1
|
Wang Q, Zhang X, Xie Q, Tao J, Jia Y, Xiao Y, Tang Z, Li Q, Yuan M, Bu T. Exploring Plant Growth-Promoting Traits of Endophytic Fungi Isolated from Ligusticum chuanxiong Hort and Their Interaction in Plant Growth and Development. J Fungi (Basel) 2024; 10:713. [PMID: 39452665 PMCID: PMC11508408 DOI: 10.3390/jof10100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Endophytic fungi inhabit various plant tissues and organs without inducing evident disease symptoms. They can contribute positively to the growth of plants, bolster plants resilience to environmental and biological stresses, and facilitate the accumulation of secondary metabolites. These microbial resources possess significant developmental and utilization value in various applications. Hence, this study focused on exploring the plant growth-promoting (PGP) traits of 14 endophytic fungi from Ligusticum chuanxiong Hort (CX) and elucidating the effects and mechanisms that facilitate plant growth. According to PGP activity evaluation, the majority of strains demonstrated the capacity to produce IAA (78.57%), siderophores (50.00%), ammonia (35.71%), potassium solubilization (21.43%), nitrogen fixation (57.14%), and phosphate solubilization (42.86%). Further investigations indicated that the levels of IAA ranged from 13.05 to 301.43 μg/mL, whereas the soluble phosphorus levels ranged from 47.32 to 125.95 μg/mL. In cocultivation assays, it was indicated that Fusarium sp. YMY5, Colletotrichum sp. YMY6, Alternaria sp. ZZ10 and Fusarium sp. ZZ13 had a certain promoting effect on lateral root number and fresh weight of tobacco. Furthermore, ZZ10 and ZZ13 significantly enhanced the germination potential, germination index, and vigor index of tobacco seeds. The subsequent potted trials demonstrated that the four endophytic fungi exhibited an enhancement to growth parameters of tobacco to a certain extent. ZZ10 and ZZ13 treatment had the best promotion effect. Inoculation with YMY5 increased the chlorophyll a and total chlorophyll content. ZZ10 and ZZ13 treatment remarkably increased the net photosynthetic rate, soluble sugars and soluble protein content, catalase and peroxidase activities, and lowered malondialdehyde content in tobacco leaves. In addition, YMY5 remarkably elevated superoxide dismutase activities. ZZ13 upregulated the expression of growth-related gene. Among them, ZZ13 had a better growth-promoting effect. In conclusion, these endophytic fungi possessing multi-trait characteristics and the capacity to enhance plant growth exhibit promising potential as biofertilizers or plant growth regulators.
Collapse
Affiliation(s)
- Qing Wang
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Xinyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Qiqi Xie
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Jiwen Tao
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Yujie Jia
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya’an 625014, China;
| | - Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (Q.W.); (X.Z.); (Q.X.); (J.T.); (Y.J.); (Q.L.); (M.Y.); (T.B.)
