based interventions to reduce SPiN difficulties in adults.
Collapse
Affiliation(s)
- Valérie Brisson
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada
| | - Pascale Tremblay
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada.
| |
Collapse
|
35
|
Age affects temporal response, but not durability, to serial ketamine infusions for treatment refractory depression. Psychopharmacology (Berl) 2021; 238:3229-3237. [PMID: 34363507 DOI: 10.1007/s00213-021-05939-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/14/2021] [Indexed: 12/30/2022]
Abstract
RATIONALE Ketamine is a novel, rapid-acting antidepressant for treatment refractory depression (TRD); however, clinical durability is poor and treatment response trajectories vary. Little is known about which patient characteristics predict faster or more durable ketamine responses. Ketamine's antidepressant mechanism may involve modulation of glutamatergic signaling and long-term potentiation (LTP); these neuroplasticity pathways are also attenuated with older age. OBJECTIVE A retrospective analysis examining the impact of patient age on the speed and durability of ketamine's antidepressant effects in 49 veterans receiving serial intravenous ketamine infusions for TRD. METHOD The relationship between age and percent change in Beck Depression Inventory (BDI-II) scores was compared across six serial ketamine infusions (twice-weekly for 3 weeks) using a linear-mixed model. RESULTS A significant Age-X-Infusion number interaction (F = 3.01, p = .0274) indicated that the relationship between age and treatment response depended on infusion number. Follow-up tests showed that younger age significantly predicted greater clinical improvement at infusion #4 (t = 3.02, p = .004); this relationship was attenuated at infusion #5 (t = 1.95, p = .057) and was absent at infusion #6. Age was not a significant predictor of treatment durability, defined as percent change in BDI-II 3 weeks following infusion #6. CONCLUSIONS These data preliminarily suggest that younger age is associated with a faster response over six serial ketamine infusions; by infusion #6 and subsequent weeks of clinical follow-up, age no longer predicts ketamine's antidepressant activity. Age may mediate the speed but not the durability or total efficacy of ketamine treatment, suggesting that dissociable mechanisms may underlie differing aspects of ketamine's antidepressant activity.
Collapse
|
36
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
37
|
Meder A, Liepelt-Scarfone I, Sulzer P, Berg D, Laske C, Preische O, Desideri D, Zipser CM, Salvadore G, Tatikola K, Timmers M, Ziemann U. Motor cortical excitability and paired-associative stimulation-induced plasticity in amnestic mild cognitive impairment and Alzheimer’s disease. Clin Neurophysiol 2021; 132:2264-2273. [DOI: 10.1016/j.clinph.2021.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
|
38
|
Kishore A, James P, Popa T, Thejaus A, Rajeswari P, Sarma G, Krishnan S, Meunier S. Plastic responsiveness of motor cortex to paired associative stimulation depends on cerebellar input. Clin Neurophysiol 2021; 132:2493-2502. [PMID: 34454278 DOI: 10.1016/j.clinph.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The extent of plastic responses of motor cortex (M1) to paired associative stimulation (PAS) varies among healthy subjects. Continuous theta-burst stimulation (cTBS) of cerebellum enhances the mean PAS-induced plasticity in groups of healthy subjects. We tested whether the initial status of Responder or Non -Responder to PAS, influenced the effect of cerebellar stimulation on PAS-induced plasticity. METHODS We assessed in 19 young healthy volunteers (8 Responders, 11 Non-Responders to PAS), how cTBS and iTBS (intermittent TBS) applied to the cerebellum before a PAS protocol influenced the plastic responsiveness of M1 to PAS. We tested whether the PAS-induced plastic effects could be depotentiated by a short cTBS protocol applied to M1 shortly after PAS and whether cerebellar stimulation influenced GABA-ergic intracortical inhibition and M1 plasticity in parallel. RESULTS Cerebellar cTBS restored the M1 response to PAS in Non-Responders while cerebellar iTBS turned the potentiating response to PAS to a depressive response in both groups. The depotentiation protocol abolished both responses. CONCLUSION Non-Responder status to PAS is a state of M1 amenable to bidirectional plastic modulation when primed by a change in cerebello-thalamic drive. SIGNIFICANCE The meaning of lack of responsiveness to certain protocols probing plasticity should be reconsidered.
