1
|
Lee B, Shin NY, Park CH, Nam Y, Lim SM, Ahn KJ. Spatial Similarity of MRI-Visible Perivascular Spaces in Healthy Young Adult Twins. Yonsei Med J 2024; 65:661-668. [PMID: 39439170 PMCID: PMC11519134 DOI: 10.3349/ymj.2023.0581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE This study aimed to determine whether genetic factors affect the location of dilated perivascular spaces (dPVS) by comparing healthy young twins and non-twin (NT) siblings. MATERIALS AND METHODS A total of 700 healthy young adult twins and NT siblings [138 monozygotic (MZ) twin pairs, 79 dizygotic (DZ) twin pairs, and 133 NT sibling pairs] were collected from the Human Connectome Project dataset. dPVS was automatically segmented and normalized to standard space. Then, spatial similarity indices [mean squared error (MSE), structural similarity (SSIM), and dice similarity (DS)] were calculated for dPVS in the basal ganglia (BGdPVS) and white matter (WMdPVS) between paired subjects before and after propensity score matching of dPVS volumes between groups. Within-pair correlations for the regional volumes of dVPS were also assessed using the intraclass correlation coefficient. RESULTS The spatial similarity of dPVS was significantly higher in MZ twins [higher DS (median, 0.382 and 0.310) and SSIM (0.963 and 0.887) and lower MSE (0.005 and 0.005) for BGdPVS and WMdPVS, respectively] than in DZ twins [DS (0.121 and 0.119), SSIM (0.941 and 0.868), and MSE (0.010 and 0.011)] and NT siblings [DS (0.106 and 0.097), SSIM (0.924 and 0.848), and MSE (0.016 and 0.017)]. No significant difference was found between DZ twins and NT siblings. Similar results were found even after the subjects were matched according to dPVS volume. Regional dPVS volumes were also more correlated within pairs in MZ twins than in DZ twins and NT siblings. CONCLUSION Our results suggest that genetic factors affect the location of dPVS.
Collapse
Affiliation(s)
- Boeun Lee
- Department of Radiology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Na-Young Shin
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea.
| | - Chang-Hyun Park
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
- Division of Artificial Intelligence and Software, College of Engineering, Ewha Womans University, Seoul, Korea
| | - Yoonho Nam
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Korea
| | - Soo Mee Lim
- Department of Radiology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kook Jin Ahn
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Seehafer S, Larsen N, Aludin S, Jansen O, Schmill LPA. Perivascular spaces and where to find them - MR imaging and evaluation methods. ROFO-FORTSCHR RONTG 2024; 196:1029-1036. [PMID: 38408476 DOI: 10.1055/a-2254-5651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND Perivascular spaces (synonym: Virchow-Robin spaces) were first described over 150 years ago. They are defined as the fluid-filled spaces surrounding the small penetrating cerebral vessels. They gained growing scientific interest especially with the postulation of the so-called glymphatic system and their possible role in neurodegenerative and neuroinflammatory diseases. METHODS PubMed was used for a systematic search with a focus on literature regarding MRI imaging and evaluation methods of perivascular spaces. Studies on human in-vivo imaging were included with a focus on studies involving healthy populations. No time frame was set. The nomenclature in the literature is very heterogeneous with terms like "large", "dilated", "enlarged" perivascular spaces whereas borders and definitions often remain unclear. This work generally talks about perivascular spaces. RESULTS This review article discusses the morphologic MRI characteristics in different sequences. With the continual improvement of image quality, more and tinier structures can be depicted in detail. Visual analysis and semi or fully automated segmentation methods are briefly discussed. CONCLUSION If they are looked for, perivascular spaces are apparent in basically every cranial MRI examination. Their physiologic or pathologic value is still under debate. KEY POINTS · Perivascular spaces can be seen in basically every cranial MRI examination.. · Primarily T2-weighend sequences are used for visual analysis. Additional sequences are helpful for distinction from their differential diagnoses.. · There are promising approaches for the semi or fully automated segmentation of perivascular spaces with the possibility to collect more quantitative parameters.. CITATION FORMAT · Seehafer S, Larsen N, Aludin S et al. Perivascular spaces and where to find them - MRI imaging and evaluation methods. Fortschr Röntgenstr 2024; 196: 1029 - 1036.
Collapse
Affiliation(s)
- Svea Seehafer
- Clinic for Radiology and Neuroradiology, University Hospital Schleswig-Holstein - Campus Kiel, Germany
| | - Naomi Larsen
- Clinic for Radiology and Neuroradiology, University Hospital Schleswig-Holstein - Campus Kiel, Germany
| | - Schekeb Aludin
- Clinic for Radiology and Neuroradiology, University Hospital Schleswig-Holstein - Campus Kiel, Germany
| | - Olav Jansen
- Clinic for Radiology and Neuroradiology, University Hospital Schleswig-Holstein - Campus Kiel, Germany
| | | |
Collapse
|
3
|
Rauch M, Lachner K, Frickel L, Lauer M, Adenauer SJ, Neuhaus E, Hattingen E, Porto L. Focally Enlarged Perivascular Spaces in Pediatric and Adolescent Patients with Polymicrogyria-an MRI Study. Clin Neuroradiol 2024:10.1007/s00062-024-01457-5. [PMID: 39269662 DOI: 10.1007/s00062-024-01457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE Polymicrogyria (PMG) is a cortical malformation frequently associated with epilepsy. Our aim was to investigate the frequency and conspicuity of enlarged perivascular spaces (EPVS) underneath dysplastic cortex as a potentially underrecognized feature of PMG in pediatric and adolescent patients undergoing clinical magnetic resonance imaging (MRI). METHODS We analyzed data from 28 pediatric and adolescent patients with PMG and a matched control group, ranging in age from 2 days to 21 years, who underwent MRI at 1.5T or 3T. T2-weighted MR images were examined for the presence of EPVS underneath the dysplastic cortex. The quantity of EPVS was graded from 0 to 4 (0: none, 1: < 10, 2: 11-20, 3: 21-40, 4: > 40 EPVS). We then compared the presence and quantity of EPVS to the matched controls in terms of total EPVS scores, and EPVS scores underneath the dysplastsic cortex depending on the age groups, the localization of PMG, and the MRI field strength. RESULTS In 23/28 (82%) PMG patients, EPVS spatially related to the dysplastic cortex were identified. EPVS scores were significantly higher in PMG patients compared to controls, independent from age or PMG location. No significant differences were observed in EPVS scores in patients examined at 1.5T compared to those examined at 3T. CONCLUSION EPVS underneath the dysplastic cortex were identified in 82% of patients. EPVS may serve as an important clue for PMG and a marker for cortical malformation.
Collapse
Affiliation(s)
- Maximilian Rauch
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | - Karsten Lachner
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Lea Frickel
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Monika Lauer
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Simon Jonas Adenauer
- Department of Radiology, Helios Klinikum Bonn/Rhein-Sieg, Von-Hompesch-Straße 1, 53123, Bonn, Germany
| | - Elisabeth Neuhaus
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Luciana Porto
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Deike K, Decker A, Scheyhing P, Harten J, Zimmermann N, Paech D, Peters O, Freiesleben SD, Schneider LS, Preis L, Priller J, Spruth E, Altenstein S, Lohse A, Fliessbach K, Kimmich O, Wiltfang J, Bartels C, Hansen N, Jessen F, Rostamzadeh A, Düzel E, Glanz W, Incesoy EI, Butryn M, Buerger K, Janowitz D, Ewers M, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Spottke A, Roy N, Wagner M, Roeske S, Heneka MT, Brosseron F, Ramirez A, Dobisch L, Wolfsgruber S, Kleineidam L, Yakupov R, Stark M, Schmid MC, Berger M, Hetzer S, Dechent P, Scheffler K, Petzold GC, Schneider A, Effland A, Radbruch A. Machine Learning-Based Perivascular Space Volumetry in Alzheimer Disease. Invest Radiol 2024; 59:667-676. [PMID: 38652067 DOI: 10.1097/rli.0000000000001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
OBJECTIVES Impaired perivascular clearance has been suggested as a contributing factor to the pathogenesis of Alzheimer disease (AD). However, it remains unresolved when the anatomy of the perivascular space (PVS) is altered during AD progression. Therefore, this study investigates the association between PVS volume and AD progression in cognitively unimpaired (CU) individuals, both with and without subjective cognitive decline (SCD), and in those clinically diagnosed with mild cognitive impairment (MCI) or mild AD. MATERIALS AND METHODS A convolutional neural network was trained using manually corrected, filter-based segmentations (n = 1000) to automatically segment the PVS in the centrum semiovale from interpolated, coronal T2-weighted magnetic resonance imaging scans (n = 894). These scans were sourced from the national German Center for Neurodegenerative Diseases Longitudinal Cognitive Impairment and Dementia Study. Convolutional neural network-based segmentations and those performed by a human rater were compared in terms of segmentation volume, identified PVS clusters, as well as Dice score. The comparison revealed good segmentation quality (Pearson correlation coefficient r = 0.70 with P < 0.0001 for PVS volume, detection rate in cluster analysis = 84.3%, and Dice score = 59.0%). Subsequent multivariate linear regression analysis, adjusted for participants' age, was performed to correlate PVS volume with clinical diagnoses, disease progression, cerebrospinal fluid biomarkers, lifestyle factors, and cognitive function. Cognitive function was assessed using the Mini-Mental State Examination, the Comprehensive Neuropsychological Test Battery, and the Cognitive Subscale of the 13-Item Alzheimer's Disease Assessment Scale. RESULTS Multivariate analysis, adjusted for age, revealed that participants with AD and MCI, but not those with SCD, had significantly higher PVS volumes compared with CU participants without SCD ( P = 0.001 for each group). Furthermore, CU participants who developed incident MCI within 4.5 years after the baseline assessment showed significantly higher PVS volumes at baseline compared with those who did not progress to MCI ( P = 0.03). Cognitive function was negatively correlated with PVS volume across all participant groups ( P ≤ 0.005 for each). No significant correlation was found between PVS volume and any of the following parameters: cerebrospinal fluid biomarkers, sleep quality, body mass index, nicotine consumption, or alcohol abuse. CONCLUSIONS The very early changes of PVS volume may suggest that alterations in PVS function are involved in the pathophysiology of AD. Overall, the volumetric assessment of centrum semiovale PVS represents a very early imaging biomarker for AD.
Collapse
Affiliation(s)
- Katerina Deike
- From the German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany (K.D., A.D., K.F., O.K., F.J., Annika Spottke, N.R., M.W., S.R., M.T.H., F.B., Alfredo Ramirez, S.W., L.K., M.S., M.C.S., G.C.P., Anja Schneider, Alexander Radbruch); Department of Neuroradiology, University Hospital, Bonn, Germany (K.D., P.S., D.P., Alexander Radbruch); Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University Hospital Bonn, Bonn, Germany (J.H., N.Z., K.F., M.W., Alfredo Ramirez, S.W., L.K., Anja Schneider); Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany (D.P.); German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany (O.P., S.D.F., J.P., E.S., S.A.); Institute of Psychiatry and Psychotherapy, Charité-Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (O.P., S.D.F., L.-S.S., L.P.); Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany (J.P., E.S., S.A., A.L.); Department of Psychiatry and Psychotherapy, School of Medicine, Munich, Germany (J.P.); University of Edinburgh and UK DRI, Edinburgh, United Kingdom (J.P.); German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany (J.W.); Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Germany (J.W., C.B., N.H.); Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal (J.W.); Department of Psychiatry, University of Cologne, Cologne, Germany (F.J., Ayda Rostamzadeh); Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany (F.J., Alfredo Ramirez); German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany (E.D., W.G., E.I.I., Michaela Butryn, L.D., R.Y.); Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany (E.D., W.G., E.I.I., Michaela Butryn); Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, Magdeburg, Germany (E.I.I.); German Center for Neurodegenerative Diseases (DZNE), Munich, Germany (K.B., M.E., R.P.); Institute for Stroke and Dementia Research, LMU Munich, Germany (K.B., D.J., M.E.); Department of Psychiatry and Psychotherapy, LMU Munich, Germany (R.P., B.-S.R.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (R.P.); Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom (R.P.); Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom (R.P., B.-S.R.); Department of Neuroradiology, University Hospital Munich, Munich, Germany (B.-S.R.); German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany (S.T., I.K., D.G.); Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany (S.T., I.K., D.G.); German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany (C.L., M.H.M.); Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, Tübingen, Germany (C.L.); Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen Germany (M.H.M.); Department of Neurology, University of Bonn, Bonn, Germany (Annika Spottke); Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Cologne, Germany (Alfredo Ramirez); Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX (Alfredo Ramirez); Institute for Medical Biometry, Informatics, and Epidemiology, University Hospital Bonn, Bonn, Germany (M.C.S., Moritz Berger); Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin, Berlin, Germany (S.H.); MR-Research in Neurosciences, Department of Cognitive Neurology, Göttingen, Germany (P.D.); Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany (K.S.); Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany (G.C.P.); and Institute for Applied Mathematics, University of Bonn, Bonn, Germany (A.E.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Borrelli S, Guisset F, Vanden Bulcke C, Stölting A, Bugli C, Lolli V, Du Pasquier R, van Pesch V, Absinta M, Pasi M, Maggi P. Enlarged perivascular spaces are associated with brain microangiopathy and aging in multiple sclerosis. Mult Scler 2024; 30:983-993. [PMID: 38850029 DOI: 10.1177/13524585241256881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND Growing evidence links brain-MRI enlarged perivascular spaces (EPVS) and multiple sclerosis (MS), but their role remains unclear. OBJECTIVE This study aimed to investigate the cross-sectional associations of EPVS with several neuroinflammatory and neurodegenerative features in a large multicentric-MS cohort. METHODS In total, 207 patients underwent 3T axial-T2-weighted brain-MRI for EPVS assessment (EPVS dichotomized into high/low according to ⩾ 2/< 2 rating categories). MRI biomarkers included brain-predicted age and brain-predicted age difference (brain-PAD), central vein sign (CVS)-positive lesion percentage (CVS%), paramagnetic rim and cortical lesions, T2-lesion load, and brain volumetry. The variable relative importance for EPVS-category prediction was explored using a classification random forest approach. RESULTS High EPVS patients were older (49 vs 44 years, p = 0.003), had ⩾ 1 vascular risk factors (VRFs; p = 0.005), lower CVS% (67% vs 78%, p < 0.001), reduced brain volumes (whole brain: 0.63 vs 0.73, p = 0.01; gray matter: 0.36 vs 0.40; p = 0.002), and older brain-predicted age (58 vs 50 years, p < 0.001). No differences were found for neuroinflammatory markers. After adjusting for age and VFRs (multivariate analyses), the high EPVS category correlated with lower CVS% (odds ratio (OR) = 0.98, 95% confidence interval (CI) = 0.96-0.99; p = 0.02), lower whole brain (OR = 0.01, 95% CI = 0.0003-0.5; p = 0.02), gray matter (OR = 0.0004, 95% CI = 0.0000004-0.4; p = 0.03) volumes, and higher brain-PAD (OR = 1.05, 95% CI = 1.01-1.09; p = 0.02). Random forest identified brain-PAD as the most important predictor of high EPVS. CONCLUSION EPVS in MS likely reflect microangiopathic disease rather than neuroinflammation, potentially contributing to accelerated neurodegeneration.
