1
|
Heersche N, Lanser DAC, Muntinghe-Wagenaar MB, Mohmaed Ali MI, Ulas EB, Trooster TMA, de Jonge E, Oomen-de Hoop E, Paats MS, Bahce I, Croes S, Hendriks LEL, van der Wekken AJ, Dingemans AMC, Huitema ADR, van Schaik RHN, Mathijssen RHJ, Veerman GDM. Sex and Common Germline Variants Affect the Toxicity Profile and Pharmacokinetics of Alectinib: A Nationwide Cohort Study in Patients With ALK-Positive NSCLC. J Thorac Oncol 2024:S1556-0864(24)02488-2. [PMID: 39617342 DOI: 10.1016/j.jtho.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024]
Abstract
INTRODUCTION Alectinib, a small-molecule kinase inhibitor, is used as first-line treatment for ALK-positive (ALK+) NSCLC. Albeit generally well-tolerated, a considerable subset of patients requires dose adjustments due to drug-related toxicity. Single-nucleotide polymorphisms in genes related to the metabolism of alectinib may upfront identify patients at risk for toxicity. METHODS In this multicenter observational cohort study in patients with advanced ALK+ NSCLC receiving alectinib treatment, we investigated the association between toxicity, pharmacokinetics, and key genetic variants in ABCB1, CYP3A4, PPAR-α, POR, and CYP3A5. Data on demographics, adverse events, and alectinib trough levels were collected from five hospitals. RESULTS Among 215 patients, 47% experienced severe toxicity. Women experienced more severe toxicity (female versus male: 56% versus 34%; p = 0.001) and had +35% higher alectinib trough levels (p < 0.001). Homozygous carriers of the PPAR-α 209G>A variant exhibited a higher incidence of grade greater than or equal to 3 toxicity (38%) compared with patients who carried at least one wild-type allele (11%) (p = 0.004). This remained significant after Bonferroni correction. Patients who experienced severe toxicity had +18.5% (95% confidence interval: 2.9%-36.6%; p = 0.019) higher trough levels. CONCLUSIONS Female patients encounter more severe toxicity due to higher alectinib exposure, which warrants further exploration. PPAR-α 209G>A significantly increased relevant alectinib-induced toxicity, most likely due to an increase in alectinib exposure. Pretreatment testing for genetic variants with a subsequent dose reduction could provide a viable approach to reduce alectinib-related toxicity.
Collapse
Affiliation(s)
- Niels Heersche
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daan A C Lanser
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Benthe Muntinghe-Wagenaar
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ma Ida Mohmaed Ali
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ezgi B Ulas
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tessa M A Trooster
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evert de Jonge
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marthe S Paats
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Idris Bahce
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Sander Croes
- Department of Clinical Pharmacy & Toxicology, Maastricht University Medical Center, CARIM - School for Cardiovascular Disease, Maastricht, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Medicine, Maastricht University Medical Center, GROW - School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Anthonie J van der Wekken
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne-Marie C Dingemans
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pharmacology, Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - G D Marijn Veerman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Mao J, Zeng F, Qin W, Hu M, Xu L, Cheng F, Zhong M, Zhang Y. A joint population pharmacokinetic model to assess the high variability of whole-blood and intracellular tacrolimus in early adult renal transplant recipients. Int Immunopharmacol 2024; 137:112535. [PMID: 38908078 DOI: 10.1016/j.intimp.2024.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Tacrolimus (TAC) has high pharmacokinetic (PK) variability during the early transplantation period. The relationships between whole-blood and intracellular TAC concentrations and clinical outcomes remain controversial. This study identifies the factors affecting the PK variability of TAC and characterizes the relationships between whole-blood and intracellular TAC concentrations. Data regarding whole-blood TAC concentrations of 1,787 samples from 215 renal transplant recipients (<90 days postoperative) across two centers and intracellular TAC concentrations (648 samples) digitized from previous studies were analyzed using nonlinear mixed-effects modeling. The effects of potential covariates were screened, and the distribution of whole-blood to intracellular TAC concentration ratios (RWB:IC) was estimated. The final model was evaluated using bootstrap, goodness of fit, and prediction-corrected visual predictive checks. The optimal dosing regimens and target ranges for each type of immune cell subsets were determined using Monte Carlo simulations. A two-compartment model adequately described the data, and the estimated mean TAC CL/F was 23.6 L·h-1 (relative standard error: 11.5 %). The hematocrit level, CYP3A5*3 carrier status, co-administration with Wuzhi capsules, and tapering prednisolone dose may contribute to the high variability of TAC PK variability during the early post-transplant period. The estimated RWB:IC of all TAC concentrations in peripheral blood mononuclear cells (PBMCs) was 4940, and inter-center variability of PBMCs was observed. The simulated TAC target range in PBMCs was 20.2-85.9 pg·million cells-1. Inter-center variability in intracellular concentrations should be taken into account in further analyses. TAC dosage adjustments can be guided based on PK/PD variability and simulated intracellular concentrations.
Collapse
Affiliation(s)
- Junjun Mao
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Weiwei Qin
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Min Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Luyang Xu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China.
| |
Collapse
|
3
|
Hussaini SA, Waziri B, Dickens C, Duarte R. Pharmacogenetics of Calcineurin inhibitors in kidney transplant recipients: the African gap. A narrative review. Pharmacogenomics 2024; 25:329-341. [PMID: 39109483 PMCID: PMC11404701 DOI: 10.1080/14622416.2024.2370761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Calcineurin inhibitors (CNIs) are the mainstay of immunosuppression in kidney transplantation. Interpatient variability in the disposition of calcineurin inhibitors is a well-researched phenomenon and has a well-established genetic contribution. There is great diversity in the makeup of African genomes, but very little is known about the pharmacogenetics of CNIs and transplant outcomes. This review focuses on genetic variants of calcineurin inhibitors' metabolizing enzymes (CYP3A4, CYP3A5), related molecules (POR, PPARA) and membrane transporters involved in the metabolism of calcineurin inhibitors. Given the genetic diversity across the African continent, it is imperative to generate pharmacogenetic data, especially in the era of personalized medicine and emphasizes the need for studies specific to African populations. The study of allelic variants in populations where they have greater frequencies will help answer questions regarding their impact. We aim to fill the knowledge gaps by reviewing existing research and highlighting areas where African research can contribute.
Collapse
Affiliation(s)
- Sadiq Aliyu Hussaini
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
- Department of Pharmacology, Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Bala Waziri
- Department of Internal Medicine, Ibrahim Badamasi Babangida Specialist Hospital, Minna, Nigeria
| | - Caroline Dickens
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raquel Duarte
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Du W, Wang X, Zhang D, Zuo X. Genotype-Guided Model for Prediction of Tacrolimus Initial Dosing After Lung Transplantation. J Clin Pharmacol 2024; 64:719-727. [PMID: 38327217 DOI: 10.1002/jcph.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
The determination of the appropriate initial dose for tacrolimus is crucial in achieving the target concentration promptly and avoiding adverse effects and poor prognosis. However, the trial-and-error approach is still common practice. This study aimed to establish a prediction model for an initial dosing algorithm of tacrolimus in patients receiving a lung transplant. A total of 210 lung transplant recipients were enrolled, and 26 single nucleotide polymorphisms (SNP) from 18 genes that could potentially affect tacrolimus pharmacokinetics were genotyped. Associations between SNPs and tacrolimus concentration/dose ratio were analyzed. SNPs that remained significant in pharmacogenomic analysis were further combined with clinical factors to construct a prediction model for tacrolimus initial dose. The dose needed to reach steady state tacrolimus concentrations and achieve the target range was used to validate model prediction efficiency. Our final model consisted of 7 predictors-CYP3A5 rs776746, SLCO1B3 rs4149117, SLC2A2 rs1499821, NFATc4 rs1955915, alanine aminotransferase, direct bilirubin, and hematocrit-and explained 41.4% variance in the tacrolimus concentration/dose ratio. It achieved an area under the receiver operating characteristic curve of 0.804 (95% confidence interval, 0.746-0.861). The Hosmer-Lemeshow test yielded a nonsignificant P value of .790, suggesting good fit of the model. The predicted dose exhibited good correlation with the observed dose in the early postoperative period (r = 0.748, P less than .001). Our study provided a genotype-guided prediction model for tacrolimus initial dose, which may help to guide individualized dosing of tacrolimus in the lung transplant population in clinical practice.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxing Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Dan Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Xianbo Zuo
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
- Department of Dermatology, Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Liu M, Hernandez S, Aquilante CL, Deininger KM, Lindenfeld J, Schlendorf KH, Van Driest SL. Composite CYP3A (CYP3A4 and CYP3A5) phenotypes and influence on tacrolimus dose adjusted concentrations in adult heart transplant recipients. THE PHARMACOGENOMICS JOURNAL 2024; 24:4. [PMID: 38360955 DOI: 10.1038/s41397-024-00325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
CYP3A5 genetic variants are associated with tacrolimus metabolism. Controversy remains on whether CYP3A4 increased [*1B (rs2740574), *1 G (rs2242480)] and decreased function [*22 (rs35599367)] genetic variants provide additional information. This retrospective cohort study aims to address whether tacrolimus dose-adjusted trough concentrations differ between combined CYP3A (CYP3A5 and CYP3A4) phenotype groups. Heart transplanted patients (n = 177, between 2008 and 2020) were included and median age was 54 years old. Significant differences between CYP3A phenotype groups in tacrolimus dose-adjusted trough concentrations were found in the early postoperative period and continued to 6 months post-transplant. In CYP3A5 nonexpressers, carriers of CYP3A4*1B or *1 G variants (Group 3) compared to CYP3A4*1/*1 (Group 2) patients were found to have lower tacrolimus dose-adjusted trough concentrations at 2 months. In addition, significant differences were found among CYP3A phenotype groups in the dose at discharge and time to therapeutic range while time in therapeutic range was not significantly different. A combined CYP3A phenotype interpretation may provide more nuanced genotype-guided TAC dosing in heart transplant recipients.
Collapse
Affiliation(s)
- Michelle Liu
- Department of Pharmacy, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Savine Hernandez
- Department of Pharmacy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Kimberly M Deininger
- Department of Pharmaceutical Sciences, University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Joann Lindenfeld
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly H Schlendorf
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara L Van Driest
- Division of General Pediatrics, Department of Pediatrics, and Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Li Z, Wang X, Li D, Cheng S, Li Z, Guo H, Dong Y, Zheng Y, Li X. Effects of CYP3A4*22 and POR*28 variations on the pharmacokinetics of tacrolimus in renal transplant recipients: a meta-analysis of 18 observational studies. BMC Nephrol 2024; 25:48. [PMID: 38321419 PMCID: PMC10848431 DOI: 10.1186/s12882-024-03467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
PURPOSE This study aimed to investigate the association between cytochrome P450 (CYP) 3A4*22 and cytochrome P450 oxidoreductase (POR)*28 variations and the pharmacokinetics of tacrolimus. METHODS Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science (SCI), MEDLINE, and Embase were systematically searched from inception to August 2022. The outcomes were weight-adjusted daily dose and dose-adjusted trough concentration (C0/Dose). RESULTS The study included 2931 renal transplant recipients from 18 publications. Weight-adjusted daily dose of CYP3A4*1/*1 carriers was 0.04 (WMD = 0.04, 95% CI: 0.02 to 0.06), 0.03 (WMD = 0.03, 95% CI: 0.02 to 0.05), 0.02 (WMD = 0.02, 95% CI: 0.01 to 0.03), or 0.02 mg/kg/day (WMD = 0.02, 95% CI: 0.00 to 0.04) higher than CYP3A4*22 carriers in Caucasians at 1 month, 3 months, 6 months, or 12 months post-transplantation. Conversely, C0/Dose was lower for CYP3A4*1/*1 carriers at 3 days (SMD = -0.35, 95% CI: -0.65 to -0.06), 1 month (SMD = -0.67, 95% CI: -1.16 to -0.18), 3 months (SMD = -0.60, 95% CI: -0.89 to -0.31), 6 months (SMD = -0.76, 95% CI: -1.49 to -0.04), or 12 months post-transplantation (SMD = -0.69, 95% CI: -1.37 to 0.00). Furthermore, C0/Dose of POR*1/*1 carriers was 22.64 (WMD = 22.64, 95% CI: 2.54 to 42.74) or 19.41 (ng/ml)/(mg/kg/day) (WMD = 19.41, 95% CI: 9.58 to 29.24) higher than POR*28 carriers in CYP3A5 expressers at 3 days or 7 days post-transplantation, and higher in Asians at 6 months post-transplantation (SMD = 0.96, 95% CI: 0.50 to 1.43). CONCLUSIONS CYP3A4*22 variant in Caucasians restrains the metabolism of tacrolimus, while POR*28 variant in CYP3A5 expressers enhances the metabolism of tacrolimus for renal transplant recipients. However, further well-designed prospective studies are necessary to substantiate these conclusions given some limitations.