Collapse
Affiliation(s)
- Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India.
| | - Praveen James
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Arun Thejaus
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Parvathy Rajeswari
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Gangadhara Sarma
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Sabine Meunier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelleépinière, ICM, F-75013 Paris, France
| |
Collapse
|
39
|
Altered motor cortical plasticity in patients with hepatic encephalopathy: A paired associative stimulation study. Clin Neurophysiol 2021; 132:2332-2341. [PMID: 34454259 DOI: 10.1016/j.clinph.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatic encephalopathy (HE) is a potentially reversible brain dysfunction caused by liver failure. Altered synaptic plasticity is supposed to play a major role in the pathophysiology of HE. Here, we used paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), a transcranial magnetic stimulation (TMS) protocol, to test synaptic plasticity of the motor cortex in patients with manifest HE. METHODS 23 HE-patients and 23 healthy controls were enrolled in the study. Motor evoked potential (MEP) amplitudes were assessed as measure for cortical excitability. Time courses of MEP amplitude changes after the PAS25 intervention were compared between both groups. RESULTS MEP-amplitudes increased after PAS25 in the control group, indicating PAS25-induced synaptic plasticity in healthy controls, as expected. In contrast, MEP-amplitudes within the HE group did not change and were lower than in the control group, indicating no induction of plasticity. CONCLUSIONS Our study revealed reduced synaptic plasticity of the primary motor cortex in HE. SIGNIFICANCE Reduced synaptic plasticity in HE provides a link between pathological changes on the molecular level and early clinical symptoms of the disease. This decrease may be caused by disturbances in the glutamatergic neurotransmission due to the known hyperammonemia in HE patients.
Collapse
|
40
|
Guidali G, Roncoroni C, Bolognini N. Paired associative stimulations: Novel tools for interacting with sensory and motor cortical plasticity. Behav Brain Res 2021; 414:113484. [PMID: 34302877 DOI: 10.1016/j.bbr.2021.113484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022]
Abstract
In the early 2000s, a novel non-invasive brain stimulation protocol, the paired associative stimulation (PAS), was introduced, allowing to induce and investigate Hebbian associative plasticity within the humans' motor system, with patterns resembling spike-timing-dependent plasticity properties found in cellular models. Since this evidence, PAS efficacy has been proved in healthy, and to a lesser extent, in clinical populations. Recently, novel 'modified' protocols targeting sensorimotor and crossmodal networks appeared in the literature. In the present work, we have reviewed recent advances using these 'modified' PAS protocols targeting sensory and motor cortical networks. To better categorize them, we propose a novel classification according to the nature of the peripheral and cortical stimulations (i.e., within-system, cross-systems, and cortico-cortical PAS). For each protocol of the categories mentioned above, we describe and discuss their main features, how they have been used to study and promote brain plasticity, and their advantages and disadvantages. Overall, current evidence suggests that these novel non-invasive brain stimulation protocols represent very promising tools to study the plastic properties of humans' sensorimotor and crossmodal networks, both in the healthy and in the damaged central nervous system.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.
