1
|
Zhu J. The Role of Social Network on Social Isolation and Anxiety on Attentional Switching of Students. J Nerv Ment Dis 2025; 213:43-49. [PMID: 39667959 DOI: 10.1097/nmd.0000000000001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
ABSTRACT The study is devoted to the study of the relationship between stress caused in students by social isolation and the ability to switch tasks as one of the basic functions of attention. The study draws on the theoretical background of The Attentional Control Theory as the most appropriate method to study the factors influencing attention control under the influence of the effects of stress. The experiment includes a sample of 76 Chinese university students who experienced forced social isolation for 6 months. A statistically significant increase in physiological markers of stress was found in both cases, indicating that social isolation leads to an accumulation of stress and an increase in the intensity of stress reactions when students reexperience social stress after isolation. The practical significance lies in changing the approach to coping with the results of social isolation stress in students through changing the method of presenting educational information.
Collapse
Affiliation(s)
- Jiawu Zhu
- Normal College, Jimei University, Xiamen, China
| |
Collapse
|
2
|
Chowdhury A, Rao BSS, Laxmi TR. Beneficial effect of saturated and poly-unsaturated fat-rich diet on risky decision-making behaviour in adolescent rats exposed to early-life stress. Physiol Behav 2025:114821. [PMID: 39862942 DOI: 10.1016/j.physbeh.2025.114821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Previous studies suggest that early-life stress (ELS) induced by early maternal separation and isolation (MS) stress during the stress hyporesponsive period (SHRP) leads to increased curiosity-like and increased risky decision-making behaviour in adolescence. Evidence suggests that dietary interventions early in adolescence could play an important role in mitigating the detrimental effects of MS stress on risky decision-making behaviour. Hence, the present study hypothesized that nutritional supplements such as saturated fat (SFA) and/or polyunsaturated fat (PUFA) would be beneficial in ameliorating the impact of MS stress on risky decision-making behaviour when incorporated into the diet during early adolescence. NC and MS rats were subjected to the Risky Decision-Taking Task (RDTT) to assess the rats' ability to make decisions under risky conditions. The results showed that MS rats took less time to cross the risky zone to collect a large reward. However, when an SFA-rich and PUFA-rich diet was provided, the latency of the MS rats increased. Similarly, MS stress-induced reduction in risk assessment was restored to normal with the SFA and PUFA-rich diet. Risk-index (RI) values also showed a similar trend with reduced RI values in MS, but nutritional supplementation increased the RI values making it comparable to that NC. Correlation analysis has further revealed a direct correlation between the anxiety-like behaviour and the risk-taking tendency in MS rats and not in the NC group. SFA-rich diet led to a positive correlation between anxiety-like and risk-taking behaviour. These findings thus support the hypothesis that PUFA- and SFA-rich diet may be introduced at adolescence to mitigate MS-stress induced increased risky decision-making behaviour due to a deficit in risk assessment.
Collapse
Affiliation(s)
- Abanti Chowdhury
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560 029.
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560 029.
| | - T R Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560 029.
| |
Collapse
|
3
|
Amini-Khoei H, Taei N, Dehkordi HT, Lorigooini Z, Bijad E, Farahzad A, Madiseh MR. Therapeutic Potential of Ocimum basilicum L. Extract in Alleviating Autistic-Like Behaviors Induced by Maternal Separation Stress in Mice: Role of Neuroinflammation and Oxidative Stress. Phytother Res 2025; 39:64-76. [PMID: 39496541 DOI: 10.1002/ptr.8360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
A confluence of genetic, environmental, and epigenetic factors shapes autism spectrum disorder (ASD). Early-life stressors like MS play a contributing role in this multifaceted neurodevelopmental disorder. This research was to explore the efficacy of Ocimum basilicum L. (O.B.) extract in mitigating behaviors reminiscent of autism prompted by maternal separation (MS) stress in male mice, focusing on its impact on neuroinflammation and oxidative stress. MS mice were treated with O.B. extract at varying dosages (20, 40, and 60 mg/kg) from postnatal days (PND) 51-53 to PND 58-60. Behavioral experiments, including the Morris water maze, three-chamber test, shuttle box, and resident-intruder test, were conducted post-treatment. The method of maternal separation involved separating the pups from their mothers for 3 h daily, from PND 2 to PND 14. Molecular analysis of hippocampal tissue was performed to assess gene expression of Toll-like receptor 4 (TLR4), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). Hippocampal and serum malondialdehyde (MDA) levels and total antioxidant capacity (TAC) were measured. O.B. extract administration resulted in the amelioration of autistic-like behaviors in MS mice, as evidenced by improved spatial and passive avoidance memories and social interactions, as well as reduced aggression in behavioral tests. O.B. extract attenuated oxidative stress and neuroinflammation, as indicated by decreased MDA and increased TAC levels, as well as downregulation of TLR4, TNF-α, and IL-1β expression in the hippocampus. O.B. extract may offer a novel therapeutic avenue for ASD, potentially mediated through its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nafiseh Taei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Anahita Farahzad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Sharma SS, Sasidharan A, Yoganarasimha D, Laxmi TR. Characterization of neuronal oscillations in the prelimbic cortex, nucleus accumbens and CA1 hippocampus during object retrieval task in rats predisposed to early life stress. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:34. [PMID: 39696528 DOI: 10.1186/s12993-024-00255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/18/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Early life stress (ELS) during the stress hypo-responsive period (SHRP) alters the curiosity-like behavior later during adolescence. Previous studies have shown maternal separation (MS) stress-induced heightened curiosity and associated risk-taking behavior in the object retrieval task (ORT). However, the neural correlates of curiosity in adolescent rats predisposed to early life stress remain unexplored. Hence, the present study aimed to investigate the neural oscillatory patterns and network characteristics in the regions implicated in curiosity behavior, such as the Prelimbic cortex (PL), Nucleus Accumbens (NAc), and CA1 of the Hippocampus. The local field potentials data were analysed to understand the neural activity patterns in these areas during the risky zone crossing and object retrieval phase of the ORT in MS rats and compared with the normal control (NC) group. RESULTS In comparison to NC, MS rats showed a reduction in the theta power at 8-12 Hz, beta power at 12-20 Hz, and gamma power at 20-40 Hz range in the PL during risky zone crossing time. MS rats also showed reduced cross-correlation between PL-CA1 and reduced theta coherence between NAc-CA1 during risky zone crossing. During the object retrieval phase, the MS rats showed reduced peak cross-correlation between PL-CA1 and PL-NAc. Behaviourally, MS rats displayed an increased preference for the curiosity platform and retrieved more hidden objects, thus accounting for a higher curiosity index than controls. CONCLUSION In summary, a reduced synchronization between the PL, NAc, and CA1 during the object retrieval task indicates how early MS stress during a critical developmental period impacts the limbic circuit connectivity. This corresponded with enhanced curiosity index in adolescent MS rats, predicting an altered intrinsic motivation and hence a higher susceptibility to substance use disorders during adolescence.
Collapse
Affiliation(s)
- Shruthi S Sharma
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, 560 029, India
| | - Arun Sasidharan
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, 560 029, India
| | - D Yoganarasimha
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, 560 029, India
| | - T R Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bengaluru, 560 029, India.
| |
Collapse
|
5
|
Hu ZY, Wei RM, Fei-Hu, Yu K, Fang SK, Li XY, Zhang YM, Chen GH. Neonatal maternal separation impairs cognitive function and synaptic plasticity in adult male CD-1 mice. IBRO Neurosci Rep 2024; 17:431-440. [PMID: 39629017 PMCID: PMC11612454 DOI: 10.1016/j.ibneur.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Maternal separation (MS) increases the risk of occurrence of anxiety, depression, and learning and memory impairment in offspring. However, the underlying molecular biological mechanisms remain unclear. In the current study, offspring CD-1 mice were separated from their mothers from postnatal day 4 to postnatal day 21. At 3 months of age, the male offspring were selected for the evaluation of anxiety- and depression-like behaviors and learning and memory function. Western blotting and RT-PCR were used to examine the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin. Long-term potentiation (LTP) and long-term depression (LTD) were recorded at Schaffer collateral/CA1 synapses. Furthermore, basal synaptic transmission was evaluated via the recording of the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). The results showed that adult offspring CD-1 mice displayed anxiety- and depressive-like behaviors as well as impaired spatial learning and memory abilities. Electrophysiological analysis indicated that MS impaired LTP, enhanced LTD, and reduced the frequency of mEPSCs in pyramidal neurons in the CA1 region. Our findings suggested that MS can lead to anxiety, depression, and cognitive deficits, and these effects are associated with alterations in the levels of synaptic plasticity-associated proteins, consequently, also synaptic plasticity.