Collapse
Affiliation(s)
- Ze Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Xiaozhen Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dandan Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Sheng Cheng
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Zhe Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Heng Guo
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Yiwen Dong
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Yingming Zheng
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China.
| |
Collapse
|
7
|
Ebid AHI, Ismail DA, Lotfy NM, Mahmoud MA, El-Sharkawy M. Effect of CYP3A4*22, CYP3A5*3 and POR*28 genetic polymorphisms on calcineurin inhibitors dose requirements in early phase renal transplant patients. Pharmacogenet Genomics 2024; 34:43-52. [PMID: 38050720 DOI: 10.1097/fpc.0000000000000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
OBJECTIVE This study aimed to investigate the combined effect of CYP3A5*3, CYP3A4*22, and POR*28 genetic polymorphisms on tacrolimus and cyclosporine dose requirements. METHODS One hundred thirty renal transplant patients placed on either tacrolimus or cyclosporine were recruited, where the effect of CYP3A5*3, CYP3A4*22, and POR*28 genetic polymorphisms on their dose requirements were studied at days 14, 30, and 90 post-transplantations. RESULTS The POR*28 allele frequency in the studied population was 29.61%. The tacrolimus dose-adjusted trough concentration ratio (C0/D) was significantly lower in the fast metabolizers group ( CYP3A5*1/POR*28(CT/TT ) carriers) than in the poor metabolizers group ( CYP3A5*3/*3/CYP3A4*22 carriers) throughout the study (14, 30, and 90 days) ( P = 0.001, <0.001, and 0.003, respectively). Meanwhile, there was no significant effect of this gene combination on cyclosporine C0/D. CONCLUSION Combining the CYP3A5*3, POR*28 , and CYP3A4*22 genotypes can have a significant effect on early tacrolimus dose requirements determination and adjustments. However, it does not have such influence on cyclosporine dose requirements.
Collapse
Affiliation(s)
| | - Dina A Ismail
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University
| | - Neama M Lotfy
- Department of Technology of Medical Laboratory, Faculty of Applied Health Sciences Technology, Badr University
| | - Mohamed A Mahmoud
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University
| | - Magdy El-Sharkawy
- Department of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Charfi R, Bacha MM, Ben Fadhal M, Ferchichi K, El Jebari H, Gaies E, Klouz A, Abderrahim E, Ben Hamida F, Ben Abdallah T, Trabelsi S, Gorgi Y, Sfar I. The effects of the CYP3A5*3 variant on tacrolimus pharmacokinetics and outcomes in Tunisian kidney transplant recipients. LA TUNISIE MEDICALE 2023; 101:738-744. [PMID: 38465753 PMCID: PMC11261485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Tacrolimus, exhibits interindividual pharmacokinetic variability and a narrow therapeutic index. The influence of the CYP3A5 6986A>G single nucleotide polymorphism (SNP) on this variability remains a topic of debate. AIM To assess the impact of the aforementioned SNP on tacrolimus area under curve (AUC0-12h), adverse drug reactions (ADRs), and kidney graft outcomes. METHODS Blood samples were collected from Tunisian kidney transplants over a five-year period during either the early (<3 months) or late (>3 months) post-transplant phases. Through blood concentration (C0) and AUC0-12h of tacrolimus were measured. Patients were prospectively followed to assess graft outcomes. Polymerase chain reaction of restriction fragment length polymorphism was used for CYP3A5 6986A>G genotyping. RESULTS Fifty Tunisian kidney recipients receiving tacrolimus were enrolled in the study. Acute and chronic graft rejections were observed in eight and three patients, respectively. Twenty-one patients (42%) reported ADRs. C0 and AUC0-12h, showed a significant difference between CYP3A5*1 carriers (mean C0=4 ng.mL-1 and AUC0-12h=94.37 ng.h.mL-1) and CYP3A5*3/3 or poor metabolizers carriers (mean C0=7.45 ng.mL-1; AUC0-12h=151.27 ng.h.mL-1) (p=0.0001; p=0.003, respectively). Supratherapeutic tacrolimus levels were significantly more common in poor metabolizers (p=0.046; Odds-ratio =1.3; confidence interval 95% [1.12-1.66]). The impact of SNP was significant on C0, AUC0-12h, C0/Dose and AUC0-12h/Dose, only in the late phase (p=0.01, 0.002, 0.012, 0.003 respectively). CONCLUSION CYP3A5*3 variant was significantly associated with tacrolimus pharmacokinetics but had no impact on graft outcomes.
Collapse
Affiliation(s)
- Rim Charfi
- University of Tunis El Manar, Faculty of de Medicine of Tunis. National Centre Chalbi Belkahia of Pharmacovigilance, Department of clinical pharmacology, Research Laboratory of Clinical and Experimental Pharmacology (LR16SP02), 1006 Tunis, Tunisia
| | - Mohamed Mongi Bacha
- Charles Nicolle hospital -Department of nephrology and internal medicine, Research Laboratory of Renal Pathology (LR00SP01), 1006 Tunis, Tunisie
| | - Myriam Ben Fadhal
- Charles Nicolle hospital -Department of immunology, Research Laboratory of Immunology of Renal Transplantation and Immunopathology (LR03SP01), 1006 Tunis, Tunisia
| | - Khouloud Ferchichi
- University of Tunis El Manar, Faculty of de Medicine of Tunis. National Centre Chalbi Belkahia of Pharmacovigilance, Department of clinical pharmacology, Research Laboratory of Clinical and Experimental Pharmacology (LR16SP02), 1006 Tunis, Tunisia
| | - Hanene El Jebari
- University of Tunis El Manar, Faculty of de Medicine of Tunis. National Centre Chalbi Belkahia of Pharmacovigilance, Department of clinical pharmacology, Research Laboratory of Clinical and Experimental Pharmacology (LR16SP02), 1006 Tunis, Tunisia
| | - Emna Gaies
- University of Tunis El Manar, Faculty of de Medicine of Tunis. National Centre Chalbi Belkahia of Pharmacovigilance, Department of clinical pharmacology, Research Laboratory of Clinical and Experimental Pharmacology (LR16SP02), 1006 Tunis, Tunisia
| | - Anis Klouz
- University of Tunis El Manar, Faculty of de Medicine of Tunis. National Centre Chalbi Belkahia of Pharmacovigilance, Department of clinical pharmacology, Research Laboratory of Clinical and Experimental Pharmacology (LR16SP02), 1006 Tunis, Tunisia
| | - Ezzeddine Abderrahim
- Charles Nicolle hospital -Department of nephrology and internal medicine, Research Laboratory of Renal Pathology (LR00SP01), 1006 Tunis, Tunisie
| | - Fathi Ben Hamida
- Charles Nicolle hospital -Department of nephrology and internal medicine, Research Laboratory of Renal Pathology (LR00SP01), 1006 Tunis, Tunisie
| | - Taieb Ben Abdallah
- Charles Nicolle hospital -Department of nephrology and internal medicine, Research Laboratory of Renal Pathology (LR00SP01), 1006 Tunis, Tunisie
| | - Sameh Trabelsi
- University of Tunis El Manar, Faculty of de Medicine of Tunis. National Centre Chalbi Belkahia of Pharmacovigilance, Department of clinical pharmacology, Research Laboratory of Clinical and Experimental Pharmacology (LR16SP02), 1006 Tunis, Tunisia
| | - Yosr Gorgi
- Charles Nicolle hospital -Department of immunology, Research Laboratory of Immunology of Renal Transplantation and Immunopathology (LR03SP01), 1006 Tunis, Tunisia
| | - Imen Sfar
- Charles Nicolle hospital -Department of immunology, Research Laboratory of Immunology of Renal Transplantation and Immunopathology (LR03SP01), 1006 Tunis, Tunisia
| |
Collapse
|
9
|
Alghamdi A, Seay S, Hooper DK, Varnell CD, Darland L, Mizuno T, Lazear D, Ramsey LB. Tacrolimus pharmacokinetics are influenced by CYP3A5, age, and concomitant fluconazole in pediatric kidney transplant patients. Clin Transl Sci 2023; 16:1768-1778. [PMID: 37340713 PMCID: PMC10582663 DOI: 10.1111/cts.13571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
Tacrolimus, the most common immunosuppressant for organ transplant, has a narrow therapeutic range and is metabolized by CYP3A4/5. Trough concentration monitoring and dosing adjustments are used to reach a therapeutic range. CYP3A5 intermediate and normal metabolizers (*1 allele carriers; IM/NM) demonstrate faster tacrolimus metabolism than poor metabolizers (PM). We analyzed the electronic health records of 93 patients aged <21 years for the first 8 weeks after a kidney transplant between January 2010 and December 2021. The target tacrolimus trough was 10-15 ng/mL in the first 4 weeks and 7-10 ng/mL in the next 4 weeks. Banked DNA was collected and genotyped for CYP3A5*3, *6, *7, and *8 alleles. We found that CYP3A5 IM/NM (n = 21) took longer than PM (n = 72) to reach the therapeutic range (7 vs. 4 days, p = 0.048). IM/NM had more dose adjustments (8 vs. 6, p = 0.025) and needed >150% of the required daily dose compared with PM. The concentration/dose ratio was influenced by age and concomitant fluconazole (p = 0.0003, p = 0.034, respectively) and the average daily dose decreases with age in CYP3A5 PM (p = 0.001). Tremors were more common in patients who ever had a trough concentration >15 ng/mL compared with those who never had a trough concentration >15 ng/mL (OR 3.31, 95% CI 1.03-8.98, p = 0.038). Using standard dosing, CYP3A5 IM/NM took longer to reach the goal range and require more dose adjustments and higher doses than PM. Preemptive genotyping could decrease the number of dose changes necessary to reach a therapeutic dose. We have implemented pre-transplant CYP3A5 testing at our institution.
Collapse
Affiliation(s)
- Alaa Alghamdi
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiOhioUSA
- College of Clinical PharmacyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Sarah Seay
- Department of ChemistryVirginia Tech Center for Drug DiscoveryBlacksburgVirginiaUSA
| | - David K. Hooper
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Division of Nephrology & Hypertension, James M. Anderson Center fo Health Systems ExcellenceCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Charles D. Varnell
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Division of Nephrology & Hypertension, James M. Anderson Center fo Health Systems ExcellenceCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Leanna Darland
- Division of PharmacyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Tomoyuki Mizuno
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Division of Clinical PharmacologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Danielle Lazear
- Division of PharmacyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Present address:
Eurofins Transplant Genomics, Framingham, Massachusetts, USA
| | - Laura B. Ramsey
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Divisions of Clinical Pharmacology & Research in Patient ServicesCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
10
|
Feng H, Wang X, Zheng W, Liu S, Jiang H, Lin Y, Qiu H, Chan TF, Huang M, Li Y, Mo X, Li J. Initial dosage optimisation of cyclosporine in Chinese paediatric patients undergoing allogeneic haematopoietic stem cell transplantation based on population pharmacokinetics: a retrospective study. BMJ Paediatr Open 2023; 7:e002003. [PMID: 37643815 PMCID: PMC10465907 DOI: 10.1136/bmjpo-2023-002003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Improved understanding of cyclosporine A (CsA) pharmacokinetics in children undergoing allogeneic haematopoietic stem cell transplantation (allo-HSCT) is crucial for effective prevention of acute graft-versus-host disease and medication safety. The aim of this study was to establish a population pharmacokinetic (Pop-PK) model that could be used for individualised therapy to paediatric patients undergoing allo-HSCT in China. DESIGN, SETTING AND PARTICIPANTS A retrospective analysis of 251 paediatric HSCT patients who received CsA intravenously in the early post transplantation period at Women and Children's Medical Center in Guangzhou was conducted. ANALYSIS MEASURES The model building dataset from 176 children was used to develop and analyse the CsA Pop-Pk model by using the nonlinear mixed effect model method. The basic information was collected by the electronic medical record system. Genotype was analysed by matrix-assisted time-of-flight mass spectrometry. The stability and predictability of the final model were verified internally, and a validation dataset of 75 children was used for external validation. Monte Carlo simulation is used to adjust and optimise the initial dose of CsA in paediatric allo-HSCT patients. RESULTS The typical values for clearance (CL) and volume of distribution ([Formula: see text]) were 14.47 L/hour and 2033.53 L, respectively. The body weight and haematocrit were identified as significant variables for V, while only body weight had an impact on CL. The simulation based on the final model suggests that paediatrics with HSCT required an appropriate intravenous dose of 5 mg/kg/day to reach the therapeutic trough concentration. CONCLUSIONS The CsA Pop-PK model established in this study can quantitatively describe the factors influencing pharmacokinetic parameters and precisely predict the intrinsic exposure to CsA in children. In addition, our dosage simulation results can provide evidence for the personalised medications TRIAL REGISTRATION NUMBER: ChiCTR2000040561.
