1
|
Chaousis S, Leusch FD, Limpus CJ, Nouwens A, Weijs LJ, Weltmeyer A, Covaci A, van de Merwe JP. Non-targeted proteomics reveals altered immune response in geographically distinct populations of green sea turtles (Chelonia mydas). ENVIRONMENTAL RESEARCH 2023; 216:114352. [PMID: 36210607 DOI: 10.1016/j.envres.2022.114352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 05/26/2023]
Abstract
All seven species of sea turtle are facing increasing pressures from human activities that are impacting their health. Changes in circulating blood proteins of an individual, or all members of a population, can provide an early indicator of adverse health outcomes. Non-targeted measurement of all detectable proteins in a blood sample can indicate physiological changes. In the context of wildlife toxicology, this technique can provide a powerful tool for discovering biomarkers of chemical exposure and effect. This study presents a non-targeted examination of the protein abundance in sea turtle plasma obtained from three geographically distinct foraging populations of green turtles (Chelonia mydas) on the Queensland coast. Relative changes in protein expression between sites were compared, and potential markers of contaminant exposure were investigated. Blood plasma protein profiles were distinct between populations, with 85 out of the 116 identified proteins differentially expressed (p < 0.001). The most strongly dysregulated proteins were predominantly acute phase proteins, suggestive of differing immune status between the populations. The highest upregulation of known markers of immunotoxicity, such as pentraxin fusion and complement factor h, was observed in the Moreton Bay turtles. Forty-five different organohalogens were also measured in green turtle plasma samples as exposure to some organohalogens (e.g., polychlorinated biphenyls) has previously been identified as a cause for immune dysregulation in marine animals. The few detected organohalogens were at very low (pg/mL) concentrations in turtles from all sites, and are unlikely to be the cause of the proteome differences observed. However, the changes in protein expression may be indicative of exposure to other chemicals or environmental stressors. The results of this study provide important information about differences in protein expression between different populations of turtles, and guide future toxicological and health studies on east-Australian green sea turtles.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Gold Coast Campus, QLD, 4222, Australia
| | - Frederic Dl Leusch
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Gold Coast Campus, QLD, 4222, Australia
| | - Colin J Limpus
- Department of Environment and Science, Queensland Government, Ecosciences Precinct, Dutton Park QLD, 4102, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, The University of Queensland, QLD, 4067, Australia
| | - Liesbeth J Weijs
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Gold Coast Campus, QLD, 4222, Australia
| | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Jason P van de Merwe
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Gold Coast Campus, QLD, 4222, Australia.
| |
Collapse
|
2
|
Dietz R, Letcher RJ, Aars J, Andersen M, Boltunov A, Born EW, Ciesielski TM, Das K, Dastnai S, Derocher AE, Desforges JP, Eulaers I, Ferguson S, Hallanger IG, Heide-Jørgensen MP, Heimbürger-Boavida LE, Hoekstra PF, Jenssen BM, Kohler SG, Larsen MM, Lindstrøm U, Lippold A, Morris A, Nabe-Nielsen J, Nielsen NH, Peacock E, Pinzone M, Rigét FF, Rosing-Asvid A, Routti H, Siebert U, Stenson G, Stern G, Strand J, Søndergaard J, Treu G, Víkingsson GA, Wang F, Welker JM, Wiig Ø, Wilson SJ, Sonne C. A risk assessment review of mercury exposure in Arctic marine and terrestrial mammals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154445. [PMID: 35304145 DOI: 10.1016/j.scitotenv.2022.154445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
There has been a considerable number of reports on Hg concentrations in Arctic mammals since the last Arctic Monitoring and Assessment Programme (AMAP) effort to review biological effects of the exposure to mercury (Hg) in Arctic biota in 2010 and 2018. Here, we provide an update on the state of the knowledge of health risk associated with Hg concentrations in Arctic marine and terrestrial mammal species. Using available population-specific data post-2000, our ultimate goal is to provide an updated evidence-based estimate of the risk for adverse health effects from Hg exposure in Arctic mammal species at the individual and population level. Tissue residues of Hg in 13 species across the Arctic were classified into five risk categories (from No risk to Severe risk) based on critical tissue concentrations derived from experimental studies on harp seals and mink. Exposure to Hg lead to low or no risk for health effects in most populations of marine and terrestrial mammals, however, subpopulations of polar bears, pilot whales, narwhals, beluga and hooded seals are highly exposed in geographic hotspots raising concern for Hg-induced toxicological effects. About 6% of a total of 3500 individuals, across different marine mammal species, age groups and regions, are at high or severe risk of health effects from Hg exposure. The corresponding figure for the 12 terrestrial species, regions and age groups was as low as 0.3% of a total of 731 individuals analyzed for their Hg loads. Temporal analyses indicated that the proportion of polar bears at low or moderate risk has increased in East/West Greenland and Western Hudson Bay, respectively. However, there remain numerous knowledge gaps to improve risk assessments of Hg exposure in Arctic mammalian species, including the establishment of improved concentration thresholds and upscaling to the assessment of population-level effects.
Collapse
Affiliation(s)
- Rune Dietz
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark.
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada.