| |
Collapse
|
2
|
Tian Y, Liu Y, Yue L, Zhao X, Zhou Q, Uwaremwe C, Wang Y, Chen G, Sha Y, Zhang Y, Wang R. Multi-omics analysis reveals the effects of three application modes of plant growth promoting microbes biofertilizer on potato (Solanum tuberosum L.) growth under alkaline loess conditions. Microbiol Res 2024; 287:127855. [PMID: 39079269 DOI: 10.1016/j.micres.2024.127855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Potato is an important crop due to its high contents of starch, protein, and various vitamins and minerals. Biofertilizers are composed of plant growth promoting microbes (PGPMs) which are essential for improving the growth and resistance of potato. However, little information has focused on the modes of inoculation of biofertilizers on plant growth and microecology. This study aims to reveal the response mechanism of the potato to three modes of inoculation of biofertilizers all containing PGPM Bacillus amyloliquefaciens EZ99, i.e. scattered mode of 5 kg/ha biofertilizer (M5), soaking seed tubers with dissolved 5 kg/ha biofertilizer (MZG), and scattered mode of 3 kg/ha biofertilizer + 2 kg/ha sucrose (MY34) in alkaline loess field through multi-omics analysis of transcriptome, metabolome and microbiome. The physiological result revealed that two application modes of equal amount of biofertilizer M5 and MZG significantly improved the growth and yield of potatoes. Furthermore, the transcriptome of potato exhibited sets of differentially expressed genes enriched in photosynthesis, sugar metabolism, and phenylpropanoid biosynthesis among the three modes, with the M5 mode exhibiting overall up-regulation of 828 genes. Based on the untargeted metabolomic analysis of potato tuber, M5 mode significantly accumulated sucrose, while MZG and MY34 mode significantly accumulated the stress metabolites euchrenone b6 and mannobiose, respectively. Besides, the microbial structure of potato rhizosphere showed that the diversity of bacteria and fungi was similar in all soils, but their abundances varied significantly. Specifically, beneficial Penicillium was enriched in M5 and MZG soils, whereas MY34 soil accumulated potential pathogens Plectosphaerella and saccharophilic Mortierella. Collectively, these e findings highlight that MZG is the most effective mode to promote potato growth and stimulate rhizosphere effect. The present study not only encourages sustainable agriculture through agroecological practices, but also provides broad prospects for the application of PGPM biofertilizer in staple foods.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Lanzhou 730000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yue
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Lanzhou 730000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Lanzhou 730000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Zhou
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Lanzhou 730000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Constantine Uwaremwe
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Lanzhou 730000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaofeng Chen
- Gansu Shangnong Biotechnology Co. Ltd, Baiyin 730900, China
| | - Yuexia Sha
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yubao Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Lanzhou 730000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ruoyu Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Lanzhou 730000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zaman QU, Rehman M, Feng Y, Liu Z, Murtaza G, Sultan K, Ashraf K, Elshikh MS, Al Farraj DA, Rizwan M, Iqbal R, Deng G. Combined application of biochar and peatmoss for mitigation of drought stress in tobacco. BMC PLANT BIOLOGY 2024; 24:862. [PMID: 39271987 PMCID: PMC11401334 DOI: 10.1186/s12870-024-05576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Drought poses a significant ecological threat that limits the production of crops worldwide. The objective of this study to examine the impact of soil applied biochar (BC) and peatmoss (PM) on the morpho-biochemical and quality traits of tobacco plants under drought conditions. In the present experiment work, a pot trial was conducted with two levels of drought severity (~ well-watered 75 ± 5% field capacity) and severe drought stress (~ 35 ± 5% field capacity), two levels of peatmoss (PM) @ 5% [PM+ (with peatmoss) and PM- (without peatmoss)] and three levels of rice straw biochar (BC0 = no biochar; BC1 = 150 mg kg- 1; and BC2 = 300 mg kg- 1 of soil) in tobacco plants. The results indicate that drought conditions significantly impacted the performance of tobacco plants. However, the combined approach of BC and PM significantly improved the growth, biomass, and total chlorophyll content (27.94%) and carotenoids (32.00%) of tobacco. This study further revealed that the drought conditions decreased the production of lipid peroxidation and proline accumulation. But the synergistic approach of BC and PM application increased soluble sugars (17.63 and 12.20%), soluble protein (31.16 and 15.88%), decreased the proline accumulation (13.92 and 9.03%), and MDA content (16.40 and 8.62%) under control and drought stressed conditions, respectively. Furthermore, the combined approach of BC and PM also improved the leaf potassium content (19.02%) by limiting the chloride ions (33.33%) under drought stressed conditions. Altogether, the balanced application of PM and BC has significant potential as an effective approach and sustainable method to increase the tolerance of tobacco plants subjected to drought conditions. This research uniquely highlights the combined potential of PM and BC as an eco-friendly strategy to enhance plant resilience under drought conditions, offering new insights into sustainable agricultural practices.
