1
|
Li C, Azad MAK, Zhu Q, Cheng Y, Gui J, Song B, Zhou Z, Kong X. Differences in intestinal and renal Ca and P uptake in three different breeds of growing-finishing pigs. Vet Q 2024; 44:1-16. [PMID: 38965863 PMCID: PMC11229737 DOI: 10.1080/01652176.2024.2371609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
This study investigated the differences in bone growth and turnover and calcium (Ca) and phosphorus (P) uptake among three different breeds of growing-finishing pigs. Ninety healthy Duroc, Xiangcun black (XCB), and Taoyuan black (TYB) pigs (30 pigs per breed) at 35 day-old (D) with the average body weight (BW) of their respective breed were assigned and raised to 185 D. The results showed that Duroc pigs had higher bone weight and length than the XCB and TYB pigs at 80, 125, and 185 D and the bone index at 185 D (p < 0.05). Duroc pigs had higher bone mineral densities (femur and tibia) compared with the other two breeds at 80 D and 125 D, whereas TYB pigs had higher mineral content and bone breaking load (rib) compared with the other two breeds at 185 D (p < 0.05). The bone morphogenetic protein-2 and osteocalcin concentrations were higher, and TRACP5b concentration was lower in serum of TYB pigs at 125 D (p < 0.05). Meanwhile, 1,25-dihydroxyvitamin D3, parathyroid hormone, thyroxine, and fibroblast growth factor 23 concentrations were higher in serum of TYB pigs at 185 D (p < 0.05). The TYB pigs had higher apparent total tract digestibility of P at 80 D and 185 D and bone Ca and P contents at 185 D in comparison to the Duroc pigs (p < 0.05). Furthermore, gene expressions related to renal uptake of Ca and P differed among the three breeds of pigs. Collectively, Duroc pigs have higher bone growth, whereas TYB pigs have a higher potential for mineral deposition caused by more active Ca uptake.
Collapse
Affiliation(s)
- Chenjian Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Md. Abul Kalam Azad
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yating Cheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jue Gui
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Song
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, Jiangsu, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Huynh N, De Dios K, Tran TS, Center JR, Nguyen TV. Association between the Sp1-binding-site polymorphism in the collagen type I alpha 1 (COLIA1) gene and bone phenotypes: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Metab 2024:10.1007/s00774-024-01558-8. [PMID: 39505754 DOI: 10.1007/s00774-024-01558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/06/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Polymorphisms within the collagen 1 alpha 1 gene (COLIA1) have been shown to be associated with bone mineral density (BMD). This study aimed to test the hypothesis that COLIA1 polymorphisms are associated with bone loss and fragility fractures. MATERIALS AND METHODS The study involved 809 postmenopausal women aged 60 years and above in the Dubbo Osteoporosis Epidemiology Study who had COLIA1 genotypes and at least two BMD measurements over a 30-year period. BMD at the lumbar spine (LSBMD) and femoral neck (FNBMD) was measured biennially by dual-energy X-ray absorptiometry (GE-Lunar Prodigy). Fragility fracture has been ascertained by X-ray reports between 1990 and 2020. The G-> T polymorphism at the Sp1-binding site in the COLIA1 gene (rs1800012) was determined by the PCR-based method, and coded as GG, GT, and TT. RESULTS Women homozygous for the minor allele (TT) tended to have greater bone loss (-0.72%/year) than those with GT (-0.58%/year) or GG (-0.56%/year) though the difference did not achieve statistical significance (P = 0.84). Women of the TT genotype were associated with a two-fold greater risk of any fracture (adjusted hazard ratio: 2.21; 95%CI 1.42-3.46) and almost fourfold greater risk of hip fracture (3.78; 1.83-7.82) than those with either GG or GT genotype. CONCLUSIONS Polymorphisms at the Sp1 site in the COLIA1 gene are associated with fracture risk, independent of bone loss.
Collapse
Affiliation(s)
- Ngoc Huynh
- School of Biomedical Engineering, University of Technology Sydney, City Campus (Broadway) Building 11, Level 10, PO BOX 123, Broadway, NSW, 2007, Australia
| | - Krisel De Dios
- School of Biomedical Engineering, University of Technology Sydney, City Campus (Broadway) Building 11, Level 10, PO BOX 123, Broadway, NSW, 2007, Australia
| | - Thach S Tran
- School of Biomedical Engineering, University of Technology Sydney, City Campus (Broadway) Building 11, Level 10, PO BOX 123, Broadway, NSW, 2007, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| | | | - Tuan V Nguyen
- School of Biomedical Engineering, University of Technology Sydney, City Campus (Broadway) Building 11, Level 10, PO BOX 123, Broadway, NSW, 2007, Australia.
- School of Population Health, UNSW Sydney, Kensington, NSW, Australia.
- Tam Anh Research Institute, Tan Binh District, Ho Chi Minh City, Vietnam.
| |
Collapse
|
3
|
Canullo L, Savadori P, Triestino A, Pesce P, Sora V, Caponio VCA, Mangano F, Menini M. Investigation of the extent of post-extraction bone contraction and remodeling after 4 months. A prospective pilot study. J Dent 2024; 150:105337. [PMID: 39222771 DOI: 10.1016/j.jdent.2024.105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES To investigate the correlation between the serum levels of 25(OH)D and the resorption of the alveolar bone walls and regeneration of the alveolar space after tooth extraction. METHODS 14 adults in need of extraction of hopeless teeth were enrolled. An intraoral digital impression was performed, and each patient was tested to assess serum vitamin D levels. Subsequently, extraction of teeth and contextual guided bone regeneration was performed using porcine origin graft material and a resorbable collagen membrane to covert the defect. After 4 months, an impression was taken, and the model was scanned using a professional scanner for lab. At the same time, a cone beam computed tomography was performed to plan implant insertion through fully digital computer guided surgery. Bone was collected to perform histological and histomorphometric analysis. Pre and postoperative scans were compared using a specific software to estimate the volumetric changes. Tests were applied to investigate the relationship between the different predictor variables and the outcome variables. RESULTS 14 patients were divided in 3 groups depending on the serum Vit-D levels, identifying three ranges corresponding to low (lower than 20), medium (between 20 and 30), and optimal vitamin D levels (higher than 30). Volumetric contraction after extraction was observed for all patients, without any significant difference between the groups. Focusing on the post-extraction regeneration, patients belonging to the group with lower levels of Vit-D displayed lower and more disorganized levels of bone. Immunohistochemistry analysis showed that Col1A1 and Osteocalcin had no physiological alteration. Osteopontin could be identified near the external surface of bone tissue granules. Runx2 signals were detected near the margins of bone trabeculae. CONCLUSIONS Serum vit-D levels do not appear to influence the extent of post-extraction bone contraction; on the contrary, they seem to influence the post-extraction regeneration. CLINICAL SIGNIFICANCE Vit D serum levels may influence the regenerative aspect during post-extraction turn-over. This might suggest controlling and (in case of low levels) recommend Vit D supplement in the patient diet in case of extraction.
Collapse
Affiliation(s)
- Luigi Canullo
- Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy; Department of Periodontology, University of Bern, Bern, Switzerland.
| | - Paolo Savadori
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | | | - Paolo Pesce
- Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy.
| | - Valerio Sora
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | | | - Francesco Mangano
- Department of Pediatric, Preventive Dentistry and Orthodontics, I. M. Sechenov First State Medical University, Moscow, Russian Federation
| | - Maria Menini
- Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy.
| |
Collapse
|
4
|
Han J, Rindone AN, Elisseeff JH. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311646. [PMID: 38416061 PMCID: PMC11239302 DOI: 10.1002/adma.202311646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Musculoskeletal diseases and injuries are among the leading causes of pain and morbidity worldwide. Broad efforts have focused on developing pro-regenerative biomaterials to treat musculoskeletal conditions; however, these approaches have yet to make a significant clinical impact. Recent studies have demonstrated that the immune system is central in orchestrating tissue repair and that targeting pro-regenerative immune responses can improve biomaterial therapeutic outcomes. However, aging is a critical factor negatively affecting musculoskeletal tissue repair and immune function. Hence, understanding how age affects the response to biomaterials is essential for improving musculoskeletal biomaterial therapies. This review focuses on the intersection of the immune system and aging in response to biomaterials for musculoskeletal tissue repair. The article introduces the general impacts of aging on tissue physiology, the immune system, and the response to biomaterials. Then, it explains how the adaptive immune system guides the response to injury and biomaterial implants in cartilage, muscle, and bone and discusses how aging impacts these processes in each tissue type. The review concludes by highlighting future directions for the development and translation of personalized immunomodulatory biomaterials for musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine; Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| |
Collapse
|
5
|
Ibrahim A, Jiang Z, Shirvani K, Dalili A, Abdel Hamid Z. A Novel Viscoelastic Deformation Mechanism Uncovered during Vickers Hardness Study of Bone. J Funct Biomater 2024; 15:87. [PMID: 38667544 PMCID: PMC11051036 DOI: 10.3390/jfb15040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigates the viscoelastic deformation mechanisms of bone as a response to Vickers hardness indentation. We utilized advanced high-resolution scanning electron microscopy (SEM) to investigate a distinct deformation pattern that originates from the indentation site within the bone matrix. The focus of our research was to analyze a unique deformation mechanism observed in bone tissue, which has been colloquially termed as "screw-like" due to its resemblance to a screw thread when viewed under an optical microscope. The primary goals of this research are to investigate the distinctive characteristics of the "screw-like" deformation pattern and to determine how the microstructure of bone influences the initiation and control of this mechanism. These patterns, emerging during the dwell period of indentation, underscore the viscoelastic nature of bone, indicating its propensity for energy dissipation and microstructural reconfiguration under load. This study uncovered a direct correlation between the length of the "screw-like" deformation and the duration of the indentation dwell time, providing quantifiable evidence of the bone's viscoelastic behavior. This finding is pivotal in understanding the mechanical properties of bone, including its fracture toughness, as it relates to the complex interplay of factors such as energy dissipation, microstructural reinforcement, and stress distribution. Furthermore, this study discusses the implications of viscoelastic properties on the bone's ability to resist mechanical challenges, underscoring the significance of viscoelasticity in bone research.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, NY 11735, USA; (K.S.); (A.D.)
| | - Zhenting Jiang
- The Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06511, USA;
| | - Khosro Shirvani
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, NY 11735, USA; (K.S.); (A.D.)
| | - Alireza Dalili
- Mechanical Engineering Department, Farmingdale State College, Farmingdale, NY 11735, USA; (K.S.); (A.D.)
| | - Z. Abdel Hamid
- Central Metallurgical Research and Development Institute, Helwan 11421, Egypt;
| |
Collapse
|
6
|
Sun Y, Jo JI, Hashimoto Y. Evaluation of Osteogenic Potential for Rat Adipose-Derived Stem Cells under Xeno-Free Environment. Int J Mol Sci 2023; 24:17532. [PMID: 38139360 PMCID: PMC10744054 DOI: 10.3390/ijms242417532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to develop a novel culture method for rat adipose-derived stem cells (rADSC) and evaluate their osteogenic potential. The rADSC cultured in xeno-free culture medium (XF-rADSCs) or conventional culture medium containing fetal bovine serum (FBS-rADSCs) were combined with micropieces of xeno-free recombinant collagen peptide to form 3-dimensional aggregates (XF-rADSC-CellSaic or FBS-rADSC-CellSaic). Both FBS-rADSC and XF-ADSC in CellSaic exhibited multilineage differentiation potential. Compared to FBS-rADSC-CellSaic, XF-rADSC-CellSaic accelerated and promoted osteogenic differentiation in vitro. When transplanted into rat mandibular congenital bone defects, the osteogenically differentiated XF-rADSC-CellSaic induced regeneration of bone tissue with a highly maturated structure compared to FBS-rADSC-CellSaic. In conclusion, XF-rADSC-CellSaic is a feasible 3-dimensional platform for efficient bone formation.