Collapse
Affiliation(s)
- Zhen-Yu Hu
- The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Fei-Hu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Ke Yu
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Shi-Kun Fang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238000, China
| |
Collapse
|
6
|
González Ibáñez F, VanderZwaag J, Deslauriers J, Tremblay MÈ. Ultrastructural features of psychological stress resilience in the brain: a microglial perspective. Open Biol 2024; 14:240079. [PMID: 39561812 PMCID: PMC11576122 DOI: 10.1098/rsob.240079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Psychological stress is the major risk factor for major depressive disorder. Sustained stress causes changes in behaviour, brain connectivity and in its cells and organelles. Resilience to stress is understood as the ability to recover from stress in a positive way or the resistance to the negative effects of psychological stress. Microglia, the resident immune cells of the brain, are known players of stress susceptibility, but less is known about their role in stress resilience and the cellular changes involved. Ultrastructural analysis has been a useful tool in the study of microglia and their function across contexts of health and disease. Despite increased access to electron microscopy, the interpretation of electron micrographs remains much less accessible. In this review, we will first present microglia and the concepts of psychological stress susceptibility and resilience. Afterwards, we will describe ultrastructural analysis, notably of microglia, as a readout to study the mechanisms underlying psychological stress resilience. Lastly, we will cover nutritional ketosis as a therapeutic intervention that was shown to be effective in promoting psychological stress resilience as well as modifying microglial function and ultrastructure.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, British Columbia, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
7
|
Mahmoudian M, Lorigooini Z, Rahimi-Madiseh M, Shabani S, Amini-Khoei H. Protective effects of rosmarinic acid against autistic-like behaviors in a mouse model of maternal separation stress: behavioral and molecular amendments. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7819-7828. [PMID: 38730077 DOI: 10.1007/s00210-024-03143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with worldwide increasing incidence. Maternal separation (MS) stress at the beginning of life with its own neuroendocrine changes can provide the basis for development of ASD. Rosmarinic acid (RA) is a phenolic compound with a protective effect in neurodegenerative diseases. The aim of this study was to determine the effect of RA on autistic-like behaviors in maternally separated mice focusing on its possible effects on neuroimmune response and nitrite levels in the hippocampus. In this study, 40 mice were randomly divided into five groups of control (received normal saline (1 ml/kg)) and MS that were treated with normal saline (1 ml/kg) or doses of 1, 2, and 4 mg/kg RA, respectively, for 14 days. Three-chamber sociability, shuttle box, and marble burying tests were used to investigate autistic-like behaviors. Nitrite level and gene expression of inflammatory cytokines including TNF-α, IL-1β, TLR4, and iNOS were assessed in the hippocampus. The results showed that RA significantly increased the social preference and social novelty indexes, as well as attenuated impaired passive avoidance memory and the occurrence of repetitive and obsessive behaviors in the MS mice. RA reduced the nitrite level and gene expression of inflammatory cytokines in the hippocampus. RA, probably via attenuation of the nitrite level as well as of the neuroimmune response in the hippocampus, mitigated autistic-like behaviors in maternally separated mice.
Collapse
Affiliation(s)
- Maziar Mahmoudian
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
8
|
McClafferty SR, Paniagua-Ugarte C, Hannabass ZM, Jackson PA, Hayes DM. Comparing the effects of infant maternal and sibling separation on adolescent behavior in rats (Rattus norvegicus). PLoS One 2024; 19:e0308958. [PMID: 39150925 PMCID: PMC11329123 DOI: 10.1371/journal.pone.0308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
Maternal separation in early life has been observed to have lasting, detrimental effects that impair personal and social development and can persist into adulthood. Maternal separation during infancy can be most detrimental during adolescence, leading to long-term adverse effects on development and social behavior. This research study compared the effects of sibling and maternal separation in infancy on anxiety, sociability, or memory later in adolescence (postnatal day, PND, 50-58) in male and female Long-Evans Rats (Rattus norvegicus). Rat pups were semi-randomly assigned into eight conditions for daily isolation (PND 1-14). The groups were separated by the duration of isolation between 15 minutes (control group) or 180 minutes (experimental group) and the sex of the rat. They were also separated by comfort conditions with the dam present in an adjoining cage versus not present and siblings present or not present during isolation. The result was a 2 (15-min vs. 180-min) x 2 (dam vs. no dam) x 2 (single vs. grouped) x 2 (male vs. female) design. Once pups had reached adolescence (PND 50), researchers tested for differences in anxiety, activity, and social behavior using elevated plus-maze, open field habituation, a three-chamber social interaction, and a social discrimination task. Results indicate that longer isolation was more stressful and caused lower body weight. The female rats showed more anxious behavior in the open field but only if they were in the shorter isolation group. Social interaction showed that the rats isolated with the dam had different effects of isolation. In males, shorter isolation with the dam increased sociability but decreased sociability in females. These complicated findings may be due to the effects of inoculation, which describes how moderate stress combined with comfort may produce adaptation or immunity to stress and affect males and females differently.
Collapse
Affiliation(s)
- Shane R McClafferty
- Radford University, Radford, VA, United States of America
- Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America
| | | | | | | | - Dayna M Hayes
- Radford University, Radford, VA, United States of America
| |
Collapse
|
9
|
Alves J, Dos Santos APB, Vieira ADS, Martini APR, de Lima RMS, Smaniotto TÂ, de Moraes RO, Gomes RF, Acerbi GCDA, de Assis EZB, Lampert C, Dalmaz C, Couto Pereira NDS. Coping with the experience of frustration throughout life: Sex- and age-specific effects of early life stress on the susceptibility to reward devaluation. Neuroscience 2024; 553:160-171. [PMID: 38960089 DOI: 10.1016/j.neuroscience.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Early life stress may lead to lifelong impairments in psychophysiological functions, including emotional and reward systems. Unpredicted decrease in reward magnitude generates a negative emotional state (frustration) that may be involved with susceptibility to psychiatric disorders. We evaluated, in adolescents and adult rats of both sexes, whether maternal separation (MS) alters the ability to cope with an unexpected reduction of reward later in life. Litters of Wistar rats were divided into controls (non handled - NH) or subjected to MS. Animals were trained to find sugary cereal pellets; later the amount was reduced. Increased latency to reach the reward-associated area indicates higher inability to regulate frustration. The dorsal hippocampus (dHC) and basolateral amygdala (BLA) were evaluated for protein levels of NMDA receptor subunits (GluN2A/GluN2B), synaptophysin, PSD95, SNAP-25 and CRF1. We found that adult MS males had greater vulnerability to reward reduction, together with decreased GluN2A and increased GluN2B immunocontent in the dHC. MS females and adolescents did not differ from controls. We concluded that MS enhances the response to frustration in adult males. The change in the ratio of GluN2A and GluN2B subunits in dHC could be related to a stronger, more difficult to update memory of the aversive experience.
Collapse
Affiliation(s)
- Joelma Alves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Paula Bosquetti Dos Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Dos Santos Vieira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Paula Rodrigues Martini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Randriely Merscher Sobreira de Lima
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Thiago Ângelo Smaniotto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Oliveira de Moraes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Roger Ferreira Gomes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Giulia Conde de Albite Acerbi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Eduardo Z B de Assis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carine Lampert
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carla Dalmaz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Natividade de Sá Couto Pereira
- Psychological Neuroscience Laboratory, Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal.
| |
Collapse
|
10
|
Rowshan N, Anjomshoa M, Farahzad A, Bijad E, Amini-Khoei H. Gut-brain barrier dysfunction bridge autistic-like behavior in mouse model of maternal separation stress: A behavioral, histopathological, and molecular study. Int J Dev Neurosci 2024; 84:314-327. [PMID: 38584149 DOI: 10.1002/jdn.10329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a fast-growing neurodevelopmental disorder throughout the world. Experiencing early life stresses (ELS) like maternal separation (MS) is associated with autistic-like behaviors. It has been proposed that disturbance in the gut-brain axis-mediated psychiatric disorders following MS. The role of disruption in the integrity of gut-brain barrier in ASD remains unclear. Addressing this knowledge gap, in this study we aimed to investigate role of the gut-brain barrier integrity in mediating autistic-like behaviors in mouse models of MS stress. To do this, mice neonates are separated daily from their mothers from postnatal day (PND) 2 to PND 14 for 3 hours. During PND58-60, behavioral tests related to autistic-like behaviors including three-chamber sociability, shuttle box, and resident-intruder tests were performed. Then, prefrontal cortex (PFC), hippocampus, and colon samples were dissected out for histopathological and molecular evaluations. Results showed that MS is associated with impaired sociability and social preference indexes, aggressive behaviors, and impaired passive avoidance memory. The gene expression of CLDN1 decreased in the colon, and the gene expression of CLDN5, CLDN12, and MMP9 increased in the PFC of the MS mice. MS is associated with decrease in the diameter of CA1 and CA3 areas of the hippocampus. In addition, MS led to histopathological changes in the colon. We concluded that, probably, disturbance in the gut-brain barrier integrities mediated the autistic-like behavior in MS stress in mice.