| | - Jon Aars
- Norwegian Polar Institute, Tromsø NO-9296, Norway
| | | | - Andrei Boltunov
- Marine Mammal Research and Expedition Centre, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Erik W Born
- Greenland Institute of Natural Resources, P.O. Box 570, DK-3900 Nuuk, Greenland
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Krishna Das
- Freshwater and Oceanic sciences Unit of reSearch (FOCUS), University of Liege, 4000 Liege, Belgium
| | - Sam Dastnai
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Andrew E Derocher
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Jean-Pierre Desforges
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark; Department of Environmental Studies and Science, University of Winnipeg, Winnipeg, MB, Canada
| | - Igor Eulaers
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark; Norwegian Polar Institute, Tromsø NO-9296, Norway
| | - Steve Ferguson
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | - Lars-Eric Heimbürger-Boavida
- Géosciences Environnement Toulouse, CNRS/IRD/Université Paul Sabatier Toulouse III, Toulouse, France; Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | | | - Bjørn M Jenssen
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark; Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Stephen Gustav Kohler
- Department of Chemistry, Norwegian University of Science and Technology, Realfagbygget, E2-128, Gløshaugen, NO-7491 Trondheim, Norway
| | - Martin M Larsen
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Ulf Lindstrøm
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway; Department of Arctic Technology, Institute of Marine Research, FRAM Centre, NO-9007 Tromsø, Norway
| | - Anna Lippold
- Norwegian Polar Institute, Tromsø NO-9296, Norway
| | - Adam Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, 15 Eddy Street, 14th floor, Gatineau, Quebec K1A 0H4, Canada
| | - Jacob Nabe-Nielsen
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Nynne H Nielsen
- Greenland Institute of Natural Resources, P.O. Box 570, DK-3900 Nuuk, Greenland
| | - Elizabeth Peacock
- USGS Alaska Science Center, 4210 University Dr., Anchorage, AK 99508-4626, USA
| | - Marianna Pinzone
- Department of Environmental Studies and Science, University of Winnipeg, Winnipeg, MB, Canada
| | - Frank F Rigét
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Aqqalu Rosing-Asvid
- Greenland Institute of Natural Resources, P.O. Box 570, DK-3900 Nuuk, Greenland
| | - Heli Routti
- Norwegian Polar Institute, Tromsø NO-9296, Norway
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, DE-25761 Büsum, Germany
| | - Garry Stenson
- Northwest Atlantic Fisheries Centre, Department DFO-MPO, 80 EastWhite Hills vie, St John's A1C 5X1, Newfoundland and Labrador, Canada
| | - Gary Stern
- Centre for Earth Observation Sciences (CEOS), Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, 586Wallace Bld, 125 Dysart Rd., Winnipeg, Manitoba R3T, 2N2, Canada
| | - Jakob Strand
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Jens Søndergaard
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Gabriele Treu
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Gisli A Víkingsson
- Marine and Freshwater Research Institute, Skúlagata 4, 101 Reykjavík, Iceland
| | - Feiyue Wang
- Centre for Earth Observation Sciences (CEOS), Clayton H. Riddell Faculty of Environment, Earth and Resources, University of Manitoba, 586Wallace Bld, 125 Dysart Rd., Winnipeg, Manitoba R3T, 2N2, Canada
| | - Jeffrey M Welker
- University of Alaska Anchorage, Anchorage 99508, United States; University of Oulu, Oulu 90014, Finland; University of the Arctic, Rovaniemi 96460, Finland
| | - Øystein Wiig
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, N-0318 Oslo, Norway
| | - Simon J Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, Box 6606 Stakkevollan, N-9296 Tromsø, Norway
| | - Christian Sonne
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|
3
|
REGIONAL AND AGE-RELATED VARIATIONS IN HAPTOGLOBIN CONCENTRATIONS IN STELLER SEA LIONS (EUMETOPIAS JUBATUS) FROM ALASKA, USA. J Wildl Dis 2019; 55:91-104. [DOI: 10.7589/2017-10-257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Sonne C, Gustavson K, Eulaers I, Desforges JP, Letcher RJ, Rigét FF, Styrishave B, Dietz R. Risk evaluation of the Arctic environmental POP exposure based on critical body residue and critical daily dose using captive Greenland sledge dogs (Canis familiaris) as surrogate species. ENVIRONMENT INTERNATIONAL 2016; 88:221-227. [PMID: 26773392 DOI: 10.1016/j.envint.2015.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/23/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
The risk from POP (persistent organic pollutant) exposure and subsequent reproductive, immunotoxic and liver histopathological effects was evaluated in a classical parallel trial on Greenland sledge dogs (Canis familiaris) fed contaminated minke whale (Balaenoptera acutorostrata) blubber. First the critical body residues (CBRs) were estimated using the physiologically-based pharmacokinetic (PBPK) model for seven POP compounds based on rat critical daily doses (CDDs). These were then compared with the actual daily oral POP doses (DD) and body residues (BR) in the sledge dogs by calculating risk quotients (RQDD: DD/CDD; RQBR: BR/CBR; ≥1 indicates risk). The results showed that risk quotients for reproductive, immunotoxic and liver histopathological effects were significantly lowest in the control group (p<0.01) while risk quotients based on daily doses (RQDD) were significantly lower than RQs based on body residues (RQBR) (all p<0.01). RQBR in the exposed group ranged from 1.0-12 for reproductive and immunotoxic effects while those for liver histopathological effects ranged from 0.7-3.0. PCBs (polychlorinated biphenyls) and chlordanes were the dominant driver behind high immune and reproductive RQs while dieldrin was the most important factor behind RQs for liver histopathology. Principal component analyses and Spearman rank correlation analyses showed that complement and cellular immune parameters were significantly negative correlated with RQBR (all p<0.05) while logistic regression showed that RQDD had a significant effect on the number of born cups (p=0.03). No significantly relations were found between RQs and hormone concentrations, number of gestations, antibody titres or liver histopathology. These results confirm previous studies showing that POP exposure negatively impacts steroid hormones, various immune parameters, as well as liver histopathology in sledge dogs. It is also clear that RQBR is the best reflector of health effects from POP exposure and that it is especially accurate in predicting immune and reproductive effects. We recommend that PBPK modelled (CBR) and RQBR should be used in the assessment of POP exposure and health effects in Arctic top predators.
Collapse
Affiliation(s)
- Christian Sonne
- Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Aarhus University, P.O. Box 358, DK-4000 Roskilde, Denmark.
| | - Kim Gustavson
- Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Aarhus University, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Igor Eulaers
- Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Aarhus University, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Jean-Pierre Desforges
- Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Aarhus University, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Robert J Letcher
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Frank F Rigét
- Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Aarhus University, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Rune Dietz
- Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Aarhus University, P.O. Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|
5
|
Pedersen KE, Styrishave B, Sonne C, Dietz R, Jenssen BM. Accumulation and potential health effects of organohalogenated compounds in the arctic fox (Vulpes lagopus)--a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:510-516. [PMID: 25300015 DOI: 10.1016/j.scitotenv.2014.09.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
This review addresses biological effects of anthropogenic organohalogenated compounds in the arctic fox (Vulpes lagopus). When considering the current levels, spatial and tissue distributions of selected organic pollutants in arctic fox subpopulations, especially the Svalbard based populations accumulate high levels. The dominating contaminant groups are the polychlorinated biphenyls (PCBs) and chlordanes (CHLs), which reach high levels in adipose tissues, adrenals and liver. Recent controlled exposure studies on domesticated arctic fox and Greenland sledge dogs, show adverse health effects associated with OC concentrations lower than those measured in free-ranging populations. This indicates that especially populations at Svalbard may be at risk of experiencing OC related effects. The arctic fox as such may be an overlooked species in the Arctic Monitoring and Assessment Programs and it would add further information about pollution in the Arctic to include this species in the monitoring program.