Collapse
Affiliation(s)
- Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - François Guisset
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Colin Vanden Bulcke
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anna Stölting
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Céline Bugli
- Plateforme technologique de Support en Méthodologie et Calcul Statistique, Université catholique de Louvain, Brussels, Belgium
| | - Valentina Lolli
- Department of Radiology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - Renaud Du Pasquier
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Vincent van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Martina Absinta
- Vita-Salute San Raffaele University, Milan, Italy/Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marco Pasi
- Stroke Unit, Department of Neurology, CIC-IT 1415, CHRU de Tours, INSERM 1253 iBrain, Tours, France
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium/Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland/Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Li X, Lin Z, Liu C, Bai R, Wu D, Yang J. Glymphatic Imaging in Pediatrics. J Magn Reson Imaging 2024; 59:1523-1541. [PMID: 37819198 DOI: 10.1002/jmri.29040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The glymphatic system, which facilitates cerebrospinal fluid (CSF) flow through the brain parenchyma, is important for brain development and waste clearance. Advances in imaging techniques, particularly magnetic resonance imaging, have make it possible to evaluate glymphatic structures and functions in vivo. Recently, several studies have focused on the development and alterations of the glymphatic system in pediatric disorders. This review discusses the development of the glymphatic system, advances of imaging techniques and their applications in pediatric disorders. First, the results of the reviewed studies indicate that the development of the glymphatic system is a long-lasting process that continues into adulthood. Second, there is a need for improved glymphatic imaging techniques that are non-invasive and fast to improve suitability for pediatric applications, as some of existing methods use contrast injection and are susceptible to motion artifacts from long scanning times. Several novel techniques are potentially feasible for pediatric patients and may be used in the future. Third, the glymphatic dysfunction is associated with a large number of pediatric disorders, although only a few have recently been investigated. In conclusion, research on the pediatric glymphatic system remains an emerging field. The preliminary applications of glymphatic imaging techniques have provided unique insight into the pathological mechanism of pediatric diseases, but mainly limited in visualization of enlarged perivascular spaces and morphological measurements on CSF volumes. More in-depth studies on glymphatic functions are required to improve our understanding of the mechanisms underlying brain development and pediatric diseases. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zixuan Lin
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Boutet A, Son HJ, Malik M, Haile S, Yang AZ, Pai V, Germann J, Mandell DM. Enlarging and shrinking focal perivascular spaces. Neuroradiol J 2024:19714009241242642. [PMID: 38565221 DOI: 10.1177/19714009241242642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Perivascular spaces (PVS) are interstitial fluid-filled spaces surrounding blood vessels traversing the deep gray nuclei and white matter of the brain. These are commonly encountered on CT and MR imaging and are generally asymptomatic and of no clinical significance. However, occasional changes in the size of focal PVS, for example, when enlarging, may mimic pathologies including neoplasms and infections, hence potentially confounding radiological interpretation. Given these potential diagnostic issues, we sought to better characterize common clinical and imaging features of focal PVS demonstrating size fluctuations. MATERIALS AND METHODS Upon institutional approval, we retrospectively identified 4 cases demonstrating PVS with size changes at our institution. To supplement our cases, we also performed a literature review, which identified an additional 14 cases. Their clinical and imaging data were analyzed to identify characteristic features. RESULTS Of the 18 total cases (including the 4 institutional cases), 10 cases increased and 8 decreased in size. These focal PVS ranged from 0.4-4.5 cm in size. Whereas a decrease in size did not represent a diagnostic issue, focal increase in size of PVS led to concerning differential diagnoses in at least 30% of the radiology reports. These enlarging PVS were most found in the basal ganglia and temporal lobe, and in patients with previous brain radiation treatment. CONCLUSION Focal size change of PVS can occur, especially years after brain radiation treatment. Being cognizant of this benign finding is important to consider in the differential diagnosis to avoid undue patient anxiety or unnecessary medical intervention.
Collapse
Affiliation(s)
- Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Canada
| | - Hyo Jin Son
- Temerty Faculty of Medicine, University of Toronto, Canada
| | - Mikail Malik
- Temerty Faculty of Medicine, University of Toronto, Canada
| | - Samuel Haile
- Temerty Faculty of Medicine, University of Toronto, Canada
| | - Andrew Z Yang
- Division of Neurosurgery, University of Toronto, Canada
| | - Vivek Pai
- Joint Department of Medical Imaging, University of Toronto, Canada
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Canada
| | | | - Daniel M Mandell
- Joint Department of Medical Imaging, University of Toronto, Canada
| |
Collapse
|
8
|
Ebinger JE, Driver MP, Huang TY, Magraner J, Botting PG, Wang M, Chen PS, Bello NA, Ouyang D, Theurer J, Cheng S, Tan ZS. Blood pressure variability supersedes heart rate variability as a real-world measure of dementia risk. Sci Rep 2024; 14:1838. [PMID: 38246978 PMCID: PMC10800333 DOI: 10.1038/s41598-024-52406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
Blood pressure variability (BPV) and heart rate variability (HRV) have been associated with Alzheimer's Disease and Related Dementias (ADRD) in rigorously controlled studies. However, the extent to which BPV and HRV may offer predictive information in real-world, routine clinical care is unclear. In a retrospective cohort study of 48,204 adults (age 54.9 ± 17.5 years, 60% female) receiving continuous care at a single center, we derived BPV and HRV from routinely collected clinical data. We use multivariable Cox models to evaluate the association of BPV and HRV, separately and in combination, with incident ADRD. Over a median 3 [2.4, 3.0] years, there were 443 cases of new-onset ADRD. We found that clinically derived measures of BPV, but not HRV, were consistently associated with incident ADRD. In combined analyses, only patients in both the highest quartile of BPV and lowest quartile of HRV had increased ADRD risk (HR 2.34, 95% CI 1.44-3.81). These results indicate that clinically derived BPV, rather than HRV, offers a consistent and readily available metric for ADRD risk assessment in a real-world patient care setting. Thus, implementation of BPV as a widely accessible tool could allow clinical providers to efficiently identify patients most likely to benefit from comprehensive ADRD screening.
Collapse
Affiliation(s)
- Joseph E Ebinger
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Matthew P Driver
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tzu Yu Huang
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jose Magraner
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Patrick G Botting
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minhao Wang
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Natalie A Bello
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David Ouyang
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Theurer
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zaldy S Tan
- Departments of Neurology and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Park MG, Roh J, Ahn SH, Cho JW, Park KP, Baik SK. Dilated perivascular spaces and steno-occlusive changes in children and adults with moyamoya disease. BMC Neurol 2024; 24:14. [PMID: 38166838 PMCID: PMC10759593 DOI: 10.1186/s12883-023-03520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Dilated perivascular spaces (DPVS), known as one of imaging markers in cerebral small vessel disease, may be found in patients with moyamoya disease (MMD). However, little is known about DPVS in MMD. The purpose of this study was to investigate the distribution pattern of dPVS in children and adults with MMD and determine whether it is related to steno-occlusive changes of MMD. METHODS DPVS was scored in basal ganglia (BG) and white matter (WM) on T2-weighted imaging, using a validated 4-point semi-quantitative score. The degree of dPVS was classified as high (score > 2) or low (score ≤ 2) grade. The steno-occlusive changes on MR angiography (MRA) was scored using a validated MRA grading. Asymmetry of DPVS and MRA grading was defined as a difference of 1 grade or higher between hemispheres. RESULTS Fifty-one patients with MMD (mean age 24.9 ± 21.1 years) were included. Forty-five (88.2%) patients had high WM-DPVS grade (degree 3 or 4). BG-DPVS was found in 72.5% of all patients and all were low grade (degree 1 or 2). The distribution patterns of DPVS degree in BG (P = 1.000) and WM (P = 0.767) were not different between child and adult groups. The asymmetry of WM-DPVS (26%) and MRA grade (42%) were significantly correlated to each other (Kendall's tau-b = 0.604, P < 0.001). CONCLUSIONS DPVS of high grade in MMD is predominantly found in WM, which was not different between children and adults. The correlation between asymmetry of WM-DPVS degree and MRA grade suggests that weak cerebral artery pulsation due to steno-occlusive changes may affect WM-DPVS in MMD.
Collapse
Affiliation(s)
- Min-Gyu Park
- Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Yangsan, 50612, Republic of Korea.
| | - Jieun Roh
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sung-Ho Ahn
- Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Yangsan, 50612, Republic of Korea
| | - Jae Wook Cho
- Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Yangsan, 50612, Republic of Korea
| | - Kyung-Pil Park
- Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University School of Medicine, 20 Geumo-ro, Yangsan, 50612, Republic of Korea
| | - Seung Kug Baik
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
10
|
Maitra P, Shah PK, S P, Das A, V N. Knobloch syndrome - a rare collagenopathy, revealing peripheral avascular retina. Ophthalmic Genet 2023; 44:618-622. [PMID: 36994995 DOI: 10.1080/13816810.2023.2188226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Pediatric rhegmatogenous retinal detachments, especially those presenting at birth or soon afterward, have a high likelihood of syndromic associations that can be confirmed by genetic testing. MATERIALS AND METHODS A 5-month-old child was found to have high myopia in the right eye (RE) with highly tessellated fundus, opalescent vitreous, and peripheral thinning. Left eye had a shallow retinal detachment for which he underwent belt buckling. The baby had an occipital skin tag. A provisional diagnosis of Stickler syndrome was made. RESULTS On 1-month follow-up, left eye retina was attached and 360° laser barrage was done. Fluorescein angiography was done which revealed peripheral avascular retina in both eyes. MRI and genetic testing were suggestive of syndromic association. Genetic testing revealed pathogenic mutation in COL 18A1 suggestive of Knobloch syndrome in the baby, and both parents were found to be carriers of the same mutation. However, brain MRI showed features not pathognomonic of Knobloch syndrome. CONCLUSION Although Knobloch syndrome is associated with vitreoretinal degeneration and high risk of retinal detachment, there seems to be no recommendation for prophylaxis in the other eye and therefore we preferred to observe the RE closely. A unique feature noted in our case was the peripheral avascular zone (PAZ). The PAZ could be contributed by multiple factors such as high myopia, or due to endostatin deficiency (which is a derivative of collagen XVIII) or an underlying WNT signalling abnormality.
Collapse
Affiliation(s)
- Puja Maitra
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Parag K Shah
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Prema S
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Abhishek Das
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Narendran V
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| |
Collapse
|
11
|
Herrán de la Gala D, Casagranda S, Mathon B, Mandonnet E, Nichelli L. High perilesional T2-FLAIR signal around anterior temporal perivascular spaces: How can fluid suppressed Amide Proton Transfer weighted imaging further comfort the diagnosis. Magn Reson Imaging 2023; 103:119-123. [PMID: 37481093 DOI: 10.1016/j.mri.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Areas of marked T2-FLAIR hyperintensity around perivascular spaces can be misdiagnosed as tumor, especially in case of lesion evolution. In this report, we show and describe increased T2-FLAIR signal intensity around anterior temporal perivascular spaces in three patients and shortly review this poorly known entity. In addition, we discuss for the first time the added value of fluid suppressed APTw imaging, an emerging noninvasive molecular technique, in the characterization of this "do not touch" abnormality.