Collapse
Affiliation(s)
- Negin Rowshan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoa
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Anahita Farahzad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
Reisi-Vanani V, Lorigooini Z, Bijad E, Amini-Khoei H. Maternal separation stress through triggering of the neuro-immune response in the hippocampus induces autistic-like behaviors in male mice. Int J Dev Neurosci 2024; 84:87-98. [PMID: 38110192 DOI: 10.1002/jdn.10310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/28/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
Autism spectrum disorder (ASD) is the fastest-growing neurodevelopmental disease throughout the world. Neuro-immune responses from prenatal to adulthood stages of life induce developmental defects in synaptic signaling, neurotransmitter imbalance, and even structural changes in the brain. In this study, we aimed to focus on the possible role of neuroinflammatory response in the hippocampus in development of the autistic-like behaviors following maternal separation (MS) stress in mice. To do this, mice neonates daily separated from their mothers from postnatal day (PND) 2 to PND 14 for 3 h. During PND45-60, behavioral tests related to autistic-like behaviors including three-chamber sociability, Morris water maze (MWM), shuttle box, resident-intruder, and marble burying tests were performed. Then, hippocampi were dissected out, and the gene expression of inflammatory mediators including TNF-α, IL-1β, TLR4, HMGB1, and NLRP3 was assessed in the hippocampus using RT-PCR. Results showed that MS mice exerted impaired sociability preference, repetitive behaviors, impaired passive avoidance, and spatial memories. The gene expression of inflammatory mediators significantly increased in the hippocampi of MS mice. We concluded that MS stress probably via activating of the HMGB1/TLR4 signaling cascade in the hippocampus induced autistic-like behaviors in mice.
Collapse
Affiliation(s)
- Vahid Reisi-Vanani
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
12
|
Bris ÁG, MacDowell KS, Ulecia-Morón C, Martín-Hernández D, Moreno B, Madrigal JLM, García-Bueno B, Caso JR, Leza JC. Differential regulation of innate immune system in frontal cortex and hippocampus in a "double-hit" neurodevelopmental model in rats. Neurotherapeutics 2024; 21:e00300. [PMID: 38241165 PMCID: PMC10903097 DOI: 10.1016/j.neurot.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 01/21/2024] Open
Abstract
Neurodevelopmental disorders (NDs) are neuropsychiatric conditions affecting central nervous system development, characterized by cognitive and behavioural alterations. Inflammation has been recently linked to NDs. Animal models are essential for understanding their pathophysiology and identifying therapeutic targets. Double-hit models can reproduce neurodevelopmental and neuroinflammatory impairments. Sixty-seven newborn rats were assigned to four groups: Control, Maternal deprivation (MD, 24-h-deprivation), Isolation (Iso, 5 weeks), and Maternal deprivation + Isolation (MD + Iso, also known as double-hit). Cognitive dysfunction was assessed using behavioural tests. Inflammasome, MAPKs, and TLRs inflammatory elements expression in the frontal cortex (FC) and hippocampus (HP) was analysed through western blot and qRT-PCR. Oxidative/nitrosative (O/N) evaluation and corticosterone levels were measured in plasma samples. Double-hit group was affected in executive and working memory. Most inflammasomes and TLRs inflammatory responses were increased in FC compared to the control group, whilst MAPKs were downregulated. Conversely, hippocampal inflammasome and inflammatory components were reduced after the double-hit exposure, while MAPKs were elevated. Our findings reveal differential regulation of innate immune system components in FC and HP in the double-hit group. Further investigations on MAPKs are necessary to understand their role in regulating HP neuroinflammatory status, potentially linking our MAPKs results to cognitive impairments through their proliferative and anti-inflammatory activity.
Collapse
Affiliation(s)
- Álvaro G Bris
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Karina S MacDowell
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Cristina Ulecia-Morón
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Beatriz Moreno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - José L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII). Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12) e Instituto Universitario de Investigación en Neuroquímica (IUIN), Spain.
| |
Collapse
|
13
|
Mavrenkova PV, Khlebnikova NN, Alchinova IB, Demorzhi MS, Shoibonov BB, Karganov MY. Effects of Maternal Separation and Subsequent Stress on Behaviors and Brain Monoamines in Rats. Brain Sci 2023; 13:956. [PMID: 37371434 DOI: 10.3390/brainsci13060956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Childhood adversity can induce maladaptive behaviors and increase risk for affective disorders, post-traumatic stress disorder, personality disorders, and vulnerability to stress in adulthood. Deprivation of maternal care interrupts brain development through the disturbance of various neurotransmitters, however, the details remain unclear. The features of the symptoms of disorders are largely determined by early stress protocol, genetic characteristics (line), and the sex of the animals. The purpose of current study was (1) to assess behavioral changes in adult Wistar rats of both sexes after early life stress; (2) to determine the levels of monoamines in brain structures involved in the motor, emotional, and social reactions in rats aged 1 and 2 months; and (3) to determine the level of monoamines after physical or emotional stress in adult rats. The rat pups were separated from their dams and isolated from siblings in tight boxes at a temperature of 22-23 °C for 6 h during postnatal days 2-18. The data were processed predominantly using two-way analysis of variance and the Newman-Keys test as the post hoc analysis. The adult rats demonstrated an increase in motor activity and aggressiveness and a decrease in levels of anxiety and sociability. Behavioral disturbances were accompanied by region-, sex-, and age-dependent changes in the levels of monoamines and their metabolites. The dopaminergic and noradrenergic systems were found to be sensitive to psycho-emotional stress.
Collapse
Affiliation(s)
- Polina V Mavrenkova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Nadezhda N Khlebnikova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Irina B Alchinova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Marina S Demorzhi
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Batozhab B Shoibonov
- P. K. Anokhin Institute of Normal Physiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Mikhail Yu Karganov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| |
Collapse
|
14
|
Chowdhury A, Rao BSS, Laxmi TR. Risky Decision-taking Task: a novel paradigm to assess the risk-taking behaviour in rats predisposed to early-life stress. J Neurosci Methods 2023; 392:109864. [PMID: 37080434 DOI: 10.1016/j.jneumeth.2023.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
One of the characteristic features of adolescence is risk-taking behavioural traits. Uncontrolled risk-taking without proper assessment may have harmful impact on mental health later in life. Therefore, it is essential to identify it early for the preventable health problems. In the present study, we have designed a novel paradigm, viz. Risky Decision-taking Task (RDTT), to evaluate the spontaneous risk-taking behavioural repertoire in adolescent rodents. The task was designed based on both risk and cognitive factors. To validate and compare the risk-taking tendency, we have used early maternal separation and isolation (MS) stress model, as it is known to increase anxiety and curiosity-like behaviour at adolescence. We have used Sprague-Dawley rats of both sexes. Rats were exposed to MS stress for 10 days daily for six hours during stress hyporesponsive period (SHRP) from postnatal day 4 to 13. These rats were subjected to RDTT during adolescence. This task is a reward-based task where the latency to collect reward in the presence or absence of a risk factor is assessed. It consists of habituation, training to find the location of small and large rewards, reward preference for small and large reward and testing period under risky situation. Rats were trained individually to retrieve the valuation-based rewards under the risky, but innate aversive environments. The results from RDTT showed that as compared to controls, MS rats from both sexes showed reduced latency to collect large reward in the presence of a risk element and a reduced risk-index which is indicative of a higher risk-taking tendency in these rats. In addition, MS rats showed a trend towards anxiety-like behaviour as compared to controls in the Light-Dark Test. These results together show decreased risk latency for the large reward and reduced risk assessment in MS rats which is suggestive of more risk-taking tendency in these rats. Thus, we propose that RDTT paradigm can be used to evaluate the spontaneous risk-taking behavioural repertoire based on innate, spontaneous aversion and cognitive factors in rats.
Collapse
Affiliation(s)
- Abanti Chowdhury
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru - 560 029
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru - 560 029
| | - T R Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru - 560 029.
| |
Collapse
|
15
|
A Novel Early Life Stress Model Affects Brain Development and Behavior in Mice. Int J Mol Sci 2023; 24:ijms24054688. [PMID: 36902120 PMCID: PMC10002977 DOI: 10.3390/ijms24054688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Early life stress (ELS) in developing children has been linked to physical and psychological sequelae in adulthood. In the present study, we investigated the effects of ELS on brain and behavioral development by establishing a novel ELS model that combined the maternal separation paradigm and mesh platform condition. We found that the novel ELS model caused anxiety- and depression-like behaviors and induced social deficits and memory impairment in the offspring of mice. In particular, the novel ELS model induced more enhanced depression-like behavior and memory impairment than the maternal separation model, which is the established ELS model. Furthermore, the novel ELS caused upregulation of arginine vasopressin expression and downregulation of GABAergic interneuron markers, such as parvalbumin (PV), vasoactive intestinal peptide, and calbindin-D28k (CaBP-28k), in the brains of the mice. Finally, the offspring in the novel ELS model showed a decreased number of cortical PV-, CaBP-28k-positive cells and an increased number of cortical ionized calcium-binding adaptors-positive cells in their brains compared to mice in the established ELS model. Collectively, these results indicated that the novel ELS model induced more negative effects on brain and behavioral development than the established ELS model.