Collapse
Affiliation(s)
- Kathrine Eggers Pedersen
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Bjarne Styrishave
- Toxicology Laboratory, Section of Advanced Drug Analysis, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjørn Munro Jenssen
- Norwegian University of Science and Technology, Department of Biology, NO 7491 Trondheim, Norway; University Centre in Svalbard, Department of Arctic Technology, NO 9171 Longyearbyen, Norway
| |
Collapse
|
6
|
Sonne C, Kirkegaard M, Jakobsen J, Jenssen BM, Letcher RJ, Dietz R. Altered vitamin D status in liver tissue and blood plasma from Greenland sledge dogs (Canis familiaris) dietary exposed to organohalogen contaminated minke whale (Balaenoptera acuterostrata) blubber. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:403-408. [PMID: 24725758 DOI: 10.1016/j.ecoenv.2013.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
This study compared vitamin D3 (vitD3) and 25-OH vitamin D3 (25OHD3) status in Greenland sledge dogs (Canis familiaris) given either minke whale (Balaenoptera acuterostrata) blubber high in organohalogen contaminants (OHCs) or clean porcine (Suis scrofa) fat for up to 636 days. A group of six exposed and six control sister bitches (maternal generation) and their three exposed and four control pups, respectively, were daily fed 112g whale blubber (193µg ∑PCB/day) or porcine fat (0.17µg ∑PCB/day). Mean level of ∑PCB in adipose tissue of exposed bitches and their pups was 3106 and 2670ng/g lw, respectively, which was significantly higher than the mean concentration of 53ng/g lw for all controls (p<0.001). The vitamin analyses showed that 25OHD3 in liver of maternal exposed bitches were significantly lower than in controls (p=0.004) while vitD3 was significantly highest in liver of exposed pups (p<0.003). Regarding blood plasma concentrations, exposed F generation pups had significantly higher concentrations of 25OHD3 than controls (p=0.009). Correlation analyses showed that blood 25OHD3 decreased significantly with increased adipose tissue concentrations of ∑PCB in exposed dogs (R(2)=0.64, p=0.005) and a similar trend was found for liver 25OHD3 (R(2)=0.32, p=0.08). The results indicate that the homeostasis and metabolism of vitamin D compounds may respond differently to the dietary composition of fatty acids and OHC exposure. It is unknown if the lower level of 25OHD3 in the liver of exposed dogs would have any negative effects on immunity and reproduction and more focus should be conducted on this compound in Arctic wildlife.
Collapse
Affiliation(s)
- Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Roskilde, Denmark.
| | - Maja Kirkegaard
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Roskilde, Denmark
| | - Jette Jakobsen
- Technical University of Denmark, National Food Institute, Søborg, Denmark
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robert J Letcher
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Canada
| | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Roskilde, Denmark
| |
Collapse
|
7
|
Noël M, Loseto LL, Helbing CC, Veldhoen N, Dangerfield NJ, Ross PS. PCBs are associated with altered gene transcript profiles in arctic Beluga Whales (Delphinapterus leucas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2942-2951. [PMID: 24490950 DOI: 10.1021/es403217r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High trophic level arctic beluga whales (Delphinapterus leucas) are exposed to persistent organic pollutants (POP) originating primarily from southern latitudes. We collected samples from 43 male beluga harvested by Inuvialuit hunters (2008-2010) in the Beaufort Sea to evaluate the effects of POPs on the levels of 13 health-related gene transcripts using quantitative real-time polymerase chain reaction. Consistent with their role in detoxification, the aryl hydrocarbon receptor (Ahr) (r(2) = 0.18, p = 0.045 for 2008 and 2009) and cytochrome P450 1A1 (Cyp1a1) (r(2) = 0.20, p < 0.001 for 2008 and 2009; r(2) = 0.43, p = 0.049 for 2010) transcripts were positively correlated with polychlorinated biphenyls (PCBs), the dominant POP in beluga. Principal Components Analysis distinguished between these two toxicology genes and 11 other genes primarily involved in growth, metabolism, and development. Factor 1 explained 56% of gene profiles, with these latter 11 gene transcripts displaying greater abundance in years coinciding with periods of low sea ice extent (2008 and 2010). δ(13)C results suggested a shift in feeding ecology and/or change in condition of these ice edge-associated beluga whales during these two years. While this provides insight into the legacy of PCBs in a remote environment, the possible impacts of a changing ice climate on the health of beluga underscores the need for long-term studies.
Collapse
Affiliation(s)
- Marie Noël
- School of Earth and Ocean Sciences, University of Victoria , Victoria, British Columbia V8W 2Y2, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Sargis RM. The hijacking of cellular signaling and the diabetes epidemic: mechanisms of environmental disruption of insulin action and glucose homeostasis. Diabetes Metab J 2014; 38:13-24. [PMID: 24627823 PMCID: PMC3950190 DOI: 10.4093/dmj.2014.38.1.13] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The burgeoning epidemic of metabolic disease causes significant societal and individual morbidity and threatens the stability of health care systems around the globe. Efforts to understand the factors that contribute to metabolic derangements are critical for reversing these troubling trends. While excess caloric consumption and physical inactivity superimposed on a susceptible genetic background are central drivers of this crisis, these factors alone fail to fully account for the magnitude and rapidity with which metabolic diseases have increased in prevalence worldwide. Recent epidemiological evidence implicates endocrine disrupting chemicals in the pathogenesis of metabolic diseases. These compounds represent a diverse array of chemicals to which humans are exposed via multiple routes in adulthood and during development. Furthermore, a growing ensemble of animal- and cell-based studies provides preclinical evidence supporting the hypothesis that environmental contaminants contribute to the development of metabolic diseases, including diabetes. Herein are reviewed studies linking specific endocrine disruptors to impairments in glucose homeostasis as well as tying these compounds to disturbances in insulin secretion and impairments in insulin signal transduction. While the data remains somewhat incomplete, the current body of evidence supports the hypothesis that our chemically polluted environment may play a contributing role in the current metabolic crisis.
Collapse
Affiliation(s)
- Robert M. Sargis
- Committee on Molecular Metabolism and Nutrition, Kovler Diabetes Center, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Kerambrun E, Henry F, Marechal A, Sanchez W, Minier C, Filipuci I, Amara R. A multibiomarker approach in juvenile turbot, Scophthalmus maximus, exposed to contaminated sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 80:45-53. [PMID: 22381616 DOI: 10.1016/j.ecoenv.2012.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/06/2012] [Accepted: 02/09/2012] [Indexed: 05/31/2023]
Abstract
Juvenile turbot were exposed in laboratory conditions to a mixture of chemical contaminants associated with harbour and estuarine sediments for seven and 21 days. Several molecular biomarkers of exposure were then measured in fish liver: two biotransformation parameters [ethoxyresorufin-O-deethylase (EROD) and phase II glutathione S-transferase (GST) activities] and an antioxidant enzyme activity [catalase (CAT)]. Modifications at the histological level were analysed by the measurement of the number and size of melanomacrophage centres (MMCs) and disturbances to the immune function by the measurement of cytokine transforming growth factor-beta (TGF-β) and development of the thymus. The responses of these molecular and immunological biomarkers were correlated with metal and PAH concentrations measured in sediments and with the physiological performance of turbot analysed in a previous study on the same fish (growth rates, condition factor K, RNA:DNA ratio and lipid index). While no difference was found in thymus analysis, some molecular and immunological responses were observed in fish exposed to contaminated sediments. Weak relationships between molecular biomarkers' responses and PAH concentrations were recorded, while their responses were significantly correlated with some metals. MMC and aggregates were weakly related to chemical contaminants whereas some significant correlations were found between TGF-b1 responses and some metal concentrations. However, molecular and immunological biomarkers were weakly related to fish physiological damages since low responses were observed in the condition which led to the lowest growth and condition indices. These data suggest the complexity of cause-effect relationships between exposure to pollutants, metabolisms and health damages. Precautions should be considered in the use of molecular and immunological biomarkers alone in biomonitoring programs. Their complementary use with physiological biomarkers, such as fish growth and condition indices, could improve their utilisation.