Collapse
Affiliation(s)
| | - Stefano Casagranda
- Department of Research & Development Advanced Applications, Olea Medical, Avenue des Sorbiers, La Ciotat, France
| | - Bertrand Mathon
- Department of Neurosurgery, Pitié-Salpêtrière University Hospital, AP-HP, Paris, France
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière University Hospital, AP-HP, Paris, France
| | - Lucia Nichelli
- Department of Radiology, Pitié-Salpêtrière University Hospital, AP-HP, Paris, France
| |
Collapse
|
12
|
Zhong J, Lin W, Chen J, Gao Q. Higher critical closing pressure is independently associated with enlarged basal ganglia perivascular spaces. Front Neurol 2023; 14:1165469. [PMID: 37920831 PMCID: PMC10619908 DOI: 10.3389/fneur.2023.1165469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Objective This study aimed to explore the association between cerebral hemodynamic parameters focused on the critical closing pressure (CCP) and enlarged perivascular spaces (EPVS). Methods Cerebral blood velocity in the middle cerebral artery (MCAv) and non-invasive continuous blood pressure (NIBP) were measured using a transcranial Doppler (TCD) and Finometer, followed by the calculation of cerebral hemodynamic parameters including CCP, resistance area product (RAP), pulsatility index (PI), and pulse pressure (PP). EPVS were graded separately in the basal ganglia (BG) and centrum semiovale (CSO), using a visual semiquantitative ordinal scale. Patients with EPVS >10 were classified into the severe BG-EPVS group and severe CSO-EPVS group, and the remainder into the mild BG-EPVS group and the mild CSO-EPVS group. Spearman's correlation and binary logistic regression analysis were performed to analyze the relationship between hemodynamic parameters and BG-EPVS and CSO-EPVS, respectively. Results Overall, 107 patients were enrolled. The severe BG-EPVS group had higher CCP, mean arterial blood pressure (MABP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) than that in the mild BG-EPVS group (p < 0.05). There was no statistical difference in hemodynamic parameters between the severe CSO-EPVS group and the mild CSO-EPVS group. Spearman's correlation analysis showed that CCP was positively associated with BG-EPVS (rho = 0.331, p < 0.001) and CSO-EPVS (rho = 0.154, p = 0.044). The binary logistic regression analysis showed that CCP was independently associated with severe BG-EPVS (p < 0.05) and not with CSO-EPVS (p > 0.05) after adjusting for confounders. Conclusion CCP representing cerebrovascular tension was independently associated with BG-EPVS.
Collapse
Affiliation(s)
| | | | | | - Qingchun Gao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Sacchi L, Arcaro M, Carandini T, Pietroboni AM, Fumagalli GG, Fenoglio C, Serpente M, Sorrentino F, Visconte C, Pintus M, Conte G, Contarino VE, Scarpini E, Triulzi F, Galimberti D, Arighi A. Association between enlarged perivascular spaces and cerebrospinal fluid aquaporin-4 and tau levels: report from a memory clinic. Front Aging Neurosci 2023; 15:1191714. [PMID: 37547746 PMCID: PMC10399743 DOI: 10.3389/fnagi.2023.1191714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Background Perivascular spaces (PVS) are fluid-filled compartments that dilate in response to many different conditions. A high burden of enlarged PVS (EPVS) in the centrum semiovale (CSO) has been linked to neurodegeneration. Moreover, an increase in cerebrospinal fluid (CSF) levels of aquaporin-4 (AQP4), a water channel expressed on PVS-bounding astrocytes, has been described in patients with neurodegenerative dementia. Our aim was to investigate the relationship between neurodegenerative diseases and two putative glymphatic system biomarkers: AQP4 and EPVS. Methods We included 70 individuals, 54 patients with neurodegenerative diseases and 16 subjects with non-degenerative conditions. EPVS were visually quantified on MRI-scans applying Paradise's scale. All subjects underwent lumbar puncture for the measurement of AQP4 levels in the cerebrospinal fluid (CSF). CSF levels of amyloid-β-1-42, phosphorylated and total tau (tTau) were also measured. Linear regression analyses were adjusted for age, sex, education and disease duration, after excluding outliers. Results Cerebrospinal fluid (CSF)-AQP4 levels were independent predictors of total (β = 0.28, standard error [SE] = 0.08, p = 0.001), basal ganglia (β = 0.20, SE = 0.08, p = 0.009) and centrum semiovale EPVS (β = 0.37, SE = 0.12, p = 0.003). tTau levels predicted CSO-EPVS (β = 0.30, SE = 0.15, p = 0.046). Moreover, increased levels of AQP4 were strongly associated with higher levels of tTau in the CSF (β = 0.35, SE = 0.13, p = 0.008). Conclusion We provide evidence that CSO-EPVS and CSF-AQP4 might be clinically meaningful biomarkers of glymphatic dysfunction and associated neurodegeneration.
Collapse
Affiliation(s)
- Luca Sacchi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Margherita Pietroboni
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Fenoglio
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Maria Serpente
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Sorrentino
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Caterina Visconte
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Manuela Pintus
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giorgio Conte
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neuroradiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Elisa Contarino
- Neuroradiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Neuroradiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Arighi
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
14
|
Munis ÖB. Association of Type 2 Diabetes Mellitus With Perivascular Spaces and Cerebral Amyloid Angiopathy in Alzheimer's Disease: Insights From MRI Imaging. Dement Neurocogn Disord 2023; 22:87-99. [PMID: 37545864 PMCID: PMC10400344 DOI: 10.12779/dnd.2023.22.3.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/08/2023] Open
Abstract
Background and Purpose According to the amyloid cascade hypothesis, fibrillary amyloid-beta load in the brain causes Alzheimer's disease (AD) with toxic effects. Recently, perivascular spaces (PVSs), fluid-filled cavities around small penetrating arterioles and venules in the brain, and the glymphatic system relationship with type 2 diabetes mellitus (DM2) and AD has been an important research topic from a physiopathological point of view. There are two types of PVSs that are associated with sporadic atherosclerosis and cerebral amyloid angiopathy. In this study, we evaluated the relationship between the number and localization of enlarged PVSs in AD. Methods A total of 254 patients with AD and 125 healthy controls were included in this study All the patients were evaluated with neurological and cognitive examinations and magnetic resonance imaging (MRI). PVSs on MRI were graded by recording their number and location. The study was a retrospective study. Results In our study, the number of white matter convexity-central semiovale localized PVSs was higher in patients than in the control group. In addition, the number of PVSs in this localization score was higher in patients with DM2. Cerebral PVS counts were higher in patients with AD than in the control group. Conclusions These results suggest the important role of cerebral amyloid angiopathy, one of the vascular risk factors, and the glymphatic system in the pathogenesis of AD. In addition, the results of our study suggest that the evaluation of PVSs levels, especially at the (centrum semiovale), using imaging studies in AD is a potential diagnostic option.
Collapse
|
15
|
Suh YR, Lee HK, Jung KH, Lee JS, Choi JC. [Neuroimaging Characteristics of Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) in Korean Based on Jeju Cohort: A Pictorial Essay]. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:855-865. [PMID: 37559811 PMCID: PMC10407072 DOI: 10.3348/jksr.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 08/11/2023]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary small artery vasculopathy caused by mutations in the NOTCH3 gene on chromosome 19. Jeju Island has the highest reported prevalence of CADASIL patients in the world. Even though most studies on the neuroimaging characteristics of CADASIL have focused on Western populations, there are notable differences in Korean CADASIL patients compared to those in Western countries, which may impact their clinical manifestations and prognosis. Herein, this pictorial essay presents the neuroimaging patterns of CADASIL in patients in Korea, with an emphasis on the differences observed from previous reports based on a Western patient population.
Collapse
|
16
|
Sadashiva N, Saini J. Dilated Virchow Robin spaces in brainstem. Br J Neurosurg 2023; 37:307-308. [PMID: 32909842 DOI: 10.1080/02688697.2020.1817854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/06/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Virchow Robin spaces are normally found pial-lined perivascular spaces traversing from subarachnoid space to the brain parenchyma. Giant dilated Virchow robin spaces (dVRS) are rare. They do not require any surgical intervention unless they are causing symptoms. Here we report a young boy with an incidentally detected giant dVRS in brainstem which was referred for surgery with an initial impression of glioma. Knowledge about such an entity is important to prevent mismanagement.
Collapse
Affiliation(s)
- Nishanth Sadashiva
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Jitender Saini
- Department of Neuroradiology and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
17
|
Charisis S, Rashid T, Liu H, Ware JB, Jensen PN, Austin TR, Li K, Fadaee E, Hilal S, Chen C, Hughes TM, Romero JR, Toledo JB, Longstreth WT, Hohman TJ, Nasrallah I, Bryan RN, Launer LJ, Davatzikos C, Seshadri S, Heckbert SR, Habes M. Assessment of Risk Factors and Clinical Importance of Enlarged Perivascular Spaces by Whole-Brain Investigation in the Multi-Ethnic Study of Atherosclerosis. JAMA Netw Open 2023; 6:e239196. [PMID: 37093602 PMCID: PMC10126873 DOI: 10.1001/jamanetworkopen.2023.9196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/07/2023] [Indexed: 04/25/2023] Open
Abstract
Importance Enlarged perivascular spaces (ePVSs) have been associated with cerebral small-vessel disease (cSVD). Although their etiology may differ based on brain location, study of ePVSs has been limited to specific brain regions; therefore, their risk factors and significance remain uncertain. Objective Toperform a whole-brain investigation of ePVSs in a large community-based cohort. Design, Setting, and Participants This cross-sectional study analyzed data from the Atrial Fibrillation substudy of the population-based Multi-Ethnic Study of Atherosclerosis. Demographic, vascular risk, and cardiovascular disease data were collected from September 2016 to May 2018. Brain magnetic resonance imaging was performed from March 2018 to July 2019. The reported analysis was conducted between August and October 2022. A total of 1026 participants with available brain magnetic resonance imaging data and complete information on demographic characteristics and vascular risk factors were included. Main Outcomes and Measures Enlarged perivascular spaces were quantified using a fully automated deep learning algorithm. Quantified ePVS volumes were grouped into 6 anatomic locations: basal ganglia, thalamus, brainstem, frontoparietal, insular, and temporal regions, and were normalized for the respective regional volumes. The association of normalized regional ePVS volumes with demographic characteristics, vascular risk factors, neuroimaging indices, and prevalent cardiovascular disease was explored using generalized linear models. Results In the 1026 participants, mean (SD) age was 72 (8) years; 541 (53%) of the participants were women. Basal ganglia ePVS volume was positively associated with age (β = 3.59 × 10-3; 95% CI, 2.80 × 10-3 to 4.39 × 10-3), systolic blood pressure (β = 8.35 × 10-4; 95% CI, 5.19 × 10-4 to 1.15 × 10-3), use of antihypertensives (β = 3.29 × 10-2; 95% CI, 1.92 × 10-2 to 4.67 × 10-2), and negatively associated with Black race (β = -3.34 × 10-2; 95% CI, -5.08 × 10-2 to -1.59 × 10-2). Thalamic ePVS volume was positively associated with age (β = 5.57 × 10-4; 95% CI, 2.19 × 10-4 to 8.95 × 10-4) and use of antihypertensives (β = 1.19 × 10-2; 95% CI, 6.02 × 10-3 to 1.77 × 10-2). Insular region ePVS volume was positively associated with age (β = 1.18 × 10-3; 95% CI, 7.98 × 10-4 to 1.55 × 10-3). Brainstem ePVS volume was smaller in Black than in White participants (β = -5.34 × 10-3; 95% CI, -8.26 × 10-3 to -2.41 × 10-3). Frontoparietal ePVS volume was positively associated with systolic blood pressure (β = 1.14 × 10-4; 95% CI, 3.38 × 10-5 to 1.95 × 10-4) and negatively associated with age (β = -3.38 × 10-4; 95% CI, -5.40 × 10-4 to -1.36 × 10-4). Temporal region ePVS volume was negatively associated with age (β = -1.61 × 10-2; 95% CI, -2.14 × 10-2 to -1.09 × 10-2), as well as Chinese American (β = -2.35 × 10-1; 95% CI, -3.83 × 10-1 to -8.74 × 10-2) and Hispanic ethnicities (β = -1.73 × 10-1; 95% CI, -2.96 × 10-1 to -4.99 × 10-2). Conclusions and Relevance In this cross-sectional study of ePVSs in the whole brain, increased ePVS burden in the basal ganglia and thalamus was a surrogate marker for underlying cSVD, highlighting the clinical importance of ePVSs in these locations.
Collapse
Affiliation(s)
- Sokratis Charisis
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio
- Department of Neurology, University of Texas Health Science Center at San Antonio
| | - Tanweer Rashid
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio
| | - Hangfan Liu
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio
- AI2D Center for AI and Data Science for Integrated Diagnostics, and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia
| | - Jeffrey B. Ware
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Paul N. Jensen
- Department of Medicine, University of Washington, Seattle
| | | | - Karl Li
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio
| | - Elyas Fadaee
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio
| | - Saima Hilal
- Department of Pharmacology, National University of Singapore, Singapore
| | - Christopher Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Timothy M. Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jose Rafael Romero
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts
| | - Jon B. Toledo
- Nantz National Alzheimer Center, Stanley Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas
| | - Will T. Longstreth
- Department of Epidemiology, University of Washington, Seattle
- Department of Neurology, University of Washington, Seattle
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ilya Nasrallah
- AI2D Center for AI and Data Science for Integrated Diagnostics, and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - R. Nick Bryan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Lenore J. Launer
- Intramural Research Program, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Christos Davatzikos
- AI2D Center for AI and Data Science for Integrated Diagnostics, and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Sudha Seshadri
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio
- Department of Neurology, University of Texas Health Science Center at San Antonio
| | | | - Mohamad Habes
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio
- AI2D Center for AI and Data Science for Integrated Diagnostics, and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia
| |
Collapse
|
18
|
Eraky AM, Treffy R, Hedayat HS. Cisternostomy as a Surgical Treatment for Traumatic Brain Injury-Related Prolonged and Delayed Intracranial Pressure Elevation: A Case Report. Cureus 2023; 15:e37508. [PMID: 37193467 PMCID: PMC10181949 DOI: 10.7759/cureus.37508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Traumatic brain injury (TBI) can be classified into primary, due to the effect of the initial trauma, or secondary, due to increased intracranial pressure (ICP). Increased ICP may cause brain herniation and also decreases cerebral blood perfusion leading to ischemia. Recently, a few studies showed that cisternostomy with decompressive craniectomy (DC) has better outcomes than DC alone in patients with TBI. This can be explained by the recent advances indicating that cisternal cerebrospinal fluid (CSF) communicates with cerebral interstitial fluid (IF) through Virchow-Robin spaces. Theoretically, opening cisterns to atmospheric pressure may induce IF drainage and subsequently decrease ICP. A 55-year-old man presented to the emergency department with subdural hematomas, hemorrhagic contusions, and subarachnoid hemorrhage after falling off a moving truck. ICP elevation was refractory despite increased sedation, initiation of paralysis with Cisatracurium, esophageal cooling, multiple doses of 23.4 % saline and mannitol, and DC. Lumbar drain (LD) placement was performed with beneficial results. Unfortunately, the LD stopped functioning multiple times and each time this occurred, he developed increased ventricular size with elevated ICP. The patient underwent cisternostomy and lamina terminalis fenestration. No further increased ICPs were observed after cisternostomy at a one-month follow-up. Cisternostomy is a potential surgical treatment for patients with TBI-related prolonged ICP elevation.