Collapse
Affiliation(s)
- Huanwen Feng
- Institute of Clinical Pharmacology, Sun Yat-Sen University School of Pharmaceutical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University School of Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Xianggui Wang
- Institute of Clinical Pharmacology, Sun Yat-Sen University School of Pharmaceutical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University School of Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Wei Zheng
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sha Liu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuxian Lin
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haojie Qiu
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Teng Fong Chan
- Institute of Clinical Pharmacology, Sun Yat-Sen University School of Pharmaceutical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University School of Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Min Huang
- Institute of Clinical Pharmacology, Sun Yat-Sen University School of Pharmaceutical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University School of Pharmaceutical Sciences, Guangzhou, Guangdong, China
| | - Yan Li
- Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaolan Mo
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiali Li
- Institute of Clinical Pharmacology, Sun Yat-Sen University School of Pharmaceutical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University School of Pharmaceutical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Kim JS, Shim S, Yee J, Choi KH, Gwak HS. Effects of CYP3A4*22 polymorphism on trough concentration of tacrolimus in kidney transplantation: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1201083. [PMID: 37564175 PMCID: PMC10409991 DOI: 10.3389/fphar.2023.1201083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose: Tacrolimus (Tac) is a widely used immunosuppressive agent in kidney transplantation. Cytochrome P450 (CYP), especially CYP3A4 enzymes are responsible for the metabolism of drugs. However, the correlation between plasma Tac concentration and CYP3A4*22 gene variants is controversial. This meta-analysis aims to evaluate the association between CYP3A4*22 polymorphism and the dose-adjusted trough concentration (C0/D) of Tac in adult kidney transplant patients. Methods: We conducted a literature review for qualifying studies using the PubMed, Web of Science, and Embase databases until July 2023. For the continuous variables (C0/D and daily dose), mean difference (MD) and corresponding 95% confidence intervals (CIs) were calculated to evaluate the association between the CYP3A4 * 22 and Tac pharmacokinetics. We performed an additional analysis on the relationship of CYP3A5*3 with Tac PKs and analyzed the effects of CYP3A4*22 in CYP3A5 non-expressers. Results: Overall, eight eligible studies with 2,683 renal transplant recipients were included in this meta-analysis. The CYP3A4*22 allele was significantly associated with a higher C0/D (MD 0.57 ng/mL/mg (95% CI: 0.28 to 0.86; p = 0.0001) and lower mean daily dose requirement (MD -2.02 mg/day, 95% CI: -2.55 to -1.50; p < 0.00001). An additional meta-analysis demonstrated that carrying the CYP3A5*3 polymorphism greatly impacted Tac blood concentration. From the result with CYP3A5 non-expressers, CYP3A4*22 showed significant effects on the Tac C0/D and dose requirement even after adjusting the effect of CYP3A5*3. Conclusion: Patients with CYP3A4*22 allele showed significantly higher plasma C0/D of Tac and required lower daily dose to achieve the therapeutic trough level after kidney transplantation. These findings of our meta-analysis may provide further evidence for the effects of genetic polymorphism in CYP3A4 on the PKs of Tac, which will improve individualized treatment in a clinical setting.
Collapse
Affiliation(s)
- Jung Sun Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sunyoung Shim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung Hee Choi
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Schagen MR, Volarevic H, Francke MI, Sassen SDT, Reinders MEJ, Hesselink DA, de Winter BCM. Individualized dosing algorithms for tacrolimus in kidney transplant recipients: current status and unmet needs. Expert Opin Drug Metab Toxicol 2023; 19:429-445. [PMID: 37642358 DOI: 10.1080/17425255.2023.2250251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Tacrolimus is a potent immunosuppressive drug with many side effects including nephrotoxicity and post-transplant diabetes mellitus. To limit its toxicity, therapeutic drug monitoring (TDM) is performed. However, tacrolimus' pharmacokinetics are highly variable within and between individuals, which complicates their clinical management. Despite TDM, many kidney transplant recipients will experience under- or overexposure to tacrolimus. Therefore, dosing algorithms have been developed to limit the time a patient is exposed to off-target concentrations. AREAS COVERED Tacrolimus starting dose algorithms and models for follow-up doses developed and/or tested since 2015, encompassing both adult and pediatric populations. Literature was searched in different databases, i.e. Embase, PubMed, Web of Science, Cochrane Register, and Google Scholar, from inception to February 2023. EXPERT OPINION Many algorithms have been developed, but few have been prospectively evaluated. These performed better than bodyweight-based starting doses, regarding the time a patient is exposed to off-target tacrolimus concentrations. No benefit in reduced tacrolimus toxicity has yet been observed. Most algorithms were developed from small datasets, contained only a few tacrolimus concentrations per person, and were not externally validated. Moreover, other matrices should be considered which might better correlate with tacrolimus toxicity than the whole-blood concentration, e.g. unbound plasma or intra-lymphocytic tacrolimus concentrations.
Collapse
Affiliation(s)
- Maaike R Schagen
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus MC, Rotterdam Clinical Pharmacometrics Group, Rotterdam, the Netherlands
| | - Helena Volarevic
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marith I Francke
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sebastiaan D T Sassen
- Erasmus MC, Rotterdam Clinical Pharmacometrics Group, Rotterdam, the Netherlands
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marlies E J Reinders
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A Hesselink
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Brenda C M de Winter
- Erasmus MC, Rotterdam Clinical Pharmacometrics Group, Rotterdam, the Netherlands
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Demirbugen Oz M, Ozdemir F, Tok KC, Dural E, Kir Y, Ulusoy M, Gumustas M, Baskak B, Suzen HS. The potential role of por*28 and cyp1a2*f genetic variations and lifestyle factors on clozapine and n-desmethyl clozapine plasma levels in schizophrenia patients. Expert Opin Drug Metab Toxicol 2023. [PMID: 37269349 DOI: 10.1080/17425255.2023.2221849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Despite its advantages over other antipsychotics, for treatment-resistant schizophrenia, clinical use of Clozapine (CLZ) is challenging by its narrow therapeutic index and potentially life-threatening dose-related adverse effects. RESEARCH DESIGN AND METHODS As the potential role in CLZ metabolism is assigned to CYP1A2 enzyme and consequently Cytochrome P450 oxidoreductase (POR) their genetic variations might help to determine CLZ levels in schizophrenia patients. For this purpose, 112 schizophrenia patients receiving CLZ were included in the current study. Plasma CLZ and N-desmethylclozapine (DCLZ) levels were analyzed by using HPLC and genetic variations were identified with the PCR-RFLP method. RESULTS The patients' CYP1A2 and POR genotypes seemed to not affect plasma CLZ and DCLZ levels whereas in the subgroup analysis, POR × 28 genotype significantly influenced simple and adjusted plasma CLZ and DLCZ levels concerning smoking habit and caffeine consumption. CONCLUSIONS The findings of the present study highlight the importance of both genetic and non-genetic factors (smoking and caffeine consumption) for the individualization of the CLZ treatment. In addition to that, it suggests that the added utility of not only the CLZ metabolizing enzymes but also POR, which is crucial for proper CYP activity, to guide CLZ dosing might be useful for clinical decision-making.
Collapse
Affiliation(s)
- Merve Demirbugen Oz
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara University, Ankara, Turkey
| | - Fezile Ozdemir
- Dr Fazil Kucuk Faculty of Medicine, Eastern Mediterranean University, North, Cyprus, Turkey
| | - Kenan Can Tok
- Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara University, Ankara, Turkey
| | - Emrah Dural
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yagmur Kir
- Bursa Acibadem Hospital, Department of Psychiatry, Bursa, Turkey
| | - Muge Ulusoy
- School of Medicine, Department of Psychiatry, Ankara University, Ankara, Turkey
| | - Mehmet Gumustas
- Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara University, Ankara, Turkey
| | - Bora Baskak
- School of Medicine, Department of Psychiatry, Ankara University, Ankara, Turkey
| | - H Sinan Suzen
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Population Pharmacokinetic Analysis for Model-Based Therapeutic Drug Monitoring of Tacrolimus in Chinese Han Heart Transplant Patients. Eur J Drug Metab Pharmacokinet 2023; 48:89-100. [PMID: 36482138 DOI: 10.1007/s13318-022-00807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Tacrolimus has become the first-line immunosuppressant for preventing rejection after heart transplantation. The present study aimed to investigate genetic variants and clinical factors affecting the variability of tacrolimus in Chinese Han heart transplant patients using a population pharmacokinetic approach. METHODS The retrospective study included 53 hospitalized patients with 547 tacrolimus concentrations for analysis. Nonlinear mixed-effects modeling was used to develop the population pharmacokinetics model for tacrolimus in patients with heart transplants, followed by Monte Carlo simulations to design initial dosing regimens. RESULTS In our study, the mutation rate of CYP3A4*18B (C>T) was 27.36%. An oral one-compartment model with first-order absorption and elimination was used to describe the pharmacokinetics of tacrolimus in heart transplant patients. In the final model, the estimated apparent clearance (CL/F) and volume of distribution (V/F) were 532.5 L/h [12.20% interindividual variability, IIV] and 16.87 L (23.16% IIV), respectively. Albumin, postoperative time, and rs2242480 (CYP3A4*18B) gene polymorphisms were the significant covariates affecting CL/F, and creatinine clearance had significant effects on the V/F. CONCLUSION The population pharmacokinetic model of tacrolimus in heart transplant patients can better estimate the population and individual pharmacokinetic parameters of patients and can provide a reference for the design of individualized dosing regimens.
Collapse
|
15
|
The Effect of Voriconazole on Tacrolimus in Kidney Transplantation Recipients: A Real-World Study. Pharmaceutics 2022; 14:pharmaceutics14122739. [PMID: 36559231 PMCID: PMC9785881 DOI: 10.3390/pharmaceutics14122739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Tacrolimus is an immunosuppressant with a narrow therapeutic window. Tacrolimus exposure increased significantly during voriconazole co-therapy. The magnitude of this interaction is highly variable, but it is hard to predict quantitatively. We conducted a study on 91 kidney transplantation recipients with voriconazole co-therapy. Furthermore, 1701 tacrolimus concentration data were collected. Standard concentration adjusted by tacrolimus daily dose (C/D) and weight-adjusted standard concentration (CDW) increased to 6 times higher during voriconazole co-therapy. C/D and CDW increased with voriconazole concentration. Patients with the genotype of CYP3A5 *3/*3 and CYP2C19 *2/*2 or *2/*3 were more variable at the same voriconazole concentration level. The final prediction model could explain 54.27% of the variation in C/D and 51.11% of the variation in CDW. In conclusion, voriconazole was the main factor causing C/D and CDW variation, and the effect intensity should be quantitative by its concentration. Kidney transplant recipients with CYP3A5 genotype of *3/*3 and CYP2C19 genotype of *2/*2 and *2/*3 should be given more attention during voriconazole co-therapy. The prediction model established in this study may help to reduce the occurrence of rejection.
Collapse
|
16
|
Cai XJ, Li RD, Li JH, Tao YF, Zhang QB, Shen CH, Zhang XF, Wang ZX, Jiao Z. Prospective population pharmacokinetic study of tacrolimus in adult recipients early after liver transplantation: A comparison of Michaelis-Menten and theory-based pharmacokinetic models. Front Pharmacol 2022; 13:1031969. [DOI: 10.3389/fphar.2022.1031969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Background and Objective: Tacrolimus, a calcineurin inhibitor widely used as a potent immunosuppressant to prevent graft rejection, exhibits nonlinear kinetics in patients with kidney transplantation and nephrotic syndrome. However, whether nonlinear drug metabolism occurs in adult patients undergoing liver transplantation remains unclear, as do the main underlying mechanisms. Therefore, here we aimed to further confirm the characteristics of nonlinearity through a large sample size, and determine the potential influence of nonlinearity and its possible mechanisms.Methods: In total, 906 trough concentrations from 176 adult patients (150 men/26 women; average age: 50.68 ± 9.71 years, average weight: 64.54 ± 11.85 kg after first liver transplantation) were included in this study. Population pharmacokinetic analysis was performed using NONMEM®. Two modeling strategies, theory-based linear compartmental and nonlinear Michaelis–Menten (MM) models, were evaluated and compared. Potential covariates were screened using a stepwise approach. Bootstrap, prediction-, and simulation-based diagnostics (prediction-corrected visual predictive checks) were performed to determine model stability and predictive performance. Finally, Monte Carlo simulations based on the superior model were conducted to design dosing regimens.Results: Postoperative days (POD), Aspartate aminotransferase (AST), daily tacrolimus dose, triazole antifungal agent (TAF) co-therapy, and recipient CYP3A5*3 genotype constituted the main factors in the theory-based compartmental final model, whereas POD, Total serum bilirubin (TBIL), Haematocrit (HCT), TAF co-therapy, and recipient CYP3A5*3 genotype were important in the nonlinear MM model. The theory-based final model exhibited 234 L h−1 apparent plasma clearance and 11,000 L plasma distribution volume. The maximum dose rate (Vmax) of the nonlinear MM model was 6.62 mg day−1; the average concentration at steady state at half-Vmax (Km) was 6.46 ng ml−1. The nonlinear MM final model was superior to the theory-based final model and used to propose dosing regimens based on simulations.Conclusion: Our findings demonstrate that saturated tacrolimus concentration-dependent binding to erythrocytes and the influence of daily tacrolimus dose on metabolism may partly contribute to nonlinearity. Further investigation is needed is need to explore the causes of nonlinear pharmacokinetic of tacrolimus. The nonlinear MM model can provide reliable support for tacrolimus dosing optimization and adjustment in adult patients undergoing liver transplantation.