Collapse
Affiliation(s)
| | - Jun-Ichiro Jo
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (Y.S.); (Y.H.)
| | | |
Collapse
|
7
|
Kulesza M, Kicman A, Motyka J, Guszczyn T, Ławicki S. Importance of Metalloproteinase Enzyme Group in Selected Skeletal System Diseases. Int J Mol Sci 2023; 24:17139. [PMID: 38138968 PMCID: PMC10743273 DOI: 10.3390/ijms242417139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bone tissue is a dynamic structure that is involved in maintaining the homeostasis of the body due to its multidirectional functions, such as its protective, endocrine, or immunological role. Specialized cells and the extracellular matrix (ECM) are responsible for the remodeling of specific bone structures, which alters the biomechanical properties of the tissue. Imbalances in bone-forming elements lead to the formation and progression of bone diseases. The most important family of enzymes responsible for bone ECM remodeling are matrix metalloproteinases (MMPs)-enzymes physiologically present in the body's tissues and cells. The activity of MMPs is maintained in a state of balance; disruption of their activity is associated with the progression of many groups of diseases, including those of the skeletal system. This review summarizes the current understanding of the role of MMPs in bone physiology and the pathophysiology of bone tissue and describes their role in specific skeletal disorders. Additionally, this work collects data on the potential of MMPs as bio-markers for specific skeletal diseases.
Collapse
Affiliation(s)
- Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15267 Bialystok, Poland;
| | - Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| | - Tomasz Guszczyn
- Department of Pediatric Orthopaedics and Traumatology, Medical University of Bialystok, 15274 Bialystok, Poland;
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| |
Collapse
|
8
|
Khoury G, Mrad S, Bassil J, Ghosn N, Younes R. A New Concept of Horizontal Bone Augmentation Using Collagen Bovine Bone Blocks Without Membrane at Implant Placement: A Preliminary Study. J Maxillofac Oral Surg 2023; 22:1099-1109. [PMID: 38105828 PMCID: PMC10719435 DOI: 10.1007/s12663-023-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/07/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose A buccal bone thickness (BBT) of at least 1.8-2 mm is necessary to ensure long-term implant stability, and a bone grafting procedure is commonly needed to restore this BBT. This study aims to prove the effectiveness of a novel bone augmentation technique in which minero-organic bone substitutes are solely used to restore adequate BBT, excluding the need for coverage membranes. Methods Fifty partially edentulous patients having a residual bone width ranging between 5 and 6 mm were enrolled in this study. The horizontal buccal defects were grafted simultaneously at implant placement. Minero-organic collagen bovine bone blocks (CBBB) were placed on the outer side of the buccal bone wall, and adapted to the defect morphology through slow compressive movements. The grafted sites were not covered with any type of membrane nor stabilized with fixation pins. Cone-beam computed tomography scans were obtained pre-operatively, immediately post-surgery, and four months later. Scans were superimposed on the ITK-Snap software to measure the amount of bone gain and assess the percentage of CBBB resorption. Measurements were effectuated at four different levels apically to crestal level. Results Radiographic findings showed BBT increase and CBBB resorption in all cases, four months post-grafting. A mean horizontal bone gain of 1.39 mm was calculated at a crestal level. Conclusion Based on these findings, it appears that this novel and user-friendly bone grafting technique can achieve positive outcomes from both clinical and radiographic perspectives.
Collapse
Affiliation(s)
- Georges Khoury
- Department of Advanced Surgical Implantology, Service of Odontology, U.F.R. of Odontology, Rothschild Hospital, AP-HP, University Denis Diderot, Paris, France
| | - Stephanie Mrad
- Department of Oral Surgery, Faculty of Dental Medicine, Saint Joseph University of Beirut, Campus of Medical Sciences, Damascus Road, Beirut, 1104 2020 Lebanon
| | - Joseph Bassil
- Department of Oral Surgery, Faculty of Dental Medicine, Saint Joseph University of Beirut, Campus of Medical Sciences, Damascus Road, Beirut, 1104 2020 Lebanon
| | - Nabil Ghosn
- Cranio-Facial Research Laboratory, Faculty of Dental Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Ronald Younes
- Department of Oral Surgery, Faculty of Dental Medicine, Saint Joseph University of Beirut, Campus of Medical Sciences, Damascus Road, Beirut, 1104 2020 Lebanon
- Cranio-Facial Research Laboratory, Faculty of Dental Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Ahmed Omar N, Roque J, Galvez P, Siadous R, Chassande O, Catros S, Amédée J, Roques S, Durand M, Bergeaut C, Bidault L, Aprile P, Letourneur D, Fricain JC, Fenelon M. Development of Novel Polysaccharide Membranes for Guided Bone Regeneration: In Vitro and In Vivo Evaluations. Bioengineering (Basel) 2023; 10:1257. [PMID: 38002381 PMCID: PMC10669683 DOI: 10.3390/bioengineering10111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Guided bone regeneration (GBR) procedures require selecting suitable membranes for oral surgery. Pullulan and/or dextran-based polysaccharide materials have shown encouraging results in bone regeneration as bone substitutes but have not been used to produce barrier membranes. The present study aimed to develop and characterize pullulan/dextran-derived membranes for GBR. MATERIALS AND METHODS Two pullulan/dextran-based membranes, containing or not hydroxyapatite (HA) particles, were developed. In vitro, cytotoxicity evaluation was performed using human bone marrow mesenchymal stem cells (hBMSCs). Biocompatibility was assessed on rats in a subcutaneous model for up to 16 weeks. In vivo, rat femoral defects were created on 36 rats to compare the two pullulan/dextran-based membranes with a commercial collagen membrane (Bio-Gide®). Bone repair was assessed radiologically and histologically. RESULTS Both polysaccharide membranes demonstrated cytocompatibility and biocompatibility. Micro-computed tomography (micro-CT) analyses at two weeks revealed that the HA-containing membrane promoted a significant increase in bone formation compared to Bio-Gide®. At one month, similar effects were observed among the three membranes in terms of bone regeneration. CONCLUSION The developed pullulan/dextran-based membranes evidenced biocompatibility without interfering with bone regeneration and maturation. The HA-containing membrane, which facilitated early bone regeneration and offered adequate mechanical support, showed promising potential for GBR procedures.
Collapse
Affiliation(s)
- Naïma Ahmed Omar
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Jéssica Roque
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Paul Galvez
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Robin Siadous
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Olivier Chassande
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Sylvain Catros
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
| | - Joëlle Amédée
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Samantha Roques
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Marlène Durand
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Céline Bergeaut
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
| | - Laurent Bidault
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
| | - Paola Aprile
- Laboratory for Vascular Translational Science (LVTS), X Bichat Hospital, University Paris Cité & University Sorbonne Paris Nord, INSERM 1148, F-75018 Paris, France
| | - Didier Letourneur
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
- Laboratory for Vascular Translational Science (LVTS), X Bichat Hospital, University Paris Cité & University Sorbonne Paris Nord, INSERM 1148, F-75018 Paris, France
| | - Jean-Christophe Fricain
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Mathilde Fenelon
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
| |
Collapse
|
10
|
Ahmed R, Unal M, Gautam R, Uppuganti S, Derasari S, Mahadevan-Jansen A, Nyman JS. Sensitivity of the amide I band to matrix manipulation in bone: a Raman micro-spectroscopy and spatially offset Raman spectroscopy study. Analyst 2023; 148:4799-4809. [PMID: 37602820 PMCID: PMC10528211 DOI: 10.1039/d3an00527e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The fracture resistance of bone arises from the hierarchical arrangement of minerals, collagen fibrils (i.e., cross-linked triple helices of α1 and α2 collagen I chains), non-collagenous proteins, and water. Raman spectroscopy (RS) is not only sensitive to the relative fractions of these constituents, but also to the secondary structure of bone proteins. To assess the ability of RS to detect differences in the protein structure, we quantified the effect of sequentially autoclaving (AC) human cortical bone at 100 °C (∼34.47 kPa) and then at 120 °C (∼117.21 kPa) on the amide I band using a commercial Raman micro-spectroscopy (μRS) instrument and custom spatially offset RS (SORS) instrument in which rings of collection fiber optics are offset from the central excitation fiber optics within a hand-held, cylindrical probe. Being clinically viable, measurements by SORS involved collecting Raman spectra of cadaveric femur mid-shafts (5 male & 5 female donors) through layers of a tissue mimic. Otherwise, μRS and SORS measurements were acquired directly from each bone. AC-related changes in the helical status of collagen I were assessed using amide I sub-peak ratios (intensity, I, at ∼1670 cm-1 relative to intensities at ∼1610 cm-1 and ∼1640 cm-1). The autoclaving manipulation significantly decreased the selected amide I sub-peak ratios as well as shifted peaks at ∼1605 cm-1 (μRS), ∼1636 cm-1 (SORS) and ∼1667 cm-1 in both μRS and SORS. Compared to μRS, SORS detected more significant differences in the amide I sub-peak ratios when the fiber optic probe was directly applied to bone. SORS also detected AC-related decreases in I1670/I1610 and I1670/I1640 when spectra were acquired through layers of the tissue mimic with a thickness ≤2 mm by the 7 mm offset ring, but not with the 5 mm or 6 mm offset ring. Overall, the SORS instrument was more sensitive than the conventional μRS instrument to pressure- and temperature-related changes in the organic matrix that affect the fracture resistance of bone, but SORS analysis of the amide I band is limited to an overlying thickness layer of 2 mm.
Collapse
Affiliation(s)
- Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - Mustafa Unal
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, Türkiye 70200
- Department of Biophysics, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman, Türkiye 70200.
| | - Rekha Gautam
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Cork, Ireland
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA
- Vanderbilt Biophotonics Center, 410 24th Ave. S., Nashville, TN 37232, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - Shrey Derasari
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA
- Vanderbilt Biophotonics Center, 410 24th Ave. S., Nashville, TN 37232, USA
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA
- Vanderbilt Biophotonics Center, 410 24th Ave. S., Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S., Nashville, TN 37212, USA
| |
Collapse
|
11
|
Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gazińska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng 2023; 9:5222-5254. [PMID: 37585562 PMCID: PMC10498424 DOI: 10.1021/acsbiomaterials.3c00609] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.
Collapse
Affiliation(s)
- Aleksandra Szwed-Georgiou
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Przemysław Płociński
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Barbara Kupikowska-Stobba
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Mateusz M. Urbaniak
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Paulina Rusek-Wala
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Konrad Szustakiewicz
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Paweł Piszko
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Agnieszka Krupa
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Monika Biernat
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Małgorzata Gazińska
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Mirosław Kasprzak
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Katarzyna Nawrotek
- Faculty
of Process and Environmental Engineering, Lodz University of Technology, Lodz 90-924, Poland
| | - Nuno Pereira Mira
- iBB-Institute
for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Instituto
Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Karolina Rudnicka
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| |
Collapse
|
12
|
Albaqami FF, Althurwi HN, Alharthy KM, Hamad AM, Awartani FA. Rutin Gel with Bone Graft Accelerates Bone Formation in a Rabbit Model by Inhibiting MMPs and Enhancing Collagen Activities. Pharmaceuticals (Basel) 2023; 16:ph16050774. [PMID: 37242557 DOI: 10.3390/ph16050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Bone graft techniques are used to compensate for bone loss in areas with deficient regeneration. However, matrix metalloproteases (MMPs) can limit bone formation by degrading extracellular matrices, which are required for bone regrowth. Noteworthily, rutin is a natural flavonoid compound that inhibits the genetic expression of various MMPs. Therefore, rutin may serve as an inexpensive and stable alternative to the growth factors used to accelerate dental bone graft healing. This study aimed to evaluate the potential of mixing rutin gel with allograft bone to accelerate the healing of bone defects in an in vivo rabbit model. Bone defects were surgically induced in New Zealand rabbits (n = 3 per group) and subsequently treated with bone grafts along with rutin or control gel. Overall, treatment with rutin significantly prevented the expression of several MMPs and increased type III collagen in the gingiva around the surgical site. Additionally, rutin-treated animals showed enhanced bone formation with higher bone marrow content in the jawbone defect area compared with the control group. Taken together, these findings demonstrate that rutin gel, when added to bone grafts, quickly enhances bone formation and may serve as a suitable alternative to expensive growth factors for the same purpose.