Collapse
|
16
|
Maletta T, Palummieri M, Correa J, Holahan MR. Preadolescent exposure to a sexually mature, unrelated male rat reduces postadolescent social recognition memory and CA2 c-Fos labeling. Front Behav Neurosci 2023; 17:1104866. [PMID: 36778132 PMCID: PMC9908592 DOI: 10.3389/fnbeh.2023.1104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Social memory involves social recognition: the ability to discriminate between two or more conspecifics when one has been previously encountered. The CA2 region of the hippocampus has been implicated in social memory, as lesions and dysfunction to this area lead to social memory impairments. A variety of psychogenic manipulations during postnatal sensitive developmental periods are associated with social memory impairments later in life. Methods In this study, we exposed preadolescent rats to a sexually, mature unrelated male and examined whether this was associated with changes in postadolescent social memory and c-Fos labeling in the CA2 region. Male and female Long-Evans rats were exposed to a male, adult rat on postnatal days 19-21 (P19-21). Social memory was measured during the postadolescent period and defined as increased interactions towards a novel age-matched rat in contrast to a previously-encountered age-matched rat. After the test, rats were euthanized and brain tissue was then collected to quantify c-Fos labeling within the CA2 region. Results Compared to home cage controls and controls not exposed to the adult male, male and female rats exposed to the unrelated adult during preadolescence were unable to discriminate between a novel and previously encountered conspecific during the postadolescent test showing social memory deficits. The groups that showed social recognition deficits also had significantly fewer c-Fos-positive cells within the CA2 region compared to the control groups. Discussion These findings indicate that threatening psychogenic encounters during preadolescence can have detrimental long-term effects on social memory potentially via disrupted activity in the CA2 hippocampal region.
Collapse
Affiliation(s)
- Teresa Maletta
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | - Jeff Correa
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
17
|
Zaccarelli-Magalhães J, Abreu GR, Fukushima AR, Pantaleon LP, Ribeiro BB, Munhoz C, Manes M, de Lima MA, Miglioli J, Flório JC, Lebrun I, Waziry PAF, Fonseca TL, Bocco BMLC, Bianco AC, Ricci EL, Spinosa HS. Postpartum depression in rats causes poor maternal care and neurochemical alterations on dams and long-lasting impairment in sociability on the offspring. Behav Brain Res 2023; 436:114082. [PMID: 36041571 PMCID: PMC10823501 DOI: 10.1016/j.bbr.2022.114082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
Abstract
Postpartum depression is a mentally disabling disease with multifactorial etiology that affects women worldwide. It can also influence child development and lead to behavioral and cognitive alterations. Despite the high prevalence, the disease is underdiagnosed and poorly studied. To study the postpartum depression caused by maternal separation model in rats, dams were separated from their litter for 3 h daily starting from lactating day (LD) 2 through LD12. Maternal studies were conducted from LD5 to LD21 and the offspring studies from postnatal day (PND) 2 through PND90. The stress caused by the dam-offspring separation led to poor maternal care and a transient increase in anxiety in the offspring detected during infancy. The female offspring also exhibited a permanent impairment in sociability during adult life. These changes were associated with neurochemical alterations in the prefrontal cortex and hippocampus, and low TSH concentrations in the dams, and in the hypothalamus, hippocampus and striatum of the offspring. These results indicate that the postpartum depression resulted in a depressive phenotype, changes in the brain neurochemistry and in thyroid economy that remained until the end of lactation. Changes observed in the offspring were long-lasting and resemble what is observed in children of depressant mothers.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Gabriel R Abreu
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - André R Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil; School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Lorena P Pantaleon
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Beatriz B Ribeiro
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Camila Munhoz
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Marianna Manes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Mayara A de Lima
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Júlia Miglioli
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Jorge C Flório
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | - Paula A F Waziry
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Bárbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Antônio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Esther L Ricci
- School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Helenice S Spinosa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| |
Collapse
|
18
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
19
|
Duque-Quintero M, Hooijmans CR, Hurowitz A, Ahmed A, Barris B, Homberg JR, Hen R, Harris AZ, Balsam P, Atsak P. Enduring effects of early-life adversity on reward processes: A systematic review and meta-analysis of animal studies. Neurosci Biobehav Rev 2022; 142:104849. [PMID: 36116576 PMCID: PMC10729999 DOI: 10.1016/j.neubiorev.2022.104849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/06/2023]
Abstract
Two-thirds of individuals experience adversity during childhood such as neglect, abuse or highly-stressful events. Early-life adversity (ELA) increases the life-long risk of developing mood and substance use disorders. Reward-related deficits has emerged as a key endophenotype of such psychiatric disorders. Animal models are invaluable for studying how ELA leads to reward deficits. However, the existing literature is heterogenous with difficult to reconcile findings. To create an overview, we conducted a systematic review containing multiple meta-analyses regarding the effects of ELA on reward processes overall and on specific aspects of reward processing in animal models. A comprehensive search identified 120 studies. Most studies omitted key details resulting in unclear risk of bias. Overall meta-analysis showed that ELA significantly reduced reward behaviors (SMD: -0.42 [-0.60; -0.24]). The magnitude of ELA effects significantly increased with longer exposure. When reward domains were analyzed separately, ELA only significantly dampened reward responsiveness (SMD: -0.525[-0.786; -0.264]) and social reward processing (SMD: -0.374 [-0.663; -0.084]), suggesting that ELA might lead to deficits in specific reward domains.
Collapse
Affiliation(s)
- Mariana Duque-Quintero
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Carlijn R Hooijmans
- Systematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands; Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hurowitz
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Afsana Ahmed
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Ben Barris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Rene Hen
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Alexander Z Harris
- Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Peter Balsam
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Piray Atsak
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands; Integrative Neuroscience, New York State Psychiatric Institute, New York 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
20
|
Johnston MP, Wanat MJ. Mitigating the impact of adolescence isolation on the development of social anxiety: A potential role for oxytocin. Front Behav Neurosci 2022; 16:1038236. [PMID: 36311867 PMCID: PMC9608628 DOI: 10.3389/fnbeh.2022.1038236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Exposure to isolation can lead to the development of social anxiety disorder (SAD), which affects 13% of Americans. There are sex differences in the prevalence of anxiety disorders, as women experience higher rates of SAD relative to men. Importantly, isolation experienced during adolescence increases the likelihood of developing SAD in adulthood. Unfortunately, the current treatments for SAD are only effective in 50–65% of patients. As such, it is critical to identify therapeutic targets for the treatment and prevention of SAD, particularly in women. Here, we discuss the links between childhood isolation and adulthood SAD. Next, we examine the preclinical models used to study the impact of isolation on social anxiety-like behaviors in rodents. Increasing evidence from both clinical and pre-clinical studies suggests oxytocin signaling is a potential target to modify social anxiety-like behaviors. We present the evidence that sex hormones influence the oxytocin system. Finally, we highlight future directions for both clinical and pre-clinical studies to further evaluate the efficacy of oxytocin as a treatment for isolation-induced SAD.
Collapse
Affiliation(s)
- Morgan P Johnston
- Department of Neuroscience, Developmental, and Regenerative Biology, Neurosciences Institute, Brain Health Consortium, University of Texas San Antonio, San Antonio, TX, United States
| | - Matthew J Wanat
- Department of Neuroscience, Developmental, and Regenerative Biology, Neurosciences Institute, Brain Health Consortium, University of Texas San Antonio, San Antonio, TX, United States
| |
Collapse
|
21
|
Corredor K, Duran J, Herrera-Isaza L, Forero S, Quintanilla J, Gomez A, Martínez GS, Cardenas FP. Behavioral effects of environmental enrichment on male and female wistar rats with early life stress experiences. Front Physiol 2022; 13:837661. [PMID: 36225294 PMCID: PMC9548697 DOI: 10.3389/fphys.2022.837661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to adverse childhood experiences or early life stress experiences (ELSs) increase the risk of non-adaptive behaviors and psychopathology in adulthood. Environmental enrichment (EE) has been proposed to minimize these effects. The vast number of methodological variations in animal studies underscores the lack of systematicity in the studies and the need for a detailed understanding of how enrichment interacts with other variables. Here we evaluate the effects of environmental enrichment in male and female Wistar rats exposed to adverse early life experiences (prenatal, postnatal, and combined) on emotional (elevated plus maze), social (social interaction chamber), memory (Morris water maze) and flexibility tasks. Our results—collected from PND 51 to 64—confirmed: 1) the positive effect of environmental enrichment (PND 28–49) on anxiety-like behaviors in animals submitted to ELSs. These effects depended on type of experience and type of enrichment: foraging enrichment reduced anxiety-like behaviors in animals with prenatal and postnatal stress but increased them in animals without ELSs. This effect was sex-dependent: females showed lower anxiety compared to males. Our data also indicated that females exposed to prenatal and postnatal stress had lower anxious responses than males in the same conditions; 2) no differences were found for social interactions; 3) concerning memory, there was a significant interaction between the three factors: A significant interaction for males with prenatal stress was observed for foraging enrichment, while physical enrichment was positive for males with postnatal stress; d) regarding cognitive flexibility, a positive effect of EE was found in animals exposed to adverse ELSs: animals with combined stress and exposed to physical enrichment showed a higher index of cognitive flexibility than those not exposed to enrichment. Yet, within animals with no EE, those exposed to combined stress showed lower flexibility than those exposed to both prenatal stress and no stress. On the other hand, animals with prenatal stress and exposed to foraging-type enrichment showed lower cognitive flexibility than those with no EE. The prenatal stress-inducing conditions used here 5) did not induced fetal or maternal problems and 6) did not induced changes in the volume of the dentate gyrus of the hippocampus.