Collapse
|
17
|
Brunet M, Pastor-Anglada M. Insights into the Pharmacogenetics of Tacrolimus Pharmacokinetics and Pharmacodynamics. Pharmaceutics 2022; 14:1755. [PMID: 36145503 PMCID: PMC9503558 DOI: 10.3390/pharmaceutics14091755] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
The influence of pharmacogenetics in tacrolimus pharmacokinetics and pharmacodynamics needs further investigation, considering its potential in assisting clinicians to predict the optimal starting dosage and the need for a personalized adjustment of the dose, as well as to identify patients at a high risk of rejection, drug-related adverse effects, or poor outcomes. In the past decade, new pharmacokinetic strategies have been developed to improve personalized tacrolimus treatment. Several studies have shown that patients with tacrolimus doses C0/D < 1 ng/mL/mg may demonstrate a greater incidence of drug-related adverse events and infections. In addition, C0 tacrolimus intrapatient variability (IPV) has been identified as a potential biomarker to predict poor outcomes related to drug over- and under-exposure. With regard to tacrolimus pharmacodynamics, inconsistent genotype-phenotype relationships have been identified. The aim of this review is to provide a concise summary of currently available data regarding the influence of pharmacogenetics on the clinical outcome of patients with high intrapatient variability and/or a fast metabolizer phenotype. Moreover, the role of membrane transporters in the interindividual variability of responses to tacrolimus is critically discussed from a transporter scientist’s perspective. Indeed, the relationship between transporter polymorphisms and intracellular tacrolimus concentrations will help to elucidate the interplay between the biological mechanisms underlying genetic variations impacting drug concentrations and clinical effects.
Collapse
Affiliation(s)
- Mercè Brunet
- Farmacologia i Toxicologia, Servei de Bioquímica i Genètica Molecular, Centre de Diagnòstic Biomèdic. Hospital Clínic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Marçal Pastor-Anglada
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Molecular Pharmacology and Experimental Therapeutics (MPET), Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
18
|
Gao Y, Ma J. Cytochrome P450 oxidoreductase variant A503V contributes to the increased CYP3A5 activity with tacrolimus in vitro. Expert Opin Drug Metab Toxicol 2022; 18:529-535. [PMID: 35946839 DOI: 10.1080/17425255.2022.2112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Tacrolimus is a calcineurin inhibitor with a strong efficacy in prevention of graft rejection after transplantation. It is well known that cytochrome P450 3A5 (CYP3A5) has a high metabolic capacity for tacrolimus, and mutations in human cytochrome P450 oxidoreductase (POR) cause altered CYP3A5 activity. Recently, clinical studies have revealed that POR*28 contributes enhanced tacrolimus clearance in CYP3A5 expressers. A503V is an amino acid sequence variant encoded by POR*28. In this study, we first evaluated the impact of A503V on CYP3A5 activity with tacrolimus as the substrate in vitro. RESEARCH DESIGN & METHODS Wild-type (WT) and A503V POR, with WT CYP3A5 were expressed in recombinant HepG2 cells and reconstituted proteins. Michaelis constant (Km) and maximum velocity (Vmax) of CYP3A5 with tacrolimus as substrates were determined, and catalytic efficiency is expressed as Vmax/Km. RESULTS WT and A503V POR both down-regulated the CYP3A5 mRNA expression, and WT POR rather than A503V down-regulated the protein expression of CYP3A5 in recombinant HepG2 cells. Compared with WT POR, A503V increased metabolism of tacrolimus by CYP3A5 in both cellular and protein level. CONCLUSION A503V can affect CYP3A5-catalyzed tacrolimus metabolism in vitro, which suggests that A503V has the potential to serve as a biomarker for tacrolimus treatment in transplantation recipients.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Ma
- Department of Pharmacy, Medical center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
19
|
Use of Pharmacogenetics to Optimize Immunosuppressant Therapy in Kidney-Transplanted Patients. Biomedicines 2022; 10:biomedicines10081798. [PMID: 35892699 PMCID: PMC9332547 DOI: 10.3390/biomedicines10081798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 12/17/2022] Open
Abstract
Immunosuppressant drugs (ISDs) are routinely used in clinical practice to maintain organ transplant survival. However, these drugs are characterized by a restricted therapeutic index, a high inter- and intra-individual pharmacokinetic variability, and a series of severe adverse effects. In particular, genetic factors have been estimated to play a role in this variability because of polymorphisms regarding genes encoding for enzymes and transporters involved in the ISDs pharmacokinetic. Several studies showed important correlations between genetic polymorphisms and ISDs blood levels in transplanted patients; therefore, this review aims to summarize the pharmacogenetics of approved ISDs. We used PubMed database to search papers on pharmacogenetics of ISDs in adults or pediatric patients of any gender and ethnicity receiving immunosuppressive therapy after kidney transplantation. We utilized as search term: “cyclosporine or tacrolimus or mycophenolic acid or sirolimus or everolimus and polymorphism and transplant”. Our data showed that polymorphisms in CYP3A5, CYP3A4, ABCB1, and UGT1A9 genes could modify the pharmacokinetics of immunosuppressants, suggesting that patient genotyping could be a helpful strategy to select the ideal ISDs dose for each patient.
Collapse
|
20
|
Liu M, Shaver CM, Birdwell KA, Heeney SA, Shaffer CM, Van Driest SL. Composite CYP3A phenotypes influence tacrolimus dose-adjusted concentration in lung transplant recipients. Pharmacogenet Genomics 2022; 32:209-217. [PMID: 35389944 PMCID: PMC9177686 DOI: 10.1097/fpc.0000000000000472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Interpatient variability in tacrolimus pharmacokinetics is attributed to metabolism by cytochrome P-450 3A4/5 isoenzymes (encoded by CYP3A4 and CYP3A5). Guidelines for adjusting tacrolimus based on CYP3A5 test results are published; however, CYP3A4 variants also contribute to the variability in tacrolimus pharmacokinetics. The effects of composite phenotypes incorporating CYP3A5 and CYP3A4 increased (*1G, *1B) and decreased (*22) function variants have not been evaluated. The objective of this study is to investigate the impact of both increased and decreased function CYP3A variants on weight and dose-adjusted tacrolimus concentration (C0/D). METHODS We performed a single-center retrospective cohort study of lung transplant recipients to evaluate the median tacrolimus C0/D by composite CYP3A phenotype groups during the index transplant hospitalization. CYP3A4 and CYP3A5 alleles were used to classify patients into four CYP3A groups from least to most CYP3A activity. Exploratory analyses of ABCB1 and additional candidate genes were also assessed. RESULTS Of the 92 included individuals, most (58) were CYP3A Group 2. The median tacrolimus C0/D differed significantly between CYP3A groups (P = 0.0001). CYP3A Group 2 median tacrolimus C0/D was 190.5 (interquartile range: 147.6-267.5) (ng/ml)/(mg/kg/d) and significantly higher than Group 4 [107.9 (90.4-116.1), P = 0.0001)]. Group 2 median tacrolimus C0/D did not significantly differ from Group 1 and Group 3 [373.5 (149.2-490.3) and 81.4 (62.6-184.1), respectively]. No significant differences in tacrolimus C0/D were found for the ABCB1 diplotypes. CONCLUSION These data indicate that a composite CYP3A phenotype incorporating both increase and decrease variant information from CYP3A4 in addition to CYP3A5 may significantly influence tacrolimus C0/D during the early postoperative period.
Collapse
Affiliation(s)
- Michelle Liu
- Department of Pharmacy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly A. Birdwell
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephanie A. Heeney
- Department of Pharmacy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian M. Shaffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sara L. Van Driest
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of General Pediatrics, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Everton JBF, Patrício FJB, Faria MS, Ferreira TCA, Filho NS, Silva GEB, Romão EA, Magalhães M. Impact of POR*28 Variant on Tacrolimus Pharmacokinetics in Kidney Transplant Patients with Different CYP3A5 Genotypes. Curr Drug Metab 2022; 23:233-241. [PMID: 35578867 DOI: 10.2174/1389200223666220516094226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The introduction of tacrolimus (TAC) in clinical practice was essential to the establishment of transplantation as therapy for patients with chronic renal disease. However, the higher interindividual variation of TAC metabolism has been an important limiting factor for its clinical use. Although the relationship between CYP3A5 polymorphisms and TAC pharmacokinetics (PK) is well established, the effects of other genetic variants on TAC metabolism, such as POR*28, still remain uncertain. OBJECTIVE To evaluate the impact of POR variants on TAC PK in renal transplant patients with different CYP3A5 genotypes (expressers and non-expressers). METHODS A total of 115 patients were included in this study. Genomic DNA was isolated from peripheral blood, and the real-time PCR technique was used to analyze the polymorphism POR rs1057868; C>T. RESULTS During the initial post-transplant period, variant allele carriers (*1/*28 and *28/*28) showed a lower TAC dose requirement than POR wild homozygotes (*1/*1). Regarding the influence of the different polymorphisms of POR within the CYP3A5 expresser and non-expresser groups, no differences were observed in any of the PK parameters analyzed during 12 months after transplantation. CONCLUSION In the studied population, the variant allelic POR*28 was significantly associated with lower TAC dose requirements and higher Co/D ratio in the first-month post-transplant. However, the effects of this polymorphism on the CYP3A5 enzyme activity were not observed.
Collapse
Affiliation(s)
- Janaina B F Everton
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil.,Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís, Brazil
| | - Fernando J B Patrício
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Manuel S Faria
- linical Research Center of the University Hospital of the Federal University of Maranhão (CEPEC/HUUFMA/EBSERH), São Luís, Brazil
| | - Teresa C A Ferreira
- Kidney Transplant Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Natalino Salgado Filho
- Nephrology Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Gyl E B Silva
- Pathology Unit, University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Elen A Romão
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Magalhães
- Research and Extension Nucleus (NUPE), UNDB University Center, São Luís, Brazil
| |
Collapse
|
22
|
Cao P, Zhang F, Zhang J, Zheng X, Sun Z, Yu B, Wang W. CYP3a5 Genetic Polymorphism in Chinese Population With Renal Transplantation: A Meta-Analysis Review. Transplant Proc 2022; 54:638-644. [DOI: 10.1016/j.transproceed.2021.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/27/2021] [Indexed: 10/18/2022]
|
23
|
Lee DH, Lee H, Yoon HY, Yee J, Gwak HS. Association of P450 Oxidoreductase Gene Polymorphism with Tacrolimus Pharmacokinetics in Renal Transplant Recipients: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14020261. [PMID: 35213993 PMCID: PMC8877595 DOI: 10.3390/pharmaceutics14020261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
There are conflicting results regarding the effect of the P450 oxidoreductase (POR) *28 genotype on the tacrolimus (TAC) pharmacokinetics (PKs) during the early post-transplantation period in adult renal transplant recipients. Thus, we characterized the impact of POR*28 on TAC PKs. We conducted a systematic review on the association between POR*28 and PKs of TAC in adult renal transplant recipients. Structured searches were conducted using PubMed, Web of Science, and Embase. TAC standardized trough concentration (ng/mL per mg/kg) data were extracted. Mean differences (MD) and their corresponding 95% confidence intervals (CIs) were used to identify the differences between the POR*28 genotype and PKs of TAC. The subgroup analysis was conducted according to CYP3A5 expression status. Six studies (n = 1061) were included. TAC standardized trough concentrations were significantly lower in recipients with the POR*28 allele compared to recipients with POR*1/*1 (MD: 8.30 ng/mL per mg/kg; 95% CI: 1.93, 14.67; p = 0.01). In the subgroup analysis, TAC standardized trough concentrations were lower for subjects who were POR*28 carriers than those who were POR*1/*1 in CYP3A5 expressers (MD: 20.21 ng/mL per mg/kg; 95% CI: 16.85, 23.56; p < 0.00001). No significant difference between POR*28 carriers and POR*1/*1 was found in the CYP3A5 non-expressers. The results of our meta-analysis demonstrated a definite correlation between the POR*28 genotype and PKs of TAC. Patients carrying the POR*28 allele may require a higher dose of TAC to achieve target levels compared to those with POR*1/*1, especially in CYP3A5 expressers.
Collapse
Affiliation(s)
- Da-Hoon Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (D.-H.L.); (H.-Y.Y.)
| | - Hana Lee
- Graduate School of Clinical Biohealth, Ewha Womans University, Seoul 03760, Korea;
| | - Ha-Young Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (D.-H.L.); (H.-Y.Y.)
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (D.-H.L.); (H.-Y.Y.)
- Correspondence: (J.Y.); (H.-S.G.); Tel.: +82-2-3277-3052 (J.Y.); +82-2-3277-4376 (H.-S.G.)
| | - Hye-Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (D.-H.L.); (H.-Y.Y.)