Collapse
|
10
|
Sonne C, Letcher RJ, Bechshøft TØ, Rigét FF, Muir DCG, Leifsson PS, Born EW, Hyldstrup L, Basu N, Kirkegaard M, Dietz R. Two decades of biomonitoring polar bear health in Greenland: a review. Acta Vet Scand 2012. [PMCID: PMC3305763 DOI: 10.1186/1751-0147-54-s1-s15] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Summary We present an overview of studies of anthropogenic pollutants in East Greenland polar bears over the period of 1999-2011. East Greenland polar bears are among the most polluted species, not just in the Arctic but globally, and represent an excellent biomonitoring species for levels and effects of global pollution in an apex predator. Therefore, an international multidisciplinary team joined to monitor and assess the patterns and concentrations of contaminants and their potential negative impact on polar bears. The review showed that East Greenland polar bears are exposed to a mix of chlorinated, brominated and fluorinated organic compounds as well as mercury which are all known to have endocrine, immune and organ-system toxic properties. For example, the concentrations of PCBs (polychlorinated biphenyls) in blubber ranged approximately 800-21,000 ng/g lw while mercury concentrations in liver and kidney ranged 0.1-50 μg/g ww. Regarding health endpoints, bone density seemed to decrease as a function of time and OHC (organohalogen compound) concentrations and further T-score for adult males indicated risk for osteoporosis. .The size of sexual organs decreased with increasing OHC concentrations. In the lower brain stem, mercury-associated decreases in NMDA-receptor levels and DNA-methylation was found The present review indicated that age was one of the major drivers for liver and renal lesions, although contaminants and infectious diseases may also play a role. Lesions in thyroid glands were most likely a result of infectious and genetic factors and probably, together with endocrine disrupting chemical (EDCs), the reason for disturbances/fluctuations in blood plasma thyroid hormone concentrations. Except for bone density reductions and neurological measures, all findings were supported by case-control studies of Greenland sledge dogs exposed long-term orally to similar combinations of contaminant concentrations. The studies of sledge dogs also indicated that the mixture of contaminants and fatty acids in the blubber of prey similar to that of polar bears induces cellular as well as humoral immune toxic changes. These controlled studies using model species for polar bears indicate that the correlative findings between health endpoint and contaminants in polar bears could be a cause-and-effect relationship. Physiologically based pharmacokinetic (PBPK) modelling showed that the risk quotients were ≥1 for ΣPCB, dieldrin and PFOS, which indicate an increased risk of prenatally reproductive pathology. In conclusion polar bears are susceptible to long-range transported chemicals that may have various adverse effects on multiple organ systems such as the reproductive and immune system.
Collapse
|
11
|
Buckman AH, Veldhoen N, Ellis G, Ford JKB, Helbing CC, Ross PS. PCB-associated changes in mRNA expression in killer whales (Orcinus orca) from the NE Pacific Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:10194-10202. [PMID: 21985468 DOI: 10.1021/es201541j] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Killer whales in the NE Pacific Ocean are among the world's most PCB-contaminated marine mammals, raising concerns about implications for their health. Sixteen health-related killer whale mRNA transcripts were analyzed in blubber biopsies collected from 35 free-ranging killer whales in British Columbia using real-time quantitative polymerase chain reaction. We observed PCB-related increases in the expression of five gene targets, including the aryl hydrocarbon receptor (AhR; r(2) = 0.83; p < 0.001), thyroid hormone α receptor (TRα; r(2) = 0.64; p < 0.001), estrogen α receptor (ERα; r(2) = 0.70; p < 0.001), interleukin 10 (IL-10; r(2) = 0.74 and 0.68, males and females, respectively; p < 0.001), and metallothionein 1 (MT1; r(2) = 0.58; p < 0.001). Best-fit models indicated that population (dietary preference), age, and sex were not confounding factors, except for IL-10, where males differed from females. While the population-level consequences are unclear, the PCB-associated alterations in mRNA abundance of such pivotal end points provide compelling evidence of adverse physiological effects of persistent environmental contaminants in these endangered killer whales.
Collapse
Affiliation(s)
- Andrea H Buckman
- Institute of Ocean Sciences, Fisheries & Oceans Canada, P.O. Box 6000, 9860 West Saanich Road, Sidney, British Columbia V8L 4B2, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Soare T, Noble PJ, Hetzel U, Fonfara S, Kipar A. Paraneoplastic syndrome in haemophagocytic histiocytic sarcoma in a dog. J Comp Pathol 2011; 146:168-74. [PMID: 21741052 DOI: 10.1016/j.jcpa.2011.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 05/12/2011] [Accepted: 05/19/2011] [Indexed: 01/31/2023]
Abstract
A case of metastatic splenic haemophagocytic histiocytic sarcoma (HHS) in a 6-year-old neutered male flat-coated retriever is described. The main clinical findings were hypoalbuminaemia and regenerative anaemia. The diagnosis was based on histological features and expression of CD11d by the neoplastic cells. Tumour cells were shown to produce interleukin (IL)-6, to phagocytose erythrocytes and to take up albumin, as demonstrated by immunohistochemistry and ultrastructural examination. Quantitative polymerase chain reaction identified increased IL-6 gene expression in affected organs. These findings suggest that neoplastic cells are responsible for the clinical features of HHS, by removing erythrocytes and albumin from the blood and releasing cytokines, such as IL-6.