| | - Camilla Roncoroni
- Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy; Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
41
|
Age-related changes in motor cortex plasticity assessed with non-invasive brain stimulation: an update and new perspectives. Exp Brain Res 2021; 239:2661-2678. [PMID: 34269850 DOI: 10.1007/s00221-021-06163-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
It is commonly accepted that the brains capacity to change, known as plasticity, declines into old age. Recent studies have used a variety of non-invasive brain stimulation (NIBS) techniques to examine this age-related decline in plasticity in the primary motor cortex (M1), but the effects seem inconsistent and difficult to unravel. The purpose of this review is to provide an update on studies that have used different NIBS techniques to assess M1 plasticity with advancing age and offer some new perspective on NIBS strategies to boost plasticity in the ageing brain. We find that early studies show clear differences in M1 plasticity between young and older adults, but many recent studies with motor training show no decline in use-dependent M1 plasticity with age. For NIBS-induced plasticity in M1, some protocols show more convincing differences with advancing age than others. Therefore, our view from the NIBS literature is that it should not be automatically assumed that M1 plasticity declines with age. Instead, the effects of age are likely to depend on how M1 plasticity is measured, and the characteristics of the elderly population tested. We also suggest that NIBS performed concurrently with motor training is likely to be most effective at producing improvements in M1 plasticity and motor skill learning in older adults. Proposed NIBS techniques for future studies include combining multiple NIBS protocols in a co-stimulation approach, or NIBS strategies to modulate intracortical inhibitory mechanisms, in an effort to more effectively boost M1 plasticity and improve motor skill learning in older adults.
Collapse
|
42
|
Cavaleri R, Chipchase LS, Summers SJ, Chalmers J, Schabrun SM. The Relationship Between Corticomotor Reorganization and Acute Pain Severity: A Randomized, Controlled Study Using Rapid Transcranial Magnetic Stimulation Mapping. PAIN MEDICINE 2021; 22:1312-1323. [PMID: 33367763 DOI: 10.1093/pm/pnaa425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Although acute pain has been shown to reduce corticomotor excitability, it remains unknown whether this response resolves over time or is related to symptom severity. Furthermore, acute pain research has relied upon data acquired from the cranial "hotspot," which do not provide valuable information regarding reorganization, such as changes to the distribution of a painful muscle's representation within M1. Using a novel, rapid transcranial magnetic stimulation (TMS) mapping method, this study aimed to 1) explore the temporal profile and variability of corticomotor reorganization in response to acute pain and 2) determine whether individual patterns of corticomotor reorganization are associated with differences in pain, sensitivity, and somatosensory organization. METHODS Corticomotor (TMS maps), pain processing (pain intensity, pressure pain thresholds), and somatosensory (two-point discrimination, two-point estimation) outcomes were taken at baseline, immediately after injection (hypertonic [n = 20] or isotonic saline [n = 20]), and at pain resolution. Follow-up measures were recorded every 15 minutes until 90 minutes after injection. RESULTS Corticomotor reorganization persisted at least 90 minutes after pain resolution. Corticomotor depression was associated with lower pain intensity than was corticomotor facilitation (r = 0.47 [P = 0.04]). These effects were not related to somatosensory reorganization or peripheral sensitization mechanisms. CONCLUSIONS Individual patterns of corticomotor reorganization during acute pain appear to be related to symptom severity, with early corticomotor depression possibly reflecting a protective response. These findings hold important implications for the management and potential prevention of pain chronicity. However, further research is required to determine whether these adaptations relate to long-term outcomes in clinical populations.
Collapse
Affiliation(s)
- Rocco Cavaleri
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Lucy S Chipchase
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Simon J Summers
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Jane Chalmers
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,IIMPACT in Health, University of South Australia, Adelaide, South Australia, Australia
| | | |
Collapse
|
43
|
Eagleman DM, Vaughn DA. The Defensive Activation Theory: REM Sleep as a Mechanism to Prevent Takeover of the Visual Cortex. Front Neurosci 2021; 15:632853. [PMID: 34093109 PMCID: PMC8176926 DOI: 10.3389/fnins.2021.632853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Regions of the brain maintain their territory with continuous activity: if activity slows or stops (e.g., because of blindness), the territory tends to be taken over by its neighbors. A surprise in recent years has been the speed of takeover, which is measurable within an hour. These findings lead us to a new hypothesis on the origin of REM sleep. We hypothesize that the circuitry underlying REM sleep serves to amplify the visual system's activity periodically throughout the night, allowing it to defend its territory against takeover from other senses. We find that measures of plasticity across 25 species of primates correlate positively with the proportion of rapid eye movement (REM) sleep. We further find that plasticity and REM sleep increase in lockstep with evolutionary recency to humans. Finally, our hypothesis is consistent with the decrease in REM sleep and parallel decrease in neuroplasticity with aging.