Collapse
Affiliation(s)
- Fahad F Albaqami
- Postgraduate Doctorate Program, Periodontics and Community Dentistry Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Hassan N Althurwi
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid M Alharthy
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abubaker M Hamad
- Department of Nursing, College of Health Sciences and Nursing, Al-Rayan Colleges, Al-Madeena Al-Munowara 41411, Saudi Arabia
| | - Fatin A Awartani
- Periodontics and Community Dentistry Department, College of Dentistry, King Saud University, P.O. Box 52500, Riyadh 11563, Saudi Arabia
| |
Collapse
|
13
|
Kim MK, Paek K, Woo SM, Kim JA. Bone-on-a-Chip: Biomimetic Models Based on Microfluidic Technologies for Biomedical Applications. ACS Biomater Sci Eng 2023. [PMID: 37183366 DOI: 10.1021/acsbiomaterials.3c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
With the increasing importance of preclinical evaluation of newly developed drugs or treatments, in vitro organ or disease models are necessary. Although various organ-specific on-chip (organ-on-a-chip, or OOC) systems have been developed as emerging in vitro models, bone-on-a-chip (BOC) systems that recapitulate the bone microenvironment have been less developed or reviewed compared with other OOCs. The bone is one of the most dynamic organs and undergoes continuous remodeling throughout its lifetime. The aging population is growing worldwide, and healthcare costs are rising rapidly. Since in vitro BOC models that recapitulate native bone niches and pathological features can be important for studying the underlying mechanism of orthopedic diseases and predicting drug responses in preclinical trials instead of in animals, the development of biomimetic BOCs with high efficiency and fidelity will be accelerated further. Here, we review recently engineered BOCs developed using various microfluidic technologies and investigate their use to model the bone microenvironment. We have also explored various biomimetic strategies based on biological, geometrical, and biomechanical cues for biomedical applications of BOCs. Finally, we addressed the limitations and challenging issues of current BOCs that should be overcome to obtain more acceptable BOCs in the biomedical and pharmaceutical industries.
Collapse
Affiliation(s)
- Min Kyeong Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyurim Paek
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Mi Woo
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Jeong Ah Kim
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| |
Collapse
|
14
|
Al-Qudsy L, Hu YW, Xu H, Yang PF. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone. ACS Biomater Sci Eng 2023; 9:2203-2219. [PMID: 37075172 DOI: 10.1021/acsbiomaterials.2c01377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Bone comprises mechanically different materials in a specific hierarchical structure. Mineralized collagen fibrils (MCFs), represented by tropocollagen molecules and hydroxyapatite nanocrystals, are the fundamental unit of bone. The mechanical characterization of MCFs provides the unique adaptive mechanical competence to bone to withstand mechanical load. The structural and mechanical role of MCFs is critical in the deformation mechanisms of bone and the marvelous strength and toughness possessed by bone. However, the role of MCFs in the mechanical behavior of bone across multiple length scales is not fully understood. In the present study, we shed light upon the latest progress regarding bone deformation at multiple hierarchical levels and emphasize the role of MCFs during bone deformation. We propose the concept of hierarchical deformation of bone to describe the interconnected deformation process across multiple length scales of bone under mechanical loading. Furthermore, how the deterioration of bone caused by aging and diseases impairs the hierarchical deformation process of the cortical bone is discussed. The present work expects to provide insights on the characterization of MCFs in the mechanical properties of bone and lays the framework for the understanding of the multiscale deformation mechanics of bone.
Collapse
Affiliation(s)
- Luban Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Medical Instrumentation Engineering Techniques, Electrical Engineering Technical College, Middle Technical University, 8998+QHJ Baghdad, Iraq
| | - Yi-Wei Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
15
|
Cutting Edge Aquatic-Based Collagens in Tissue Engineering. Mar Drugs 2023; 21:md21020087. [PMID: 36827128 PMCID: PMC9959471 DOI: 10.3390/md21020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.
Collapse
|
16
|
Shen X, Liu Y, Zhao Q, Cheng H, Li B, Vuong AM, Fan Y, Zhang M, Yang S. Association between global biomarker of oxidative stress and quantitative ultrasound parameters in middle-aged and elderly adults: A cross-sectional study. Front Public Health 2023; 10:1032550. [PMID: 36684980 PMCID: PMC9853916 DOI: 10.3389/fpubh.2022.1032550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction With the population aging, osteoporosis has become a major public health concern. Elevated oxidative stress is a vital detrimental factor for bone health. Compared to common oxidative stress-related biomarkers, Fluorescent Oxidation Products (FlOPs) reflect the global levels of oxidation from proteins, lipids, and DNA. Nevertheless, whether plasma FlOP levels are related to bone health measured by Quantitative ultrasound (QUS) is unclear. Thus, the present study examined the association between FlOPs and QUS parameters in middle-aged and elderly adults. Methods This community-based cross-sectional study was conducted in Changchun, northeast China. Plasma FlOPs were determined by a fluorescent microplate reader at a wavelength of 320/420 nm (excitation/emission). QUS parameters [speed of sound (SOS) and broadband ultrasound attenuation (BUA)] of the calcaneus were assessed by an ultrasound bone densitometer. We used multivariable linear regression to examine the association between FlOPs and QUS parameters. Results A total of 491 subjects were included in this study. Their average age was 65.2 years (standard deviation [SD]: 9.7 years). FlOPs were inversely associated with SOS (β for an increase of logarithmic interquartile range = -10.64; P = 0.018). Higher FlOP levels were marginally associated with lower SOS in females (β for an increase of logarithmic interquartile range = -9.68, P = 0.066), but not in males (β for an increase of logarithmic interquartile range = -11.84, P = 0.131). No significant relationship between FlOPs and BUA was observed. Conclusions Plasma FlOP levels were inversely associated with SOS, but not with BUA in middle-aged and elderly adults.
Collapse
Affiliation(s)
- Xue Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Qianqian Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Haitao Cheng
- FAW General Hospital of Jilin Province, Changchun, China
| | - Binbin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Ann M. Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, NV, United States
| | - Yiliang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Mengmeng Zhang
- FAW General Hospital of Jilin Province, Changchun, China
| | - Shuman Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
17
|
Zhu S, Liu J, Zhao J, Zhou B, Zhang Y, Wang H. HIF-1α-mediated autophagy and canonical Wnt/β-catenin signalling activation are involved in fluoride-induced osteosclerosis in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120396. [PMID: 36220573 DOI: 10.1016/j.envpol.2022.120396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Fluoride (F) exposure can cause osteosclerosis, which is characterised by a high bone mass, but its mechanism is not fully illustrated. Here, we aimed to evaluate the effects of excessive F exposure on the bone lesion by treating female Sprague-Dawley rats with different concentrations of sodium fluoride (NaF) (0, 55, 110 and 221 mg/L) for 90 days and the corresponding concentrations of fluorine ion (0, 25, 50 and 100 mg/L, respectively). Histopathological results showed that excessive F exposure caused the enlargement of trabeculae and their integration into one large piece, growth plate thickening, articular cartilage impairment and bone collagen abnormality. Meanwhile, F promoted calcium deposition and bone mineralisation, and induced abnormal osteogenesis increased. The results of micro-computed tomography also confirmed that excessive F destroyed the bone microstructure and induced a high-bone-mass phenotype, consistent with the results of pathomorphology. Mechanistically, excessive amounts of F led to angiogenesis inhibition and HIF-1α signalling enhancement. Subsequently, F induced autophagy and canonical Wnt/β-catenin signalling pathway activation. Collectively, these results manifested that F enhanced the hypoxia inducible factor-1α signalling, which in turn triggered autophagy and canonical Wnt/β-catenin signalling activation, ultimately leading to osteosclerosis in the rats.
Collapse
Affiliation(s)
- Shiquan Zhu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Liu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Bianhua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Yuling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Hongwei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
18
|
Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022; 10:1051678. [PMID: 36518978 PMCID: PMC9742444 DOI: 10.3389/fchem.2022.1051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Over the past few decades, various bioactive material-based scaffolds were investigated and researchers across the globe are actively involved in establishing a potential state-of-the-art for bone tissue engineering applications, wherein several disciplines like clinical medicine, materials science, and biotechnology are involved. The present review article's main aim is to focus on repairing and restoring bone tissue defects by enhancing the bioactivity of fabricated bone tissue scaffolds and providing a suitable microenvironment for the bone cells to fasten the healing process. It deals with the various surface modification strategies and smart composite materials development that are involved in the treatment of bone tissue defects. Orthopaedic researchers and clinicians constantly focus on developing strategies that can naturally imitate not only the bone tissue architecture but also its functional properties to modulate cellular behaviour to facilitate bridging, callus formation and osteogenesis at critical bone defects. This review summarizes the currently available polymeric composite matrices and the methods to improve their bioactivity for bone tissue regeneration effectively.
Collapse
Affiliation(s)
- Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Soumya Katiyar
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Darshna
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Aditya Anand
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | | |
Collapse
|
19
|
Talone B, Bresci A, Manetti F, Vernuccio F, De la Cadena A, Ceconello C, Schiavone ML, Mantero S, Menale C, Vanna R, Cerullo G, Sobacchi C, Polli D. Label-free multimodal nonlinear optical microscopy reveals features of bone composition in pathophysiological conditions. Front Bioeng Biotechnol 2022; 10:1042680. [PMID: 36483771 PMCID: PMC9723390 DOI: 10.3389/fbioe.2022.1042680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2024] Open
Abstract
Bone tissue features a complex microarchitecture and biomolecular composition, which determine biomechanical properties. In addition to state-of-the-art technologies, innovative optical approaches allowing the characterization of the bone in native, label-free conditions can provide new, multi-level insight into this inherently challenging tissue. Here, we exploited multimodal nonlinear optical (NLO) microscopy, including co-registered stimulated Raman scattering, two-photon excited fluorescence, and second-harmonic generation, to image entire vertebrae of murine spine sections. The quantitative nature of these nonlinear interactions allowed us to extract accurate biochemical, morphological, and topological information on the bone tissue and to highlight differences between normal and pathologic samples. Indeed, in a murine model showing bone loss, we observed increased collagen and lipid content as compared to the wild type, along with a decreased craniocaudal alignment of bone collagen fibres. We propose that NLO microscopy can be implemented in standard histopathological analysis of bone in preclinical studies, with the ambitious future perspective to introduce this technique in the clinical practice for the analysis of larger tissue sections.
Collapse
Affiliation(s)
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | - Stefano Mantero
- IRCCS Humanitas Research Hospital, Milano, Italy
- CNR-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Ciro Menale
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Renzo Vanna
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Milano, Italy
- CNR-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| |
Collapse
|
20
|
Characterization of collagen response to bone fracture healing using polarization-SHG. Sci Rep 2022; 12:18453. [PMID: 36323698 PMCID: PMC9630316 DOI: 10.1038/s41598-022-21876-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we extend on the three parameter analysis approach of utilizing a noninvasive dual-liquid-crystal-based polarization-resolved second harmonic generation (SHG) microscopy to facilitate the quantitative characterization of collagen types I and II in fracture healing tissues. The SHG images under various linear and circular polarization states are analyzed and quantified in terms of the peptide pitch angle (PA), SHG-circular dichroism (CD), and anisotropy parameter (AP). The results show that the collagen PA has a value of 49.26° after 2 weeks of fracture healing (collagen type II domination) and 49.05° after 4 weeks (collagen type I domination). Moreover, the SHG-CD and AP values of the different collagen types differ by 0.05. The change tendencies of the extracted PA, SHG-CD, and AP parameters over the healing time are consistent with the collagen properties of healthy nonfractured bone. Thus, the feasibility of the proposed dual-liquid-crystal-based polarization-SHG method for differentiating between collagen types I and II in bone fracture healing tissue is confirmed.