Collapse
Affiliation(s)
- Akram M Eraky
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, USA
| | - Randall Treffy
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, USA
| | - Hirad S Hedayat
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
19
|
Okar SV, Hu F, Shinohara RT, Beck ES, Reich DS, Ineichen BV. The etiology and evolution of magnetic resonance imaging-visible perivascular spaces: Systematic review and meta-analysis. Front Neurosci 2023; 17:1038011. [PMID: 37065926 PMCID: PMC10098201 DOI: 10.3389/fnins.2023.1038011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
ObjectivesPerivascular spaces have been involved in neuroinflammatory and neurodegenerative diseases. Upon a certain size, these spaces can become visible on magnetic resonance imaging (MRI), referred to as enlarged perivascular spaces (EPVS) or MRI-visible perivascular spaces (MVPVS). However, the lack of systematic evidence on etiology and temporal dynamics of MVPVS hampers their diagnostic utility as MRI biomarker. Thus, the goal of this systematic review was to summarize potential etiologies and evolution of MVPVS.MethodsIn a comprehensive literature search, out of 1,488 unique publications, 140 records assessing etiopathogenesis and dynamics of MVPVS were eligible for a qualitative summary. 6 records were included in a meta-analysis to assess the association between MVPVS and brain atrophy.ResultsFour overarching and partly overlapping etiologies of MVPVS have been proposed: (1) Impairment of interstitial fluid circulation, (2) Spiral elongation of arteries, (3) Brain atrophy and/or perivascular myelin loss, and (4) Immune cell accumulation in the perivascular space. The meta-analysis in patients with neuroinflammatory diseases did not support an association between MVPVS and brain volume measures [R: −0.15 (95%-CI −0.40–0.11)]. Based on few and mostly small studies in tumefactive MVPVS and in vascular and neuroinflammatory diseases, temporal evolution of MVPVS is slow.ConclusionCollectively, this study provides high-grade evidence for MVPVS etiopathogenesis and temporal dynamics. Although several potential etiologies for MVPVS emergence have been proposed, they are only partially supported by data. Advanced MRI methods should be employed to further dissect etiopathogenesis and evolution of MVPVS. This can benefit their implementation as an imaging biomarker.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=346564, identifier CRD42022346564.
Collapse
Affiliation(s)
- Serhat V. Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Fengling Hu
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Russell T. Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin S. Beck
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Benjamin V. Ineichen
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
- *Correspondence: Benjamin V. Ineichen, , ; orcid.org/0000-0003-1362-4819
| |
Collapse
|
20
|
Lynch KM, Sepehrband F, Toga AW, Choupan J. Brain perivascular space imaging across the human lifespan. Neuroimage 2023; 271:120009. [PMID: 36907282 PMCID: PMC10185227 DOI: 10.1016/j.neuroimage.2023.120009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Enlarged perivascular spaces (PVS) are considered a biomarker for vascular pathology and are observed in normal aging and neurological conditions; however, research on the role of PVS in health and disease are hindered by the lack of knowledge regarding the normative time course of PVS alterations with age. To this end, we characterized the influence of age, sex and cognitive performance on PVS anatomical characteristics in a large cross-sectional cohort (∼1400) of healthy subjects between 8 and 90 years of age using multimodal structural MRI data. Our results show age is associated with wider and more numerous MRI-visible PVS over the course of the lifetime with spatially-varying patterns of PVS enlargement trajectories. In particular, regions with low PVS volume fraction in childhood are associated with rapid age-related PVS enlargement (e.g., temporal regions), while regions with high PVS volume fraction in childhood are associated with minimal age-related PVS alterations (e.g., limbic regions). PVS burden was significantly elevated in males compared to females with differing morphological time courses with age. Together, these findings contribute to our understanding of perivascular physiology across the healthy lifespan and provide a normative reference for the spatial distribution of PVS enlargement patterns to which pathological alterations can be compared.
Collapse
Affiliation(s)
- Kirsten M Lynch
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, 90033, USA.
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, 90033, USA; NeuroScope Inc., New York, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, 90033, USA; NeuroScope Inc., New York, USA
| |
Collapse
|
21
|
Kim HG, Shin NY, Nam Y, Yun E, Yoon U, Lee HS, Ahn KJ. MRI-visible Dilated Perivascular Space in the Brain by Age: The Human Connectome Project. Radiology 2023; 306:e213254. [PMID: 36378031 DOI: 10.1148/radiol.213254] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Dilated perivascular spaces (dPVS) are associated with aging and various disorders; however, the effect of age on dPVS burden in young populations and normative data have not been fully evaluated. Purpose To investigate the dPVS burden and provide normative data according to age in a healthy population, including children. Materials and Methods In this retrospective study, three-dimensional T2-weighted brain MRI scans from the Human Connectome Project data sets were used for visual grading (grade 0, 1, 2, 3, 4 for 0, 1-10, 11-20, 21-40, and >40 dPVS on a single section of either hemispheric region) and automated volumetry of dPVS in basal ganglia (BGdPVS) and white matter (WMdPVS). Linear and nonlinear regression were performed to assess the association of dPVS volume with age. Optimal cutoff ages were determined with use of the maximized continuous-scale C-index. Participants were grouped by cutoff values. Linear regression was performed to assess the age-dPVS volume relationship in each age group. Normative data of dPVS visual grades were provided per age decade. Results A total of 1789 participants (mean age, 35 years; age range, 8-100 years; 1006 female participants) were evaluated. Age was related to dPVS volume in all regression models (R2 range, 0.41-0.55; P < .001). Age-dPVS volume relationships were altered at the mid-30s and age 55 years; BGdPVS and WMdPVS volumes negatively correlated with age until the mid-30s (β, -1.2 and -7.8), then positively until age 55 years (β, 3.3 and 54.1) and beyond (β, 3.9 and 42.8; P < .001). The 90th percentile for dPVS grades was grade 1 for age 49 years and younger, grade 2 for age 50-69 years, and grade 3 for age 70 years and older (overall, grade 2) for BGdPVS, and grade 3 for age 49 years and younger and grade 4 for age 50 years and older (overall, grade 3) for WMdPVS. Conclusion Dilated perivascular spaces (dPVS) showed a biphasic volume pattern with brain MRI, lower volumes until the mid-30s, then higher afterward. Grades of 3 or higher and 4 might be considered pathologic dPVS in basal ganglia and white matter, respectively. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Bapuraj and Chaudhary in this issue.
Collapse
Affiliation(s)
- Hyun Gi Kim
- From the Department of Radiology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (H.G.K.); Department of Radiology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (N.Y.S., K.J.A.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.); Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Daegu, Republic of Korea (E.Y., U.Y.); and Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea (H.S.L.)
| | - Na-Young Shin
- From the Department of Radiology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (H.G.K.); Department of Radiology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (N.Y.S., K.J.A.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.); Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Daegu, Republic of Korea (E.Y., U.Y.); and Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea (H.S.L.)
| | - Yoonho Nam
- From the Department of Radiology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (H.G.K.); Department of Radiology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (N.Y.S., K.J.A.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.); Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Daegu, Republic of Korea (E.Y., U.Y.); and Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea (H.S.L.)
| | - Eunkyeong Yun
- From the Department of Radiology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (H.G.K.); Department of Radiology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (N.Y.S., K.J.A.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.); Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Daegu, Republic of Korea (E.Y., U.Y.); and Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea (H.S.L.)
| | - Uicheul Yoon
- From the Department of Radiology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (H.G.K.); Department of Radiology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (N.Y.S., K.J.A.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.); Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Daegu, Republic of Korea (E.Y., U.Y.); and Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea (H.S.L.)
| | - Hye Sun Lee
- From the Department of Radiology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (H.G.K.); Department of Radiology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (N.Y.S., K.J.A.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.); Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Daegu, Republic of Korea (E.Y., U.Y.); and Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea (H.S.L.)
| | - Kook Jin Ahn
- From the Department of Radiology, Eunpyeong St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (H.G.K.); Department of Radiology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea (N.Y.S., K.J.A.); Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.); Department of Biomedical Engineering, College of Bio and Medical Sciences, Daegu Catholic University, Daegu, Republic of Korea (E.Y., U.Y.); and Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea (H.S.L.)
| |
Collapse
|
22
|
Lim M, Micieli JA. Left Superior Homonymous Quadrantanopia due to Giant Virchow-Robin Space. Case Rep Ophthalmol 2023; 14:274-277. [PMID: 37465118 PMCID: PMC10350811 DOI: 10.1159/000525899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 07/20/2023] Open
Abstract
A 51-year-old man was referred by his optometrist for an incidental finding of a visual field defect. Humphrey 24-2 SITA-Fast visual field testing revealed a left superior homonymous quadrantanopia, and magnetic resonance imaging of the brain showed a 2.0 × 0.5-cm oblong-shaped cerebrospinal fluid space posterior to the right basal ganglia. This space coursed close to the lateral geniculate body and was thought to represent a giant perivascular (Virchow-Robin) space. This case demonstrates that patients with a visual field defect without other neurological symptoms could be a result of an enlarged Virchow-Robin space along the visual pathway.
Collapse
Affiliation(s)
- Michelle Lim
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jonathan A. Micieli
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| |
Collapse
|
23
|
Ramaswamy S, Khasiyev F, Gutierrez J. Brain Enlarged Perivascular Spaces as Imaging Biomarkers of Cerebrovascular Disease: A Clinical Narrative Review. J Am Heart Assoc 2022; 11:e026601. [PMID: 36533613 PMCID: PMC9798817 DOI: 10.1161/jaha.122.026601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Perivascular spaces or Virchow-Robin spaces form pathways along the subarachnoid spaces that facilitate the effective clearance of brain metabolic by-products through intracellular exchange and drainage of cerebrospinal fluid. Best seen on magnetic resonance imaging of the brain, enlarged perivascular spaces (EPVSs) are increasingly recognized as potential imaging biomarkers of neurological conditions. EPVSs are an established subtype of cerebral small-vessel disease; however, their associations with other cerebrovascular disorders are yet to be fully understood. In particular, there has been great interest in the association between the various parameters of EPVSs, such as number, size, and topography, and vascular neurological conditions. Studies have identified cross-sectional and longitudinal relationships between EPVS parameters and vascular events, such as ischemic stroke (both clinical and silent), intracerebral hemorrhage, vascular risk factors, such as age and hypertension, and neurodegenerative processes, such as vascular dementia and Alzheimer disease. However, these studies are limited by heterogeneity of data and the lack of consistent results across studied populations. Existing meta-analyses also fail to provide uniformity of results. We performed a qualitative narrative review with an aim to provide an overview of the associations between EPVSs and cerebrovascular diseases, which may help recognize gaps in our knowledge, inform the design of future studies, and advance the role of EPVSs as imaging biomarkers.
Collapse
Affiliation(s)
- Srinath Ramaswamy
- Department of NeurologySUNY Downstate Health Sciences UniversityBrooklynNY
| | - Farid Khasiyev
- Department of NeurologySt. Louis University School of MedicineSt. LouisMO
| | - Jose Gutierrez
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNY
| |
Collapse
|
24
|
Zhou D, Lu C, Su C, Liu Y, Chen J, Zhang F, Bai H, Li Q. Relationship between heart rate variability and cognitive function in patients with enlarged perivascular space. Front Aging Neurosci 2022; 14:1031031. [DOI: 10.3389/fnagi.2022.1031031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
ObjectiveTo explore the relationship between heart rate variability (HRV), the brain distribution of enlarged perivascular space (EPVS), and cognitive impairment in patients with EPVS.Materials and methodsThe clinical and imaging data of 199 patients with EPVS were retrospectively analyzed. EPVS load in the basal ganglia (BG) and centrum semiovale (CS) regions were assessed using the Potter’s method. Cognitive function was evaluated using the Montreal Cognitive Assessment Scale. A logistic regression model was used to analyze the relationship between HRV, the brain distribution of EPVS and cognitive function in patients with EPVS. A receiver operating characteristic curve was used to assess the predictive value of HRV for cognitive function in patients with EPVS.ResultsOf the 199 patients, 27 and 42 presented with severe BG-EPVS and cognitive impairment, respectively. Significant differences were observed in the root mean square of successive differences of normal-normal (NN) intervals for period of interest (rMSSD), the percentage of adjacent NN intervals greater than 50 ms (PNN50), and the ratio of low-frequency power (LF) to high-frequency power (HF) between the mild and severe BG-EPVS groups (P < 0.05). Patients who presented with and without cognitive impairment differed significantly in the standard deviation of NN intervals (SDNN), rMSSD, PNN50, total power, LF, and LF/HF (P < 0.05). rMSSD (odds ratio [OR] 0.871, 95% confidence interval [CI] 0.768–0.988) and LF/HF (OR 3.854, 95% CI 1.196–12.419) were independent influencing factors of BG-EPVS, and rMSSD (OR 0.936, 95% CI 0.898–0.976) was an independent influencing factor of cognitive impairment in patients with EPVS. The optimal cut-off point was 0.312, with an area under the curve of 0.795 (95% CI 0.719–0.872) for predicting cognitive impairment in patients with EPVS by rMSSD.ConclusionReduced HRV is involved in the pathophysiological mechanisms of the formation and development of BG-EPVS and is associated with cognitive impairment in patients with EPVS, independent of CS-EPVS. For patients with HRV changes but without autonomic nervous system symptoms, positive intervention may slow the occurrence or progression of EPVS and cognitive impairment in patients with EPVS.