Collapse
Affiliation(s)
- David M. Eagleman
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Don A. Vaughn
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
Replicable effect of cortical-paired associative stimulation on response inhibition as a function of age. Brain Stimul 2021; 14:788-789. [PMID: 33965618 DOI: 10.1016/j.brs.2021.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/21/2022] Open
|
45
|
Zulkifly MFM, Merkohitaj O, Paulus W, Brockmöller J. The roles of caffeine and corticosteroids in modulating cortical excitability after paired associative stimulation (PAS) and transcranial alternating current stimulation (tACS) in caffeine-naïve and caffeine-adapted subjects. Psychoneuroendocrinology 2021; 127:105201. [PMID: 33740589 DOI: 10.1016/j.psyneuen.2021.105201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022]
Abstract
The modulatory effects of non-invasive brain stimulation (NIBS) are highly variable between subjects. This variability may be due to uncontrolled caffeine consumption and circadian rhythms. Therefore, here we studied if caffeine consumption, systemically available caffeine measured in saliva, and daytime have effects on the excitability and plasticity of the motor cortex. Since both, time of the day and caffeine may mediate their effects via cortisol, we also quantified corticosteroids in saliva. Experiment 1 was performed in caffeine-naïve participants (n = 30) and compared the effects of PAS or tACS with different stimulation intensities on the motor cortex with or without caffeine 200 mg administered in a double-blind fashion. Experiment 2 was performed in regular caffeine consumers (n = 30) and compared the influence of time of day on the effects of tACS (true or sham) on the motor cortex also with or without caffeine administered in a double-blind fashion. Caffeine increased the saliva corticosteroid concentrations in both experimental groups, and corticosteroid concentrations were higher in the morning in caffeine consumers. Gender also affected corticosteroid concentrations. There was a positive correlation between caffeine concentrations and baseline cortical excitability in caffeine-adapted participants, and a negative correlation between poststimulation caffeine concentrations and motor evoked potential (MEP) amplitudes after sham stimulation in caffeine-naïve subjects. No correlations were found between poststimulation caffeine or corticosteroid concentrations, and plasticity aftereffects. PAS and tACS did not elicit changes in the corticosteroid concentrations. We conclude that moderate caffeine consumption alters cortical excitability but not plasticity aftereffects. This study was registered in the ClinicalTrials.gov with these registration IDs: 1) NCT03720665 https://clinicaltrials.gov/ct2/results?cond=NCT03720665&term=&cntry=&state=&city=&dist= 2) NCT04011670 https://clinicaltrials.gov/ct2/results?cond=&term=NCT04011670&cntry=&state=&city=&dist=.
Collapse
Affiliation(s)
- Mohd Faizal Mohd Zulkifly
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany; Brain and Behaviour Cluster, Department of Neurosciences, School of Medical Science, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.
| | - Ornela Merkohitaj
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany
| |
Collapse
|
46
|
Sidhu SK. Remote muscle priming anodal transcranial direct current stimulation attenuates short interval intracortical inhibition and increases time to task failure of a constant workload cycling exercise. Exp Brain Res 2021; 239:1975-1985. [PMID: 33891144 DOI: 10.1007/s00221-021-06103-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Anodal transcranial direct current stimulation (atDCS), a non-invasive neuromodulatory technique has been shown to increase the excitability of targeted brain area and influence endurance exercise performance. However, the effect of atDCS applied on an unexercised muscle motor cortex (M1) representation on GABAA-mediated intracortical inhibition and endurance exercise performance remains unknown. In two separate sessions, twelve subjects performed fatigue cycling exercise (80% peak power output) sustained to task failure in a double-blinded design, following either ten minutes of bicephalic anodal tDCS (atDCS) or sham applied on a non-exercised hand muscle M1 representation. Short interval intracortical inhibition (SICI) was measured at baseline, post neuromodulation and post-exercise using paired-pulse transcranial magnetic stimulation (TMS) in a resting hand muscle. There was a greater decrease in SICI (P < 0.05) post fatigue cycling with atDCS priming compared to sham. Time to task failure (TTF) was significantly increased following atDCS compared to sham (P < 0.05). These findings suggest that atDCS applied over the non-exercised muscle M1 representation can augment cycling exercise performance; and although this outcome may be mediated via a multitude of mechanisms, a decrease in the global excitability of GABAA inhibitory interneurons may be a possible contributing factor.