Collapse
|
21
|
Liu F, Hu K, Al-Qudsy LH, Wu LQ, Wang Z, Xu HY, Yang H, Yang PF. Aging exacerbates the morphological and mechanical response of mineralized collagen fibrils in murine cortical bone to disuse. Acta Biomater 2022; 152:345-354. [PMID: 36087867 DOI: 10.1016/j.actbio.2022.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
Mineralized collagen fibrils (MCFs) are the fundamental building blocks of bone tissue and contribute significantly to the mechanical behavior of bone. However, it is still largely unknown how the collagen network in bone responds to aging and the disuse normally accompanying it. Utilizing atomic force microscopy, nanoindentation and Raman spectroscopy, age-related alterations in the microstructure and mechanical properties of murine cortical tibia at multiple scales were investigated in this study. The potential difference in the responses of bone to disuse at different ages was studied. The results indicated that the age- and disuse-related alterations in bone initiate from MCFs in the bone matrix. The D-periodic spacing, radial elastic modulus of a single MCF and the mineral-to-matrix ratio on the cortical bone surface were larger in aged mice than in adult mice. Disuse, on the other hand, mainly has a major influence on aged mice, particularly on the morphology and mechanical properties of MCFs, but it only has modest effects on adult bone. These findings revealed insights into the morphological and mechanical adaptation of mineralized collagen fibrils in murine cortical bone to aging and disuse. STATEMENT OF SIGNIFICANCE: Bone is a complex structured composite material consisting of an interwoven framework of collagen fibrils reinforced by mineral particles and embedded in an extrafibrillar mineralized matrix. Utilizing atomic force microscopy, nanoindentation and Raman spectroscopy, this study suggests that the effects of aging, as well as the accompanying disuse, on the morphology and mechanical properties of bone initiate from the mineralized collagen fibril level. More interestingly, the MCF in the bone of aged mice seems to be more sensitive to disuse than that in adult mice. These findings significantly further the current understanding of the adaptation process of bone to aging at the mineralized collagen fibril level and provide direct insights into the physiological response of bone to aging and the abnormal mechanical environment.
Collapse
Affiliation(s)
- Fa Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Luban H Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lan-Qin Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhe Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui-Yun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
22
|
Xue Z, Wang X, Xu D. Molecular investigations of the prenucleation mechanism of bone-like apatite assisted by type I collagen nanofibrils: insights into intrafibrillar mineralization. Phys Chem Chem Phys 2022; 24:18931-18942. [PMID: 35916012 DOI: 10.1039/d2cp02573f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone is a typical inorganic-organic composite material with a multilevel hierarchical organization. In the lowest level of bone tissue, inorganic minerals, which are mainly composed of hydroxyapatite, are mineralized within the type I collagen fibril scaffold. Understanding the crystal prenucleation mechanism and growth of the inorganic phase is particularly important in the design and development of materials with biomimetic nanostructures. In this study, we built an all-atom human type I collagen fibrillar model with a 67 nm overlap/gap D-periodicity. Arginine residues were shown to serve as the dominant cross-linker to stabilize the fibril scaffold. Subsequently, the prenucleation mechanism of collagen intrafibrillar mineralization was investigated using a molecular dynamics approach. Considering the physiological pH of the human body (i.e., ∼7.4), HPO42- was initially used to simulate the protonation state of the phosphate ions. Due to the spatially constrained effects resulting from the overlap/gap structure of the collagen fibrils, calcium phosphate clusters formed mainly inside the hole zone but with different spatial distributions along the long axis direction; this indicated that the nucleation of calcium phosphate may be highly site-selective. Furthermore, the model containing both HPO42- and PO43- in the solution phase formed significantly larger clusters without any change in the nucleation sites. This phenomenon suggests that the existence of PO43- is beneficial for the mineralization process, and so the conversion of HPO42- to PO43- was considered a critical step during mineralization. Finally, we summarize the nucleation mechanism for collagen intrafibrillar mineralization, which could contribute to the fabrication of mineralized collagen biomimetic materials.
Collapse
Affiliation(s)
- Zhiyu Xue
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| |
Collapse
|
23
|
Rong H, Lin F, Ning L, Wu K, Chen B, Zheng J, Limbu SM, Wen X. Cloning, tissue distribution and mRNA expression of type I collagen alpha 1 gene from Chu's croaker (Nibea coibor). Gene 2022; 824:146441. [PMID: 35339641 DOI: 10.1016/j.gene.2022.146441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
Abstract
The demand for collagen has been increasing over years due to its wide application in food, cosmetics and biomedicine industries. The synthesis of collagen protein in fish depends on instructions provided by collagen, type I, alpha 1 (COL1A1) gene. However, cloning, tissue distribution and mRNA expression of COL1A1 gene in a gel-producing Chu's croaker (Nibea coibor) is currently unknown. This study cloned the cDNA of COL1A1 gene (GenBank accession number: MK641512) from six N. coibor fish. The distribution and mRNA expression pattern of COL1A1 was analyzed in eight tissues of N. coibor. The COL1A1 cDNA had a full length of 6130 bp and contained a 4344 bp open reading frame (ORF) encoding a polypeptide of 1448 amino acids. The homology of N. coibor COL1A1 amino acid had 98% similarity with Larimichthys crocea, indicating conservatism with other members in same family (Sciaenidae). The deduced polypeptide contained the same signal peptides, C-propeptide and N-propeptide domains, and triple helix domains, which are the characteristics of type I collagen in vertebrates. The mRNA of COL1A1 gene was expressed significantly higher in the spine of N. coibor than in all other tissues (P < 0.05), followed by swim bladder, skin and scales. The swim bladder had higher collagen and hydroxyproline contents than other tissues, followed by spine >, scales > and > skin (P < 0.05). Our study successfully cloned the COL1A1 gene from N. coibor for the first time. The COL1A1 gene contained all the features of collagen pro-α1(I) chain proteins, and shared high homology with other marine teleost. COL1A1 gene in N. coibor is highly expressed in spine and swim bladder, consistent with collagen distribution. Our study contributes to better understanding on collagen biosynthesis in N. coibor tissues for various industrial uses.
Collapse
Affiliation(s)
- Hua Rong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Fan Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Lijun Ning
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Baojia Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jia Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Xue Z, Wang X, Xu D. Molecular dynamic simulation of prenucleation of apatite at a type I collagen template: ion association and mineralization control. Phys Chem Chem Phys 2022; 24:11370-11381. [PMID: 35502709 DOI: 10.1039/d2cp00168c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biomineralization is a vital physiological process in living organisms, hence elucidating its mechanism is crucial in the optimization of controllable biomaterial preparation with hydroxyapatite and collagen, which could provide information for the design of innovative biomaterials. However, the mechanisms by which minerals and collagen interact in various ionic environments are unclear. Here, we applied molecular dynamics and free energy simulations to clarify type I collagen-mediated HAP prenucleation and simulated the physiological environment using different phosphate and carbonate protonation states. Calcium phosphate mineral formation on the type I collagen surface drastically differed among various H2PO4-, HPO42-, PO43-, CO32-, and HCO3- compositions. Our simulations indicated that the presence of HPO42- in the solution phase is critical to regulate the apatite nucleation, whereas the presence of H2PO4- may be inhibitory. The inclusion of CO32- in the solution might promote calcium phosphate cluster formation. In contrast, apatite cluster size may be regulated by changing the anion concentration ratios, including PO43-/HPO42- and PO43-/CO32-. Our free energy simulations attributed these phenomena to relative differences in binding thermostability and ion association kinetics. Our simulations provide a theoretical approach toward the effective control of collagen mineralization and the preparation of novel biomaterials.
Collapse
Affiliation(s)
- Zhiyu Xue
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China. .,Research Center for Materials Genome Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
25
|
Aizawa H, Uematsu T, Sato A, Masuki H, Kawabata H, Tsujino T, Isobe K, Kitamura Y, Nagata M, Nakata K, Kawase T. Non-destructive, spectrophotometric analysis of the thickness of the cell-multilayered periosteal sheet. Int J Implant Dent 2022; 8:21. [PMID: 35491414 PMCID: PMC9058046 DOI: 10.1186/s40729-022-00419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background Autologous tissue-engineered periosteal sheets, which have been clinically applied for periodontal regeneration, sinus lift, and alveolar ridge augmentation, are enriched with osteoblast precursor cells and the abundant deposition of collagen type I in the extracellular spaces. Their quality is inspected prior to clinical use; however, most criteria cannot be evaluated without sacrificing samples. To reduce such losses, we developed a non-destructive optical method that can quantitatively evaluate the thickness of the periosteal sheet. Methods Dispersed periosteal cells were inoculated into small pieces of collagen sponge (Terudermis®) and plated into 60-mm dishes for further explant culture using a conventional medium and a stem-cell culture medium. The thickness of periosteal sheets was evaluated using inverted microscopic, histological, labeling (CellVue®)-based imaging and spectrophotometric (Spectro-1®) methods. Results The three-dimensional growth of periosteal sheets did not necessarily correlate with two-dimensional growth. The periosteal sheet prepared with the stem-cell medium formed cell multilayers, a phenomenon that could be observed qualitatively by inverted microscopy. The spectrophotometric analysis enabled the quantitative evaluation of the thickness of the cell multilayer without sacrificing the samples processed for scheduled cell therapy. Conclusions The growth of periosteal sheets is influenced by several major factors, including the basic quality of the individual original periosteal tissue segments, the technical expertise of doctors and operators involved in tissue harvesting and processing, and culture conditions. This newly developed spectrophotometric analysis can quantify the thickness of cell-multilayered periosteal sheets for quality assurance in a non-destructive manner, thereby contributing to better bone augmentation prior to implant therapy.
Collapse
|
26
|
Heilmeier U, Hackl M, Schroeder F, Torabi S, Kapoor P, Vierlinger K, Eiriksdottir G, Gudmundsson EF, Harris TB, Gudnason V, Link TM, Grillari J, Schwartz AV. Circulating serum microRNAs including senescent miR-31-5p are associated with incident fragility fractures in older postmenopausal women with type 2 diabetes mellitus. Bone 2022; 158:116308. [PMID: 35066213 DOI: 10.1016/j.bone.2021.116308] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Fragility fractures are an important hallmark of aging and an increasingly recognized complication of Type 2 diabetes (T2D). T2D individuals have been found to exhibit an increased fracture risk despite elevated bone mineral density (BMD) by dual x-ray absorptiometry (DXA). However, BMD and FRAX-scores tend to underestimate fracture risk in T2D. New, reliable biomarkers are therefore needed. MicroRNAs (miRNAs) are secreted into the circulation from cells of various tissues proportional to local disease severity. Serum miRNA-classifiers were recently found to discriminate T2D women with and without prevalent fragility fractures with high specificity and sensitivity (AUC > 0.90). However, the association of circulating miRNAs with incident fractures in T2D has not been examined yet. In 168 T2D postmenopausal women in the AGES-Reykjavik cohort, miRNAs were extracted from baseline serum and a panel of 10 circulating miRNAs known to be involved in diabetic bone disease and aging was quantified by qPCR and Ct-values extracted. Unadjusted and adjusted Cox proportional hazard models assessed the associations between serum miRNAs and incident fragility fracture. Additionally, Receiver operating curve (ROC) analyses were performed. Of the included 168 T2D postmenopausal women who were on average 77.2 ± 5.6 years old, 70 experienced at least one incident fragility fracture during the mean follow-up of 5.8 ± 2.7 years. We found that 3 serum miRNAs were significantly associated with incident diabetic fragility fracture: while low expression of miR-19b-1-5p was associated with significantly lower risk of incident fragility fracture (HR 0.84 (95% CI: 0.71-0.99, p = 0.0323)), low expression of miR-203a and miR-31-5p was each significantly associated with a higher risk of incident fragility fracture per unit increase in Ct-value (miR-203a: HR 1.29 (95% CI: 1.12-1.49), p = 0.0004, miR-31-5p HR 1.27 (95% CI: 1.06-1.52), p = 0.009). Hazard ratios of the latter two miRNAs remained significant after adjustments for age, body mass index (BMI), areal bone mineral density (aBMD), clinical FRAX or FRAXaBMD. Women with miR-203a and miR-31-5p serum levels in the lowest expression quartiles exhibited a 2.4-3.4-fold larger fracture risk than women with miR-31-5p and miR-203a serum expressions in the highest expression quartile (0.002 ≤ p ≤ 0.039). Women with both miR-203a and miR-31-5p serum levels below the median had a significantly increased fracture risk (Unadjusted HR 3.26 (95% CI: 1.57-6.78, p = 0.001) compared to those with both expression levels above the median, stable to adjustments. We next built a diabetic fragility signature consisting of the 3 miRNAs that showed the largest associations with incident fracture (miR-203a, miR-31-5p, miR-19b-1-5p). This 3-miRNA signature showed with an AUC of 0.722 comparable diagnostic accuracy in identifying incident fractures to any of the clinical parameters such as aBMD, Clinical FRAX or FRAXaBMD alone. When the 3 miRNAs were combined with aBMD, this combined 4-feature signature performed with an AUC of 0.756 (95% CI: 0.680, 0.823) significantly better than aBMD alone (AUC 0.666, 95% CI: 0.585, 0.741) (p = 0.009). Our data indicate that specific serum microRNAs including senescent miR-31-5p are associated with incident fragility fracture in older diabetic women and can significantly improve fracture risk prediction in diabetics when combined with aBMD measurements of the femoral neck.