Collapse
Affiliation(s)
- T Soare
- Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Crown Street, Liverpool L69 7ZJ, UK
| | | | | | | | | |
Collapse
|
13
|
Kirkegaard M, Sonne C, Dietz R, Letcher RJ, Jensen AL, Hansen SS, Jenssen BM, Grandjean P. Alterations in thyroid hormone status in Greenland sledge dogs exposed to whale blubber contaminated with organohalogen compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:157-163. [PMID: 20888641 DOI: 10.1016/j.ecoenv.2010.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 08/27/2010] [Accepted: 08/28/2010] [Indexed: 05/29/2023]
Abstract
As a model of high trophic level carnivores, sledge dogs were fed from 2 to 18 months of age with minke whale blubber containing organohalogen compounds (OHC) corresponding to 128 μg PCB/day. Controls were fed uncontaminated porcine fat. Thyroid hormone levels were assessed in 7 exposed and 7 control sister bitches (sampled at age 6-18 months) and 4 exposed and 4 control pups, fed the same diet as their mothers (sampled age 3-12 months). Lower free and total T3 and T4 were seen in exposed vs. control bitches beyond 10 months of age, and total T3 was lower through 3-12 months of age in exposed pups. A negative correlation with thyroid gland weight was significant for ΣDDT, as was a positive association with total T3 for dieldrin. This study therefore supports observational data that OHCs may adversely affect thyroid functions, and it suggests that OHC exposure duration of 10 months or more may be required for current OHC contamination levels to result in detectable adverse effects on thyroid hormone dynamics.
Collapse
Affiliation(s)
- Maja Kirkegaard
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B.Winsløvsvej 17, DK-5000 Odense, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sonne C, Larsen HJS, Kirkegaard M, Letcher RJ, Dietz R. Trans-generational and neonatal humoral immune responses in West Greenland sledge dogs (Canis familiaris) exposed to organohalogenated environmental contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:5801-5807. [PMID: 20832100 DOI: 10.1016/j.scitotenv.2010.07.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 07/19/2010] [Accepted: 07/30/2010] [Indexed: 05/29/2023]
Abstract
Previous investigations in the Arctic have suggested OHC (organohalogen contaminant) induced immune toxic effects on e.g. polar bears (Ursus maritimus). We therefore studied the dietary impact from minke whale blubber (Balaenoptera acutorostrata), rich in polyunsaturated fatty acids and OHCs, on the humoral immunity of 7 captive West Greenland sledge dog (Canis familiaris) bitches and their 4 pups constituting a sentinel model species for polar bears. A control group was composed of 8 bitches and their 5 pups all fed pork (Suis scrofa) fat. The study included serum IgG measurements (bitches and pups) and specific immune responses towards tetanus toxoid (bitches) and diphtheria toxoid (pups) as well as influenza virus (pups). The analyses showed that IgG concentrations were non-significantly lowest in exposed bitches and pups (t-test: all p>0.05). In addition, significant lower antibody response was detected in exposed pups immunized with influenza virus at age 3 months (t-test: both p<0.05). No clear group differences were found for tetanus toxoid in bitches and diphtheria toxoid in pups. The results suggest that the humoral immune system of sledge dogs may be suppressed by the dietary blubber composition of OHCs and polyunsaturated fatty acids while a larger follow-up study is recommended in order to investigate this relationship further.
Collapse
Affiliation(s)
- Christian Sonne
- Section for Contaminants, Effects and Marine Mammals, Department of Arctic Environment, National Environmental Research Institute, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | | | | | | | | |
Collapse
|
15
|
de Wit CA, Herzke D, Vorkamp K. Brominated flame retardants in the Arctic environment--trends and new candidates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2885-918. [PMID: 19815253 DOI: 10.1016/j.scitotenv.2009.08.037] [Citation(s) in RCA: 525] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 05/22/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) containing two to 10 bromines are ubiquitous in the Arctic, in both abiotic and biotic samples. Hexabromocyclododecane (HBCD) is also ubiquitous in the Arctic, with the gamma-HBCD isomer predominating in air, the alpha-HBCD isomer predominating in biota and similar concentrations of alpha-, beta- and gamma-HBCD found in marine sediments. Other brominated flame retardants (BFRs) found in some Arctic samples are polybrominated biphenyls (PBBs), tetrabromobisphenol A (TBBPA), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), hexabromobenzene (HxBBz), pentabromoethylbenzene (PBEB), pentabromotoluene (PBT), and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH). Temporal trends of tetra- to heptaBDEs and HBCD show increasing concentrations or a tendency to levelling off depending on the matrix (air, sediment, biota) and location, but no uniform picture for the Arctic emerges. BDE-209 concentrations are increasing in air. PBDEs and HBCD spatial trends in seabirds and marine mammals are similar to those seen previously for polychlorinated biphenyls (PCBs), with highest concentrations found in organisms from East Greenland and Svalbard. These trends indicate western Europe and eastern North America as important source regions of these compounds via long range atmospheric transport and ocean currents. Latitudinal trends showed lower concentrations and fluxes of PBDEs at higher latitudes. The tetra-hexaBDEs and alpha-HBCD biomagnify in Arctic food webs. Results for BDE-209 are more conflicting, showing either only low or no biomagnification potential. PBDE and HBCD concentrations are lower in terrestrial organisms and higher in marine top predators such as some killer whale populations in Alaska and glaucous gulls from the Barents Sea area. Higher concentrations are seen near populated areas indicating local sources. Findings of BTBPE, HxBBz, PBEB, PBT and TBECH in seabirds and/or marine mammals indicate that these compounds reach the Arctic, most probably by long range atmospheric transport and accumulate in higher trophic level organisms and that increasing use as PBDE replacements will lead to increasing concentrations.
Collapse
Affiliation(s)
- Cynthia A de Wit
- Department of Applied Environmental Science (ITM), Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
16
|
Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jørgensen EH, Sonne C, Verreault J, Vijayan MM, Gabrielsen GW. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2995-3043. [PMID: 19910021 DOI: 10.1016/j.scitotenv.2009.10.038] [Citation(s) in RCA: 496] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/08/2009] [Accepted: 10/14/2009] [Indexed: 05/26/2023]
Abstract
Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely based on correlations between biomarker endpoints (e.g., biochemical processes related to the immune and endocrine system, pathological changes in tissues and reproduction and development) and tissue residue levels of OHCs (e.g., PCBs, DDTs, CHLs, PBDEs and in a few cases perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonates (PFSAs)). Some exceptions include semi-field studies on comparative contaminant effects of control and exposed cohorts of captive Greenland sled dogs, and performance studies mimicking environmentally relevant PCB concentrations in Arctic charr. Recent tissue concentrations in several arctic marine mammal species and populations exceed a general threshold level of concern of 1 part-per-million (ppm), but a clear evidence of a POP/OHC-related stress in these populations remains to be confirmed. There remains minimal evidence that OHCs are having widespread effects on the health of Arctic organisms, with the possible exception of East Greenland and Svalbard polar bears and Svalbard glaucous gulls. However, the true (if any real) effects of POPs in Arctic wildlife have to be put into the context of other environmental, ecological and physiological stressors (both anthropogenic and natural) that render an overall complex picture. For instance, seasonal changes in food intake and corresponding cycles of fattening and emaciation seen in Arctic animals can modify contaminant tissue distribution and toxicokinetics (contaminant deposition, metabolism and depuration). Also, other factors, including impact of climate change (seasonal ice and temperature changes, and connection to food web changes, nutrition, etc. in exposed biota), disease, species invasion and the connection to disease resistance will impact toxicant exposure. Overall, further research and better understanding of POP/OHC impact on animal performance in Arctic biota are recommended. Regardless, it could be argued that Arctic wildlife and fish at the highest potential risk of POP/OHC exposure and mediated effects are East Greenland, Svalbard and (West and South) Hudson Bay polar bears, Alaskan and Northern Norway killer whales, several species of gulls and other seabirds from the Svalbard area, Northern Norway, East Greenland, the Kara Sea and/or the Canadian central high Arctic, East Greenland ringed seal and a few populations of Arctic charr and Greenland shark.