Collapse
Affiliation(s)
- Simranjit K Sidhu
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, S433, Helen Mayo South, Frome Rd, Adelaide, SA, 5005, Australia.
| |
Collapse
|
47
|
Li C, Jirachaipitak S, Wrigley P, Xu H, Euasobhon P. Transcranial direct current stimulation for spinal cord injury-associated neuropathic pain. Korean J Pain 2021; 34:156-164. [PMID: 33785667 PMCID: PMC8019961 DOI: 10.3344/kjp.2021.34.2.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 01/15/2023] Open
Abstract
Several types of pain occur following spinal cord injury (SCI); however, neuropathic pain (NP) is one of the most intractable. Invasive and non-invasive brain stimulation techniques have been studied in clinical trials to treat chronic NP following SCI. The evidence for invasive stimulation including motor cortex and deep brain stimulation via the use of implanted electrodes to reduce SCI-related NP remains limited, due to the small scale of existing studies. The lower risk of complications associated with non-invasive stimulation, including transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), provide potentially attractive alternative central neuromodulation techniques. Compared to rTMS, tDCS is technically easier to apply, more affordable, available, and potentially feasible for home use. Accordingly, several new studies have investigated the efficacy of tDCS to treat NP after SCI. In this review, articles relating to the mechanisms, clinical efficacy and safety of tDCS on SCI-related NP were searched from inception to December 2019. Six clinical trials, including five randomized placebo-controlled trials and one prospective controlled trial, were included for evidence specific to the efficacy of tDCS for treating SCI-related NP. The mechanisms of action of tDCS are complex and not fully understood. Several factors including stimulation parameters and individual patient characteristics may affect the efficacy of tDCS intervention. Current evidence to support the efficacy of utilizing tDCS for relieving chronic NP after SCI remains limited. Further strong evidence is needed to confirm the efficacy of tDCS intervention for treating SCI-related NP.
Collapse
Affiliation(s)
- Caixia Li
- Department of Anesthesiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sukunya Jirachaipitak
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paul Wrigley
- Pain Management Research Institute, Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, Australia.,Kolling Institute, Northern Sydney Local Health District and The University of Sydney at Royal North Shore Hospital, Sydney, Australia
| | - Hua Xu
- Department of Anesthesiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pramote Euasobhon
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
48
|
Farnad L, Ghasemian-Shirvan E, Mosayebi-Samani M, Kuo MF, Nitsche MA. Exploring and optimizing the neuroplastic effects of anodal transcranial direct current stimulation over the primary motor cortex of older humans. Brain Stimul 2021; 14:622-634. [PMID: 33798763 DOI: 10.1016/j.brs.2021.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND tDCS modulates cortical plasticity and has shown potential to improve cognitive/motor functions in healthy young humans. However, age-related alterations of brain structure and functions might require an adaptation of tDCS-parameters to achieve a targeted plasticity effect in older humans and conclusions obtained from young adults might not be directly transferable to older adults. Thus, our study aimed to systematically explore the association between tDCS-parameters and induced aftereffects on motor cortical excitability to determine optimal stimulation protocols for older individuals, as well as to investigate age-related differences of motor cortex plasticity in two different age groups of older adults. METHODS 32 healthy, volunteers from two different age groups of Young-Old (50-65 years, n = 16) and Old-Old (66-80 years, n = 16) participated in this study. Anodal tDCS was applied over the primary motor cortex, with respective combinations of three intensities (1, 2, and 3 mA) and durations (15, 20, and 30 min), in a sham-controlled cross-over design. Cortical excitability alterations were monitored by single-pulse TMS-induced MEPs until the next day morning after stimulation. RESULTS All active stimulation conditions resulted in a significant enhancement of motor cortical excitability in both age groups. The facilitatory aftereffects of anodal tDCS did not significantly differ between age groups. We observed prolonged plasticity in the late-phase range for two protocols with the highest stimulation intensity (i.e., 3 mA-20 min, 3 mA-30 min). CONCLUSIONS Our study highlights the role of stimulation dosage in tDCS-induced neuroplastic aftereffects in the motor cortex of healthy older adults and delivers crucial information about optimized tDCS protocols in the domain of the primary motor cortex. Our findings might set the grounds for the development of optimal stimulation protocols to reinstate neuroplasticity in different cortical areas and induce long-lasting, functionally relevant plasticity in normal aging and in pathological conditions, which would require however systematic tDCS titration studies over respective target areas.