Collapse
Affiliation(s)
- Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA; Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | | - Fabian Schroeder
- Department of Molecular Diagnostics, Austrian Institute of Technology, AIT, Vienna, Austria
| | - Soheyla Torabi
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Puneet Kapoor
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Klemens Vierlinger
- Department of Molecular Diagnostics, Austrian Institute of Technology, AIT, Vienna, Austria
| | | | | | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, USA
| | - Vilmundur Gudnason
- The Icelandic Heart Association, Kopavogur, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Thomas M Link
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Christian Doppler Laboratory of Biotechnology of Skin Aging, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Gatti L, Lugli F, Sciutto G, Zangheri M, Prati S, Mirasoli M, Silvestrini S, Benazzi S, Tütken T, Douka K, Collina C, Boschin F, Romandini M, Iacumin P, Guardigli M, Roda A, Mazzeo R. Combining elemental and immunochemical analyses to characterize diagenetic alteration patterns in ancient skeletal remains. Sci Rep 2022; 12:5112. [PMID: 35332214 PMCID: PMC8948219 DOI: 10.1038/s41598-022-08979-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/18/2022] [Indexed: 11/22/2022] Open
Abstract
Bones and teeth are biological archives, but their structure and composition are subjected to alteration overtime due to biological and chemical degradation postmortem, influenced by burial environment and conditions. Nevertheless, organic fraction preservation is mandatory for several archeometric analyses and applications. The mutual protection between biomineral and organic fractions in bones and teeth may lead to a limited diagenetic alteration, promoting a better conservation of the organic fraction. However, the correlation between elemental variations and the presence of organic materials (e.g., collagen) in the same specimen is still unclear. To fill this gap, chemiluminescent (CL) immunochemical imaging analysis has been applied for the first time for collagen localization. Then, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and CL imaging were combined to investigate the correlation between elemental (i.e., REE, U, Sr, Ba) and collagen distribution. Teeth and bones from various archeological contexts, chronological periods, and characterized by different collagen content were analyzed. Immunochemical analysis revealed a heterogeneous distribution of collagen, especially in highly degraded samples. Subsequently, LA-ICP-MS showed a correlation between the presence of uranium and rare earth elements and areas with low amount of collagen. The innovative integration between the two methods permitted to clarify the mutual relation between elemental variation and collagen preservation overtime, thus contributing to unravel the effects of diagenetic alteration in bones and teeth.
Collapse
Affiliation(s)
- L Gatti
- Department of Chemistry, University of Bologna-Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy
| | - Federico Lugli
- Department of Cultural Heritage, University of Bologna-Ravenna Campus, Via degli Ariani 1, 48121, Ravenna, Italy.
- Department of Chemical and Geological Science, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| | - Giorgia Sciutto
- Department of Chemistry, University of Bologna-Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy.
| | - M Zangheri
- Department of Chemistry, "Giacomo Ciamician" Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - S Prati
- Department of Chemistry, University of Bologna-Ravenna Campus, Via Guaccimanni, 42, 48121, Ravenna, Italy
| | - M Mirasoli
- Department of Chemistry, "Giacomo Ciamician" Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - S Silvestrini
- Department of Cultural Heritage, University of Bologna-Ravenna Campus, Via degli Ariani 1, 48121, Ravenna, Italy
| | - S Benazzi
- Department of Cultural Heritage, University of Bologna-Ravenna Campus, Via degli Ariani 1, 48121, Ravenna, Italy
| | - T Tütken
- Applied and Analytical Paleontology, Institute of Geosciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - K Douka
- Department of Archaeology, Max Planck Institute for the Science of Human History, 07745, Jena, Germany
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, UK
| | - C Collina
- Museo Civico Archeologico Biagio Greco, Mondragone, Caserta, Italy
| | - F Boschin
- Department of Physical Science, Earth and Environment, U.R. Preistoria e Antropologia, University of Siena, Siena, Italy
| | - M Romandini
- Department of Cultural Heritage, University of Bologna-Ravenna Campus, Via degli Ariani 1, 48121, Ravenna, Italy
| | - P Iacumin
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - M Guardigli
- Department of Chemistry, "Giacomo Ciamician" Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - A Roda
- INBB, National Institute of Biostructures and Biosystems, Rome, Italy
| | - R Mazzeo
- Department of Cultural Heritage, University of Bologna-Ravenna Campus, Via degli Ariani 1, 48121, Ravenna, Italy
- Department of Chemistry, "Giacomo Ciamician" Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
28
|
Wang RL, Ruan DD, Hu YN, Gan YM, Lin XF, Fang ZT, Liao LS, Tang FQ, He WB, Luo JW. Genetic Analysis and Functional Study of a Pedigree With Bruck Syndrome Caused by PLOD2 Variant. Front Pediatr 2022; 10:878172. [PMID: 35601416 PMCID: PMC9120662 DOI: 10.3389/fped.2022.878172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bruck syndrome (BS) is a rare autosomal recessive inherited osteogenesis imperfecta disease characterized by increased bone fragility and joint contracture. The pathogenic gene of type I BS is FKBPl0, whereas that of type II BS is PLOD2. No significant difference has been found in the clinical phenotype between the two types of BS. In this study, we performed genetic analysis of a BS pedigree caused by PLOD2 variant and studied the corresponding cellular function. METHODS Serum biochemistry, parathyroid hormone (PTH), 25-hydroxyvitamin D [25-(OH) D], osteocalcin, and 24-h urinary calcium levels of a family member with BS was assessed. The genes of the proband were analyzed by second-generation sequencing and exon capture techniques. Sanger sequencing was also performed for the suspected responsible variant of the family member. Wild- and variant-type lentivirus plasmids were constructed by gene cloning and transfected into HEK293T cells. Cell function was verified by real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence detection. RESULTS In this pedigree, the proband was found to have a homozygous variant c.1856G > A (p.Arg619His) in exon 17 of PLOD2 (NM_182943.3). His consanguineous parents and sisters were p.Arg619His heterozygous carriers. The mRNA expression of PLOD2 in the constructed p.Arg619His variant cells was significantly upregulated, while the expression of PLOD2 and collagen I protein in the cell lysate was significantly downregulated. Immunofluorescence revealed that the wild-type PLOD2 was mainly located in the cytoplasm, and the expression of the PLOD2 protein after c.1856G > A variant was significantly downregulated, with almost no expression, aligning with the western blot results. The serum sodium, potassium, calcium, phosphorus, magnesium, alkaline phosphatase, PTH, 25-(OH) D, osteocalcin, and 24 h urinary calcium levels of the proband, his parents, and sisters were normal. CONCLUSION Through gene and cell function analyses, PLOD2 Arg619His missense variant was preliminarily confirmed to cause BS by reducing protein expression.
Collapse
Affiliation(s)
- Ruo-Li Wang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Emergency, Fujian Provincial Hospital, Fuzhou, China.,Fujian Trauma Medical Center, Fuzhou, China
| | - Dan-Dan Ruan
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Ya-Nan Hu
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Yu-Mian Gan
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Xin-Fu Lin
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Pediatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Zhu-Ting Fang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Intervention, Fujian Provincial Hospital, Fuzhou, China
| | - Li-Sheng Liao
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Fa-Qiang Tang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, China
| | - Wu-Bing He
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Emergency, Fujian Provincial Hospital, Fuzhou, China.,Fujian Trauma Medical Center, Fuzhou, China
| | - Jie-Wei Luo
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
29
|
Abstract
Raman spectroscopy (RS) is used to analyze the physiochemical properties of bone because it is non-destructive and requires minimal sample preparation. With over two decades of research involving measurements of mineral-to-matrix ratio, type-B carbonate substitution, crystallinity, and other compositional characteristics of the bone matrix by RS, there are multiple methods to acquire Raman signals from bone, to process those signals, and to determine peak ratios including sub-peak ratios as well as the full-width at half maximum of the most prominent Raman peak, which is nu1 phosphate (ν1PO4). Selecting which methods to use is not always clear. Herein, we describe the components of RS instruments and how they influence the quality of Raman spectra acquired from bone because signal-to-noise of the acquisition and the accompanying background fluorescence dictate the pre-processing of the Raman spectra. We also describe common methods and challenges in preparing acquired spectra for the determination of matrix properties of bone. This article also serves to provide guidance for the analysis of bone by RS with examples of how methods for pre-processing the Raman signals and for determining properties of bone composition affect RS sensitivity to potential differences between experimental groups. Attention is also given to deconvolution methods that are used to ascertain sub-peak ratios of the amide I band as a way to assess characteristics of collagen type I. We provide suggestions and recommendations on the application of RS to bone with the goal of improving reproducibility across studies and solidify RS as a valuable technique in the field of bone research.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Mechanical Engineering, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey.
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, Turkey 70200
- Department of Biophysics, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman, Turkey 70200
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
30
|
Abstract
Bone fragility fractures remain an important worldwide health and economic problem due to increased morbidity and mortality. The current methods for predicting fractures are largely based on the measurement of bone mineral density and the utilization of mathematical risk calculators based on clinical risk factors for bone fragility. Despite these approaches, many bone fractures remain undiagnosed. Therefore, current research is focused on the identification of new factors such as bone turnover markers (BTM) for risk calculation. BTM are a group of proteins and peptides released during bone remodeling that can be found in serum or urine. They derive from bone resorptive and formative processes mediated by osteoclasts and osteoblasts, respectively. Potential use of BTM in monitoring these phenomenon and therefore bone fracture risk is limited by physiologic and pathophysiologic factors that influence BTM. These limitations in predicting fractures explain why their inclusion in clinical guidelines remains limited despite the large number of studies examining BTM.
Collapse
Affiliation(s)
- Lisa Di Medio
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy
| |
Collapse
|
31
|
Dobson LK, Zeitouni S, McNeill EP, Bearden RN, Gregory CA, Saunders WB. Canine Mesenchymal Stromal Cell-Mediated Bone Regeneration is Enhanced in the Presence of Sub-Therapeutic Concentrations of BMP-2 in a Murine Calvarial Defect Model. Front Bioeng Biotechnol 2021; 9:764703. [PMID: 34796168 PMCID: PMC8592971 DOI: 10.3389/fbioe.2021.764703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 11/15/2022] Open
Abstract
Novel bone regeneration strategies often show promise in rodent models yet are unable to successfully translate to clinical therapy. Sheep, goats, and dogs are used as translational models in preparation for human clinical trials. While human MSCs (hMSCs) undergo osteogenesis in response to well-defined protocols, canine MSCs (cMSCs) are more incompletely characterized. Prior work suggests that cMSCs require additional agonists such as IGF-1, NELL-1, or BMP-2 to undergo robust osteogenic differentiation in vitro. When compared directly to hMSCs, cMSCs perform poorly in vivo. Thus, from both mechanistic and clinical perspectives, cMSC and hMSC-mediated bone regeneration may differ. The objectives of this study were twofold. The first was to determine if previous in vitro findings regarding cMSC osteogenesis were substantiated in vivo using an established murine calvarial defect model. The second was to assess in vitro ALP activity and endogenous BMP-2 gene expression in both canine and human MSCs. Calvarial defects (4 mm) were treated with cMSCs, sub-therapeutic BMP-2, or the combination of cMSCs and sub-therapeutic BMP-2. At 28 days, while there was increased healing in defects treated with cMSCs, defects treated with cMSCs and BMP-2 exhibited the greatest degree of bone healing as determined by quantitative μCT and histology. Using species-specific qPCR, cMSCs were not detected in relevant numbers 10 days after implantation, suggesting that bone healing was mediated by anabolic cMSC or ECM-driven cues and not via engraftment of cMSCs. In support of this finding, defects treated with cMSC + BMP-2 exhibited robust deposition of Collagens I, III, and VI using immunofluorescence. Importantly, cMSCs exhibited minimal ALP activity unless cultured in the presence of BMP-2 and did not express endogenous canine BMP-2 under any condition. In contrast, human MSCs exhibited robust ALP activity in all conditions and expressed human BMP-2 when cultured in control and osteoinduction media. This is the first in vivo study in support of previous in vitro findings regarding cMSC osteogenesis, namely that cMSCs require additional agonists to initiate robust osteogenesis. These findings are highly relevant to translational cell-based bone healing studies and represent an important finding for the field of canine MSC-mediated bone regeneration.