- Correspondence: (J.Y.); (H.-S.G.); Tel.: +82-2-3277-3052 (J.Y.); +82-2-3277-4376 (H.-S.G.)
| |
Collapse
|
24
|
Cheng F, Li Q, Wang J, Hu M, Zeng F, Wang Z, Zhang Y. Genetic Polymorphisms Affecting Tacrolimus Metabolism and the Relationship to Post-Transplant Outcomes in Kidney Transplant Recipients. Pharmgenomics Pers Med 2021; 14:1463-1474. [PMID: 34824543 PMCID: PMC8610755 DOI: 10.2147/pgpm.s337947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Background Tacrolimus is a key drug in kidney transplantation with a narrow therapeutic index. However, whether tacrolimus exposure variability affects clinical outcomes and adverse reactions remains unknown. Objective Our study investigated the factors that influence tacrolimus exposure in kidney transplantation recipients and the relationship between tacrolimus concentration and clinical outcomes and adverse reactions. Settings and Methods We examined the effect of tacrolimus concentration on clinical outcomes and adverse reactions in 201 kidney transplantation recipients, and identified clinical and pharmacogenetic factors that explain tacrolimus exposure. Results The CYP3A5 genotype was clearly associated with dose-adjusted trough blood tacrolimus concentrations (C0/D), whereas no significant difference was observed in patients with the CYP3A4*1B, CYP3A4*22, ABCB1, ABCC2, POR*28 or PXR alleles. Clinical factors such as red blood cell count, hemoglobin, and albumin were the most useful influence factors affecting tacrolimus C0/D. Besides, Wuzhi capsule increased tacrolimus C0/D in kidney transplantation recipients. Furthermore, higher tacrolimus concentrations were associated with higher diarrhea and post-transplant diabetes mellitus (PTDM) risk but not with acute rejection and chronic allograft kidney dysfunction. Conclusion Clinical factors, medication, and CYP-enzyme polymorphisms accounted for tacrolimus concentration variability in kidney transplantation recipients. Furthermore, higher tacrolimus concentrations were associated with higher diarrhea and PTDM risk.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Min Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Zhendi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| |
Collapse
|
25
|
Lu H, Jiang H, Yang S, Li C, Li C, Shao R, Zhang P, Wang D, Liu Z, Qi H, Cai Y, Xu W, Bao X, Wang H, Li L. Trans-eQTLs of the CYP3A4 and CYP3A5 associated with tacrolimus trough blood concentration in Chinese renal transplant patients. Biomed Pharmacother 2021; 145:112407. [PMID: 34781138 DOI: 10.1016/j.biopha.2021.112407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to systematically investigate trans-eQTLs of CYP3A4 and CYP3A5 affecting tacrolimus trough blood concentrations in Chinese renal transplant patients. We used Plink v1.90 to perform data quality control and linear regression analysis on GTEx v8 data. SNPs with p-value < 0.05 were selected and the GTEx eQTL Calculator was used to further prioritize the eQTLs of CYP3A4 and CYP3A5 in the liver and small intestine. The eQTLs with a p-value < 5 × 10-5 and MAF≥ 0.05 in the CHB population were selected as candidate eQTLs. The genotyping of candidate eQTLs was performed using high-resolution melting (HRM) assays and Sanger DNA sequencing. This study included 845 Chinese renal transplant patients who received tacrolimus as an immunosuppressive agent. Association between 103 candidate eQTLs and log-transformed tacrolimus concentration/dose ratio (log (C0/D)) in this cohort was conducted using the SNPassoc package of R software. In the end, a total of 75,632 liver eQTLs of CYP3A4, 69,558 liver eQTLs of CYP3A5, 48,596 small intestine eQTLs of CYP3A4 and 28,616 small intestine eQTLs of CYP3A5 were obtained using the GTEx v8 eQTL Calculator. Of the 103 candidate eQTLs, rs75727207, rs181294422 and rs28522676 were significantly associated with tacrolimus log(C0/D) in different genetic models. We discovered a substantial number of novel eQTLs of CYP3A4 and CYP3A5 in liver and small intestine, also found that rs75727207, rs181294422 and rs28522676 may affect tacrolimus trough blood concentrations in Chinese renal transplant patients.
Collapse
Affiliation(s)
- Huijie Lu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Haixia Jiang
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Siyao Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chengcheng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery,Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ruifan Shao
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Pai Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Daoyi Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhiwei Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Huana Qi
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yinuan Cai
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wenbin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaojie Bao
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hailan Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China; Experimental Education and Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
26
|
Radhakrishnan A, Kuppusamy G, Ponnusankar S, Mutalik S. Towards next-generation personalization of tacrolimus treatment: a review on advanced diagnostic and therapeutic approaches. Pharmacogenomics 2021; 22:1151-1175. [PMID: 34719935 DOI: 10.2217/pgs-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The benefit of personalized medicine is that it allows the customization of drug therapy - maximizing efficacy while avoiding side effects. Genetic polymorphisms are one of the major contributors to interindividual variability. Currently, the only gold standard for applying personalized medicine is dose titration. Because of technological advancements, converting genotypic data into an optimum dose has become easier than in earlier years. However, for many medications, determining a personalized dose may be difficult, leading to a trial-and-error method. On the other hand, the technologically oriented pharmaceutical industry has a plethora of smart drug delivery methods that are underutilized in customized medicine. This article elaborates the genetic polymorphisms of tacrolimus as case study, and extensively covers the diagnostic and therapeutic technologies which aid in the delivery of personalized tacrolimus treatment for better clinical outcomes, thereby providing a new strategy for implementing personalized medicine.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| |
Collapse
|
27
|
Microbiome analysis, the immune response and transplantation in the era of next generation sequencing. Hum Immunol 2021; 82:883-901. [PMID: 34364710 DOI: 10.1016/j.humimm.2021.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
The human gastrointestinal tract, skin and mucosal surfaces are inhabited by a complex system of bacteria, viruses, fungi, archaea, protists, and eukaryotic parasites with predominance of bacteria and bacterial viruses (bacteriophages). Collectively these microbes form the microbiota of the microecosystem of humans. Recent advancement in technologies for nucleic acid isolation from various environmental samples, feces and body secretions and advancements in shotgun throughput massive parallel DNA and RNA sequencing along with 16S ribosomal gene sequencing have unraveled the identity of otherwise unknown microbial entities constituting the human microecosystem. The improved transcriptome analysis, technological developments in biochemical analytical methods and availability of complex bioinformatics tools have allowed us to begin to understand the metabolome of the microbiome and the biochemical pathways and potential signal transduction pathways in human cells in response to microbial infections and their products. Also, developments in human whole genome sequencing, targeted gene sequencing of histocompatibility genes and other immune response associated genes by Next Generation Sequencing (NGS) have allowed us to have a better conceptualization of immune responses, and alloimmune responses. These modern technologies have enabled us to dive into the intricate relationship between commensal symbiotic and pathogenic microbiome and immune system. For the most part, the commensal symbiotic microbiota helps to maintain normal immune homeostasis besides providing healthy nutrients, facilitating digestion, and protecting the skin, mucosal and intestinal barriers. However, changes in diets, administration of therapeutic agents like antibiotics, chemotherapeutic agents, immunosuppressants etc. along with certain host factors including human histocompatibility antigens may alter the microbial ecosystem balance by causing changes in microbial constituents, hierarchy of microbial species and even dysbiosis. Such alterations may cause immune dysregulation, breach of barrier protection and lead to immunopathogenesis rather than immune homeostasis. The effects of human microbiome on immunity, health and disease are currently under intense research with cutting edge technologies in molecular biology, biochemistry, and bioinformatics along with tremendous ability to characterize immune response at single cell level. This review will discuss the contemporary status on human microbiome immune system interactions and their potential effects on health, immune homeostasis and allograft transplantation.
Collapse
|
28
|
Cheng F, Li Q, Wang J, Zeng F, Zhang Y. Effects and safety evaluation of Wuzhi Capsules combined with tacrolimus for the treatment of kidney transplantation recipients. J Clin Pharm Ther 2021; 46:1636-1649. [PMID: 34342024 DOI: 10.1111/jcpt.13493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Tacrolimus (FK506), an effective and potent calcineurin inhibitor, is the cornerstone of immunosuppression after kidney transplantation. Wuzhi capsule (WZC), a prescribed ethanol extract of Nan-Wuweizi (Schisandra sphenanthera), is widely prescribed for kidney transplant recipients for the maintenance of tacrolimus concentration in clinical settings. Previous studies have demonstrated that WZC can increase the blood concentration of tacrolimus. However, it remains controversial whether to use WZC can be used to increase tacrolimus concentration in clinical practice. Our study aimed to evaluate the efficacy and safety of WZC combined with tacrolimus in the treatment of kidney transplant recipients. METHODS One hundred and ninety four Chinese kidney transplant recipients were included in this retrospective study. The recipients were divided into two groups (non-WZC group and WZC group). We investigated the effects of WZC on tacrolimus in terms of tacrolimus metabolism, laboratory tests, pharmacogenomics, renal function and adverse reactions. RESULTS AND DISCUSSION The concentration/dose (C0 /D) of tacrolimus was significantly higher in the WZC group than the non-WZC group. The laboratory findings of blood routine tests, liver and kidney function were not significantly different between the two groups. The CYP3A5 genotype showed clearly associated with tacrolimus C0 /D, whereas no significant difference was observed in patients with CYP3A4*1B, CYP3A4*22, ABCB1, ABCC2, POR*28 or PXR alleles. The improvement of C0 /D by administration of WZC was significant in CYP3A5 expressers compared to non-expressers. Furthermore, the WZC group had a remarkably higher proportion of subjects who reached the target tacrolimus concentration than the non-WZC group. No significant differences in renal function and adverse reactions were observed between the groups. WHAT IS NEW AND CONCLUSION Wuzhi capsule can increase tacrolimus concentration without negative effects on renal function and adverse reactions, especially in CYP3A5 expressers. Efficient and economical synergistic effects can be achieved by the combined administration of WZC in kidney transplant recipients.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
29
|
Mulder TAM, van Eerden RAG, de With M, Elens L, Hesselink DA, Matic M, Bins S, Mathijssen RHJ, van Schaik RHN. CYP3A4∗22 Genotyping in Clinical Practice: Ready for Implementation? Front Genet 2021; 12:711943. [PMID: 34306041 PMCID: PMC8296839 DOI: 10.3389/fgene.2021.711943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important drug metabolizing enzyme in the liver, responsible for the oxidative metabolism of ∼50% of clinically prescribed drugs. Therefore, genetic variation in CYP3A4 could potentially affect the pharmacokinetics, toxicity and clinical outcome of drug treatment. Thus far, pharmacogenetics for CYP3A4 has not received much attention. However, the recent discovery of the intron 6 single-nucleotide polymorphism (SNP) rs35599367C > T, encoding the CYP3A4∗22 allele, led to several studies into the pharmacogenetic effect of CYP3A4∗22 on different drugs. This allele has a relatively minor allele frequency of 3-5% and an effect on CYP3A4 enzymatic activity. Thus far, no review summarizing the data published on several drugs is available yet. This article therefore addresses the current knowledge on CYP3A4∗22. This information may help in deciding if, and for which drugs, CYP3A4∗22 genotype-based dosing could be helpful in improving drug therapy. CYP3A4∗22 was shown to significantly influence the pharmacokinetics of several drugs, with currently being most thoroughly investigated tacrolimus, cyclosporine, and statins. Additional studies, focusing on toxicity and clinical outcome, are warranted to demonstrate clinical utility of CYP3A4∗22 genotype-based dosing.
Collapse
Affiliation(s)
- Tessa A M Mulder
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ruben A G van Eerden
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Mirjam de With
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Laure Elens
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Erasmus MC Transplant Institute, Rotterdam, Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
30
|
Wang L, Zeng G, Li J, Luo J, Li H, Zhang Z. Association of polymorphism of CYP3A4, ABCB1, ABCC2, ABCG2, NFKB1, POR, and PXR with the concentration of cyclosporin A in allogeneic haematopoietic stem cell transplantation recipients. Xenobiotica 2021; 51:852-858. [PMID: 33974505 DOI: 10.1080/00498254.2021.1928791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cyclosporin a (CsA) was characterized by a narrow therapeutic window and high interindividual pharmacokinetic variability. In this study, we aimed to identify the association of CYP3A4, ABCB1, ABCC2, ABCG2, NFKB1, POR, and PXR polymorphisms with CsA concentrations in patients with allogeneic haematopoietic cell transplantation (allo-HSCT) based on the route of administration.A total of 40 allo-HSCT recipients receiving CsA were genotyped for CYP3A4, ABCB1, ABCC2, ABCG2, NFKB1, POR, and PXR polymorphisms. The correlation between polymorphisms and CsA concentration was analysed.The CsA dose-adjusted trough concentration (Cssmin/D) of oral or intravenous administration was significantly different (p < 0.001). For CsA Cssmin/D of intravenous administration, CYP3A4 rs2246709 (p = 0.015), ABCC2 rs717620 (p = 0.024), ABCG2 rs2231142 (p = 0.042), PXR rs3732359 (p = 0.008), PXR rs3814058 (p = 0.028) and PXR rs6785049 (p < 0.001) had a significant effect on CsA Cssmin/D. For CsA Cssmin/D of oral administration, ABCC2 rs717620 (p = 0.009) and ABCG2 rs2231142 (p = 0.011) had a significant effect on CsA Cssmin/D.These results illustrated that the CYP3A4, ABCC2, ABCG2, and PXR genotypes were closely correlated with CsA Cssmin/D, suggesting these SNPs were suitable for determining the appropriate dose of CsA.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Guangting Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Jianqiang Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Jia Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Huilan Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Zanling Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Hunan, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China
| |
Collapse
|
31
|
Significance of Ethnic Factors in Immunosuppressive Therapy Management After Organ Transplantation. Ther Drug Monit 2021; 42:369-380. [PMID: 32091469 DOI: 10.1097/ftd.0000000000000748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical outcomes after organ transplantation have greatly improved in the past 2 decades with the discovery and development of immunosuppressive drugs such as calcineurin inhibitors, antiproliferative agents, and mammalian target of rapamycin inhibitors. However, individualized dosage regimens have not yet been fully established for these drugs except for therapeutic drug monitoring-based dosage modification because of extensive interindividual variations in immunosuppressive drug pharmacokinetics. The variations in immunosuppressive drug pharmacokinetics are attributed to interindividual variations in the functional activity of cytochrome P450 enzymes, UDP-glucuronosyltransferases, and ATP-binding cassette subfamily B member 1 (known as P-glycoprotein or multidrug resistance 1) in the liver and small intestine. Some genetic variations have been found to be involved to at least some degree in pharmacokinetic variations in post-transplant immunosuppressive therapy. It is well known that the frequencies and effect size of minor alleles vary greatly between different races. Thus, ethnic considerations might provide useful information for optimizing individualized immunosuppressive therapy after organ transplantation. Here, we review ethnic factors affecting the pharmacokinetics of immunosuppressive drugs requiring therapeutic drug monitoring, including tacrolimus, cyclosporine, mycophenolate mofetil, sirolimus, and everolimus.