Collapse
Affiliation(s)
- Leila Farnad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Ensiyeh Ghasemian-Shirvan
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany.
| |
Collapse
|
49
|
Guerra A, Rocchi L, Grego A, Berardi F, Luisi C, Ferreri F. Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sci 2021; 11:405. [PMID: 33810206 PMCID: PMC8004753 DOI: 10.3390/brainsci11030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the human brain, aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission. However, there is increasing evidence to support the notion that the aged brain has a remarkable ability to reorganize itself, with the aim of preserving its physiological activity. It is important to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated with many neurological diseases. Transcranial magnetic stimulation (TMS), coupled with electromyography or electroencephalography (EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated with behavioral manipulation. In this review, we aimed to provide up to date information about the role of TMS and TMS-EEG in the investigation of brain aging. In particular, we focused on data about cortical excitability, connectivity and plasticity, obtained by using readouts such as motor evoked potentials and transcranial evoked potentials. Overall, findings in the literature support an important potential contribution of TMS to the understanding of the mechanisms underlying normal brain aging. Further studies are needed to expand the current body of information and to assess the applicability of TMS findings in the clinical setting.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alberto Grego
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Francesca Berardi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Concetta Luisi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Florinda Ferreri
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
50
|
Guerra A, Asci F, Zampogna A, D'Onofrio V, Berardelli A, Suppa A. The effect of gamma oscillations in boosting primary motor cortex plasticity is greater in young than older adults. Clin Neurophysiol 2021; 132:1358-1366. [PMID: 33781703 DOI: 10.1016/j.clinph.2021.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE In healthy subjects, the long-term potentiation (LTP)-like plasticity of the primary motor cortex (M1) induced by intermittent theta-burst stimulation (iTBS) can be boosted by modulating gamma (γ) oscillations through transcranial alternating current stimulation (tACS). γ-tACS also reduces short-interval intracortical inhibition (SICI). We tested whether the effects of γ-tACS differ between young (YA) and older adults (OA). METHODS Twenty YA (27.2 ± 2.7 years) and twenty OA (65.3 ± 9.5 years) underwent iTBS-γ tACS and iTBS-sham tACS in randomized sessions. In a separate session, we delivered γ-tACS alone and recorded SICI during stimulation. RESULTS iTBS-sham tACS produced comparable motor evoked potential (MEP) facilitation between groups. While iTBS-γ tACS boosted MEP facilitation in both the YA and OA groups, the magnitude of its effect was significantly lower in OA. Similarly, γ-tACS-induced modulation of GABA-A-ergic neurotransmission, as tested by SICI, was reduced in OA. The effect of iTBS-γ tACS negatively correlated with the age of OA subjects. CONCLUSIONS Mechanisms underlying the effects of γ oscillations on LTP-like plasticity become less efficient in older adults. This could reflect age-related changes in neural elements of M1 resonant to γ oscillations, including GABA-A-ergic interneurons. SIGNIFICANCE The beneficial effect of γ-tACS on iTBS-induced plasticity is reduced in older adults.
Collapse
Affiliation(s)
- Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Francesco Asci
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Valentina D'Onofrio
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy.
| | - Antonio Suppa
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| |
Collapse
|