Collapse
Affiliation(s)
- K. Corredor
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
- Centro de Investigación en Biomodelos, Bogotá, Colombia
| | - J.M. Duran
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
| | - L. Herrera-Isaza
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
| | - S. Forero
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
| | - J.P. Quintanilla
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
| | - A. Gomez
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
| | | | - F. P. Cardenas
- Laboratory of Neuroscience and Behavior, Universidad de los Andes, Bogotá, Colombia
- *Correspondence: F. P. Cardenas,
| |
Collapse
|
22
|
Baracz SJ, Robinson KJ, Wright AL, Turner AJ, McGregor IS, Cornish JL, Everett NA. Oxytocin as an adolescent treatment for methamphetamine addiction after early life stress in male and female rats. Neuropsychopharmacology 2022; 47:1561-1573. [PMID: 35581382 PMCID: PMC9206013 DOI: 10.1038/s41386-022-01336-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/02/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022]
Abstract
Early life stress (ELS) is associated with perturbed neural development and augmented vulnerability to mental health disorders, including addiction. How ELS changes the brain to increase addiction risk is poorly understood, and there are no therapies which target this ELS-induced vulnerability. ELS disrupts the oxytocin system, which can modulate addiction susceptibility, suggesting that targeting the oxytocin system may be therapeutic in this ELS-addiction comorbidity. Therefore, we determined whether adolescent oxytocin treatment after ELS could: (1) reduce vulnerability to anxiety, social deficits, and methamphetamine-taking and reinstatement; and (2) restore hypothalamic oxytocin and corticotropin-releasing factor expressing neurons and peripheral oxytocin and corticosterone levels. Long Evans pups underwent maternal separation (MS) for either 15 min or 360 min on postnatal days (PND) 1-21. During adolescence (PNDs 28-42), rats received a daily injection of either oxytocin or saline. In Experiment 1, adult rats were assessed using the elevated plus-maze, social interaction procedure, and methamphetamine self-administration procedure, including extinction, and cue-, methamphetamine- and yohimbine-induced reinstatement. In Experiment 2, plasma for enzyme immunoassays and brain tissue for immunofluorescence were collected from adult rats after acute stress exposure. Adolescent oxytocin treatment ameliorated ELS-induced anxiety and reduced methamphetamine- and yohimbine-induced reinstatement in both sexes, and suppressed methamphetamine intake and facilitated extinction in males only. Additionally, adolescent oxytocin treatment after ELS restored oxytocin-immunoreactive cells and stress-induced oxytocin levels in males, and attenuated stress-induced corticosterone levels in both sexes. Adolescent oxytocin treatment reverses some of the ELS effects on later-life psychopathology and vulnerability to addiction.
Collapse
Affiliation(s)
- Sarah J Baracz
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
- School of Psychology, University of Sydney, Camperdown, NSW, 2006, Australia.
- Centre for Emotional Health, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Katherine J Robinson
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Amanda L Wright
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Anita J Turner
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Iain S McGregor
- School of Psychology, University of Sydney, Camperdown, NSW, 2006, Australia
- Lambert Initiative of Cannabinoid Therapeutics, Brain and Mind Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jennifer L Cornish
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Centre for Emotional Health, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Nicholas A Everett
- School of Psychological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- School of Psychology, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
23
|
Effects of early life adversities upon memory processes and cognition in rodent models. Neuroscience 2022; 497:282-307. [PMID: 35525496 DOI: 10.1016/j.neuroscience.2022.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Exposure to stressors in early postnatal life induces long-lasting modifications in brainfunction.Thisplasticity,an essential characteristic of the brain that enables adaptation to the environment, may also induce impairments in some psychophysiological functions, including learning and memory. Early life stress (ELS) has long-term effects on thehypothalamic-pituitary-adrenal axisresponse to stressors, and has been reported to lead toneuroinflammation,altered levelsof neurotrophic factors, modifications inneurogenesis andsynaptic plasticity,with changes in neurotransmitter systems and network functioning. In this review, we focus on early postnatal stress in animal models and their effects on learning and memory.Many studies have reported ELS-induced impairments in different types of memories, including spatial memory, fear memory, recognition (both for objects and social) memory, working memory and reversal learning. Studies are not always in agreement, however, no effects, or sometimes facilitation, being reported, depending on the nature and intensity of the early intervention, as well as the age when the outcome was evaluated and the sex of the animals. When considering processes occurring after consolidation, related with memory maintenance or modification, there are a very reduced number of reports. Future studies addressing the mechanisms underlying memory changes for ELS should shed some light on the understanding of the different effects induced by stressors of different types and intensities on cognitive functions.
Collapse
|
24
|
Keller AS, Ling R, Williams LM. Spatial attention impairments are characterized by specific electro-encephalographic correlates and partially mediate the association between early life stress and anxiety. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:414-428. [PMID: 34850363 DOI: 10.3758/s13415-021-00963-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Although impaired attention is a diagnostic feature of anxiety disorders, we lack an understanding of which aspects of attention are impaired, the neurobiological basis of these impairments, and the contribution of stressors. To address these gaps in knowledge, we developed and tested behavioral tasks designed to parse the subdomains of attention impairments associated with anxiety symptoms and used electro-encephalographic (EEG) recordings to probe the neural basis of attentional performance. Participants were n = 55 individuals aged 18-35 with mild-to-moderate mood and anxiety symptoms. We also assessed stressful life events that may impact mental health and attention abilities, including stressors that occurred in early life before age 18 years. Severity of anxiety was found to be specifically associated with impairments in spatial attention but not feature-based attention. These impairments in spatial attention also partially mediated the association between early-life stressors and anxiety symptoms. Impairments in spatial selective attention were associated with decreased posterior alpha oscillations in EEG recordings in a subsample of participants, whereas spatial divided attention impairments were associated with decreased frontocentral theta oscillations. Our results provide a thorough characterization of attention impairments associated with anxiety, their EEG correlates, and the impact of stressors both in early life and adulthood.
Collapse
Affiliation(s)
- Arielle S Keller
- Graduate Program in Neurosciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94134, USA
| | - Ruth Ling
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94134, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94134, USA.
- MIRECC, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
25
|
Sharma SS, Srinivas Bharath MM, Doreswamy Y, Laxmi TR. Effects of early life stress during stress hyporesponsive period (SHRP) on anxiety and curiosity in adolescent rats. Exp Brain Res 2022; 240:1127-1138. [PMID: 35141770 DOI: 10.1007/s00221-022-06319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/30/2022] [Indexed: 11/04/2022]
Abstract
Repeated exposure to adverse experiences in early life, termed Early Life Stress (ELS), can increase anxiety disorders later in life. Anxiety is directly associated with curiosity, a form of intrinsic drive state associated with increased novelty-seeking behaviour and risk taking for challenging opportunities and could probably modulate learning and memory. In humans, elevated curiosity during adolescence tends to elicit increased exploration, novelty seeking, high risk-taking behaviour and heightened emotionality. Such behaviours are beneficial in maintaining social skills and cognitive functions later in life. We investigated whether ELS-induced anxiety impacts curiosity-like behaviour at adolescence in an animal model. ELS was induced by subjecting Sprague Dawley rat pups to maternal separation and isolation (MS) stress during the stress hyporesponsive period (SHRP) from post-natal days (PND) 4-PND 14. This rat model was tested for anxiety, spontaneous exploratory behaviour and curiosity-like behaviour in a custom-designed arena during adolescence (PND 30-45). ELS-induced changes in the stress were confirmed by corticosterone, while, basal dopamine level was estimated to understand the neurochemical basis of MS stress-induced changes in curiosity. We observed an increase in the levels of anxiety and intrinsic drive state such as curiosity-like behaviour, which was associated with elevated plasma corticosterone and dopamine in MS animals during adolescence suggesting the impact of ELS during SHRP on adolescent behaviour.
Collapse
Affiliation(s)
- Shruthi S Sharma
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, Bengaluru, India
| | - Yoganarasimha Doreswamy
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - T Rao Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India.
| |
Collapse
|
26
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Resilience to the effects of social stress on vulnerability to developing drug addiction. World J Psychiatry 2022; 12:24-58. [PMID: 35111578 PMCID: PMC8783163 DOI: 10.5498/wjp.v12.i1.24] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/01/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
We review the still scarce but growing literature on resilience to the effects of social stress on the rewarding properties of drugs of abuse. We define the concept of resilience and how it is applied to the field of drug addiction research. We also describe the internal and external protective factors associated with resilience, such as individual behavioral traits and social support. We then explain the physiological response to stress and how it is modulated by resilience factors. In the subsequent section, we describe the animal models commonly used in the study of resilience to social stress, and we focus on the effects of chronic social defeat (SD), a kind of stress induced by repeated experience of defeat in an agonistic encounter, on different animal behaviors (depression- and anxiety-like behavior, cognitive impairment and addiction-like symptoms). We then summarize the current knowledge on the neurobiological substrates of resilience derived from studies of resilience to the effects of chronic SD stress on depression- and anxiety-related behaviors in rodents. Finally, we focus on the limited studies carried out to explore resilience to the effects of SD stress on the rewarding properties of drugs of abuse, describing the current state of knowledge and suggesting future research directions.