Collapse
|
25
|
Ineichen BV, Okar SV, Proulx ST, Engelhardt B, Lassmann H, Reich DS. Perivascular spaces and their role in neuroinflammation. Neuron 2022; 110:3566-3581. [PMID: 36327898 PMCID: PMC9905791 DOI: 10.1016/j.neuron.2022.10.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
It is uncontested that perivascular spaces play critical roles in maintaining homeostasis and priming neuroinflammation. However, despite more than a century of intense research on perivascular spaces, many open questions remain about the anatomical compartment surrounding blood vessels within the CNS. The goal of this comprehensive review is to summarize the literature on perivascular spaces in human neuroinflammation and associated animal disease models. We describe the cell types taking part in the morphological and functional aspects of perivascular spaces and how those spaces can be visualized. Based on this, we propose a model of the cascade of events occurring during neuroinflammatory pathology. We also discuss current knowledge gaps and limitations of the available evidence. An improved understanding of perivascular spaces could advance our comprehension of the pathophysiology of neuroinflammation and open a new therapeutic window for neuroinflammatory diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Center for Reproducible Science, University of Zurich, Zurich, Switzerland.
| | - Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Fischer C, Schaub S, Büttner K, Hartmann K, Schmidt MJ. Dilated perivascular spaces can present incidental CSF-isointense foci within the ventral forebrain of dogs and cats in transverse MR images. Front Vet Sci 2022; 9:1002836. [PMID: 36299637 PMCID: PMC9590410 DOI: 10.3389/fvets.2022.1002836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022] Open
Abstract
Objective Virchow-Robin-Spaces (VRS) are cerebrospinal fluid (CSF)-containing perivascular spaces encompassing brain vessels while coursing through the parenchyma. VRS can enlarge and become visible in magnetic resonance imaging (MRI). While dilatated VRS are mostly incidental findings, they were associated with degenerative brain disease in humans. This study aimed to evaluate their occurrence and MRI morphology within the ventral forebrain of structurally normal canine and feline brains and physiological cerebrospinal fluid analysis. Sample Retro- and prospective, observational study reviewing medical records of client-owned dogs and cats which underwent MRI brain scans for unrelated reasons between 2011 and 2021. We comprised studies with various magnetic field strengths (1 Tesla/3 Tesla). Out of 2500 brain scans, three hundred thirty-five patients (293 dogs, 42 cats) presented with absent intracranial pathology and physiological CSF analysis and were included. Procedure The ventral forebrain of the included animals was assessed for bi- or unilateral CSF-isointense foci in the transverse plane. Statistical correlations were evaluated between dilated VRS presence, field strength, age, gender, weight, and cranium conformation. Additionally, a post-mortem histopathologic analysis of one dog and one cat showing dilated VRS on MRI was performed to confirm perforating arteries in the gray matter of the ventral forebrain. Results 57% of patients presented dilated VRS (N = 191: 170 dogs, 21 cats). 43% did not display dilated VRS (control group; N = 144: 123 dogs, 21 cats). A significant relation between increased magnetic field strength and detection of dilated VRS was observed in dogs; there was a 2.4 increase (p = 0.0001) in detection using 3 Tesla vs. 1 Tesla. There was a 2.4-fold increase in dilated VRS occurrence in male dogs compared to female dogs. Detection also increased with the rise of body weight. We detected no statistically significant difference between dilated VRS and the control group in age, species or cranium conformation. Conclusion and Clinical Relevance Dilated VRS can be seen within the ventral forebrain at the level of the rostral commissure on transverse MR images as symmetrical or unilateral, dot-like, CSF-isointense areas. Understanding their signal intensity features and localization prevents misinterpretation and helps differentiate them from various pathological conditions.
Collapse
Affiliation(s)
- Carolin Fischer
- Department of Veterinary Clinical Sciences, Clinic for Small Animals, Surgery, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sebastian Schaub
- Department of Veterinary Clinical Sciences, Clinic for Small Animals, Surgery, Justus-Liebig-University Giessen, Giessen, Germany
| | - Kathrin Büttner
- Department for Biomathematics and Data Processing, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Martin Jürgen Schmidt
- Department of Veterinary Clinical Sciences, Clinic for Small Animals, Neurosurgery, Neuroradiology and Clinical Neurology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
27
|
Yao XY, Gao MC, Bai SW, Xie L, Song YY, Ding J, Wu YF, Xue CR, Hao Y, Zhang Y, Guan YT. Enlarged perivascular spaces, neuroinflammation and neurological dysfunction in NMOSD patients. Front Immunol 2022; 13:966781. [PMID: 36248814 PMCID: PMC9557144 DOI: 10.3389/fimmu.2022.966781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background and objectives Cerebrospinal fluid (CSF) and interstitial fluid exchange along a brain-wide network of perivascular spaces (PVS) termed the ‘glymphatic system’. The aquaporin-4 (AQP4) water channels abundantly expressed on astrocytic endfeet play a key role in the CSF circulation in the glymphatic system. Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating autoimmune disease of the central nervous system (CNS) featured with a specific autoantibody directed against AQP4 in most of patients. Anti-AQP4 antibodies are likely resulting in the impairment of the brain glymphatic system and the enlargement of PVS in NMOSD patients. In the current study, we aimed to demonstrate the features of EPVS detected by MRI and its association with the CSF anti-AQP4 antibody titer, CNS inflammatory markers, and disease severity in NMOSD patients. Methods We conducted a retrospective review of a consecutive cohort of 110 patients with NMOSD who had brain MRI. We assessed the correlation of EPVS with markers of neuroinflammation, blood-brain barrier (BBB) function and severity of neurological dysfunction in patients. We used multivariate logistic regression analysis to determine the independent variables associated with disease severity. Results The median number of total-EPVS was 15.5 (IQR, 11-24.2) in NMOSD patients. The number of total-EPVS was significantly related to EDSS score after correcting for the effects of age and hypertension (r=0.353, p<0.001). The number of total-EPVS was also significantly associated with the titer of CSF anti-AQP4 antibody, the albumin rate (CSF/serum ratios of albumin), the CSF albumin, IgG and IgA levels. Logistic regression analysis showed that total-EPVS and serum albumin level were two independent factors to predict disease severity in NMOSD patients (OR=1.053, p=0.028; OR=0.858, p=0.009 respectively). Furthermore, ROC analysis achieved AUC of 0.736 (0.640-0.831, p<0.001) for total-EPVS to determine severe NMOSD (EDSS 4.5-9.5). Discussion In our cohort, we found a relationship between EPVS and neuroinflammation and BBB function in NMOSD. Moreover, EPVS might independently predict neurological dysfunction in patients with NMOSD.
Collapse
Affiliation(s)
- Xiao-Ying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mei-Chun Gao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Wei Bai
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xie
- Clinical Research Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Ying Song
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Ding
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Fan Wu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Ran Xue
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Hao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Tai Guan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yang-Tai Guan,
| |
Collapse
|
28
|
Vences MA, Araujo-Chumacero MM, Urrunaga-Pastor D, Barreto L, Rodríguez-Kadota L, Barreto-Acevedo E, Saavedra-Rocha C, Quispe-Huamaní EV. Case Report: Focal leptomeningeal disease, atypical cancer of unknown primary site. F1000Res 2022; 11:885. [PMID: 36188732 PMCID: PMC9508522 DOI: 10.12688/f1000research.122434.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Leptomeningeal metastasis is an infrequent form of cancer expression, and it has a poor prognosis due to its torpid evolution and its challenging diagnosis. Case report: We report the case of a 68-year-old woman with rapidly progressing cognitive decline and focal epilepsy. Brain magnetic resonance imaging showed extensive gyriform hypersignal in the right precentral sulcus region, without mass effect, tenuous contrast uptake, and hydrocephalus with transependymal edema. The body tomographic study was negative for solid cancer and the 18F-FDG PET-CT revealed a severe hypermetabolism in the right lung upper lobe. These findings were suggestive of lung cancer with leptomeningeal metastasis. We performed a brain biopsy, finding atypical cells in the leptomeningeal region with positive immunohistochemical staining for CK7 and negative for CK20 corresponding to lung adenocarcinoma. The patient was evaluated in the oncology service and scheduled for radiotherapy and chemotherapy. Conclusions: Focal leptomeningeal disease is an entity that should be considered as a differential diagnosis in all cases of focal leptomeningitis. Timely diagnosis and adequate cancer management can increase patient survival.
Collapse
Affiliation(s)
- Miguel A. Vences
- Departamento de Neurología, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru,
| | | | - Diego Urrunaga-Pastor
- Unidad para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru,Dirección de Investigación en Salud, Instituto de Evaluación de Tecnologías en Salud e Investigación – IETSI, EsSalud, Lima, Peru,
| | - Leila Barreto
- Departamento de Neurología, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | | | - Elliot Barreto-Acevedo
- Departamento de Neurología, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - César Saavedra-Rocha
- Departamento de Neurología, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Elder V. Quispe-Huamaní
- Departamento de Neurología, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| |
Collapse
|
29
|
Barisano G, Lynch KM, Sibilia F, Lan H, Shih NC, Sepehrband F, Choupan J. Imaging perivascular space structure and function using brain MRI. Neuroimage 2022; 257:119329. [PMID: 35609770 PMCID: PMC9233116 DOI: 10.1016/j.neuroimage.2022.119329] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
In this article, we provide an overview of current neuroimaging methods for studying perivascular spaces (PVS) in humans using brain MRI. In recent years, an increasing number of studies highlighted the role of PVS in cerebrospinal/interstial fluid circulation and clearance of cerebral waste products and their association with neurological diseases. Novel strategies and techniques have been introduced to improve the quantification of PVS and to investigate their function and morphological features in physiological and pathological conditions. After a brief introduction on the anatomy and physiology of PVS, we examine the latest technological developments to quantitatively analyze the structure and function of PVS in humans with MRI. We describe the applications, advantages, and limitations of these methods, providing guidance and suggestions on the acquisition protocols and analysis techniques that can be applied to study PVS in vivo. Finally, we review the human neuroimaging studies on PVS across the normative lifespan and in the context of neurological disorders.
Collapse
Affiliation(s)
- Giuseppe Barisano
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| | - Kirsten M Lynch
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Francesca Sibilia
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Haoyu Lan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Nien-Chu Shih
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, USA
| |
Collapse
|
30
|
Dou M, Cen Y, Zhong J, Chen G, Wei Q, Zeng Y, Lu X. Association between frailty index based on routine laboratory tests and risk of cerebral small vessel disease in elderly patients: a hospital-based observational study. Aging Clin Exp Res 2022; 34:2683-2692. [PMID: 35925517 DOI: 10.1007/s40520-022-02207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/18/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The association between frailty and cerebral small vessel disease (CSVD) remains controversial due to the use of different methods to assess frailty, including physical frailty phenotype and frailty scores containing measures of cognition. A frailty index based on laboratory tests (FI-Lab), which assesses frailty by the combination of routine laboratory measures and several vital signs, is independent of cognition and function status. We aimed to evaluate the association of FI-Lab with CSVD. METHODS An observational study was carried out in a hospitalized cohort of older patients with minor ischemic stroke or TIA. The FI-Lab was constructed by 20 routine laboratory tests, plus systolic blood pressure, diastolic blood pressure, and pulse pressure. Manifestations of CSVD including white matter hyperintensity (WMH), silent lacunar infarcts, microbleed, enlarged perivascular spaces (EPVS), as well as deep brain atrophy, were measured on magnetic resonance imaging (MRI). An ordinal score system constructed by WMH, EPVS, silent lacunar infarcts, and microbleed was used to reflect the total burden of CSVD. The associations between FI-lab and CSVD were examined by logistic regression analysis and ordinal regression. RESULTS A total of 398 patients were recruited from January 2016 to December 2018. The mean FI-Lab value was 0.26 ± 0.11. The prevalence of extensive periventricular WMH, extensive deep WMH, extensive basal ganglia EPVS, extensive centrum semiovale EPVS, silent lacunar infarcts, and deep microbleed was 26.1, 66.6, 68.6, 80.7, 32.9, and 6.5%, respectively. A higher FI-Lab value was associated with increased risks of extensive deep WMH (OR = 1.622; 95% CI, 1.253 ~ 2.100), extensive basal ganglia EPVS (OR = 1.535; 95% CI, 1.187 ~ 1.985), extensive centrum semiovale EPVS (OR = 1.584; 95% CI, 1.167 ~ 2.151), silent lacunar infarcts (OR = 1.273; 95% CI, 1.007 ~ 1.608), and higher total burden of CSVD. These associations remained after the adjustment of potential confounding factors. CONCLUSION This study demonstrated that a higher FI-Lab score might be associated with the presence of WMH, EPVS, silent lacunar infarcts, as well as severe total CSVD burden in older patients with minor stroke or TIA. The FI-Lab provides a basis for the prediction of CSVD.