Collapse
Affiliation(s)
- Robert J Letcher
- Wildlife and Landscape Science Directorate, Science and Technology, Branch, Environment Canada, Carleton University, Ottawa, ON, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sonne C. Health effects from long-range transported contaminants in Arctic top predators: An integrated review based on studies of polar bears and relevant model species. ENVIRONMENT INTERNATIONAL 2010; 36:461-491. [PMID: 20398940 DOI: 10.1016/j.envint.2010.03.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/06/2010] [Accepted: 03/10/2010] [Indexed: 05/29/2023]
Abstract
The aim of this review is to provide a thorough overview of the health effects from the complexed biomagnified mixture of long-range transported industrial organochlorines (OCs), polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs) and mercury (Hg) on polar bear (Ursus maritimus) health. Multiple scientific studies of polar bears indicate negative relationships between exposure to these contaminants and health parameters; however, these are all of a correlative nature and do not represent true cause-and-effects. Therefore, information from controlled studies of farmed Norwegian Arctic foxes (Vulpes lagopus) and housed East and West Greenland sledge dogs (Canis familiaris) were included as supportive weight of evidence in the clarification of contaminant exposure and health effects in polar bears. The review showed that hormone and vitamin concentrations, liver, kidney and thyroid gland morphology as well as reproductive and immune systems of polar bears are likely to be influenced by contaminant exposure. Furthermore, exclusively based on polar bear contaminant studies, bone density reduction and neurochemical disruption and DNA hypomethylation of the brain stem seemed to occur. The range of tissue concentration, at which these alterations were observed in polar bears, were ca. 1-70,000 ng/g lw for OCs (blood plasma concentrations of some PCB metabolites even higher), ca. 1-1000 ng/g lw for PBDEs and for PFCs and Hg 114-3052 ng/g ww and 0.1-50 microg/g ww, respectively. Similar concentrations were found in farmed foxes and housed sledge dogs while the lack of dose response designs did not allow an estimation of threshold levels for oral exposure and accumulated tissue concentrations. Nor was it possible to pinpoint a specific group of contaminants being more important than others nor analyze their interactions. For East Greenland polar bears the corresponding daily SigmaOC and SigmaPBDE oral exposure was estimated to be 35 and 0.34 microg/kg body weight, respectively. Furthermore, PFC concentrations, at which population effect levels could occur, are likely to be reached around year 2012 for the East Greenland polar bear subpopulation if current increasing temporal trends continue. Such proposed reproductive population effects were supported by physiological based pharmacokinetic (PBPK) modelling of critical body residues (CBR) with risk quotients >or=1 for SigmaPCB, dieldrin, SigmaPFC and SigmaOHC (organohalogen contaminant). The estimated daily TEQ for East Greenland polar bears and East Greenland sledge dogs were 32-281-folds above WHO SigmaTEQ guidelines for humans. Compared to human tolerable daily intake (TDI), these were exceeded for PCBs, dieldrin, chlordanes and SigmaHCH in East Greenland polar bears. Comparisons like these should be done with caution, but together with the CBR modelling and T-score estimations, these were the only available tools for polar bear risk evaluation. In conclusion, polar bears seem to be susceptible to contaminant induced stress that may have an overall sub-clinical impact on their health and population status via impacts on their immune and reproductive systems.
Collapse
Affiliation(s)
- Christian Sonne
- Section for Contaminants, Effects and Marine Mammals, Department of Arctic Environment, National Environmental Research Institute, University of Aarhus, DK-4000 Roskilde, Denmark.
| |
Collapse
|
18
|
Sonne C, Wolkers H, Leifsson PS, Iburg T, Jenssen BM, Fuglei E, Ahlstrøm O, Dietz R, Kirkegaard M, Muir DCG, Jørgensen EH. Chronic dietary exposure to environmental organochlorine contaminants induces thyroid gland lesions in Arctic foxes (Vulpes lagopus). ENVIRONMENTAL RESEARCH 2009; 109:702-711. [PMID: 19464679 DOI: 10.1016/j.envres.2009.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/10/2009] [Accepted: 04/20/2009] [Indexed: 05/27/2023]
Abstract
The impact of dietary organochlorine (OC) exposure on thyroid gland pathology was studied in farmed male Arctic foxes (Vulpes lagopus). The exposed group (n=16) was fed a diet based on wild minke whale (Balaenoptera acutorostrata) blubber as a main fat source in order to mimic the exposure to OC cocktails in the Artic environment. This resulted in an exposure of approximately 17 microg Sigma OC/kg day and a Sigma OC residue adipose tissue and liver concentration of 1700 and 4470 ng/gl.w., respectively, after 16 months of exposure. Control foxes (n=13) were fed a diet with pork (Sus scrofa) fat as a main fat source containing significantly lower OC concentrations. The food composition fed to the control and exposed group was standardized for nutrient contents. Four OC-related histopathological changes were found: (1) flat-epithelial-cell true thyroid cysts (TC) characterized by neutral content; (2) remnants of simple squamous epithelial-cell embryonic ducts containing neutral debris (EDN); (3) remnants of stratified squamous epithelial-cell embryonic ducts containing acid mucins often accompanied with debris of leukocyte inflammatory nature (EDM) and (4) disseminated thyroid C-cell hyperplasia (HPC). Of these, the prevalence of TC, EDN and HPC was significantly highest in the exposed group (chi(2) test: all p<0.04). The study shows that the OC mixture in minke whale blubber may cause development of thyroid gland cysts, C-cell hyperplasia and increase the prevalence of cystic remnants of embryonic ducts. The mechanism causing these effects could include endocrine disruption of the hypothalamus-pituitary-thyroid (HPT) axis, a disturbance of the calcium homeostasis/metabolism or energy metabolism or immune suppression. Because concentrations of OCs are higher in wild Arctic foxes, it is likely that these animals could suffer from similar OC-induced thyroid gland pathological and functional changes.