Collapse
|
32
|
Cheli S, Fusi M, De Silvestri A, Bonini I, Clementi E, Cattaneo D, Montrasio C, Baldelli S. In linezolid underexposure, pharmacogenetics matters: The role of CYP3A5. Biomed Pharmacother 2021; 139:111631. [PMID: 33940510 DOI: 10.1016/j.biopha.2021.111631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The exposure to linezolid is characterized by a large inter-individual variability; age, renal dysfunction and body weight explain this variability only to a limited extent and a considerable portion of it remains unexplained; therefore, we decided to investigate the role of individual genetic background focusing in particular on the risk of linezolid underexposure. 191 patients in therapy with linezolid at the standard dose of 600 mg twice daily were considered. Linezolid plasma concentration was determined at the steady state and classified as "below", "within" or "above" reference range. Genetic polymorphisms for ATP Binding Cassette Subfamily B Member 1 (ABCB1), Cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A5, and Cytochrome P450 Oxidoreductase (POR) were investigated. Age significantly correlated with drug exposure, and patients CYP3A5 expressers (GA and AA) were found at high risk to be underexposed to the drug when treated at standard dose. This association was confirmed even after correction with age. No association was found with ABCB1 polymorphism. Our data suggest that CYP3A5 polymorphisms might significantly affect linezolid disposition, putting patients at higher risk to be underexposed, while P-glycoprotein polymorphism seem not to play any role.
Collapse
Affiliation(s)
- Stefania Cheli
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Marta Fusi
- Clinical Pharmacology Unit, CNR Institute of Neuroscience, Dept Biomedical and Clinical Sciences, L. Sacco University Hospital, Università di Milano, 20157 Milano, Italy
| | - Annalisa De Silvestri
- Clinical Epidemiology and Biometry Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Igor Bonini
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Emilio Clementi
- Clinical Pharmacology Unit, CNR Institute of Neuroscience, Dept Biomedical and Clinical Sciences, L. Sacco University Hospital, Università di Milano, 20157 Milano, Italy; Scientific Institute IRCCS Eugenio Medea, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy.
| |
Collapse
|
33
|
Everton JBF, Patrício FJB, Faria MS, Ferreira TCA, Romao EA, Silva GEB, Magalhães M. CYP3A5 and PPARA genetic variants are associated with low trough concentration to dose ratio of tacrolimus in kidney transplant recipients. Eur J Clin Pharmacol 2021; 77:879-886. [PMID: 33398393 DOI: 10.1007/s00228-020-03076-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Genetic polymorphisms have been associated with variation in the metabolism of tacrolimus (TAC) in kidney transplant patients. This study is aimed at assessing the impact of allelic variants of CYP3A5 and PPARA genes on the pharmacokinetics (PK) of TAC in Brazilian kidney transplant recipients in the first-year post-transplant. METHODS A total of 127 patients were included for genetic evaluation. Genomic DNA was isolated from peripheral blood and real-time PCR was used to analyze the main polymorphisms described for the genes CYP3A5 (rs776746; C > G) and PPARA (rs4823613; A > G and rs4253728; G > A). RESULTS CYP3A5 expressors showed a lower Co/dose ratio than non-expressors, with the median values of this parameter <1.01 ng/mL/mg in the first group at all evaluated times. Additionally, PPARA variant homozygotes had a lower Co/D ratio than wild allele carriers in the 12-month post-transplant period, with a median value of 0.65 ng/mL/mg. In the CYP3A5 expressers, the presence of the variant homozygous genotype PPARA was associated with a lower value of Co/D compared with the other genotypic groups at month 12. CONCLUSION In the population under study, polymorphisms on CYP3A5 and PPARA were identified as determining and independent factors associated with the reduction of Co/D of TAC. Thus, the genotyping of these genetic variants may be a useful tool for the individualized prescription of TAC in kidney transplant patients.
Collapse
Affiliation(s)
- Janaína B F Everton
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão, São Luís, Brazil.,Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil
| | - Fernando J B Patrício
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Manuel S Faria
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil.,Clinical Research Center, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Teresa C A Ferreira
- Kidney Transplant Unit, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Elen A Romao
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gyl E B Silva
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil.,Pathology Unit, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Marcelo Magalhães
- Laboratory of Genomic and Histocompatibility Studies, University Hospital of the Federal University of Maranhão, São Luís, Brazil. .,Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís, Brazil. .,Clinical Research Center, University Hospital of the Federal University of Maranhão, São Luís, Brazil.
| |
Collapse
|
34
|
Yip VLM, Pertinez H, Meng X, Maggs JL, Carr DF, Park BK, Marson AG, Pirmohamed M. Evaluation of clinical and genetic factors in the population pharmacokinetics of carbamazepine. Br J Clin Pharmacol 2020; 87:2572-2588. [PMID: 33217013 PMCID: PMC8247401 DOI: 10.1111/bcp.14667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Aims Carbamazepine can cause hypersensitivity reactions in ~10% of patients. An immunogenic effect can be produced by the electrophilic 10,11‐epoxide metabolite but not by carbamazepine. Hypothetically, certain single nucleotide polymorphisms might increase the formation of immunogenic metabolites, leading ultimately to hypersensitivity reactions. This study explores the role of clinical and genetic factors in the pharmacokinetics (PK) of carbamazepine and 3 metabolites known to be chemically reactive or formed through reactive intermediates. Methods A combination of rich and sparse PK samples were collected from healthy volunteers and epilepsy patients. All subjects were genotyped for 20 single nucleotide polymorphisms in 11 genes known to be involved in the metabolism or transport of carbamazepine and carbamazepine 10,11‐epoxide. Nonlinear mixed effects modelling was used to build a population‐PK model. Results In total, 248 observations were collected from 80 subjects. A 1‐compartment PK model with first‐order absorption and elimination best described the parent carbamazepine data, with a total clearance of 1.96 L/h, central distribution volume of 164 L and absorption rate constant of 0.45 h−1. Total daily dose and coadministration of phenytoin were significant covariates for total clearance of carbamazepine. EPHX1‐416G/G genotype was a significant covariate for the clearance of carbamazepine 10,11‐epoxide. Conclusion Our data indicate that carbamazepine clearance was affected by total dose and phenytoin coadministration, but not by genetic factors, while carbamazepine 10,11‐epoxide clearance was affected by a variant in the microsomal epoxide hydrolase gene. A much larger sample size would be required to fully evaluate the role of genetic variation in carbamazepine pharmacokinetics, and thereby predisposition to carbamazepine hypersensitivity.
Collapse
Affiliation(s)
- Vincent L M Yip
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK.,The Wolfson Centre for Personalised Medicine, Department of Molecular and Clinical Pharmacology, The University of Liverpool, UK
| | - Henry Pertinez
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - James L Maggs
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - Daniel F Carr
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK.,The Wolfson Centre for Personalised Medicine, Department of Molecular and Clinical Pharmacology, The University of Liverpool, UK
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK.,The Wolfson Centre for Personalised Medicine, Department of Molecular and Clinical Pharmacology, The University of Liverpool, UK
| |
Collapse
|
35
|
Francke MI, Hesselink DA, Li Y, Koch BCP, de Wit LEA, van Schaik RHN, Yang L, Baan CC, van Gelder T, de Winter BCM. Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients. Br J Clin Pharmacol 2020; 87:1918-1929. [PMID: 33025649 PMCID: PMC8056738 DOI: 10.1111/bcp.14585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
Aims Tacrolimus is a critical dose drug and to avoid under‐ and overexposure, therapeutic drug monitoring is standard practice. However, rejection and drug‐related toxicity occur despite whole‐blood tacrolimus pre‐dose concentrations ([Tac]blood) being on target. Monitoring tacrolimus concentrations at the target site (within peripheral blood mononuclear cells; [Tac]cells) may better correlate with drug‐efficacy. The aim of this study was to (1) investigate the relationship between [Tac]blood and [Tac]cells, (2) identify factors affecting the tacrolimus distribution in cells and whole‐blood, and (3) study the relationship between [Tac]cells and clinical outcomes after kidney transplantation. Methods A total of 175 renal transplant recipients were prospectively followed. [Tac]blood and [Tac]cells were determined at Months 3, 6 and 12 post‐transplantation. Patients were genotyped for ABCB1 1199G>A and 3435C>T, CYP3A4 15389C>T, and CYP3A5 6986G>A. Data on rejection and tacrolimus‐related nephrotoxicity and post‐transplant diabetes mellitus were collected. Results Correlations between [Tac]blood and [Tac]cells were moderate to poor (Spearman's r = 0.31; r = 0.41; r = 0.61 at Months 3, 6 and 12, respectively). The [Tac]cells/[Tac]blood ratio was stable over time in most patients (median intra‐patient variability 39.0%; range 3.5%–173.2%). Age, albumin and haematocrit correlated with the [Tac]cells/[Tac]blood ratio. CYP3A5 and CYP3A4 genotype combined affected both dose‐corrected [Tac]blood and [Tac]cells. ABCB1 was not significantly related to tacrolimus distribution. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes. Conclusions The correlation between [Tac]blood and [Tac]cells is poor. Age, albumin and haematocrit correlate with the [Tac]cells/[Tac]blood ratio, whereas genetic variation in ABCB1, CYP3A4 and CYP3A5 do not. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes.
Collapse
Affiliation(s)
- Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Yi Li
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lucia E A de Wit
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lin Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
36
|
Sikma MA, Hunault CC, Van Maarseveen EM, Huitema ADR, Van de Graaf EA, Kirkels JH, Verhaar MC, Grutters JC, Kesecioglu J, De Lange DW. High Variability of Whole-Blood Tacrolimus Pharmacokinetics Early After Thoracic Organ Transplantation. Eur J Drug Metab Pharmacokinet 2020; 45:123-134. [PMID: 31745812 PMCID: PMC6994432 DOI: 10.1007/s13318-019-00591-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background and Objective Oral tacrolimus is initiated perioperatively in heart and lung transplantation patients. There have been few studies on oral tacrolimus pharmacokinetics early post-transplantation, even though tacrolimus-related toxicity may occur early, potentially leading to morbidity and mortality. Therefore, we aimed to study the pharmacokinetics of oral tacrolimus in thoracic organ recipients during the first days after transplantation. Methods We conducted a pharmacokinetic study in 30 thoracic organ transplants at intensive care at the University Medical Center Utrecht in the first week post-transplantation. Twelve-hour whole-blood tacrolimus profiles were examined using high-performance liquid chromatography tandem mass spectrometry (HPLC–MS/MS) and analysed via population pharmacokinetic modelling. Results The concentration–time profiles showed high variability. Concentrations at 12 h were outside the target range in 69% of the cases. A two-compartment model with mixed first-order and zero-order absorption adequately described tacrolimus concentrations. The typical value of the apparent clearance was 19.6 L/h (95% CI 16.2–22.9), and the apparent distribution volumes of central and peripheral compartments, V1 and V2, were 231 L (95% CI 199–267) and 521 L (95% CI 441–634), respectively. Inter-occasion (dose-to-dose) variability far exceeded the interindividual variability (IIV), with an estimated variability in relative bioavailability of 55% (95% CI 48.5–64.4). Conclusions The high variability of tacrolimus pharmacokinetics early after thoracic organ transplantation is largely due to excessive variability in bioavailability, making individualised dosing based on measured concentrations futile. To bypass this bioavailability issue, we suggest administering tacrolimus intravenously and aiming below the upper therapeutic range early post-transplantation. Clinical Trial Registraion: NTR 3912/EudraCT 2012-001909-24. Electronic supplementary material The online version of this article (10.1007/s13318-019-00591-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maaike A Sikma
- Department of Intensive Care and Dutch Poisons Information Center, University Medical Center Utrecht, Utrecht University, F06.149, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Claudine C Hunault
- Dutch Poisons Information Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Erik M Van Maarseveen
- Department of Clinical Pharmacy, Princess Máxima Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Clinical Pharmacy, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.,Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ed A Van de Graaf
- Department of Lung Transplantation, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Johannes H Kirkels
- Department of Cardiology, Heart Transplantation, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jan C Grutters
- Department of Lung Transplantation, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.,Department of Pulmonology, St. Antonius Hospital, Nieuwegein, Utrecht, The Netherlands
| | - Jozef Kesecioglu
- Department of Intensive Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Dylan W De Lange
- Dutch Poisons Information Center and Department of Intensive Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
37
|
Zhu J, Pasternak AL, Crona DJ. The future of research into genetics and the precision dosing of tacrolimus: what do we need to know? Pharmacogenomics 2020; 21:1061-1064. [PMID: 32896220 DOI: 10.2217/pgs-2020-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jing Zhu
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amy L Pasternak
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmacy, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Daniel J Crona
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.,UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA.,Department of Pharmacy, UNC Hospitals & Clinics, Chapel Hill, NC 27514, USA
| |
Collapse
|
38
|
Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, Elens L. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metab Toxicol 2020; 16:769-782. [PMID: 32721175 DOI: 10.1080/17425255.2020.1803277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In kidney transplantation, tacrolimus (TAC) is at the cornerstone of current immunosuppressive strategies. Though because of its narrow therapeutic index, it is critical to ensure that TAC levels are maintained within this sharp window through reactive adjustments. This would allow maximizing efficiency while limiting drug-associated toxicity. However, TAC high intra- and inter-patient pharmacokinetic (PK) variability makes it more laborious to accurately predict the appropriate dosage required for a given patient. AREAS COVERED This review summarizes the state-of-the-art knowledge regarding drug interactions, demographic and pharmacogenetics factors as predictors of TAC PK. We provide a scoring index for each association to grade its relevance and we present practical recommendations, when possible for clinical practice. EXPERT OPINION The management of TAC concentration in transplanted kidney patients is as critical as it is challenging. Recommendations based on rigorous scientific evidences are lacking as knowledge of potential predictors remains limited outside of DDIs. Awareness of these limitations should pave the way for studies looking at demographic and pharmacogenetic factors as well as gut microbiota composition in order to promote tailored treatment plans. Therapeutic approaches considering patients' clinical singularities may help allowing to maintain appropriate concentration of TAC.