Collapse
Affiliation(s)
- Miaomiao Dou
- Department of Geriatrics and Neurology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300#, Nanjing, 210029, China
| | - Yan Cen
- Department of Geriatrics and Neurology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300#, Nanjing, 210029, China
| | - Jie Zhong
- School of Foreign Languages, Nanjing University of Finance and Economics, Nanjing, China
| | - Guilin Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wei
- Department of Geriatrics and Neurology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300#, Nanjing, 210029, China
| | - Yanying Zeng
- Department of Geriatrics and Neurology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300#, Nanjing, 210029, China
| | - Xiaowei Lu
- Department of Geriatrics and Neurology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300#, Nanjing, 210029, China.
| |
Collapse
|
31
|
Hashida M, Nagashima Y, Nishimura Y, Eguchi K, Taoka T, Kawai H, Saito R. Spontaneous regression of asymptomatic tumefactive perivascular spaces in the anterior temporal lobe. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:678-685. [PMID: 36237891 PMCID: PMC9529622 DOI: 10.18999/nagjms.84.3.678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
Perivascular spaces are fluid-filled spaces that surround the perforating vessels of the brain and are normal findings on brain imaging. These are usually asymptomatic and are considered a manifestation of aging. Perivascular spaces occasionally undergo significant enlargement and are referred to as tumefactive perivascular spaces, which are often indistinguishable from neoplastic lesions. Spontaneous regression of tumefactive perivascular spaces during follow-up is rare. We report the imaging findings and clinical course of a patient who showed spontaneous regression of tumefactive perivascular spaces in the anterior temporal lobe, together with a literature review and discussion regarding the characteristics and pathogenesis of spontaneous regression of tumefactive perivascular spaces. Most studies in the available literature report tumefactive perivascular spaces in the anterior temporal lobe; in our view, the characteristics of anterior temporal lobe tumefactive perivascular spaces may differ from those of tumefactive perivascular spaces that occur at other locations.
Collapse
Affiliation(s)
- Miki Hashida
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Nagashima
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Nishimura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaoru Eguchi
- Department of Neurosurgery, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University Graduate school of Medicine, Nagakute, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
32
|
Jiang J, Wang D, Song Y, Sachdev PS, Wen W. Computer-Aided Extraction of Select MRI Markers of Cerebral Small Vessel Disease: A Systematic Review. Neuroimage 2022; 261:119528. [PMID: 35914668 DOI: 10.1016/j.neuroimage.2022.119528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a major vascular contributor to cognitive impairment in ageing, including dementias. Imaging remains the most promising method for in vivo studies of CSVD. To replace the subjective and laborious visual rating approaches, emerging studies have applied state-of-the-art artificial intelligence to extract imaging biomarkers of CSVD from MRI scans. We aimed to summarise published computer-aided methods for the examination of three imaging biomarkers of CSVD, namely cerebral microbleeds (CMB), dilated perivascular spaces (PVS), and lacunes of presumed vascular origin. Seventy classical image processing, classical machine learning, and deep learning studies were identified. Transfer learning and weak supervision techniques have been applied to accommodate the limitations in the training data. While good performance metrics were achieved in local datasets, there have not been generalisable pipelines validated in different research and/or clinical cohorts. Future studies could consider pooling data from multiple sources to increase data size and diversity, and evaluating performance using both image processing metrics and associations with clinical measures.
Collapse
Affiliation(s)
- Jiyang Jiang
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia.
| | - Dadong Wang
- Quantitative Imaging Research Team, Data61, CSIRO, Marsfield, NSW 2122, Australia
| | - Yang Song
- School of Computer Science and Engineering, University of New South Wales, NSW 2052, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| |
Collapse
|
33
|
Whittaker E, Thrippleton S, Chong LYW, Collins VG, Ferguson AC, Henshall DE, Lancastle E, Wilkinson T, Wilson B, Wilson K, Sudlow C, Wardlaw J, Rannikmäe K. Systematic Review of Cerebral Phenotypes Associated With Monogenic Cerebral Small-Vessel Disease. J Am Heart Assoc 2022; 11:e025629. [PMID: 35699195 PMCID: PMC9238640 DOI: 10.1161/jaha.121.025629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Background Cerebral small-vessel disease (cSVD) is an important cause of stroke and vascular dementia. Most cases are multifactorial, but an emerging minority have a monogenic cause. While NOTCH3 is the best-known gene, several others have been reported. We aimed to summarize the cerebral phenotypes associated with these more recent cSVD genes. Methods and Results We performed a systematic review (PROSPERO [International Prospective Register of Systematic Reviews]: CRD42020196720), searching Medline/Embase (conception to July 2020) for any language publications describing COL4A1/2, TREX1, HTRA1, ADA2, or CTSA pathogenic variant carriers. We extracted data about individuals' characteristics and clinical and vascular radiological cerebral phenotypes. We summarized phenotype frequencies per gene, comparing patterns across genes. We screened 6485 publications including 402, and extracted data on 390 individuals with COL4A1, 123 with TREX1, 44 with HTRA1 homozygous, 41 with COL4A2, 346 with ADA2, 82 with HTRA1 heterozygous, and 14 with CTSA. Mean age ranged from 15 (ADA2) to 59 years (HTRA1 heterozygotes). Clinical phenotype frequencies varied widely: stroke, 9% (TREX1) to 52% (HTRA1 heterozygotes); cognitive features, 0% (ADA2) to 64% (HTRA1 homozygotes); and psychiatric features, 0% (COL4A2; ADA2) to 57% (CTSA). Among individuals with neuroimaging, vascular radiological phenotypes appeared common, ranging from 62% (ADA2) to 100% (HTRA1 homozygotes; CTSA). White matter lesions were the most common pathology, except in ADA2 and COL4A2 cases, where ischemic and hemorrhagic lesions dominated, respectively. Conclusions There appear to be differences in cerebral manifestations across cSVD genes. Vascular radiological changes were more common than clinical neurological phenotypes, and present in the majority of individuals with reported neuroimaging. However, these results may be affected by age and biases inherent to case reports. In the future, better characterization of associated phenotypes, as well as insights from population-based studies, should improve our understanding of monogenic cSVD to inform genetic testing, guide clinical management, and help unravel underlying disease mechanisms.
Collapse
Affiliation(s)
- Ed Whittaker
- Medical SchoolUniversity of EdinburghEdinburghUnited Kingdom
| | | | | | | | - Amy C. Ferguson
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - David E. Henshall
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - Emily Lancastle
- Medical SchoolUniversity of EdinburghEdinburghUnited Kingdom
| | - Tim Wilkinson
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Blair Wilson
- NHS Greater Glasgow and ClydeGlasgowUnited Kingdom
| | | | - Cathie Sudlow
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
- BHF Data Science CentreLondonUnited Kingdom
| | - Joanna Wardlaw
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute CentreUniversity of EdinburghEdinburghUnited Kingdom
| | - Kristiina Rannikmäe
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
34
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
35
|
Langan MT, Smith DA, Verma G, Khegai O, Saju S, Rashid S, Ranti D, Markowitz M, Belani P, Jette N, Mathew B, Goldstein J, Kirsch CFE, Morris LS, Becker JH, Delman BN, Balchandani P. Semi-automated Segmentation and Quantification of Perivascular Spaces at 7 Tesla in COVID-19. Front Neurol 2022; 13:846957. [PMID: 35432151 PMCID: PMC9010775 DOI: 10.3389/fneur.2022.846957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
While COVID-19 is primarily considered a respiratory disease, it has been shown to affect the central nervous system. Mounting evidence shows that COVID-19 is associated with neurological complications as well as effects thought to be related to neuroinflammatory processes. Due to the novelty of COVID-19, there is a need to better understand the possible long-term effects it may have on patients, particularly linkage to neuroinflammatory processes. Perivascular spaces (PVS) are small fluid-filled spaces in the brain that appear on MRI scans near blood vessels and are believed to play a role in modulation of the immune response, leukocyte trafficking, and glymphatic drainage. Some studies have suggested that increased number or presence of PVS could be considered a marker of increased blood-brain barrier permeability or dysfunction and may be involved in or precede cascades leading to neuroinflammatory processes. Due to their size, PVS are better detected on MRI at ultrahigh magnetic field strengths such as 7 Tesla, with improved sensitivity and resolution to quantify both concentration and size. As such, the objective of this prospective study was to leverage a semi-automated detection tool to identify and quantify differences in perivascular spaces between a group of 10 COVID-19 patients and a similar subset of controls to determine whether PVS might be biomarkers of COVID-19-mediated neuroinflammation. Results demonstrate a detectable difference in neuroinflammatory measures in the patient group compared to controls. PVS count and white matter volume were significantly different in the patient group compared to controls, yet there was no significant association between PVS count and symptom measures. Our findings suggest that the PVS count may be a viable marker for neuroinflammation in COVID-19, and other diseases which may be linked to neuroinflammatory processes.
Collapse
Affiliation(s)
- Mackenzie T. Langan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
- *Correspondence: Mackenzie T. Langan
| | - Derek A. Smith
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Gaurav Verma
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Oleksandr Khegai
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Sera Saju
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Shams Rashid
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Daniel Ranti
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Matthew Markowitz
- The Graduate Center, City University of New York, New York, NY, United States
| | - Puneet Belani
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nathalie Jette
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brian Mathew
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jonathan Goldstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Claudia F. E. Kirsch
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
- Department of Radiology, Zucker Hofstra School of Medicine at Northwell Health, Uniondale, NY, United States
| | - Laurel S. Morris
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
- Department of Psychiatry at the Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jacqueline H. Becker
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bradley N. Delman
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priti Balchandani
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
36
|
Ruaud L, Drunat S, Elmaleh-Bergès M, Ernault A, Guilmin Crepon S, El Ghouzzi V, Auvin S, Verloes A, Passemard S, Engel C, Altuzarra C, Lamidieu C, Bayat A, Moortgat S, Pelc K, Maystadt I, Abramowicz M, Pirson I, Duerinckx S, Rostomashvili N, Zweier C, Abou Jamra R, Lorenz I, Haye D, Zaafrane‐Khachnaoui K, Vaessen S, Capri Y, Servais L, Di Maria E, Kohlhase J, Bast T, Miladi N, Dali S. Neurological outcome in WDR62 primary microcephaly. Dev Med Child Neurol 2022; 64:509-517. [PMID: 35726608 DOI: 10.1111/dmcn.15060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023]
Abstract
AIM To characterize the cortical structure, developmental, and cognitive profiles of patients with WD repeat domain 62 (WDR62)-related primary microcephaly. METHOD In this observational study, we describe the developmental, neurological, cognitive, and brain imaging characteristics of 17 patients (six males, 11 females; mean age 12y 3mo standard deviation [SD] 5y 8mo, range 5y-24y 6mo) and identify 14 new variants of WDR62. We similarly analyse the phenotypes and genotypes of the 59 previously reported families. RESULTS Brain malformations, including pachygyria, neuronal heterotopia, schizencephaly, and microlissencephaly, were present in 11 out of 15 patients. The mean full-scale IQ of the 11 assessed patients was 51.8 (standard deviation [SD] 12.6, range 40-70). Intellectual disability was severe in four patients, moderate in four, and mild in three. Scores on the Vineland Adaptive Behavior Scales obtained from 10 patients were low for communication and motor skills (mean 38.29, SD 7.74, and 37.71, SD 5.74 respectively). The socialization score was higher (mean 47.14, SD 12.39). We found a significant difference between scores for communication and daily living skills (mean 54.43, SD 11.6; p=0.001, one-way analysis of variance). One patient displayed progressive ataxia. INTERPRETATION WDR62-related cognitive consequences may be less severe than expected because 3 out of 11 of the assessed patients had only mild intellectual disability and relatively preserved abilities of autonomy in daily life. We identified progressive ataxia in the second decade of life in one patient, which should encourage clinicians to follow up patients in the long term.
Collapse
Affiliation(s)
- Lyse Ruaud
- Département de Génétique, UMR 1141 NEURODIDEROT, INSERM, APHP, Hôpital Universitaire Robert Debré, Université de Paris, Paris, France
| | - Séverine Drunat
- Département de Génétique, UMR 1141 NEURODIDEROT, INSERM, APHP, Hôpital Universitaire Robert Debré, Université de Paris, Paris, France
| | | | - Anais Ernault
- Département de Génétique, APHP, Hôpital Universitaire Robert Debré, Paris, France
| | - Sophie Guilmin Crepon
- Unité d'Epidémiologie Clinique, APHP, Hôpital Universitaire Robert Debré, Paris, France
| | | | | | - Stéphane Auvin
- Service de Neurologie Pédiatrique, UMR 1141 NEURODIDEROT, INSERM, APHP, Hôpital Universitaire Robert Debré, Université de Paris, Paris, France.,Institut universitaire de France (IUF), Paris, France
| | - Alain Verloes
- Département de Génétique, UMR 1141 NEURODIDEROT, INSERM, APHP, Hôpital Universitaire Robert Debré, Université de Paris, Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, UMR 1141 NEURODIDEROT, INSERM, APHP, Hôpital Universitaire Robert Debré, Université de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The Bidirectional Link Between Sleep Disturbances and Traumatic Brain Injury Symptoms: A Role for Glymphatic Dysfunction? Biol Psychiatry 2022; 91:478-487. [PMID: 34481662 PMCID: PMC8758801 DOI: 10.1016/j.biopsych.2021.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI), often referred to as concussion, is a major cause of morbidity and mortality worldwide. Sleep disturbances are common after mTBI. Moreover, subjects who develop subjective sleep complaints after mTBI also report more severe somatic, mental health, and cognitive impairment and take longer to recover from mTBI sequelae. Despite many previous studies addressing the role of sleep in post-mTBI morbidity, the mechanisms linking sleep to recovery after mTBI remain poorly understood. The glymphatic system is a brainwide network that supports fluid movement through the cerebral parenchyma and the clearance of interstitial solutes and wastes from the brain. Notably, the glymphatic system is active primarily during sleep. Clearance of cellular byproducts related to somatic, mental health, and neurodegenerative processes (e.g., amyloid-β and tau, among others) depends in part on intact glymphatic function, which becomes impaired after mTBI. In this viewpoint, we review the current knowledge regarding the association between sleep disturbances and post-mTBI symptoms. We also discuss the role of glymphatic dysfunction as a potential link between mTBI, sleep disruption, and posttraumatic morbidity. We outline a model where glymphatic dysfunction and sleep disruption caused by mTBI may have an additive effect on waste clearance, leading to cerebral dysfunction and impaired recovery. Finally, we review the novel techniques being developed to examine glymphatic function in humans and explore potential interventions to alter glymphatic exchange that may offer a novel therapeutic approach to those experiencing poor sleep and prolonged symptoms after mTBI.