Collapse
Affiliation(s)
- Lauren K Dobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Eoin P McNeill
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Robert N Bearden
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - W Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
32
|
Spatial-Temporal Patterns and Inflammatory Factors of Bone Matrix Remodeling. Stem Cells Int 2021; 2021:4307961. [PMID: 34777503 PMCID: PMC8580647 DOI: 10.1155/2021/4307961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
The bone extracellular matrix (ECM) contains organic and mineral constituents. The establishment and degradation processes of ECM connect with spatial and temporal patterns, especially circadian rhythms in ECM. These patterns are responsible for the physical and biological characteristics of bone. The disturbances of the patterns disrupt bone matrix remodeling and cause diverse bone diseases, such as osteogenesis imperfecta (OI) and bone fracture. In addition, the main regulatory factors and inflammatory factors also follow circadian rhythms. Studies show that the circadian oscillations of these factors in bone ECM potentially influence the interactions between immune responses and bone formation. More importantly, mesenchymal stem cells (MSCs) within the specific microenvironments provide the regenerative potential for tissue remodeling. In this review, we summarize the advanced ECM spatial characteristics and the periodic patterns of bone ECM. Importantly, we focus on the intrinsic connections between the immunoinflammatory system and bone formation according to circadian rhythms of regulatory factors in bone ECM. And our research group emphasizes the multipotency of MSCs with their microenvironments. The advanced understandings of bone ECM formation patterns and MSCs contribute to providing optimal prevention and treatment strategies.
Collapse
|
33
|
Marom R, Burrage LC, Venditti R, Clément A, Blanco-Sánchez B, Jain M, Scott DA, Rosenfeld JA, Sutton VR, Shinawi M, Mirzaa G, DeVile C, Roberts R, Calder AD, Allgrove J, Grafe I, Lanza DG, Li X, Joeng KS, Lee YC, Song IW, Sliepka JM, Batkovskyte D, Washington M, Dawson BC, Jin Z, Jiang MM, Chen S, Chen Y, Tran AA, Emrick LT, Murdock DR, Hanchard NA, Zapata GE, Mehta NR, Weis MA, Scott AA, Tremp BA, Phillips JB, Wegner J, Taylor-Miller T, Gibbs RA, Muzny DM, Jhangiani SN, Hicks J, Stottmann RW, Dickinson ME, Seavitt JR, Heaney JD, Eyre DR, Westerfield M, De Matteis MA, Lee B. COPB2 loss of function causes a coatopathy with osteoporosis and developmental delay. Am J Hum Genet 2021; 108:1710-1724. [PMID: 34450031 PMCID: PMC8456174 DOI: 10.1016/j.ajhg.2021.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
Coatomer complexes function in the sorting and trafficking of proteins between subcellular organelles. Pathogenic variants in coatomer subunits or associated factors have been reported in multi-systemic disorders, i.e., coatopathies, that can affect the skeletal and central nervous systems. We have identified loss-of-function variants in COPB2, a component of the coatomer complex I (COPI), in individuals presenting with osteoporosis, fractures, and developmental delay of variable severity. Electron microscopy of COPB2-deficient subjects' fibroblasts showed dilated endoplasmic reticulum (ER) with granular material, prominent rough ER, and vacuoles, consistent with an intracellular trafficking defect. We studied the effect of COPB2 deficiency on collagen trafficking because of the critical role of collagen secretion in bone biology. COPB2 siRNA-treated fibroblasts showed delayed collagen secretion with retention of type I collagen in the ER and Golgi and altered distribution of Golgi markers. copb2-null zebrafish embryos showed retention of type II collagen, disorganization of the ER and Golgi, and early larval lethality. Copb2+/- mice exhibited low bone mass, and consistent with the findings in human cells and zebrafish, studies in Copb2+/- mouse fibroblasts suggest ER stress and a Golgi defect. Interestingly, ascorbic acid treatment partially rescued the zebrafish developmental phenotype and the cellular phenotype in Copb2+/- mouse fibroblasts. This work identifies a form of coatopathy due to COPB2 haploinsufficiency, explores a potential therapeutic approach for this disorder, and highlights the role of the COPI complex as a regulator of skeletal homeostasis.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Aurélie Clément
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Mahim Jain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington, and Brotman Baty Institute for Precision Medicine, Seattle, WA 98105, USA
| | - Catherine DeVile
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Rowenna Roberts
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Alistair D Calder
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Jeremy Allgrove
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyu Sang Joeng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Chien Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph M Sliepka
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominyka Batkovskyte
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian C Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zixue Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shan Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alyssa A Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lisa T Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Laboratory for Translational Genomics, ARS/USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gladys E Zapata
- Laboratory for Translational Genomics, ARS/USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nitesh R Mehta
- Laboratory for Translational Genomics, ARS/USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary Ann Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - Abbey A Scott
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Brenna A Tremp
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John Hicks
- Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology, Texas Children's Hospital, and Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rolf W Stottmann
- Division of Human Genetics, and Division of Developmental Biology, and Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Naples 80078, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Naples 80078, Italy
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Safdari M, Bibak B, Soltani H, Hashemi J. Recent advancements in decellularized matrix technology for bone tissue engineering. Differentiation 2021; 121:25-34. [PMID: 34454348 DOI: 10.1016/j.diff.2021.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022]
Abstract
The native extracellular matrix (ECM) provides a matrix to hold tissue/organ, defines the cellular fate and function, and retains growth factors. Such a matrix is considered as a most biomimetic scaffold for tissue engineering due to the biochemical and biological components, 3D hierarchical structure, and physicomechanical properties. Several attempts have been performed to decellularize allo- or xeno-graft tissues and used them for bone repairing and regeneration. Decellularized ECM (dECM) technology has been developed to create an in vivo-like microenvironment to promote cell adhesion, growth, and differentiation for tissue repair and regeneration. Decellularization is mediated through physical, chemical, and enzymatic methods. In this review, we describe the recent progress in bone decellularization and their applications as a scaffold, hydrogel, bioink, or particles in bone tissue engineering. Furthermore, we address the native dECM limitations and the potential of non-bone dECM, cell-based ECM, and engineered ECM (eECM) for in vitro osteogenic differentiation and in vivo bone regeneration.
Collapse
Affiliation(s)
- Mohammadreza Safdari
- Department of Surgery, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Research Center of Natural Products Safety and Medicinal Plants, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hoseinali Soltani
- Department of General Surgery, Imam Ali Hospital, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Research Center of Natural Products Safety and Medicinal Plants, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
35
|
Talamo S, Fewlass H, Maria R, Jaouen K. "Here we go again": the inspection of collagen extraction protocols for 14C dating and palaeodietary analysis. SCIENCE AND TECHNOLOGY OF ARCHAEOLOGICAL RESEARCH 2021; 7:62-77. [PMID: 34381618 PMCID: PMC8300532 DOI: 10.1080/20548923.2021.1944479] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Archaeological bone collagen is highly useful for radiocarbon (14C) dating and palaeodietary reconstruction. However, collagen preservation and carbon contamination are essential considerations when extracting collagen, becoming especially crucial close to the limit of the method (50,000 years before present = BP). Strong progress has been achieved in the past two decades by 14C and stable isotopic laboratories in removing contamination from archaeological bones, but different pretreatment protocols have been proven to produce varying results. Here we compare three collagen extraction protocols used for palaeodietary studies and 14C dating, considering collagen yield, elemental and stable isotopic data, FTIR analysis, and 14C dates. We focus on the impact of ultrafiltration on the yield and quality of the extracted material. The results again underline the importance of rigorous decontamination methods to gain accurate 14C dates and demonstrate that different protocols have significant effects on the quality and yield of extracted collagen.
Collapse
Affiliation(s)
- Sahra Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Raquel Maria
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Ilse Katz Institute for Nanoscale Science & Technology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Klervia Jaouen
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Géosciences Environnement Toulouse, Observatoire Midi Pyrénées, Toulouse, France
| |
Collapse
|
36
|
Silvent J, Robin M, Bussola Tovani C, Wang Y, Soncin F, Delgado S, Azaïs T, Sassoye C, Giraud-Guille MM, Sire JY, Nassif N. Collagen Suprafibrillar Confinement Drives the Activity of Acidic Calcium-Binding Polymers on Apatite Mineralization. Biomacromolecules 2021; 22:2802-2814. [PMID: 34101426 DOI: 10.1021/acs.biomac.1c00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bone collagenous extracellular matrix provides a confined environment into which apatite crystals form. This biomineralization process is related to a cascade of events partly controlled by noncollagenous proteins. Although overlooked in bone models, concentration and physical environment influence their activities. Here, we show that collagen suprafibrillar confinement in bone comprising intra- and interfibrillar spaces drives the activity of biomimetic acidic calcium-binding polymers on apatite mineralization. The difference in mineralization between an entrapping dentin matrix protein-1 (DMP1) recombinant peptide (rpDMP1) and the synthetic polyaspartate validates the specificity of the 57-KD fragment of DMP1 in the regulation of mineralization, but strikingly without phosphorylation. We show that all the identified functions of rpDMP1 are dedicated to preclude pathological mineralization. Interestingly, transient apatite phases are only found using a high nonphysiological concentration of additives. The possibility to combine biomimetic concentration of both collagen and additives ensures specific chemical interactions and offers perspectives for understanding the role of bone components in mineralization.
Collapse
Affiliation(s)
- Jérémie Silvent
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France.,MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Marc Robin
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Camila Bussola Tovani
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Yan Wang
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Fabrice Soncin
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Sidney Delgado
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Thierry Azaïs
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Capucine Sassoye
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Marie-Madeleine Giraud-Guille
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Jean-Yves Sire
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Nadine Nassif
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| |
Collapse
|
37
|
Salvatore L, Gallo N, Natali ML, Terzi A, Sannino A, Madaghiele M. Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:644595. [PMID: 33987173 PMCID: PMC8112590 DOI: 10.3389/fbioe.2021.644595] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Biological materials found in living organisms, many of which are proteins, feature a complex hierarchical organization. Type I collagen, a fibrous structural protein ubiquitous in the mammalian body, provides a striking example of such a hierarchical material, with peculiar architectural features ranging from the amino acid sequence at the nanoscale (primary structure) up to the assembly of fibrils (quaternary structure) and fibers, with lengths of the order of microns. Collagen plays a dominant role in maintaining the biological and structural integrity of various tissues and organs, such as bone, skin, tendons, blood vessels, and cartilage. Thus, "artificial" collagen-based fibrous assemblies, endowed with appropriate structural properties, represent ideal substrates for the development of devices for tissue engineering applications. In recent years, with the ultimate goal of developing three-dimensional scaffolds with optimal bioactivity able to promote both regeneration and functional recovery of a damaged tissue, numerous studies focused on the capability to finely modulate the scaffold architecture at the microscale and the nanoscale in order to closely mimic the hierarchical features of the extracellular matrix and, in particular, the natural patterning of collagen. All of these studies clearly show that the accurate characterization of the collagen structure at the submolecular and supramolecular levels is pivotal to the understanding of the relationships between the nanostructural/microstructural properties of the fabricated scaffold and its macroscopic performance. Several studies also demonstrate that the selected processing, including any crosslinking and/or sterilization treatments, can strongly affect the architecture of collagen at various length scales. The aim of this review is to highlight the most recent findings on the development of collagen-based scaffolds with optimized properties for tissue engineering. The optimization of the scaffolds is particularly related to the modulation of the collagen architecture, which, in turn, impacts on the achieved bioactivity.