Collapse
Affiliation(s)
| | | | - Maria P García-Pardo
- Faculty of Social and Human Sciences, University of Zaragoza, Teruel 44003, Spain
| | - Maria A Aguilar
- Department of Psychobiology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
27
|
Non-human contributions to personality neuroscience – from fish through primates. An introduction to the special issue. PERSONALITY NEUROSCIENCE 2022; 5:e11. [PMID: 36258777 PMCID: PMC9549393 DOI: 10.1017/pen.2022.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022]
Abstract
The most fundamental emotional systems that show trait control are evolutionarily old and extensively conserved. Psychology in general has benefited from non-human neuroscience and from the analytical simplicity of behaviour in those with simpler nervous systems. It has been argued that integration between personality, psychopathology, and neuroscience is particularly promising if we are to understand the neurobiology of human experience. Here, we provide some general arguments for a non-human approach being at least as productive in relation to personality, psychopathology, and their interface. Some early personality theories were directly linked to psychopathology (e.g., Eysenck, Panksepp, and Cloninger). They shared a common interest in brain systems that naturally led to the use of non-human data; behavioural, neural, and pharmacological. In Eysenck’s case, this also led to the selective breeding, at the Maudsley Institute, of emotionally reactive and non-reactive strains of rat as models of trait neuroticism or trait emotionality. Dimensional personality research and categorical approaches to clinical disorder then drifted apart from each other, from neuropsychology, and from non-human data. Recently, the conceptualizations of both healthy personality and psychopathology have moved towards a common hierarchical trait perspective. Indeed, the proposed two sets of trait dimensions appear similar and may even be eventually the same. We provide, here, an introduction to this special issue of Personality Neuroscience, where the authors provide overviews of detailed areas where non-human data inform human personality and its psychopathology or provide explicit models for translation to human neuroscience. Once all the papers in the issue have appeared, we will also provide a concluding summary of them.
Collapse
|
28
|
Tomar A, McHugh TJ. The impact of stress on the hippocampal spatial code. Trends Neurosci 2021; 45:120-132. [PMID: 34916083 DOI: 10.1016/j.tins.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Hippocampal function is severely compromised by prolonged, uncontrollable stress. However, how stress alters neural representations of our surroundings and events that occur within them remains less clear. We review hippocampal place cell studies that examine how spatial coding is affected by acute and chronic stress, as well as by stress accompanying fear conditioning. Emerging data suggest that chronic stress disrupts the acuity and specificity of CA1 spatial coding, both in familiar and novel contexts, and alters hippocampal oscillations. By contrast, acute stress may have a facilitatory impact on spatial representations. These findings encourage a fresh look at the documented stress-induced changes in hippocampal anatomy and in vitro excitability, and offer a new perspective on the links between stress and memory.
Collapse
Affiliation(s)
- Anupratap Tomar
- Center for Synaptic Plasticity, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
29
|
Early social contact alters the community structure and functions of the faecal microbiome in suckling-growing piglets. Animal 2021; 15:100393. [PMID: 34844184 DOI: 10.1016/j.animal.2021.100393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Social contact during suckling, in an enriched social environment, can reduce the aggressive behaviours of piglets during regrouping at weaning, and improve their production performance and welfare. The aim of this study was to determine the possible impact of suckling social contact on gut microbes. We performed 16S rRNA sequencing to measure the faecal microbial structure and function in piglets experiencing social contact. Eighteen-litter piglets were allocated to two treatments: an early continuous social contact (CSC) group where piglets from adjacent pens shared a mutual pen starting at 14 days postpartum and a control (CON) group where piglets had no contact with individuals from adjacent pens during the suckling period. The piglets were regrouped at 36 days of age. The litter weights at 35 and 63 days of age were measured. Faecal samples were randomly collected at 16, 35, 42, and 63 days of age and faecal DNA was determined. The results showed that the litter weight of piglets in the CSC group was significantly decreased at 63 days compared with the CON group. Continuous social contact also significantly decreased the microbial richness at 16 and 35 days of age (P < 0.05). Firmicutes was the most abundant bacterial phylum in both groups at all detected time-points and the abundance increased with social contact. At the genus level, Lactobacillus was the most abundant bacterium after weaning and the abundance increased in the piglets with social contact. Compared with the faecal microbiota of control piglets, a total of 22 genera at 16 days, 20 genera at 35 days, 12 genera at 42 days, and 27 genera at 63 days in the faeces of CSC piglets were observed to be significantly different in abundance (linear discriminant analysis score > 3, P < 0.05). Furthermore, functional analysis of the microbial composition showed that the changes induced by early CSC mainly altered the relative abundance of metabolic and related pathways. The social contact notably had an effect on the abundance of microbial pathways for amino acid and carbohydrate metabolism. In conclusion, CSC changed the microbial composition in the faeces of piglets, which might have a negative effect on nutrient metabolism for the suckling-growing piglets. Our study provided new insight into the influence of social contact on the suckling-growing piglets.
Collapse
|
30
|
Mejía-Chávez S, Venebra-Muñoz A, García-García F, Corona-Morales AA, Orozco-Vargas AE. Maternal Separation Modifies the Activity of Social Processing Brain Nuclei Upon Social Novelty Exposure. Front Behav Neurosci 2021; 15:651263. [PMID: 34803620 PMCID: PMC8599987 DOI: 10.3389/fnbeh.2021.651263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal separation has been shown to disrupt proper brain development and maturation, having profound consequences on the neuroendocrine systems in charge of the stress response, and has been shown to induce behavioral and cognitive abnormalities. At the behavioral level, maternal separation has been shown to increase offensive play-fighting in juvenile individuals and reduce social interest in adulthood. Since most of the studies that have evaluated the consequences of maternal separation on social behavior have focused on behavioral analysis, there is a need for a further understanding of the neuronal mechanisms underlying the changes in social behavior induced by maternal separation. Therefore, the aim of the present research was to assess the long-term effects of maternal separation on social interaction behavior and to assess the activity of several brain regions involved in the processing of social cues and reward upon social novelty exposure, using c-Fos immunohistochemistry as a marker of neuronal activity. Male Wistar rats were subjected to 4 h maternal separation during the neonatal period, 9:00 h-13:00 h from postnatal day 1 to 21, and exposed to social novelty during adulthood. After social novelty exposure, brains were fixed and coronal sections of the medial amygdala, lateral septum (LS), paraventricular nucleus of the hypothalamus, nucleus accumbens, and medial prefrontal cortex were obtained for c-Fos immunohistochemistry. Maternally separated rats spent less time investigating the novel peer, suggesting that maternal separation reduces social approach motivation. Furthermore, maternal separation reduced the number of c-Fos positive cells of the medial amygdala, paraventricular nucleus of the hypothalamus, LS, nucleus accumbens, and medial prefrontal cortex upon social novelty exposure. These findings suggest that maternal separation can reduce the plastic capacity of several brain nuclei, which constitute a physiological basis for the emergence of behavioral disorders presented later in life reported to be linked to early life adversity.
Collapse
Affiliation(s)
- Sara Mejía-Chávez
- Laboratorio de Neurobiología de la Adicción y Plasticidad Cerebral, Facultad de Ciencias, Universidad Autónoma del Estado de Mexico, Toluca, Mexico
| | - Arturo Venebra-Muñoz
- Laboratorio de Neurobiología de la Adicción y Plasticidad Cerebral, Facultad de Ciencias, Universidad Autónoma del Estado de Mexico, Toluca, Mexico
| | - Fabio García-García
- Laboratorio de Biología de Sueño, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | | | | |
Collapse
|
31
|
Shahraki S, Esmaeilpour K, Shabani M, Sepehri G, Rajizadeh MA, Maneshian M, Joushi S, Sheibani V. Choline chloride modulates learning, memory, and synaptic plasticity impairments in maternally separated adolescent male rats. Int J Dev Neurosci 2021; 82:19-38. [PMID: 34727391 DOI: 10.1002/jdn.10155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/06/2022] Open
Abstract
Maternal separation (MS) is a model to induce permanent alternations in the central nervous system (CNS) and is associated with increased levels of anxiety and cognitive deficiencies. Since Methyl donor choline (Ch) has been shown to play a significant role in learning and memory and enhances synaptic plasticity, the authors hypothesized that Ch may attenuate MS-induced impairments in synaptic plasticity and cognitive performance. Rat pups underwent a MS protocol for 180 min/day from postnatal day (PND) 1 to 21. Ch was administered subcutaneously (100 mg/kg, 21 days) to the Choline chloride and MS + Choline chloride groups from PND 29 to 49. Anxiety-like behavior, recognition memory, spatial and passive avoidance learning and memory were measured in the adolescent rats. In addition, evoked field excitatory postsynaptic potentials (fEPSP) were recorded from the CA1 region of the hippocampus. MS induced higher anxiety-like behavior in the animals. It also impaired learning and memory. However, MS had no effect on locomotor activity. Subcutaneous administration of Ch attenuated MS-induced cognitive deficits and enhanced the learning and memory of MS rats. Ch also decreased anxiety-like behavior in the open field test. The present results showed that long-term potentiation (LTP) was induced in all groups except MS and MS + saline animals. However, Ch injection induced LTP and had maintenance in MS + choline chloride, but it was not statistically significant compared with the MS group. In summary, the present findings indicate that MS can interfere with normal animal's cognition and subcutaneous of Ch may be considered an appropriate therapeutic strategy for promoting cognitive dysfunctions in MS animals.