Collapse
|
38
|
Liu XY, Ma GY, Wang S, Gao Q, Guo C, Wei Q, Zhou X, Chen LP. Perivascular space is associated with brain atrophy in patients with multiple sclerosis. Quant Imaging Med Surg 2022; 12:1004-1019. [PMID: 35111601 DOI: 10.21037/qims-21-705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/20/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Perivascular space (PVS) is associated with neurodegenerative and neuroimmune diseases. Multiple sclerosis (MS) is traditionally a neuroimmune disease. However, studies show neurodegeneration also plays a vital role in MS. At present, most studies conclude severer PVS in MS is an imaging marker of neuroinflammation, while a 7T MRI study suggests that PVS in MS is associated with neurodegeneration. METHODS In this study, 82 MS patients (n=82) and 32 healthy controls (n=32) were enrolled. The following indexes were measured: the number, size and distribution of PVS, the PVS score, corpus callosum index (CCI), corpus callosum area (CCA), the ratio of the corpus callosum to the cranium (CCR), aligned third ventricle width (a3VW), and unaligned third ventricle width (u3VW). RESULTS The PVS score (4 vs. 3, P=0.041), PVSs number (103.280±45.107 vs. 87.625±30.139, P=0.035), and enlarged perivascular spaces (EPVSs) number (9 vs. 1, P<0.001) of MS patients were significantly higher than in the healthy controls. PVSs number (23.5 vs. 13) and EPVSs number (1 vs. 0) in the basal ganglia (BG), and EPVSs number (3 vs. 0) in centrum semiovale (CSO) of MS patients were significantly higher than in the healthy controls, P<0.001. In MS patients, PVS was correlated with age and hypertension but not to the extended disability status scale (EDSS) score and other clinical data. In MS patients, PVS score was correlated with CCA (rs=0.272; P=0.013) and the CCR (rs=0.219; P=0.048), and PVSs number was correlated with CCA (rs=0.255; P=0.021), the correlation disappeared after adjusting hypertension and age. In MS patients in remission, PVSs number was correlated with CCA (rs=0.487; P=0.019), CCR (rs=0.479; P=0.021), and PVS score was correlated with CCA (rs=0.453; P=0.03). After adjustment of hypertension and age, the total number of PVSs was correlated with CCA (rs=0.419; P=0.049). CONCLUSIONS The PVS load in MS patients was heavier than healthy people, especially in BG and CSO. PVS was not correlated with EDSS in MS patients. The PVS of MS patients was associated with CCA and CCR, and PVSs number was independently related with CCA in MS patients in remission.
Collapse
Affiliation(s)
- Xue-Yu Liu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gai-Ying Ma
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shi Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Gao
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cong Guo
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiao Wei
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuan Zhou
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li-Ping Chen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
39
|
Rundek T, Del Brutto V, Goryawala M, Dong C, Agudelo C, Saporta AS, Merritt S, Camargo C, Ariko T, Loewenstein DA, Duara R, Haq I. Associations Between Vascular Risk Factors and Perivascular Spaces in Adults with Intact Cognition, Mild Cognitive Impairment, and Dementia. J Alzheimers Dis 2022; 89:437-448. [PMID: 35871327 PMCID: PMC10410400 DOI: 10.3233/jad-215585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Perivascular spaces (PVS) are fluid-filled compartments surrounding small intracerebral vessels that transport fluid and clear waste. OBJECTIVE We examined associations between PVS count, vascular and neurodegenerative risk factors, and cognitive status among the predominantly Hispanic participants of the FL-VIP Study of Alzheimer's Disease Risk. METHODS Using brain MRI (n = 228), we counted PVS in single axial image through the basal ganglia (BG) and centrum semiovale (CSO). PVS per region were scored as 0 (none), 1 (<10), 2 (11-20), 3 (21-40), and 4 (>40). Generalized linear models examined PVS associations with vascular risk factors and a composite vascular comorbidity risk (VASCom) score. RESULTS Our sample (mean age 72±8 years, 61% women, 60% Hispanic, mean education 15±4 years, 33% APOE4 carriers) was 59% hypertensive, 21% diabetic, 66% hypercholesteremic, and 30% obese. Mean VASCom score was 2.3±1.6. PVS scores ranged from 0-4 in the BG (mean 1.3±0.7) and CSO (mean 1.2±0.9), and 0-7 combined (mean 2.5±1.4). In multivariable regression models, BG PVS was associated with age (β= 0.03/year, p < 0.0001), Hispanic ethnicity (β= 0.29, p = 0.01), education (β= 0.04/year, p = 0.04), and coronary bypass surgery (β= 0.93, p = 0.02). CSO PVS only associated with age (β= 0.03/year, p < 0.01). APOE4 and amyloid-β were not associated with PVS. CONCLUSION BG PVS may be a marker of subclinical cerebrovascular disease. Further research is needed to validate associations and identify mechanisms linking BG PVS and cerebrovascular disease markers. PVS may be a marker of neurodegeneration despite our negative preliminary findings and more research is warranted. The association between BG PVS and Hispanic ethnicity also requires further investigation.
Collapse
Affiliation(s)
- Tatjana Rundek
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Victor Del Brutto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mohammed Goryawala
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Chuanhui Dong
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Christian Agudelo
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anita Seixas Saporta
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stacy Merritt
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Christian Camargo
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Taylor Ariko
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David A. Loewenstein
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Center for Neurocognitive Sciences and Aging, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Ihtsham Haq
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
40
|
Yim Y, Moon WJ. An Enlarged Perivascular Space: Clinical Relevance and the Role of Imaging in Aging and Neurologic Disorders. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:538-558. [PMID: 36238506 PMCID: PMC9514531 DOI: 10.3348/jksr.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Younghee Yim
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Ruchoux MM, Kalaria RN, Román GC. The pericyte: A critical cell in the pathogenesis of CADASIL. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100031. [PMID: 34950895 PMCID: PMC8661128 DOI: 10.1016/j.cccb.2021.100031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
CADASIL is the most common hereditary small vessel disease presenting with strokes and subcortical vascular dementia caused by mutations in the NOTCH3 gene. CADASIL is a vasculopathy primarily involving vascular smooth-muscle cells. Arteriolar and capillary pericyte damage or deficiency is a key feature in disease pathogenesis. Pericyte-mediated cerebral venous insufficiency may explain white matter lesions and increased perivascular spaces. Central role of the pericyte offers novel approaches to the treatment of CADASIL.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary small vessel disease presenting with migraine, mood and cognitive disorders, focal neurological deficits, recurrent ischemic attacks, lacunar infarcts and brain white matter changes. As they age, CADASIL patients invariably develop cognitive impairment and subcortical dementia. CADASIL is caused by missense mutations in the NOTCH3 gene resulting in a profound cerebral vasculopathy affecting primarily arterial vascular smooth muscle cells, which target the microcirculation and perfusion. Based on a thorough review of morphological lesions in arteries, veins, and capillaries in CADASIL, we surmise that arteriolar and capillary pericyte damage or deficiency appears a key feature in the pathogenesis of the disease. This may affect critical pericyte-endothelial interactions causing stroke injury and vasomotor disturbances. Changes in microvascular permeability due to perhaps localized blood-brain barrier alterations and pericyte secretory dysfunction likely contribute to delayed neuronal as well as glial cell death. Moreover, pericyte-mediated cerebral venous insufficiency may explain white matter lesions and the dilatation of Virchow-Robin perivascular spaces typical of CADASIL. The postulated central role of the pericyte offers some novel approaches to the study and treatment of CADASIL and enable elucidation of other forms of cerebral small vessel diseases and subcortical vascular dementia.
Collapse
Affiliation(s)
- Marie-Magdeleine Ruchoux
- Former researcher, Université d'Artois, Blood-Brain-Barrier Laboratory Lens France, Former advisor, Alzheimer's Clinic Methodist Neurological Institute, Houston TX, USA
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Gustavo C Román
- Methodist Neurological Institute, Department of Neurology, Houston Methodist Hospital Houston TX 77030, USA, Weill Cornell Medical College, New York NY, USA and Texas A&M Medical School, Bryan TX, USA
| |
Collapse
|
42
|
Bajwa MH, Ul Islam MY, Mubarak F. Giant tumefactive perivascular spaces in a pediatric patient: A rare radiological entity. Surg Neurol Int 2021; 12:613. [PMID: 34992929 PMCID: PMC8720451 DOI: 10.25259/sni_990_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 11/04/2022] Open
Abstract
Background:
Giant tumefactive perivascular spaces (TPVS) are radiological rarities and may mimic other neurological structural lesions. Fewer than 80 cases have been reported in the literature with even fewer in the pediatric population.
Case Description:
The authors present an image report showcasing a 3-year-old boy presenting with uncontrolled seizures despite multiple anti-epileptic medications. His magnetic resonance imaging showed multiple, non-contrast enhancing cyst clusters within the left parieto-occipital region that was hyperintense on T2-weighted imaging, and isointense to cerebrospinal fluid. Due to a characteristic absence of perilesional edema seen on fluid-attenuated inversion recovery imaging or diffusion restriction on diffusion-weighted imaging (DWI) sequences, this was diagnosed as a giant TPVS.
Conclusion:
Accurate diagnosis of these rare radiological entities is based on pathognomonic findings that can help prevent unnecessary surgery and guide management for patients, particularly in the pediatric population as seen in our case.
Collapse
Affiliation(s)
- Mohammad Hamza Bajwa
- Department of Neurosurgery, Aga Khan University Hospital, Aga Khan University, Karachi, Sindh, Pakistan
| | - Mohammad Yousuf Ul Islam
- Department of Neurosurgery, Aga Khan University Hospital, Aga Khan University, Karachi, Sindh, Pakistan
| | - Fatima Mubarak
- Department of Radiology, Aga Khan University Hospital, Aga Khan University, Karachi, Sindh, Pakistan
| |
Collapse
|
43
|
Ishi Y, Harada T, Kameda H, Okada H, Yokota I, Okamoto M, Sawaya R, Motegi H, Yamaguchi S, Terasaka S, Kudo K, Fujimura M. Variations and natural history of primary intraparenchymal lesions associated with neurofibromatosis type 2. Neuroradiology 2021; 64:393-396. [PMID: 34812918 DOI: 10.1007/s00234-021-02809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/11/2021] [Indexed: 10/19/2022]
Abstract
The study aimed to investigate the clinical implications and natural history of primary intraparenchymal lesions in patients with neurofibromatosis type 2. Radiological findings of 15 neurofibromatosis type 2 cases were retrospectively collected. Twenty-seven primary intraparenchymal lesions were observed in 7 out of 15 patients (47%). Cortical/subcortical T2 hyperintense lesions and enlarged Virchow-Robin spaces were the most common findings in five and four patients, respectively. During the follow-up period (median 84 months), one new primary intraparenchymal lesion was identified and increased lesions were observed in two cases on contrast-enhanced MRI. Surgical resection was performed in one case pathologically diagnosed with atypical meningioma. Twenty-five other lesions without contrast enhancement presented no apparent growth during follow-up. Although most primary intraparenchymal lesions are benign, a subset of cases would present newly developed or increased lesions on contrast-enhanced MRI. Careful monitoring is necessary for such cases, and pathological confirmation should be considered.
Collapse
Affiliation(s)
- Yukitomo Ishi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taisuke Harada
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan.,Center for Cause of Death Investigation, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan.,Department of Radiology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Hiromi Okada
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Isao Yokota
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Michinari Okamoto
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ryosuke Sawaya
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroaki Motegi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Shunsuke Terasaka
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.,Department of Neurosurgery, Kashiwaba Neurosurgical Hospital, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
44
|
Uçar Çİ, Yıldırım M, Sayar Y, Şahin S, Teber ST. Hypomelanosis of Ito presenting with unilateral dilation of Virchow-Robin spaces: a case report. Childs Nerv Syst 2021; 37:2931-2934. [PMID: 33585955 DOI: 10.1007/s00381-021-05083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Hypomelanosis of Ito is a rare heterogeneous neurocutaneous disorder often associated with central nervous and musculoskeletal system involvement. Herein, we report the first case of hypomelanosis of Ito in the literature presenting with unilateral dilation of Virchow-Robin spaces (VRS). A girl aged 16 years old presented with a 1-year history of headache. Her physical and neurological examinations were normal, except for the presence of unilateral cutaneous macular hypopigmented whorls and streaks on lower side of the right trunk and lower limb, termed as Blaschko's lines. She had mild deficits in cognitive and adaptive functioning. Hearing, renal, dental, ophthalmologic, metabolic, and cardiac assessments were normal. Brain magnetic resonance imaging (MRI) showed markedly unilateral hemispheric enlarged VRS without contrast enhancement and diffusion restriction. To the best of our knowledge, our case is the first report describing the unilateral hemispheric enlarged VRS in a patient with hypomelanosis of Ito. Our report suggested that hypomelanosis of Ito may have unilateral dilation of VRS in brain MRI.