Collapse
Affiliation(s)
- Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Maria Lucia Natali
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Alberta Terzi
- Institute of Crystallography, National Research Council, Bari, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
38
|
Lin Z, Tao Y, Huang Y, Xu T, Niu W. Applications of marine collagens in bone tissue engineering. Biomed Mater 2021; 16:042007. [PMID: 33793421 DOI: 10.1088/1748-605x/abf0b6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For decades, collagen has been among the most widely used biomaterials with several biomedical applications. Recently, researchers have shown a keen interest in collagen obtained from marine sources because of its biocompatibility, biodegradability, ease of extractability, safety, low immunogenicity, and low production costs. A wide variety of marine collagen-based scaffolds have been developed for bone tissue engineering, and these scaffolds display excellent biological effects. This review aims to provide an overview of the biological effects of marine collagen in bone engineering, such as promoting osteogenesis and collagen synthesis, inhibiting inflammation, inducing the differentiation of cartilage, and improving bone mineral density. Marine collagen holds great promise as a biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Zhidong Lin
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China. East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Sharma V, Srinivasan A, Nikolajeff F, Kumar S. Biomineralization process in hard tissues: The interaction complexity within protein and inorganic counterparts. Acta Biomater 2021; 120:20-37. [PMID: 32413577 DOI: 10.1016/j.actbio.2020.04.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023]
Abstract
Biomineralization can be considered as nature's strategy to produce and sustain biominerals, primarily via creation of hard tissues for protection and support. This review examines the biomineralization process within the hard tissues of the human body with special emphasis on the mechanisms and principles of bone and teeth mineralization. We describe the detailed role of proteins and inorganic ions in mediating the mineralization process. Furthermore, we highlight the various available models for studying bone physiology and mineralization starting from the historical static cell line-based methods to the most advanced 3D culture systems, elucidating the pros and cons of each one of these methods. With respect to the mineralization process in teeth, enamel and dentin mineralization is discussed in detail. The key role of intrinsically disordered proteins in modulating the process of mineralization in enamel and dentine is given attention. Finally, nanotechnological interventions in the area of bone and teeth mineralization, diseases and tissue regeneration is also discussed. STATEMENT OF SIGNIFICANCE: This article provides an overview of the biomineralization process within hard tissues of the human body, which encompasses the detailed mechanism innvolved in the formation of structures like teeth and bone. Moreover, we have discussed various available models used for studying biomineralization and also explored the nanotechnological applications in the field of bone regeneration and dentistry.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
40
|
Deng F, Zhai W, Yin Y, Peng C, Ning C. Advanced protein adsorption properties of a novel silicate-based bioceramic: A proteomic analysis. Bioact Mater 2021; 6:208-218. [PMID: 32913929 PMCID: PMC7451930 DOI: 10.1016/j.bioactmat.2020.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Silicate bioceramics have been shown to possess excellent cytocompatibility and osteogenic activity, but the exact mechanism is still unclear. Protein adsorption is the first event taking place at the biomaterial-tissue interface, which is vital to the subsequent cellular behavior and further influence the biomaterial-tissue interaction. In this work, the protein adsorption behavior of a novel CPS bioceramic was evaluated using the proteomics technology. The results showed that CPS adsorbed more amount and types of serum proteins than HA. FN1 and IGF1 proteins selected from proteomics results were validated by Western-blot experiment. Pathway analysis also revealed mechanistic insights how these absorbed proteins by CPS help mediate cell adhesion and promotes osteogenic activity. Firstly, the dramatically enhanced adsorption of FN1 could greatly promote cell adhesion and growth. Secondly, IGF1 was uniquely adsorbed on CPS bioceramic and IGF1 could activate Rap1 signaling pathway to promote cell adhesion. Thirdly, the increased adsorption of FN1, IGF1 and COL1A2 proteins on CPS explains its better ability on bone regeneration than HA. Fourthly, the increased adsorption of IGF1, CHAD, COL2A1 and THBS4 proteins on CPS explains its ability on cartilage formation. Lastly, the increased adsorption of immunological related proteins on CPS may also play a positive role in bone regeneration. In addition, CPS had a much better cell adhesion ability than HA, proving that more adsorbed proteins really had a positive effect on cell behavior. The more adsorbed proteins on CPS than HA might indicated a better bone regeneration rate at early stage of implantation.
Collapse
Affiliation(s)
- Fanyan Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wanyin Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Congqin Ning
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
41
|
Brasinika D, Koumoulos EP, Kyriakidou K, Gkartzou E, Kritikou M, Karoussis IK, Charitidis CA. Mechanical Enhancement of Cytocompatible 3D Scaffolds, Consisting of Hydroxyapatite Nanocrystals and Natural Biomolecules, Through Physical Cross-Linking. Bioengineering (Basel) 2020; 7:bioengineering7030096. [PMID: 32825042 PMCID: PMC7552716 DOI: 10.3390/bioengineering7030096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 11/16/2022] Open
Abstract
Bioinspired scaffolds mimicking natural bone-tissue properties holds great promise in tissue engineering applications towards bone regeneration. Within this work, a way to reinforce mechanical behavior of bioinspired bone scaffolds was examined by applying a physical crosslinking method. Scaffolds consisted of hydroxyapatite nanocrystals, biomimetically synthesized in the presence of collagen and l-arginine. Scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), microcomputed tomography, and nanoindentation. Results revealed scaffolds with bone-like nanostructure and composition, thus an inherent enhanced cytocompatibility. Evaluation of porosity proved the development of interconnected porous network with bimodal pore size distribution. Mechanical reinforcement was achieved through physical crosslinking with riboflavin irradiation, and nanoindentation tests indicated that within the experimental conditions of 45% humidity and 37 °C, photo-crosslinking led to an increase in the scaffold’s mechanical properties. Elastic modulus and hardness were augmented, and specifically elastic modulus values were doubled, approaching equivalent values of trabecular bone. Cytocompatibility of the scaffolds was assessed using MG63 human osteosarcoma cells. Cell viability was evaluated by double staining and MTT assay, while attachment and morphology were investigated by SEM. The results suggested that scaffolds provided a cell friendly environment with high levels of viability, thus supporting cell attachment, spreading and proliferation.
Collapse
Affiliation(s)
- Despoina Brasinika
- BioG3D–New 3D printing technologies, 1 Lavriou Str., Technological & Cultural Park of Lavrion, 19500 Lavrion, Greece;
| | - Elias P. Koumoulos
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (E.P.K.); (E.G.); (M.K.)
| | - Kyriaki Kyriakidou
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str., Goudi, 11527 Athens, Greece; (K.K.); (I.K.K.)
| | - Eleni Gkartzou
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (E.P.K.); (E.G.); (M.K.)
| | - Maria Kritikou
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (E.P.K.); (E.G.); (M.K.)
| | - Ioannis K. Karoussis
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str., Goudi, 11527 Athens, Greece; (K.K.); (I.K.K.)
| | - Costas A. Charitidis
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; (E.P.K.); (E.G.); (M.K.)
- Correspondence: ; Tel.: +30-2107724046
| |
Collapse
|
42
|
Garnero P, Landewé R, Chapurlat RD. The role of biochemical markers of joint tissue remodelling to predict progression and treatment efficacy in inflammatory rheumatic diseases. Rheumatology (Oxford) 2020; 59:1207-1217. [PMID: 32011708 DOI: 10.1093/rheumatology/kez647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/02/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Structural damage is a hallmark in RA, spondyloarthropy (SpA) and psoriatric arthritis (PsA). Its progression is difficult to predict and current radiological or inflammatory biological markers lack sensitivity. Biochemical markers of bone, cartilage and synovial tissues provide a dynamic indication of the anabolism and catabolism of joint tissues and can be easily measured by immunoassays. Novel biochemical markers including post-translational modifications of matrix proteins and enzyme-generated neoepitopes with increased tissue and/or biological pathway specificity have been developed. Their evaluation in clinical trials of novel biologic therapies and epidemiological studies indicated that their measurements could be useful to predict progression of structural damage and treatment efficacy, independently of current clinical, radiological and biological indices of disease activity. In this paper we briefly describe the latest developments in biochemical markers and critically analyse the clinical data assessing the utility of established and novel biochemical markers in RA, SpA and PsA.
Collapse
Affiliation(s)
- Patrick Garnero
- INSERM Research Unit 1033-Lyos, Hôpital E. Herriot, Lyon, France
| | - Robert Landewé
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
43
|
Pendleton EG, Tehrani KF, Barrow RP, Mortensen LJ. Second harmonic generation characterization of collagen in whole bone. BIOMEDICAL OPTICS EXPRESS 2020; 11:4379-4396. [PMID: 32923050 PMCID: PMC7449751 DOI: 10.1364/boe.391866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 05/24/2023]
Abstract
Bone is a unique biological composite material made up of a highly structured collagen mesh matrix and mineral deposits. Although mineral provides stiffness, collagen's secondary organization provides a critical role in bone elasticity. Here, we performed polarimetric analysis of bone collagen fibers using second harmonic generation (SHG) imaging to evaluate lamella sheets and collagen fiber integrity in intact cranial bone. Our polarimetric data was fitted to a model accounting for diattenuation, polarization cross-talk, and birefringence. We compared our data to the fitted model and found no significant difference between our polarimetric observation and the representation of these scattering properties up to 70 µm deep. We also observed a loss of resolution as we imaged up to 70 µm deep into bone but a conservation of polarimetric response. Polarimetric SHG allows for the discrimination of collagen lamellar sheet structures in intact bone. Our work could allow for label-free identification of disease states and monitor the efficacy of therapies for bone disorders.
Collapse
Affiliation(s)
- Emily G. Pendleton
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Kayvan F. Tehrani
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Ruth P. Barrow
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
44
|
Pilawski I, Tulu US, Ticha P, Schüpbach P, Traxler H, Xu Q, Pan J, Coyac BR, Yuan X, Tian Y, Liu Y, Chen J, Erdogan Y, Arioka M, Armaro M, Wu M, Brunski JB, Helms JA. Interspecies Comparison of Alveolar Bone Biology, Part I: Morphology and Physiology of Pristine Bone. JDR Clin Trans Res 2020; 6:352-360. [PMID: 32660303 DOI: 10.1177/2380084420936979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Few interspecies comparisons of alveolar bone have been documented, and this knowledge gap raises questions about which animal models most accurately represent human dental conditions or responses to surgical interventions. OBJECTIVES The objective of this study was to employ state-of-the-art quantitative metrics to directly assess and compare the structural and functional characteristics of alveolar bone among humans, mini pigs, rats, and mice. METHODS The same anatomic location (i.e., the posterior maxillae) was analyzed in all species via micro-computed tomographic imaging, followed by quantitative analyses, coupled with histology and immunohistochemistry. Bone remodeling was evaluated with alkaline phosphatase activity and tartrate-resistant acid phosphatase staining to identify osteoblast and osteoclast activities. In vivo fluorochrome labeling was used as a means to assess mineral apposition rates. RESULTS Collectively, these analyses demonstrated that bone volume differed among the species, while bone mineral density was equal. All species showed a similar density of alveolar osteocytes, with a highly conserved pattern of collagen organization. Collagen maturation was equal among mouse, rat, and mini pig. Bone remodeling was a shared feature among the species, with morphologically indistinguishable hemiosteonal appearances, osteocytic perilacunar remodeling, and similar mineral apposition rates in alveolar bone. CONCLUSIONS Our analyses demonstrated equivalencies among the 4 species in a plurality of the biological features of alveolar bone. Despite contradictory results from older studies, we found no evidence for the superiority of pig models over rodent models in representing human bone biology. KNOWLEDGE TRANSFER STATEMENT Animal models are extensively used to evaluate bone tissue engineering strategies, yet there are few state-of-the-art studies that rigorously compare and quantify the factors influencing selection of a given animal model. Consequently, there is an urgent need to assess preclinical animal models for their predictive value to dental research. Our article addresses this knowledge gap and, in doing so, provides a foundation for more effective standardization among animal models commonly used in dentistry.