Collapse
Affiliation(s)
- Alexandra L Degraeve
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Serge Moudio
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium.,Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Djamila Chaib Eddour
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Michel Mourad
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| |
Collapse
|
39
|
Francke MI, de Winter BC, Elens L, Lloberas N, Hesselink DA. The pharmacogenetics of tacrolimus and its implications for personalized therapy in kidney transplant recipients. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1776107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Marith I. Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Brenda C.M. de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laure Elens
- Louvain Drug Research Institute, Université Catholique De Louvain, Louvain, Belgium
| | - Nuria Lloberas
- Department of Nephrology, IDIBELL, Hospital Universitari Di Bellvitge, University of Barcelona, Barcelona, Spain
| | - Dennis A. Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Patel JN, Hamadeh IS. Pharmacogenetics and tacrolimus administration in stem cell transplantation. Pharmacogenomics 2020; 21:419-426. [PMID: 32308133 DOI: 10.2217/pgs-2019-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tacrolimus is the gold standard immunosuppressant administered in solid organ and stem cell transplantation to avoid graft rejection post-transplant. Despite its widespread use, there is a large variation in response to therapy, likely due to high inter-individual pharmacokinetic variability. Therapeutic drug monitoring is employed to improve clinical response and reduce toxicity. There is substantial evidence that pharmacogenetics influences drug exposure and response. CYP3A5 genotype significantly impacts oral tacrolimus concentrations and response after solid organ transplantation. There are fewer studies in stem cell transplantation and with intravenous tacrolimus dosing. This report highlights recent evidence suggesting genes such as CYP3A4 and ABCB1 play a larger role after intravenous dosing compared with CYP3A5, and the role for novel genes on tacrolimus outcomes.
Collapse
Affiliation(s)
- Jai N Patel
- Department of Cancer Pharmacology, Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| | - Issam S Hamadeh
- Department of Cancer Pharmacology, Levine Cancer Institute, Atrium Health, Charlotte, NC 28204, USA
| |
Collapse
|
41
|
Nakamura T, Fukuda M, Matsukane R, Suetsugu K, Harada N, Yoshizumi T, Egashira N, Mori M, Masuda S. Influence of POR*28 Polymorphisms on CYP3A5*3-Associated Variations in Tacrolimus Blood Levels at an Early Stage after Liver Transplantation. Int J Mol Sci 2020; 21:ijms21072287. [PMID: 32225074 PMCID: PMC7178010 DOI: 10.3390/ijms21072287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
It is well known that the CYP3A5*3 polymorphism is an important marker that correlates with the tacrolimus dose requirement after organ transplantation. Recently, it has been revealed that the POR*28 polymorphism affects the pharmacokinetics of tacrolimus in renal transplant patients. In this study, we examined whether POR*28 as well as CYP3A5*3 polymorphism in Japanese recipients and donors would be another biomarker for the variation of tacrolimus blood levels in the recipients during the first month after living-donor liver transplantation. We enrolled 65 patients treated with tacrolimus, who underwent liver transplantation between July 2016 and January 2019. Genomic DNA was extracted from whole-blood samples, and genotyping was performed to examine the presence of CYP3A5*3 and POR*28 polymorphisms in the recipients and donors. The CYP3A5*3/*3 genotype (defective CYP3A5) of the recipient (standard partial regression coefficient [median C/D ratio of CYP3A5 expressor vs. CYP3A5 non-expressor, p value]: Pod 1–7, β= −0.389 [1.76 vs. 2.73, p < 0.001]; Pod 8–14, β = −0.345 [2.03 vs. 2.83, p < 0.001]; Pod 15–21, β= −0.417 [1.75 vs. 2.94, p < 0.001]; Pod 22–28, β = −0.627 [1.55 vs. 2.90, p < 0.001]) rather than donor (Pod 1–7, β = n/a [1.88 vs. 2.76]; Pod 8–14, β = n/a [1.99 vs. 2.93]; Pod 15–21, β = −0.175 [1.91 vs. 2.94, p = 0.004]; Pod 22–28, β = n/a [1.61 vs. 2.67]) significantly contributed to the increase in the concentration/dose (C/D) ratio of tacrolimus for at least one month after surgery. We found that the tacrolimus C/D ratio significantly decreased from the third week after transplantation when the recipient carried both CYP3A5*1 (functional CYP3A5) and POR*28 (n = 19 [29.2%], median C/D ratio [inter quartile range] = 1.58 [1.39–2.17]), compared with that in the recipients carrying CYP3A5*1 and POR*1/*1 (n = 8 [12.3%], median C/D ratio [inter quartile range] = 2.23 [2.05–3.06]) (p < 0.001). In conclusion, to our knowledge, this is the first report suggesting that the POR*28 polymorphism is another biomarker for the tacrolimus oral dosage after liver transplantation in patients carrying CYP3A5*1 rather than CYP3A5*3/*3.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Clinical Pharmacology and Biopharmaceutics, The Pharmaceutical College, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Mio Fukuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Ryosuke Matsukane
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Kimitaka Suetsugu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (N.H.); (T.Y.); (M.M.)
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (M.F.); (R.M.); (K.S.); (N.E.)
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita 286-0124, Japan
- Correspondence: ; Tel.: +81-476-28-1401
| |
Collapse
|
42
|
El-Shair S, Al Shhab M, Zayed K, Alsmady M, Zihlif M. Association Between CYP3A4 and CYP3A5 Genotypes and Cyclosporine's Blood Levels and Doses among Jordanian Kidney Transplanted Patients. Curr Drug Metab 2020; 20:682-694. [PMID: 31385766 DOI: 10.2174/1389200220666190806141825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cyclosporine is used as an immunosuppressive agent in kidney transplantation. It has a narrow therapeutic window. Cyclosporine is predominantly metabolized by CYP3A4 and CYP3A5. The most common Single Nucleotide Polymorphisms (SNPs) affecting cyclosporine metabolism (CYP3A4*1B, CYP3A4*1G, CYP3A4*22 and CYP3A5*3) were investigated among Jordanian kidney transplanted patients to find out the genotypes and allele frequencies of these SNPs. Additionally, this study investigated whether genotypes of CYP3A4 and CYP3A5 affect C2 blood levels, dosing of cyclosporine and the prevalence of acute rejection. METHODS Blood samples of 109 adult patients taking cyclosporine as their primary immunosuppressant for kidney transplantation were collected from the Prince Hamzah Hospital, Amman, Jordan. Patients' first C2 blood levels and their first two given doses were collected. Patients were genotyped for the four SNPs using Polymerase Chain Reaction- restriction Fragment Length Polymorphism (PCR-RFLP) assay method. RESULTS Allele frequencies among Jordanian patients for CYP3A4*1B, CYP3A4*1G, CYP3A4*22 and CYP3A5*3 were 0.037, 0.399, 0.037 and 0.271, respectively. There was a significant association between CYP3A4*22 and mean difference in the second and first given doses (P=0.034). There was a big difference between CYP3A4*22 and the mean of the first C2 blood levels (P=0.063). CONCLUSION There was a strong association between CYP3A4*22 and the mean difference between the second and first given doses. There was a trend of significant difference between the mean of the first C2 blood levels among heterozygous CYP3A4*22 patients. Pharmacogenomics may hold promise in assisting the prediction of the best cyclosporine dose and C2 blood level among Jordanian kidney transplant patients.
Collapse
Affiliation(s)
- Sahar El-Shair
- Department of Pharmacology, The University of Jordan, Amman, Jordan
| | | | - Khaled Zayed
- Department of Nephrology and Kidney Transplantation, Prince Hamzah Hospital, Amman, Jordan
| | - Moaath Alsmady
- Department of Pharmacology, The University of Jordan, Amman, Jordan
| | - Malek Zihlif
- Department of Pharmacology, The University of Jordan, Amman, Jordan
| |
Collapse
|
43
|
Hryniewiecka E, Żegarska J, Żochowska D, Samborowska E, Jaźwiec R, Kosieradzki M, Nazarewski S, Dadlez M, Pączek L. Cyclosporine Metabolites' Metabolic Ratios May Be Markers of Cardiovascular Disease in Kidney Transplant Recipients Treated with Cyclosporine A-Based Immunosuppression Regimens. Cardiovasc Toxicol 2020; 19:255-263. [PMID: 30471016 DOI: 10.1007/s12012-018-9492-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cardiovascular disease (CVD) remains one of the primary causes of death after kidney transplantation (KTX). Cyclosporine (CsA) metabolites may play a role in CVD. Metabolic ratio (MR) may be considered a measure of intra-individual differences of CsA metabolism. The study was aimed at analysis of associations of CVD with indices of CsA metabolism: MRs and dose-adjusted CsA concentrations (C/D and C/D/kg). The study was performed in the Department of Immunology, Transplant Medicine, and Internal Diseases of the Medical University of Warsaw and involved 102 KTX recipients. Whole blood concentrations of cyclosporine A, AM1, AM9, AM4N, demethylcarboxylated (dMC-CsA), dihydroxylated (DiH-CsA), trihydroxylated (TriH-CsA) cyclosporine metabolites were determined by liquid chromatography coupled with tandem mass spectrometry. Lower AM9/CsA were observed in diabetics. Patients with coronary disease and/or myocardial infarction had lower dMC-CsA/CsA and higher AM4N/CsA. Supraventricular arrhythmia (SVA) was associated with higher AM1/CsA and AM4N/CsA. Hypertriglyceridemia (hTG) was associated with lower AM9/CsA, higher C/D and C/D/kg. Decrease of AM9/CsA and AM4N and higher D/C were associated with overweight/obesity. Systolic blood pressure (BP) positively correlated with dMC-CsA/CsA and negatively with C/D/kg. Diastolic BP correlated positively with AM1/CsA, dMC-CsA/CsA, DiH-CsA/CsA and TriH-CsA/CsA. We have demonstrated the association of coronary disease/myocardial infarction, SVA, hTG, overweight/obesity and elevated arterial BP with higher MRs of AM1, AM4N, dMC-CsA, DiH-CsA and TriH-CsA, and lower MRs of AM9, which may indicate deleterious and favourable effects of individual CsA metabolites on cardiovascular system and suggest engagement of specific enzymatic pathways.