Collapse
Affiliation(s)
- Christian Sonne
- Section for Contaminants, Effects and Marine Mammals, Department of Arctic Environment, National Environmental Research Institute, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Verreault J, Letcher RJ, Sonne C, Dietz R. In vitro metabolism of polychlorinated biphenyls and cytochrome P450 monooxygenase activities in dietary-exposed Greenland sledge dogs. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:91-100. [PMID: 19303460 DOI: 10.1016/j.cbpc.2009.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/13/2009] [Accepted: 03/14/2009] [Indexed: 11/29/2022]
Abstract
The in vitro metabolism of a polychlorinated biphenyl (PCB) mixture was examined using hepatic microsomes of dietary-exposed Greenland sledge dogs (Canis familiaris) to an organohalogen-rich diet (Greenland minke whale blubber: EXP cohort) or a control diet (pork fat: CON cohort). The associations between in vitro PCB metabolism, activity of oxidative hepatic microsomal cytochrome P450 (CYP) isoenzymes and concentrations of PCBs and hydroxylated metabolites were investigated. The CON dogs exhibited a 2.3-fold higher depletion percentage for the PCB congeners having at least two pairs of vicinal meta-para Cl-unsubstituted carbons (PCB-18 and -33) relative to the EXP dogs. This depletion discrepancy suggests that there exist substrates in liver of the organohalogen-contaminated EXP dogs that can competitively bind and/or interfere with the active sites of CYP isoenzymes, leading to a lower metabolic efficiency for these PCBs. Testosterone (T) hydroxylase activity, determined via the formation of 6beta-OH-T, 16alpha-OH-T, 16beta-OH-T and androstenedione, was strongly correlated with the depletion percentages of PCB-18 and -33 in both cohorts. Based on documented hepatic microsomal CYP isoenzyme substrate specificities in canines, present associations suggest that primarily CYP2B/2C and CYP3A were inducible in sledge dogs and responsible for the in vitro metabolism of PCB-18 and -33.
Collapse
Affiliation(s)
- Jonathan Verreault
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|
20
|
Das K, Siebert U, Gillet A, Dupont A, Di-Poï C, Fonfara S, Mazzucchelli G, De Pauw E, De Pauw-Gillet MC. Mercury immune toxicity in harbour seals: links to in vitro toxicity. Environ Health 2008; 7:52. [PMID: 18959786 PMCID: PMC2600635 DOI: 10.1186/1476-069x-7-52] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 10/29/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Mercury is known to bioaccumulate and to magnify in marine mammals, which is a cause of great concern in terms of their general health. In particular, the immune system is known to be susceptible to long-term mercury exposure. The aims of the present study were (1) to determine the mercury level in the blood of free-ranging harbour seals from the North Sea and (2) to examine the link between methylmercury in vitro exposure and immune functions using seal and human mitogen-stimulated peripheral blood mononuclear cells (T-lymphocytes). METHODS Total mercury was analysed in the blood of 22 harbour seals. Peripheral blood mononuclear cells were isolated from seals (n = 11) and from humans (n = 9). Stimulated lymphocytes of both species were exposed to functional tests (proliferation, metabolic activity, radioactive precursor incorporation) under increasing doses of methylmercury (0.1 to 10 microM). The expression of cytokines (IL-2, IL-4 and TGF-beta) was investigated in seal lymphocytes by RT-PCR and by real time quantitative PCR (n = 5) at methylmercury concentrations of 0.2 and 1 microM. Finally, proteomics analysis was attempted on human lymphocytes (cytoplasmic fraction) in order to identify biochemical pathways of toxicity at concentration of 1 microM (n = 3). RESULTS The results showed that the number of seal lymphocytes, viability, metabolic activity, DNA and RNA synthesis were reduced in vitro, suggesting deleterious effects of methylmercury concentrations naturally encountered in free-ranging seals. Similar results were found for human lymphocytes. Functional tests showed that a 1 microM concentration was the critical concentration above which lymphocyte activity, proliferation and survival were compromised. The expression of IL-2 and TGF-beta mRNA was weaker in exposed seal lymphocytes compared to control cells (0.2 and 1 microM). Proteomics showed some variation in the protein expression profile (e.g. vimentin). CONCLUSION Our results suggest that seal and human PBMCs react in a comparable way to MeHg in vitro exposure with, however, larger inter-individual variations. MeHg could be an additional cofactor in the immunosuppressive pollutant cocktail generally described in the blood of seals and this therefore raises the possibility of additional additive effects in the marine mammal immune system.
Collapse
Affiliation(s)
- Krishna Das
- Laboratoire d'Océanologie, Centre de Recherche MARE, B6C, Université de Liège, 4000, Liège, Belgium
| | - Ursula Siebert
- Research and Technology Center Westcoast, University of Kiel, 25761 Buesum, Germany
| | - Audrey Gillet
- Laboratoire d'Océanologie, Centre de Recherche MARE, B6C, Université de Liège, 4000, Liège, Belgium
| | - Aurélie Dupont
- Laboratoire d'Océanologie, Centre de Recherche MARE, B6C, Université de Liège, 4000, Liège, Belgium
| | - Carole Di-Poï
- Laboratoire d'Océanologie, Centre de Recherche MARE, B6C, Université de Liège, 4000, Liège, Belgium
| | - Sonja Fonfara
- Research and Technology Center Westcoast, University of Kiel, 25761 Buesum, Germany
- GKSS Research Centre, Institute for Coastal Research, 21502, Geesthacht, Germany
| | - Gabriel Mazzucchelli
- Laboratoire de Spectrométrie de Masse, B6C Liège, Université de Liège, 4000, Liège, Belgium
| | - Edwin De Pauw
- Laboratoire de Spectrométrie de Masse, B6C Liège, Université de Liège, 4000, Liège, Belgium
| | | |
Collapse
|
21
|
Sonne C, Rigét FF, Beck Jensen JE, Hyldstrup L, Teilmann J, Dietz R, Kirkegaard M, Andersen S, Letcher RJ, Jakobsen J. Does the nutrition profile of vitamins, fatty acids and microelements counteract the negative impact from organohalogen pollutants on bone mineral density in Greenland sledge dogs (Canis familiaris)? ENVIRONMENT INTERNATIONAL 2008; 34:811-820. [PMID: 18342937 DOI: 10.1016/j.envint.2008.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/22/2008] [Accepted: 01/30/2008] [Indexed: 05/26/2023]
Abstract
There is a great need for understanding the impact from dietary OHCs (organohalogen compounds) on bone mineral composition - and thereby osteoporosis - in especially arctic wildlife such as polar bears (Ursus maritimus) as well as humans. For that purpose, we measured BMD (bone mineral density) by DXA scanning (g/cm(-2)) in 15 age and weight normalized sledge dog (Canis familiaris) bitches and their 26 pups divided into a control group (n=26) given 50-200 g/day clean pork (Suis scrofa) fat and a treated group (n=15) given 50-200 g/day OHC polluted minke whale (Balaenoptera acutorostrata) blubber as main lipid sources. The results showed that BMD increased significantly with age (linear regression: p<0.0001, r(2)=0.83, n=41) while no sex difference was found in the F-generation (two-way ANOVA: all p>0.3). No differences in BMD(femur) or BMD(vertebrae) between exposed and control individuals in the bitch generation were found (linear mixed effect model: both p>0.38). Likewise, no difference between exposed and control subadults and juveniles in the F-generation was found (two-way ANOVA: all p>0.33). Correlation analyses between BMD(femur), BMD(vertebrae) and groups of OHCs, respectively, did not show any statistically significant relationships nor a clear or decreasing trend (Pearson's: p: 0.07-0.78; r: -0.2-0.59; n: 10-18). As the groups were similar regarding genetics, age and sex are the only factors that can explain this observation. Either the pollutants did not have an impact on BMD using the present time frame and OHC concentrations (threshold levels not reached), or the difference in food composition (mainly vitamins and n3 fatty acids) conceal the potential OHC impact on BMD. Such information is important when evaluating the positive and negative health consequences from eating polluted marine species.