Collapse
Affiliation(s)
- Çiğdem İlter Uçar
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Mamak, 06590, Ankara, RI, Turkey
| | - Miraç Yıldırım
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Mamak, 06590, Ankara, RI, Turkey.
| | - Yavuz Sayar
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Mamak, 06590, Ankara, RI, Turkey
| | - Süleyman Şahin
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Mamak, 06590, Ankara, RI, Turkey
| | - Serap Tıraş Teber
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Mamak, 06590, Ankara, RI, Turkey
| |
Collapse
|
45
|
Normal-sized basal ganglia perivascular space related to motor phenotype in Parkinson freezers. Aging (Albany NY) 2021; 13:18912-18923. [PMID: 34314380 PMCID: PMC8351731 DOI: 10.18632/aging.203343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Changes in basal ganglia (BG) perivascular spaces (PVSs) are related to motor and cognitive behaviors in Parkinson’s disease (PD). However, the correlation between the initial motor phenotype and PVSs distribution/burden in PD freezing of gait (FOG) remains unclear. In addition, the normal-sized PVSs (nPVSs) have not been well-studied. With high-resolution 7T-MRI, we studied nPVSs burden in BG, thalamus, midbrain and centrum semiovale. The numbers and volume of nPVSs were assessed in 10 healthy controls, 10 PD patients without FOG, 20 with FOG [10 tremor dominant (TD), 10 non-TD subtype]. Correlation analyses were further performed in relation to clinical parameters. In this proof of concept study, we found that the nPVS burden of bilateral and right BG were significantly higher in freezers. A negative correlation existed between the tremor score and BG-nPVSs count. A positive correlation existed between the levodopa equivalent daily dose and BG-nPVSs count. The nPVS burden correlated with the progression to FOG in PD, but the distribution and burden of nPVS differ in TD vs. non-TD subtypes. High resolution 7T-MRI is a sensitive and reliable tool to evaluate BG-nPVS, and may be a useful imaging marker for predicting gait impairment that may evolve into FOG in PD.
Collapse
|
46
|
Albanna W, Conzen C, Weiss M, Seyfried K, Kotliar K, Schmidt TP, Kuerten D, Hescheler J, Bruecken A, Schmidt-Trucksäss A, Neumaier F, Wiesmann M, Clusmann H, Schubert GA. Non-invasive Assessment of Neurovascular Coupling After Aneurysmal Subarachnoid Hemorrhage: A Prospective Observational Trial Using Retinal Vessel Analysis. Front Neurol 2021; 12:690183. [PMID: 34194387 PMCID: PMC8236540 DOI: 10.3389/fneur.2021.690183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Objective: Delayed cerebral ischemia (DCI) is a common complication after aneurysmal subarachnoid hemorrhage (aSAH) and can lead to infarction and poor clinical outcome. The underlying mechanisms are still incompletely understood, but animal models indicate that vasoactive metabolites and inflammatory cytokines produced within the subarachnoid space may progressively impair and partially invert neurovascular coupling (NVC) in the brain. Because cerebral and retinal microvasculature are governed by comparable regulatory mechanisms and may be connected by perivascular pathways, retinal vascular changes are increasingly recognized as a potential surrogate for altered NVC in the brain. Here, we used non-invasive retinal vessel analysis (RVA) to assess microvascular function in aSAH patients at different times after the ictus. Methods: Static and dynamic RVA were performed using a Retinal Vessel Analyzer (IMEDOS Systems GmbH, Jena) in 70 aSAH patients during the early (d0-4), critical (d5-15), late (d16-23) phase, and at follow-up (f/u > 6 weeks) after the ictus. For comparison, an age-matched cohort of 42 healthy subjects was also included in the study. Vessel diameters were quantified in terms of the central retinal arterial and venous equivalent (CRAE, CRVE) and the retinal arterio-venous-ratio (AVR). Vessel responses to flicker light excitation (FLE) were quantified by recording the maximum arterial and venous dilation (MAD, MVD), the time to 30% and 100% of maximum dilation (tMAD30, tMVD30; tMAD, tMVD, resp.), and the arterial and venous area under the curve (AUCart, AUCven) during the FLE. For subgroup analyses, patients were stratified according to the development of DCI and clinical outcomes after 12 months. Results: Vessel diameter (CRAE, CRVE) was significantly smaller in aSAH patients and showed little change throughout the whole observation period (p < 0.0001 vs. control for all time periods examined). In addition, aSAH patients exhibited impaired arterial but not venous responses to FLE, as reflected in a significantly lower MAD [2.2 (1.0-3.2)% vs. 3.6 (2.6-5.6)% in control subjects, p = 0.0016] and AUCart [21.5 (9.4-35.8)%*s vs. 51.4 (32.5-69.7)%*s in control subjects, p = 0.0001] on d0-4. However, gradual recovery was observed during the first 3 weeks, with close to normal levels at follow-up, when MAD and AUCart amounted to 3.0 [2.0-5.0]% (p = 0.141 vs. control, p = 0.0321 vs. d5-15) and 44.5 [23.2-61.1]%*s (p = 0.138 vs. control, p < 0.01 vs. d0-4 & d5-15). Finally, patients with clinical deterioration (DCI) showed opposite changes in the kinetics of arterial responses during early and late phase, as reflected in a significantly lower tMAD30 on d0-4 [4.0 (3.0-6.8) s vs. 7.0 (5.0-8.0) s in patients without DCI, p = 0.022) and a significantly higher tMAD on d16-23 (24.0 (21.0-29.3) s vs. 18.0 (14.0-21.0) s in patients without DCI, p = 0.017]. Conclusion: Our findings confirm and extend previous observations that aSAH results in sustained impairments of NVC in the retina. DCI may be associated with characteristic changes in the kinetics of retinal arterial responses. However, further studies will be required to determine their clinical implications and to assess if they can be used to identify patients at risk of developing DCI. Trial Registration: ClinicalTrials.gov Identifier: NCT04094155.
Collapse
Affiliation(s)
- Walid Albanna
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany.,Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Catharina Conzen
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Miriam Weiss
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | | | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany
| | | | - David Kuerten
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Anne Bruecken
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | | | - Felix Neumaier
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Martin Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
47
|
Gouveia-Freitas K, Bastos-Leite AJ. Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology. Neuroradiology 2021; 63:1581-1597. [PMID: 34019111 PMCID: PMC8460534 DOI: 10.1007/s00234-021-02718-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 12/28/2022]
Abstract
Perivascular spaces (PVS) of the brain, often called Virchow-Robin spaces, comprise fluid, cells and connective tissue, and are externally limited by astrocytic endfeet. PVS are involved in clearing brain waste and belong to the "glymphatic" system and/or the "intramural periarterial drainage" pathway through the basement membranes of the arteries. Related brain waste clearance systems include the blood-brain barrier, scavenger cells, cerebrospinal fluid, perineural lymphatic drainage pathways and the newly characterised meningeal lymphatic vessels. Any functional abnormality of PVS or related clearance systems might lead to accumulation of brain waste. It has been postulated that PVS enlargement can be secondary to accumulation of β-amyloid. Lack of integrity of the vascular wall, microbleeds, cerebral amyloid angiopathy (CAA) and enlarged PVS often occur in the preclinical stages of Alzheimer's disease, preceding substantial brain atrophy. PVS enlargement in the form of état criblé at the basal ganglia has also been considered to reflect focal atrophy, most probably secondary to ischaemic injury, based upon both pathological and imaging arguments. In addition, distinct topographic patterns of enlarged PVS are related to different types of microangiopathy: CAA is linked to enlarged juxtacortical PVS, whereas subjects with vascular risk factors tend to have enlarged PVS in the basal ganglia. Therefore, enlarged PVS are progressively being regarded as a marker of neurodegenerative and cerebrovascular pathology. The present review addresses the evolving concept of PVS and brain waste clearance systems, the potential relevance of their dysfunction to neurodegenerative and cerebrovascular pathology, and potential therapeutic approaches of interest.
Collapse
Affiliation(s)
- Kaylene Gouveia-Freitas
- Faculty of Medicine, University of Porto, Alameda do Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - António J Bastos-Leite
- Faculty of Medicine, University of Porto, Alameda do Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
48
|
Shibahara I, Sato S, Hide T, Saito R, Kanamori M, Sonoda Y, Tominaga T, Kumabe T. Postcentral gyrus resection of opercular gliomas is a risk factor for motor deficits caused by damaging the radiologically invisible arteries supplying the descending motor pathway. Acta Neurochir (Wien) 2021; 163:1269-1278. [PMID: 33537863 DOI: 10.1007/s00701-021-04737-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Postoperative motor deficits are among the worst morbidities of glioma surgery. We aim to investigate factors associated with postoperative motor deficits in patients with frontoparietal opercular gliomas. METHODS Thirty-four patients with frontoparietal opercular gliomas were retrospectively investigated. We examined the postoperative ischemic changes and locations obtained from MRI. RESULTS Twenty-one patients (62%) presented postoperative ischemic changes. Postoperative MRI was featured with ischemic changes, all located at the subcortical area of the resection cavity. Six patients had postoperative motor deficits, whereas 28 patients did not. Compared to those without motor deficits, those with motor deficits were associated with old age, pre- and postcentral gyri resection, and postcentral gyrus resection (P = 0.023, 0,024, and 0.0060, respectively). A merged image of the resected cavity and T1-weighted brain atlas of the Montreal Neurological Institute showed that a critical area for postoperative motor deficits is the origin of the long insular arteries (LIAs) and the postcentral gyrus. Detail anatomical architecture created by the Human Connectome Project database and T2-weighted images showed that the subcortical area of the operculum of the postcentral gyrus is where the medullary arteries supply, and the motor pathways originated from the precentral gyrus run. CONCLUSIONS We verified that the origin of the LIAs could damage the descending motor pathways during the resection of frontoparietal opercular gliomas. Also, we identified that motor pathways run the subcortical area of the operculum of the postcentral gyrus, indicating that the postcentral gyrus is an unrecognized area of damaging the descending motor pathways.
Collapse
Affiliation(s)
- Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Sumito Sato
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
49
|
Huo Y, Huang S, Li R, Gong X, Zhang W, Zhang R, Qin X. Elevated hemoglobin is independently associated with enlarged perivascular spaces in the central semiovale. Sci Rep 2021; 11:2820. [PMID: 33531576 PMCID: PMC7854720 DOI: 10.1038/s41598-021-82327-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/18/2021] [Indexed: 11/12/2022] Open
Abstract
Enlarged perivascular spaces (EPVS) are widely considered as a feature of cerebral small vessel diseases (SVD), but its underlying pathology is still under active investigation. The aim of this study was to explore the association between hemoglobin level and the severity of EPVS. Consecutive patients with acute ischemic stroke who underwent baseline MRI scan and hemoglobin testing were evaluated. EPVS in basal ganglia (BG) and central semiovale (CS) were rated with a validated 4-point semiquantitative scale (0 = none; 1 = 1–10; 2 = 11–20; 3 = 21–40; and 4 ≥ 40). Bivariate logistic regression models were used to identify the associations of hemoglobin with predefined high-degree (score > 1) CS-EPVS and BG-EPVS. Multinomial logistic regression models were used to analyze the associations between hemoglobin and CS-/BG-EPVS predominance patterns. A total of 401 patients were included in the final analysis, 94 patients (23.4%) had a high degree of CS-EPVS and 45 patients (11.2%) had a high degree of BG-EPVS. Compared with tertile 1 of hemoglobin, tertile 3 of hemoglobin was independently associated with high degree of CS-EPVS after adjusting for other features of SVD (odds ratio [OR] 2.399, 95% confidence interval [CI] 1.315–4.379, P = 0.004) and potential confounding factors (OR 2.611, 95% CI 1.346–5.066, P = 0.005). In multinomial logistic regression models, compared with tertile 1 of hemoglobin, tertile 2 (OR 2.463, 95% CI 1.195–5.075, P = 0.015) and tertile 3 (OR 2.625, 95% CI 1.102–6.251, P = 0.029) of hemoglobin were associated with higher odds of BG-EPVS = CS-EPVS pattern, and tertile 3 of hemoglobin (OR 2.576, 95% CI 1.004–6.608, P = 0.049) was associated with higher odds of BG-EPVS < CS-EPVS pattern. Elevated hemoglobin level was independently associated with high degree of CS-EPVS and higher odds of CS-EPVS predominance pattern, but not with BG-EPVS, which support that the topography of EPVS is characteristic. However, the pathogenesis linking hemoglobin and CS-EPVS is unclear and still needs further investigation.
Collapse
Affiliation(s)
- Yingchao Huo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Siyuan Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Rui Li
- Division of Life Sciences and Medicine, Department of Neurology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Xue Gong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenyu Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Department of Neurology, Panzhihua Municipal Central Hospital, Panzhihua, 617000, Sichuan, People's Republic of China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
50
|
Faghih MM, Keith Sharp M. Mechanisms of tracer transport in cerebral perivascular spaces. J Biomech 2021; 118:110278. [PMID: 33548658 DOI: 10.1016/j.jbiomech.2021.110278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/16/2021] [Indexed: 02/09/2023]
Abstract
Tracers infused into the brain appear to be transported along channels surrounding cerebral blood vessels. Bulk fluid flow has been hypothesized in paravascular "glymphatic" channels (outer space between the pial membrane and astrocyte endfeet), as well as in the periarterial space (inner space between smooth muscle cells). The plausibility of net flow in these channels due to steady and oscillatory pressures is reviewed, as is that of transport by oscillatory shear-enhanced dispersion in the absence of net flow. Models including 1D branching networks of annular channels and an expanded compartmental model for humans both predict that flow driven by physiologic steady pressure differences is unlikely in both periarterial and paraarterial spaces, whether the spaces are open or filled with porous media. One exception is that a small additional steady pressure difference could drive paraarterial flow if the space is open. The potential that the tracer injection itself could present such a pressure difference is outlined. Oscillatory (peristaltic) wall motion alone has been found to be insufficient to drive significant forward flow. However, a number of hypothesized mechanisms that have yet to be experimentally verified in the brain may create directional flow in combination with wall motion. Shear-augmented dispersion due to oscillatory pressure in channels with a range of porosity has been modeled analytically. Enhancement of axial dispersion is small for periarterial channels. In open paraarterial channels, dispersion enhancement with optimal lateral mixing is large enough that it may explain observed tracer transport without net forward fluid flow.
Collapse
Affiliation(s)
- Mohammad M Faghih
- Department of Mechanical Engineering, University of Louisville Louisville, KY 40292, United States
| | - M Keith Sharp
- Department of Mechanical Engineering, University of Louisville Louisville, KY 40292, United States.
| |
Collapse
|