Collapse
Affiliation(s)
- Sarieh Shahraki
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology & pharmacology, school of medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Maneshian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
32
|
Luo QQ, Xia L, Yao DJ, Wu M, Wang HB, Luo MH, Jiang X, Chen H. Breastfeeding in Mothers with COVID-19: Insights from Laboratory Tests and Follow-Up from Early Outbreak of the Pandemic in China. J Womens Health (Larchmt) 2021; 30:1546-1555. [PMID: 34448599 DOI: 10.1089/jwh.2020.8978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective: The outbreak of Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens a surging number of community groups within society, including women actively breastfeeding. Breastfeeding involves intimate behaviors, a major transmission route of SARS-CoV-2, and is integral to the close mother-baby relationship highly correlated with maternal psychological status. Materials and Methods: Twenty-three pregnant women and puerperae with either confirmed or suspected diagnoses of COVID-19 were enrolled in the study. The clinical characteristics and outcomes of the mothers and neonates were recorded. The presence of SARS-CoV-2, IgG, and IgM in breast milk, maternal blood, and infant blood, together with feeding patterns, was assessed within 1 month after delivery. Feeding patterns and maternal psychological status were also recorded in the second follow-up. Results: No positive detection of SARS-CoV-2 was found in neonates. All breast milk samples were negative for the detection of SARS-CoV-2. The presence of IgM for SARS-CoV-2 in breast milk was correlated with IgM presence in the maternal blood. The results of IgG detection for SARS-CoV-2 were negative in all breast milk samples. All infants were in a healthy condition in two follow-ups, and antibody tests for SARS-CoV-2 were negative. The rate of breast milk feeding increased during two follow-ups. All mothers receiving a second follow-up experienced negative psychological factors and status. Conclusions: Our findings support the feasibility of breastfeeding in women infected with SARS-CoV-2. The additional negative psychological status of mothers due to COVID-19 should also be considered during the puerperium period.
Collapse
Affiliation(s)
- Qing-Qing Luo
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Xia
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Du-Juan Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Bo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Jiang
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
- The Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Jolodar SK, Bigdeli M, Moghaddam AH. Hypericin Ameliorates Maternal Separation-Induced Cognitive Deficits and Hippocampal Inflammation in Rats. Mini Rev Med Chem 2021; 21:1144-1149. [PMID: 32718290 DOI: 10.2174/1389557520666200727154453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/28/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Maternal separation as an epigenetic agent provokes a severe change in the brain, such as inflammation response, which is a key risk factor for the progression of autism spectrum disorders (ASD). This study evaluated the preventive effect of hypericin on maternal separation-induced cognitive deficits and hippocampal inflammation. METHODS Here, we reported that pups are subjected to maternal separations for 1 h per day from postnatal days (PND) 1-9 displayed apparent memory impairment in young rats (postnatal day 34) compared to controls group. Furthermore, maternal separation significantly increased inflammation factors in the hippocampus area. Anti-inflammation constituent shed light on treating ASD. RESULTS In this study, we found that treatment with hypericin (10 and 50 mg/kg) significantly suppresses expression of hippocampal interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) in the maternal separation rat model. Also, we found that hypericin prevented the decrease of hippocampal dopamine levels in the offspring of maternal separation rats. CONCLUSION The data indicated that hypericin may play a neuroprotective role in hippocampal cell and ameliorates dysfunctions in memory and level of inflammation factor in this autism model. Thus, hypericin could be used as an intervention for treating ASD.
Collapse
Affiliation(s)
- Sedigheh Khanjani Jolodar
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammadreza Bigdeli
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
34
|
Réus GZ, Giridharan VV, de Moura AB, Borba LA, Botelho MEM, Behenck JP, Generoso JS, Selvaraj S, Bhatti G, Barichello T, Quevedo J. The impact of early life stress and immune challenge on behavior and glia cells alteration in late adolescent rats. Int J Dev Neurosci 2021; 81:407-415. [PMID: 33788296 DOI: 10.1002/jdn.10108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 01/06/2023] Open
Abstract
Maternal deprivation (MD) is known to be related to long-term changes that could influence the onset of psychiatric disorders. Studies have demonstrated that early life stress makes the cells in the brain more susceptible to subsequent stressors. To test it, we used an animal model of MD conducted from postnatal day (PND) 1 to 10. Deprived and non-deprived rats (control) were randomized to receive or not lipopolysaccharide (LPS) at 5 mg/kg on PND 50. The behavior and glial cells activation were evaluated in all groups from 51 to 53 PND. There was an increase in the immobility time in the MD and MD+LPS groups. The spontaneous locomotor activity was not changed between groups. We found elevated ionized calcium-binding adapter molecule 1 (Iba-1)-positive cells levels in the control+LPS and MD+LPS groups. In the MD+LPS group, it was found an increase in Iba-positive cells compared to the MD+sal group. The glial fibrillary acidic protein (GFAP)-positive cells were also increased in the MD+LPS, compared to control+sal, control+LPS, and MD+sal groups. Immune challenge by LPS in late adolescence, which was subjected to MD, did not influence the depressive-like behavior but exerted a pronounced effect in the microglial activation and astrocyte atrophy.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Airam B de Moura
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Maria Eduarda M Botelho
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Paulo Behenck
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Sudhakar Selvaraj
- Louis Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gursimrat Bhatti
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
35
|
Adjimann TS, Argañaraz CV, Soiza-Reilly M. Serotonin-related rodent models of early-life exposure relevant for neurodevelopmental vulnerability to psychiatric disorders. Transl Psychiatry 2021; 11:280. [PMID: 33976122 PMCID: PMC8113523 DOI: 10.1038/s41398-021-01388-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023] Open
Abstract
Mental disorders including depression and anxiety are continuously rising their prevalence across the globe. Early-life experience of individuals emerges as a main risk factor contributing to the developmental vulnerability to psychiatric disorders. That is, perturbing environmental conditions during neurodevelopmental stages can have detrimental effects on adult mood and emotional responses. However, the possible maladaptive neural mechanisms contributing to such psychopathological phenomenon still remain poorly understood. In this review, we explore preclinical rodent models of developmental vulnerability to psychiatric disorders, focusing on the impact of early-life environmental perturbations on behavioral aspects relevant to stress-related and psychiatric disorders. We limit our analysis to well-established models in which alterations in the serotonin (5-HT) system appear to have a crucial role in the pathophysiological mechanisms. We analyze long-term behavioral outcomes produced by early-life exposures to stress and psychotropic drugs such as the selective 5-HT reuptake inhibitor (SSRI) antidepressants or the anticonvulsant valproic acid (VPA). We perform a comparative analysis, identifying differences and commonalities in the behavioral effects produced in these models. Furthermore, this review discusses recent advances on neurodevelopmental substrates engaged in these behavioral effects, emphasizing the possible existence of maladaptive mechanisms that could be shared by the different models.
Collapse
Affiliation(s)
- Tamara S. Adjimann
- grid.7345.50000 0001 0056 1981Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla V. Argañaraz
- grid.7345.50000 0001 0056 1981Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Soiza-Reilly
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
36
|
Henderson HJM, Etem G, Bjorni M, Belnap MA, Rosellini B, Halladay LR. Sex-dependent and ontogenetic effects of low dose ethanol on social behavioral deficits induced by mouse maternal separation. Behav Brain Res 2021; 406:113241. [PMID: 33727047 DOI: 10.1016/j.bbr.2021.113241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/06/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Early life stress can induce lifelong emotional and social behavioral deficits that may in some cases be alleviated by drugs or alcohol. A model for early life stress, rodent maternal separation, recapitulates these behavioral sequelae, which are not limited to potentiated anxiety-like behavior, attenuated social motivation, and altered reward-seeking. Here we employed mouse maternal separation with early weaning (MSEW), consisting of pup-dam separation lasting 4-8 hours on postnatal days (PD) 2-16, with early weaning on PD 17. Prior MSEW studies have limited subjects by age or sex, so we more comprehensively investigated MSEW effects in both sexes, during adolescence and adulthood. We found universal effects of MSEW to include lifelong enhancement of anxiety-like and despair behavior, as well as deficits in social motivation. We also observed some sex-dependent effects of MSEW, namely that female MSEW mice exhibited social habituation to a greater degree than their male counterparts. Low dose ethanol administration had no major effects on the social behavior of non-stressed mice. But interestingly, MSEW-induced social habituation was counteracted by low dose ethanol in adolescent female mice, and potentiated in adolescent male mice. These effects were absent in adult animals, suggesting that ethanol may exert differential effects on the developing brain in such a manner to produce age-, sex-, and stress-dependent effects upon social behavior. Together, results indicate that MSEW reliably produces long-lasting impairments in emotional and social behaviors in both sexes and across the lifespan, but may exert more salient social behavioral effects on female animals.