Collapse
Affiliation(s)
- Christian Sonne
- Section for Contaminants, Effects and Marine Mammals, Department of Arctic Environment, National Environmental Research Institute, University of Aarhus, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Verreault J, Dietz R, Sonne C, Gebbink WA, Shahmiri S, Letcher RJ. Comparative fate of organohalogen contaminants in two top carnivores in Greenland: captive sledge dogs and wild polar bears. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:306-15. [PMID: 18248775 DOI: 10.1016/j.cbpc.2007.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
The limited knowledge and/or the inability to control physiological condition parameters that influence the fate of organohalogen contaminants (OHCs) has been the foremost confounding aspect in monitoring programs and health risk assessments of wild top predators in the Arctic such as the polar bear (Ursus maritimus). In the present comparative study, we used a potential surrogate Canoidea species for the East Greenland polar bear, the captive sledge dog (Canis familiaris), to investigate some factors that may influence the bioaccumulation and biotransformation of major chlorinated and brominated OHCs in adipose tissue and blood (plasma) of control (fed commercial pork fat) and exposed (fed West Greenland minke whale (Balaenoptera acutorostrata) blubber) adult female sledge dogs. Furthermore, we compared the patterns and concentrations of OHCs and their known or suggested hydroxylated (OH) metabolites (e.g., OH-PCBs) in sledge dogs with those in adipose tissue and blood (plasma) of East Greenland adult female polar bears, and blubber of their main prey species, the ringed seal (Pusa hispida). The two-year feeding regime conducted with sledge dogs led to marked differences in overall adipose tissue (and plasma) OHC residue accumulation between the control and exposed groups. Characteristic prey-to-predator OHC bioaccumulation dynamics for major PCB and PBDE congeners (patterns and concentrations) and biotransformation capacity with respect to PCB metabolite formation and OH-PCB retention distinguished, to some extent, captive sledge dogs and wild polar bears. Based on the present findings, we conclude that the use of surrogate species in toxicological investigations for species in the Canoidea family should be done with great caution, although they remain essential in the context of contaminants research with sensitive arctic top carnivore species such as the polar bear.
Collapse
Affiliation(s)
- Jonathan Verreault
- National Wildlife Research Centre, Science and Technology Branch, Environment Canada, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | | | | | | | | | | |
Collapse
|
23
|
Sonne C, Dietz R, Born EW, Leifsson PS, Andersen S. Is there a link between hypospadias and organochlorine exposure in East Greenland sledge dogs (Canis familiaris)? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 69:391-395. [PMID: 18061260 DOI: 10.1016/j.ecoenv.2007.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 09/03/2007] [Accepted: 09/21/2007] [Indexed: 05/25/2023]
Abstract
In a clinical survey on East Greenland male sledge dogs (Canis familiaris), one dog exhibited malformation of the external genital organs. The clinically in situ examination of the sledge dog revealed a rare congenital malformation of the urethra and penis corresponding to severe perineal and penile hypospadias. The testes showed spermiogenesis and no sign of true hermaphroditism. We did not have the opportunity to examine the dam for endocrine organ pathology or tumours. But, based on organochlorine data in ringed seal (Phoca hispida) blubber and information from the owners, the potential in uteri OC exposure of the sledge dog was estimated to 320 microg/day which correspond to 128 pg TEQ/kg/day. This is 32-128-folds above WHO guidelines and threshold levels for teratogen and reproductive effects. We suggest that the congenital malformation was due to endocrine organ pathology/tumours of the dam, enzyme/receptor defects (mutation) in the pup or in uteri exposure to environmental xenoestrogens.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Arctic Environment, Section for Contaminants, Effects and Marine Mammals, National Environmental Research Institute, University of Aarhus, Roskilde, Denmark.
| | | | | | | | | |
Collapse
|
24
|
Sonne C, Leifsson PS, Dietz R, Kirkegaard M, Jensen AL, Shahmiri S, Letcher RJ. Greenland sledge dogs (Canis familiaris) develop liver lesions when exposed to a chronic and dietary low dose of an environmental organohalogen cocktail. ENVIRONMENTAL RESEARCH 2008; 106:72-80. [PMID: 17904542 DOI: 10.1016/j.envres.2007.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 05/22/2007] [Accepted: 08/03/2007] [Indexed: 05/17/2023]
Abstract
We assessed the relationship between exposure to organohalogen polluted minke whale (Balaenoptera acutorostrata) blubber and liver morphology and function in a generational controlled study of 28 Greenland sledge dogs (Canis familiaris). The prevalence of portal fibrosis, mild bile duct hyperplasia, and vascular leukocyte infiltrations was significantly higher in the exposed group (all Chi-square: p<0.05). In case of granulomas, the frequency was significantly highest in the bitches (P generation) while the prevalence of portal fibrosis was highest in the F generation (pups) (both Chi-square: p<0.05). No significant difference between exposed and controls was found for bile acid, ALAT, and ALKP, while ASAT and LDH were significantly highest in the control group (both ANOVA: p<0.05). We therefore suggest that a daily intake of 50-200g environmentally organohalogen polluted minke whale blubber can cause liver lesions in Greenland sledge dogs. It is reasonable to infer that other apex predators such as polar bears (Ursus maritimus) and humans may suffer from similar impacts.
Collapse
Affiliation(s)
- Christian Sonne
- Section for Contaminants, Effects and Marine Mammals, Department of Arctic Environment, National Environmental Research Institute, University of Aarhus, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark.
| | | | | | | | | | | | | |
Collapse
|