Collapse
Affiliation(s)
- I Pilawski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - U S Tulu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - P Ticha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - P Schüpbach
- Schupbach Ltd, Service and Research Laboratory, Thalwil, Switzerland
| | - H Traxler
- Center of Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Q Xu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - J Pan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - B R Coyac
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - X Yuan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Y Tian
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Y Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - J Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Y Erdogan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - M Arioka
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - M Armaro
- Nobel Biocare Services AG, Zürich-Flughafen, Switzerland
| | - M Wu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - J B Brunski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - J A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
45
|
Lin X, Patil S, Gao YG, Qian A. The Bone Extracellular Matrix in Bone Formation and Regeneration. Front Pharmacol 2020; 11:757. [PMID: 32528290 PMCID: PMC7264100 DOI: 10.3389/fphar.2020.00757] [Citation(s) in RCA: 334] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Bone regeneration repairs bone tissue lost due to trauma, fractures, and tumors, or absent due to congenital disorders. The extracellular matrix (ECM) is an intricate dynamic bio-environment with precisely regulated mechanical and biochemical properties. In bone, ECMs are involved in regulating cell adhesion, proliferation, and responses to growth factors, differentiation, and ultimately, the functional characteristics of the mature bone. Bone ECM can induce the production of new bone by osteoblast-lineage cells, such as MSCs, osteoblasts, and osteocytes and the absorption of bone by osteoclasts. With the rapid development of bone regenerative medicine, the osteoinductive, osteoconductive, and osteogenic potential of ECM-based scaffolds has attracted increasing attention. ECM-based scaffolds for bone tissue engineering can be divided into two types, that is, ECM-modified biomaterial scaffold and decellularized ECM scaffold. Tissue engineering strategies that utilize the functional ECM are superior at guiding the formation of specific tissues at the implantation site. In this review, we provide an overview of the function of various types of bone ECMs in bone tissue and their regulation roles in the behaviors of osteoblast-lineage cells and osteoclasts. We also summarize the application of bone ECM in bone repair and regeneration. A better understanding of the role of bone ECM in guiding cellular behavior and tissue function is essential for its future applications in bone repair and regenerative medicine.
Collapse
Affiliation(s)
- Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Suryaji Patil
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yong-Guang Gao
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
46
|
Allen MR, Wallace J, McNerney E, Nyman J, Avin K, Chen N, Moe S. N-acetylcysteine (NAC), an anti-oxidant, does not improve bone mechanical properties in a rat model of progressive chronic kidney disease-mineral bone disorder. PLoS One 2020; 15:e0230379. [PMID: 32203558 PMCID: PMC7089527 DOI: 10.1371/journal.pone.0230379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/27/2020] [Indexed: 01/17/2023] Open
Abstract
Individuals with chronic kidney disease have elevated levels of oxidative stress and are at a significantly higher risk of skeletal fracture. Advanced glycation end products (AGEs), which accumulate in bone and compromise mechanical properties, are known to be driven in part by oxidative stress. The goal of this study was to study effects of N-acetylcysteine (NAC) on reducing oxidative stress and improving various bone parameters, most specifically mechanical properties, in an animal model of progressive CKD. Male Cy/+ (CKD) rats and unaffected littermates were untreated (controls) or treated with NAC (80 mg/kg, IP) from 30 to 35 weeks of age. Endpoint measures included serum biochemistries, assessments of systemic oxidative stress, bone morphology, and mechanical properties, and AGE levels in the bone. CKD rats had the expected phenotype that included low kidney function, elevated parathyroid hormone, higher cortical porosity, and compromised mechanical properties. NAC treatment had mixed effects on oxidative stress markers, significantly reducing TBARS (a measure of lipid peroxidation) while not affecting 8-OHdG (a marker of DNA oxidation) levels. AGE levels in the bone were elevated in CKD animals and were reduced with NAC although this did not translate to a benefit in bone mechanical properties. In conclusion, NAC failed to significantly improve bone architecture/geometry/mechanical properties in our rat model of progressive CKD.
Collapse
Affiliation(s)
- Matthew R. Allen
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Department of Biomedical Engineering, Indiana University—Purdue University, Indianapolis, IN, United States of America
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Roudebush VA Medical Center, Indianapolis, IN, United States of America
| | - Joseph Wallace
- Department of Biomedical Engineering, Indiana University—Purdue University, Indianapolis, IN, United States of America
| | - Erin McNerney
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jeffry Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Keith Avin
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Neal Chen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sharon Moe
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Roudebush VA Medical Center, Indianapolis, IN, United States of America
| |
Collapse
|
47
|
Kronemberger GS, Dalmônico GML, Rossi AL, Leite PEC, Saraiva AM, Beatrici A, Silva KR, Granjeiro JM, Baptista LS. Scaffold- and serum-free hypertrophic cartilage tissue engineering as an alternative approach for bone repair. Artif Organs 2020; 44:E288-E299. [PMID: 31950507 DOI: 10.1111/aor.13637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Human adipose stem/stromal cell (ASC) spheroids were used as a serum-free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced-ASC spheroids (ø = 450 µm) showed high cell viability throughout the period of culture. The expression of collagen type X alpha 1 chain (COLXA1) and matrix metallopeptidase 13 (MMP-13) was upregulated at week 2 in induced-ASC spheroids compared with week 5 (P < .001) evaluated by quantitative real-time PCR. In accordance, secreted levels of IL-6 (P < .0001), IL-8 (P < .0001), IL-10 (P < .0001), bFGF (P < .001), VEGF (P < .0001), and RANTES (P < .0001) were the highest at week 2. Strong in situ staining for collagen type X and low staining for TSP-1 was associated with the increase of hypertrophic genes expression at week 2 in induced-ASC spheroids. Collagen type I, osteocalcin, biglycan, and tenascin C were detected at week 5 by in situ staining, in accordance with the highest expression of alkaline phosphatase (ALPL) gene and the presence of calcium deposits as evaluated by Alizarin Red O staining. Induced-ASC spheroids showed a higher force required to compression at week 2 (P < .0001). The human ASC spheroids under serum-free inducer medium and normoxic culture conditions were induced to a hypertrophic cartilage phenotype, opening a new perspective to recapitulate endochondral ossification in vivo.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | | | | | - Paulo Emílio Correa Leite
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Antonio M Saraiva
- Laboratory of Macromolecules, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Anderson Beatrici
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Scientific and Technological Metrology Division (Dimci), National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
48
|
Kaupp S, Horan DJ, Lim KE, Feldman HA, Robling AG, Warman ML, Jacobsen CM. Combination therapy in the Col1a2 G610C mouse model of Osteogenesis Imperfecta reveals an additive effect of enhancing LRP5 signaling and inhibiting TGFβ signaling on trabecular bone but not on cortical bone. Bone 2020; 131:115084. [PMID: 31648079 PMCID: PMC7232829 DOI: 10.1016/j.bone.2019.115084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 01/05/2023]
Abstract
Enhancing LRP5 signaling and inhibiting TGFβ signaling have each been reported to increase bone mass and improve bone strength in wild-type mice. Monotherapy targeting LRP5 signaling, or TGFβ signaling, also improved bone properties in mouse models of Osteogenesis Imperfecta (OI). We investigated whether additive or synergistic increases in bone properties would be attained if enhanced LRP5 signaling was combined with TGFβ inhibition. We crossed an Lrp5 high bone mass (HBM) allele (Lrp5A214V) into the Col1a2G610C/+ mouse model of OI. At 6-weeks-of-age we began treating mice with an antibody that inhibits TGFβ1, β2, and β3 (mAb 1D11), or with an isotype-matched control antibody (mAb 13C4). At 12-weeks-old, we observed that combining enhanced LRP5 signaling with inhibited TGFβ signaling produced an additive effect on femoral and vertebral trabecular bone volumes, but not on cortical bone volumes. Although enhanced LRP5 signaling increased femur strength in a 3-point bending assay in Col1a2G610C/+ mice, femur strength did not improve further with TGFβ inhibition. Neither enhanced LRP5 signaling nor TGFβ inhibition, alone or in combination, improved femur 3-point-bending post-yield displacement in Col1a2G610C/+ mice. These pre-clinical studies indicate combination therapies that target LRP5 and TGFβ signaling should increase trabecular bone mass in patients with OI more than targeting either signaling pathway alone. Whether additive increases in trabecular bone mass will occur in, and clinically benefit, patients with OI needs to be determined.
Collapse
Affiliation(s)
- Shannon Kaupp
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Dan J Horan
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA
| | - Kyung-Eun Lim
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA
| | - Henry A Feldman
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA
| | - Matthew L Warman
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christina M Jacobsen
- Divisions of Endocrinology and Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Starr JR, Tabacco G, Majeed R, Omeragic B, Bandeira L, Rubin MR. PTH and bone material strength in hypoparathyroidism as measured by impact microindentation. Osteoporos Int 2020; 31:327-333. [PMID: 31720712 DOI: 10.1007/s00198-019-05177-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
UNLABELLED PTH levels might be associated with bone material strength as measured by impact microindentation. Resistance to microfracture is decreased in hypoparathyroidism and appears to be associated with more severe disease and to improve with PTH replacement. INTRODUCTION PTH is a key regulator of bone structure and remodeling. When PTH is absent in hypoparathyroidism (HypoPT), bone mass is increased and remodeling is decreased. In addition to bone structure and remodeling, bone material properties contribute to fracture resistance. Yet little is known about the relationship between PTH and bone material properties. Impact microindentation provides a clinical assessment of microfracture resistance, measured as the bone material strength index (BMSi). METHODS Case-control cross-sectional study of PTH levels and in vivo BMSi measurement by impact microindentation at the anterior tibia in HypoPT patients (n = 17) and in controls matched for age, sex, and menopausal status (n = 17), with follow-up in a subgroup of HypoPT patients (n = 5) after recombinant human parathyroid hormone (1-84) [rhPTH(1-84)] treatment. RESULTS BMSi was positively associated with PTH levels in controls (r = 0.58, p = 0.02) and was 11% lower (p = 0.01) in HypoPT patients as compared with controls. In HypoPT, lower BMSi was associated with a trend toward greater supplemental calcium doses (p = 0.07). BMSi increased after rhPTH(1-84) treatment in the HypoPT patients who underwent repeat microindentation. CONCLUSIONS PTH levels might be associated with bone material strength, although other factors might be contributory. In HypoPT, resistance to microfracture is decreased and may be associated with greater supplemental calcium doses and might increase with PTH replacement. It remains to be determined whether changes in bone remodeling and microarchitecture contribute to the effects of PTH on microfracture resistance.
Collapse
Affiliation(s)
- J R Starr
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, 630 W. 168th St., PH8W-864, New York, NY, 10032, USA
| | - G Tabacco
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, 630 W. 168th St., PH8W-864, New York, NY, 10032, USA
- Unit of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | - R Majeed
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, 630 W. 168th St., PH8W-864, New York, NY, 10032, USA
| | - B Omeragic
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, 630 W. 168th St., PH8W-864, New York, NY, 10032, USA
| | - L Bandeira
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, 630 W. 168th St., PH8W-864, New York, NY, 10032, USA
- Fleury Group, Sao Paulo, SP, Brazil
| | - M R Rubin
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, 630 W. 168th St., PH8W-864, New York, NY, 10032, USA.
| |
Collapse
|
50
|
Kim J, Bixel MG. Intravital Multiphoton Imaging of the Bone and Bone Marrow Environment. Cytometry A 2019; 97:496-503. [DOI: 10.1002/cyto.a.23937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Affiliation(s)
- JungMo Kim
- Department of Tissue MorphogenesisMax Planck Institute for Molecular Biomedicine D‐48149 Münster Germany
| | - Maria Gabriele Bixel
- Department of Tissue MorphogenesisMax Planck Institute for Molecular Biomedicine D‐48149 Münster Germany
| |
Collapse
|