Collapse
Affiliation(s)
- Hannah J M Henderson
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Gabrielle Etem
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Max Bjorni
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Malia A Belnap
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Bryce Rosellini
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Lindsay R Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| |
Collapse
|
37
|
Wang A, Zou X, Wu J, Ma Q, Yuan N, Ding F, Li X, Chen J. Early-Life Stress Alters Synaptic Plasticity and mTOR Signaling: Correlation With Anxiety-Like and Cognition-Related Behavior. Front Genet 2021; 11:590068. [PMID: 33381149 PMCID: PMC7767996 DOI: 10.3389/fgene.2020.590068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022] Open
Abstract
Early-life stress (ELS) predisposes individuals to psychiatric disorders, including anxiety and depression, and cognitive impairments later in life. However, the underlying molecular mechanisms are not completely understood. Developmental deficits in hippocampal synaptic plasticity are among the primary detrimental alterations in brain function induced by ELS. Impaired synaptic plasticity is usually accompanied by decreased synaptic proteins, such as postsynaptic density 95 (PSD95) and synaptophysin, which are important for synaptic function. The mTOR signaling pathway plays a vital role in regulating protein translation, and mTOR activation is functionally associated with synaptic protein synthesis. In the present study, we observed whether ELS impacts synaptic protein synthesis and mTOR signaling, which is involved in synaptic plasticity. Herein, we established a maternal separation (MS) and chronic restraint stress (CRS) model and evaluated anxiety-like behavior and cognitive function (e.g., learning and memory) in adulthood through behavioral examination and analyzed hippocampal expression levels of PSD95 and synaptophysin. To explore whether the mTOR signaling pathway was associated with ELS, we also examined the activity of mTOR and s6. The behavior tests indicated that maternally separated mice showed increased anxiety-like behavior and cognitive impairments. PSD95 and synaptophysin mRNA and protein expression levels were decreased in the hippocampus, and phosphorylated mTOR and phosphorylated s6 were significantly decreased in maternally separated mice vs. those not exposed to MS. Our data demonstrate that MS impairs synaptic plasticity and inhibits mTOR signaling, specifically via s6. Therefore, we speculate that ELS decreased synaptic plasticity via the inhibition of the mTOR pathway in the hippocampus, which may underlie vulnerability to stress and mental disorders in adulthood.
Collapse
Affiliation(s)
- Anfeng Wang
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaojuan Zou
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiajia Wu
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Naijun Yuan
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Fengmin Ding
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China.,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Wei J, Ma L, Ju P, Yang B, Wang YX, Chen J. Involvement of Oxytocin Receptor/Erk/MAPK Signaling in the mPFC in Early Life Stress-Induced Autistic-Like Behaviors. Front Cell Dev Biol 2020; 8:564485. [PMID: 33134294 PMCID: PMC7561716 DOI: 10.3389/fcell.2020.564485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
The neonatal or infant period is a critical stage for the development of brain neuroplasticity. Early life stresses in the neonatal period, including neonatal maternal separation (NMS), have adverse effects on an increased risk of psychiatric disorders in juveniles and adults. However, the underlying molecular mechanisms are not largely understood. Here, we found that juvenile rats subjected to 4 h daily NMS during postnatal days 1 to 20 exhibited autistic-like behavioral deficits without impairments in learning and memory functions. Molecular mechanism studies showed that oxytocin receptor (OXTR) in the medial prefrontal cortex of NMS rats was evidently downregulated when compared with control pups, especially in neurons. Erk/MAPK signaling, the downstream coupling signaling of OTXR, was also inhibited in NMS juvenile rats. Treatment with oxytocin could relieve NMS-induced social deficit behaviors and activated phosphorylation of Erk/MAPK signaling. Furthermore, medication with the inhibitor of H3K4 demethylase alleviated the abnormal behaviors in NMS rats and increased the expression of OXTR in the medial prefrontal cortex, which showed an epigenetic mechanism underlying social deficits induced by NMS. Taken together, these findings identified a molecular mechanism by which disruptions of mother-infant interactions influenced later displays of typical social behaviors and suggested the potential for NMS-driven epigenetic tuning of OXTR expression.
Collapse
Affiliation(s)
- Jinbao Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Le Ma
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Peijun Ju
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Beibei Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jinghong Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Kaneda Y, Kawata A, Suzuki K, Matsunaga D, Yasumatsu M, Ishiwata T. Comparison of neurotransmitter levels, physiological conditions, and emotional behavior between isolation-housed rats with group-housed rats. Dev Psychobiol 2020; 63:452-460. [PMID: 32945540 DOI: 10.1002/dev.22036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022]
Abstract
Brain monoaminergic neurotransmitters, such as dopamine (DA), serotonin (5-HT), and noradrenaline (NA), play crucial roles in neuronal and physiological functions, including social behaviors. Isolation housing may induce behavioral and neurochemical abnormalities in rats, although its influence on neurotransmitter levels remains obscure. This study investigated the influence of isolation- or group-housing on core body temperature (Tcore ), locomotor activity (ACT), emotional behavior, and neurotransmitter levels in male Wistar rats. Behavioral changes were monitored using the open field test (OFT) and social interaction test (SIT). After 4 weeks, brain tissues were collected to quantify 5-HT, DA, and NA concentrations. Body weight and basal Tcore during both the light and dark phase were higher in isolation-housed than in group-housed rats, although no significant difference was seen in ACT. No significant differences were observed during the OFT. Isolation-housed rats showed increased line crossing and decreased social behavior during the SIT. Isolation-housed rats exhibited decreased levels of 5-HT in the caudate putamen and amygdala, and elevated and decreased NA levels in the paraventricular hypothalamic nucleus and hippocampus, respectively. However, DA levels were unaffected. Thus, housing environments may affect brain areas that regulate various neuronal and physiological functions, such as memory, stress responses, and emotional behavior.
Collapse
Affiliation(s)
- Yuta Kaneda
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Akira Kawata
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Kota Suzuki
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Daisuke Matsunaga
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Mikinobu Yasumatsu
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Takayuki Ishiwata
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| |
Collapse
|
40
|
van der Veen R, Bonapersona V, Joëls M. The relevance of a rodent cohort in the Consortium on Individual Development. Dev Cogn Neurosci 2020; 45:100846. [PMID: 32957026 PMCID: PMC7509002 DOI: 10.1016/j.dcn.2020.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
One of the features of the Consortium on Individual Development is the existence of a rodent cohort, in parallel with the human cohorts. Here we give an overview of the current status. We first elaborate on the choice of rat and mouse models mimicking early life adverse or beneficial conditions during development. We performed a systematic literature search on early life adversity and adult social behavior to address the status quo. Next, we describe the behavioral tasks we used and designed to examine behavioral control and social competence in rodents. The results so far indicate that manipulation of the environment in the first postnatal week only subtly affects social behavior. Stronger effects were seen in the model that targeted early adolescence; once adult, these rats are characterized by increased attention, a higher degree of impulsiveness and reduced social interest in peers. Many experiments in our rodent models with tightly controlled conditions were inspired by findings in human cohorts, and now allow in-depth mechanistic investigations. Vice versa, some of the findings in rodents are currently followed up by dedicated investigations in the human cohorts. This exemplifies the added value of animal investigations in a consortium encompassing primarily human developmental cohorts.
Collapse
Affiliation(s)
- Rixt van der Veen
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Faculty of Social and Behavioral Sciences, Leiden University, Leiden, the Netherlands.
| | - Valeria Bonapersona
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marian Joëls
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
41
|
González-Pardo H, Arias JL, Vallejo G, Conejo NM. Environmental enrichment effects after early stress on behavior and functional brain networks in adult rats. PLoS One 2019; 14:e0226377. [PMID: 31830106 PMCID: PMC6907785 DOI: 10.1371/journal.pone.0226377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023] Open
Abstract
Early life stress is associated with long-term and pervasive adverse effects on neuroendocrine development, affecting normal cognitive and emotional development. Experimental manipulations like environmental enrichment (EE) may potentially reverse the effects of early life stress induced by maternal separation (MS) paradigm in rodents. However, the functional brain networks involved in the effects of EE after prolonged exposure to MS have not yet been investigated. In order to evaluate possible changes in brain functional connectivity induced by EE after MS, quantitative cytochrome c oxidase (CCO) histochemistry was applied to determine regional brain oxidative metabolism in adult male rats. Unexpectedly, results show that prolonged MS during the entire weaning period did not cause any detrimental effects on spatial learning and memory, including depressive-like behavior evaluated in the forced-swim test, and decreased anxiety-like behavior. However, EE seemed to alter anxiety- and depression-like behaviors in both control and MS groups, but improved spatial memory in the latter groups. Analysis of brain CCO activity showed significantly lower metabolic capacity in most brain regions selected in EE groups probably associated with chronic stress, but no effects of MS on brain metabolic capacity. In addition, principal component analysis of CCO activity revealed increased large-scale functional brain connectivity comprising at least three main networks affected by EE in both MS and control groups. Moreover, EE induced a pattern of functional brain connectivity associated with stress and anxiety-like behavior as compared with non-enriched groups. In conclusion, EE had differential effects on cognition and emotional behavior irrespective of exposure to MS. In view of the remarkable effects of EE on brain function and behavior, implementation of rodent housing conditions should be optimized by evaluating the balance between scientific validity and animal welfare.
Collapse
Affiliation(s)
- Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology and Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology and Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Guillermo Vallejo
- Methodology Area, Department of Psychology and Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Nélida M. Conejo
- Laboratory of Neuroscience, Department of Psychology and Institute of Neuroscience of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
- * E-mail:
| |
Collapse
|