Collapse
Affiliation(s)
- Ewa Hryniewiecka
- Department of Clinical Nursing, Medical University of Warsaw, 27 Ciolka St, Warsaw, Poland. .,Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, 59 Nowogrodzka St, Warsaw, Poland.
| | - Jolanta Żegarska
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, 59 Nowogrodzka St, Warsaw, Poland
| | - Dorota Żochowska
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, 59 Nowogrodzka St, Warsaw, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, 5a Pawinskiego St, Warsaw, Poland
| | - Radosław Jaźwiec
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, 5a Pawinskiego St, Warsaw, Poland
| | - Maciej Kosieradzki
- Department of General and Transplantology, Medical University of Warsaw, 59 Nowogrodzka St, Warsaw, Poland
| | - Sławomir Nazarewski
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, 1a Banacha St, Warsaw, Poland
| | - Michał Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, 5a Pawinskiego St, Warsaw, Poland.,Biology Department, Institute of Genetics and Biotechnology, 5a Pawinskiego St, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplant Medicine and Internal Diseases, Medical University of Warsaw, 59 Nowogrodzka St, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St, Warsaw, Poland
| |
Collapse
|
44
|
Miano TA, Flesch JD, Feng R, Forker CM, Brown M, Oyster M, Kalman L, Rushefski M, Cantu E, Porteus M, Yang W, Localio AR, Diamond JM, Christie JD, Shashaty MGS. Early Tacrolimus Concentrations After Lung Transplant Are Predicted by Combined Clinical and Genetic Factors and Associated With Acute Kidney Injury. Clin Pharmacol Ther 2020; 107:462-470. [PMID: 31513279 PMCID: PMC6980920 DOI: 10.1002/cpt.1629] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022]
Abstract
Tacrolimus exhibits unpredictable pharmacokinetics (PKs) after lung transplant, partly explained by cytochrome P450 (CYP)-enzyme polymorphisms. However, whether exposure variability during the immediate postoperative period affects outcomes is unknown, and pharmacogenetic dosing may be limited by residual PK variability. We estimated adjusted associations between early postoperative tacrolimus concentrations and acute kidney injury (AKI) and acute cellular rejection (ACR), and identified clinical and pharmacogenetic factors that explain postoperative tacrolimus concentration variability in 484 lung transplant patients. Increasing tacrolimus concentration was associated with higher AKI risk (hazard ratio (HR) 1.54; 95% confidence interval (CI) 1.20-1.96 per 5-mg/dL); and increasing AKI severity (odds ratio 1.29; 95% CI 1.04-1.60 per 5-mg/dL), but not ACR (HR 1.02; 95% CI 0.73-1.42). A model with clinical and pharmacogenetic factors explained 42% of concentration variance compared with 19% for pharmacogenetic factors only. Early tacrolimus exposure was independently associated with AKI after lung transplantation, but not ACR. Clinical factors accounted for substantial residual tacrolimus concentration variability not explained by CYP-enzyme polymorphisms.
Collapse
Affiliation(s)
- Todd A. Miano
- Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine at the University of Pennsylvania
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania
| | - Judd D. Flesch
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Rui Feng
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania
| | - Caitlin M. Forker
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Melanie Brown
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Michelle Oyster
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Laurel Kalman
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Melanie Rushefski
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Edward Cantu
- Division of Cardiovascular Surgery, Perelman School of Medicine at the University of Pennsylvania
| | - Mary Porteus
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Wei Yang
- Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine at the University of Pennsylvania
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania
| | - A. Russel Localio
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania
| | - Joshua M. Diamond
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Jason D. Christie
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| | - Michael G. S. Shashaty
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
45
|
Huang L, Liu Y, Jiao Z, Wang J, Fang L, Mao J. Population pharmacokinetic study of tacrolimus in pediatric patients with primary nephrotic syndrome: A comparison of linear and nonlinear Michaelis–Menten pharmacokinetic model. Eur J Pharm Sci 2020; 143:105199. [DOI: 10.1016/j.ejps.2019.105199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
|
46
|
Population pharmacokinetics of cyclosporine in Chinese children receiving hematopoietic stem cell transplantation. Acta Pharmacol Sin 2019; 40:1603-1610. [PMID: 31341257 PMCID: PMC7471407 DOI: 10.1038/s41401-019-0277-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cyclosporine (CsA) is characterized by a narrow therapeutic window and high interindividual pharmacokinetic variability, particularly in juvenile patients. The aims of this study were to build a population pharmacokinetic model of CsA in Chinese children with hematopathy who received allogeneic hematopoietic stem cell transplantation (allo-HSCT) and to identify covariates affecting CsA pharmacokinetics. A total of 86 Chinese children aged 8.4 ± 3.8 years (range 1.1–16.8 years) who received allo-HSCT were enrolled. Whole blood samples were collected before allo-HSCT. Genotyping was performed using an Agena MassARRAY system. A total of 1010 trough plasma concentration values of CsA and clinical data were collected. The population pharmacokinetic model of CsA was constructed using nonlinear mixed-effects modeling (NONMEM) software. The stability and performance of the final model were validated using bootstrapping and normalized prediction distribution errors. We showed that a one-compartment model with first-order elimination adequately described the pharmacokinetics of CsA. The typical values for clearance (CL) and volume of distribution (V) were 42.3 L/h and 3100 L, respectively. Body weight, postoperative days, CYP3A4*1 G genotype, estimated glomerular filtration rate and coadministration of triazole antifungal drugs were identified as significant covariates for CL. Weight and postoperative days were significant covariates for the V of CsA. Our model can be adopted to optimize the CsA dosing regimen for Chinese children with hematopathy receiving allo-HSCT.
Collapse
|
47
|
Mohamed ME, Schladt DP, Guan W, Wu B, van Setten J, Keating B, Iklé D, Remmel RP, Dorr CR, Mannon RB, Matas AJ, Israni AK, Oetting WS, Jacobson PA. Tacrolimus troughs and genetic determinants of metabolism in kidney transplant recipients: A comparison of four ancestry groups. Am J Transplant 2019; 19:2795-2804. [PMID: 30953600 PMCID: PMC6763344 DOI: 10.1111/ajt.15385] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Tacrolimus trough and dose requirements vary dramatically between individuals of European and African American ancestry. These differences are less well described in other populations. We conducted an observational, prospective, multicenter study from which 2595 kidney transplant recipients of European, African, Native American, and Asian ancestry were studied for tacrolimus trough, doses, and genetic determinants of metabolism. We studied the well-known variants and conducted a CYP3A4/5 gene-wide analysis to identify new variants. Daily doses, and dose-normalized troughs were significantly different between the four groups (P < .001). CYP3A5*3 (rs776746) was associated with higher dose-normalized tacrolimus troughs in all groups but occurred at different allele frequencies and had differing effect sizes. The CYP3A5*6 (rs10264272) and *7 (rs413003343) variants were only present in African Americans. CYP3A4*22 (rs35599367) was not found in any of the Asian ancestry samples. We identified seven suggestive variants in the CYP3A4/5 genes associated with dose-normalized troughs in Native Americans (P = 1.1 × 10-5 -8.8 × 10-6 ) and one suggestive variant in Asian Americans (P = 5.6 × 10-6 ). Tacrolimus daily doses and dose-normalized troughs vary significantly among different ancestry groups. We identified potential new variants important in Asians and Native Americans. Studies with larger populations should be conducted to assess the importance of the identified suggestive variants.
Collapse
Affiliation(s)
- Moataz E. Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA,Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | | | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Baolin Wu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Brendan Keating
- Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Rory P. Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Casey R. Dorr
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA,Department of Medicine, University of Minnesota, Hennepin Healthcare, Minneapolis, MN
| | | | - Arthur J. Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Ajay K. Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA,Department of Medicine, University of Minnesota, Hennepin Healthcare, Minneapolis, MN,Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - William S. Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A. Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
48
|
Ozdemir F, Oz MD, Suzen HS. A Novel PCR-RFLP Method for Detection of POR*28 Polymorphism and its Genotype/Allele Frequencies in a Turkish Population. Curr Drug Metab 2019; 20:845-851. [PMID: 31518218 DOI: 10.2174/1389200220666190913121052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Accepted: 09/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Cytochrome P450 (CYP) enzymes are involved in the metabolism of many endogenous and exogenous substances. They need electrons for their activity. CYP mediated oxidation reactions require cytochrome oxidoreductase (POR) as an electron donor. A common genetic variation identified in the coding region of POR gene (POR*28) leads to an alteration in POR activity by causing amino acid change. The current study aimed to determine the allele and genotype frequencies of POR*28 in a healthy Turkish population by using a novel genotyping assay. METHODS A novel PCR-RFLP assay was developed for the detection of POR*28 (rs1057868) polymorphism and the obtained frequencies were compared with the data established in various ethnic groups. RESULTS Genotypic analysis revealed that of 209 healthy, unrelated individuals tested for POR*28 polymorphism, 55.5% of the studied subjects were homozygous for the CC genotype, 34.9% were heterozygous for the CT genotype and 9.6% were homozygous for the TT genotype. The allele frequencies were 0.73 (C) and 0.27 (T). The present results were in accordance with the Hardy- Weinberg equilibrium. The distribution of POR*28 allele varies between populations. The frequency of the T allele among members of the Turkish population was similar to frequencies in Caucasian populations but was lower than in Japanese and Chinese populations. CONCLUSIONS In this study, a novel method was developed, which could be applied easily in every laboratory for the genotyping of POR *28 polymorphism. The developed genotyping method and documented allele frequencies may have potential in understanding and predicting the variations in drug response/adverse reactions in pharmacotherapy and susceptibility to diseases in POR-mediated metabolism reactions.
Collapse
Affiliation(s)
- Fezile Ozdemir
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ankara University, Ankara, 06590, Turkey
| | - Merve Demirbugen Oz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Ankara, 06560, Turkey
| | - Hilat S Suzen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Ankara, 06560, Turkey
| |
Collapse
|
49
|
Largeau B, Guellec CBL, Longuet H, Lesne P, Bouvarel A, Préteseille L, Marquet P, Halimi JM, Büchler M, Gatault P, Noble J. Comparison of Tacrolimus Starting Doses Based on CYP3A5 Phenotype or Genotype in Kidney Transplant Recipients. Prog Transplant 2019; 29:300-308. [PMID: 31514576 DOI: 10.1177/1526924819873905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Selection of expected phenotypes (ie, expressers/non-expressers) is currently used in CYP3A5*3 genotype-based tacrolimus dosing. The authors assessed whether a dosing regimen based on the 3 CYP3A5 genotypes may reduce the occurrence of inadequate exposure. METHODS Tacrolimus whole blood trough levels (C 0) were retrieved from a retrospective cohort of 100 kidney transplant recipients treated with a starting dose of 0.15 (non-expressers) or 0.30 (expressers) mg/kg/d. The authors evaluated the occurrence of overexposures (12 < C 0 < 20 ng/mL) or toxic concentrations (C 0 ≥ 20 ng/mL). These results were used to set up a new strategy based on the 3 distinct CYP3A5 genotypes, which relevance was evaluated in a prospective cohort of 107 patients. RESULTS In the retrospective cohort, non-expressers exhibited frequent overexposure (63.6%) or toxic C 0 (20.8%). Among expressers, none of the homozygous *1 carriers exhibited overexposure contrary to 25% of the heterozygotes. Based on these results, new tacrolimus starting doses were set at 0.10, 0.20, and 0.30 mg/kg/d for CYP3A5*3/*3, CYP3A5*1/*3, and CYP3A5*1/*1 genotypes, respectively. Tacrolimus overexposure was reduced in the CYP3A5*3/*3 group (63.6% vs 40%, P = .0038). None of the heterozygous patients exhibited toxic tacrolimus C 0. Clinical outcomes were not different between the 2 periods, whatever the genotype. Our results indicate that the best tacrolimus exposure was obtained for doses of 0.10, 0.20, and 0.20 mg/kg/d for CYP3A5*3/3, CYP3A5*1/*3, and CYP3A5*1/*1, respectively. CONCLUSIONS Our results confirm that selecting tacrolimus dosing regimen according to the expected phenotype is appropriate, but that lower than currently recommended doses may be preferable.
Collapse
Affiliation(s)
- Bérenger Largeau
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - Chantal Barin-Le Guellec
- Université de Tours, Université de Limoges, INSERM, Individual profiling and prevention of risks with immunosuppressive therapies and transplantation (IPPRITT) - UMR 1248, CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - Hélène Longuet
- CHRU de Tours, Service de Néphrologie-Hypertension artérielle, Dialyses et Transplantation Rénale, FHU SUPORT, Tours, France
| | - Philippe Lesne
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - Antoine Bouvarel
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - Laura Préteseille
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - Pierre Marquet
- Université de Limoges, INSERM, Individual profiling and prevention of risks with immunosuppressive therapies and transplantation (IPPRITT) - UMR 1248, CHU de Limoges, Service de Pharmacologie et Toxicologie, FHU SUPORT, Limoges, France
| | - Jean-Michel Halimi
- Université de Tours, Transplantation, immunologie et inflammation (T2I) - EA4245, CHRU de Tours, Service de Néphrologie-Hypertension artérielle, Dialyses et Transplantation Rénale, FHU SUPORT, Tours, France
| | - Matthias Büchler
- Université de Tours, Transplantation, immunologie et inflammation (T2I) - EA4245, CHRU de Tours, Service de Néphrologie-Hypertension artérielle, Dialyses et Transplantation Rénale, FHU SUPORT, Tours, France
| | - Philippe Gatault
- Université de Tours, Transplantation, immunologie et inflammation (T2I) - EA4245, CHRU de Tours, Service de Néphrologie-Hypertension artérielle, Dialyses et Transplantation Rénale, FHU SUPORT, Tours, France
| | - Johan Noble
- CHRU de Tours, Service de Néphrologie-Hypertension artérielle, Dialyses et Transplantation Rénale, FHU SUPORT, Tours, France
| |
Collapse
|
50
|
CYP3A5 and CYP3A7 genetic polymorphisms affect tacrolimus concentration in pediatric patients with nephrotic range proteinuria. Eur J Clin Pharmacol 2019; 75:1533-1540. [DOI: 10.1007/s00228-019-02726-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023]
|