Collapse
Affiliation(s)
- Qamar Uz Zaman
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650504, China
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan
| | - Muzammal Rehman
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric- Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Youhong Feng
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650504, China
| | - Zhiyuan Liu
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650504, China
| | - Ghulam Murtaza
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Khawar Sultan
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan
| | - Kamran Ashraf
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650504, China.
| |
Collapse
|
4
|
Liu J, Sun P, Chen Y, Guo J, Liu L, Zhao X, Xin J, Liu X. The regulation pathways of biochar and microorganism in soil-plant system by multiple statistical methods: The forms of carbon participation in coastal wetlands. CHEMOSPHERE 2024; 362:142918. [PMID: 39043273 DOI: 10.1016/j.chemosphere.2024.142918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/25/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Coastal wetlands possess significant carbon storage capabilities. However, in coastal soil-plant systems augmented with biochar and microorganisms, the mechanisms of these amendments and carbon participation remain unclear. This study utilized pot experiments to explore how Enteromorpha prolifera biochar and Arbuscular mycorrhizal fungi (AMF) affect soil organic carbon (SOC), carbon-related microbes, photosynthetic and osmotic system of Suaeda salsa. The results showed biochar reduced exchangeable sodium percentage by 6.9% through adsorption and ion exchange, and increased SOC content by 34.4%. The abundance of carbon-related microorganisms (Bacteroidota and Chloroflexi) was increased and carbon metabolizing enzyme (cellulase and sucrase) activity in the soil was enhanced. AMF significantly improved plant growth compared with CK, as evidenced by the enhanced dry weight by 2.34 times. A partial least squares pathway model (PLS-PM) and correlation analysis suggested that the combined effect of biochar and AMF could be outlined as two pathways: soil and plant. Biochar increased SOC, improved the growth of soil carbon metabolizing microorganisms, and further promoted the activity of carbon-related enzymes. Additionally, AMF facilitated nutrient absorption by plants through root symbiosis, with biochar further enhancing this process by acting as a nutrient adsorber. These combined effects of biochar and AMF at soil and plant level enhanced the photosynthetic process of Suaeda salsa. The transport of photosynthetic products to the roots can increase the carbon storage in the soil. This study provides quantitative evidence supporting the increase of carbon storage in coastal wetland soil-plant systems through a combined application of biochar and AMF.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ping Sun
- Key Laboratory of Geological Safety of Coastal Urban Underground Space (Qingdao Geo-Engineering Surveying Institute), Qingdao, 266101, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jiameng Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xinyue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jia Xin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoli Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
5
|
Abdelhameed RE, Soliman ERS, Gahin H, Metwally RA. Enhancing drought tolerance in Malva parviflora plants through metabolic and genetic modulation using Beauveria bassiana inoculation. BMC PLANT BIOLOGY 2024; 24:662. [PMID: 38987668 PMCID: PMC11238386 DOI: 10.1186/s12870-024-05340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Enhancing crops' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC). RESULTS The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant's nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS. CONCLUSION Under drought conditions, biopriming with B. bassiana enhanced Malva's growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Elham R S Soliman
- Cytogenetics and Molecular Genetics Unit, Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Hanan Gahin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
6
|
Jian Q, Zhang T, Wang Y, Guan L, Li L, Wu L, Chen S, He Y, Huang H, Tian S, Tang H, Lu L. Biocontrol potential of plant growth-promoting rhizobacteria against plant disease and insect pest. Antonie Van Leeuwenhoek 2024; 117:92. [PMID: 38949726 DOI: 10.1007/s10482-024-01975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/27/2024] [Indexed: 07/02/2024]
Abstract
Biological control is a promising approach to enhance pathogen and pest control to ensure high productivity in cash crop production. Therefore, PGPR biofertilizers are very suitable for application in the cultivation of tea plants (Camellia sinensis) and tobacco, but it is rarely reported so far. In this study, production of a consortium of three strains of PGPR were applied to tobacco and tea plants. The results demonstrated that plants treated with PGPR exhibited enhanced resistance against the bacterial pathogen Pseudomonas syringae (PstDC3000). The significant effect in improving the plant's ability to resist pathogen invasion was verified through measurements of oxygen activity, bacterial colony counts, and expression levels of resistance-related genes (NPR1, PR1, JAZ1, POD etc.). Moreover, the application of PGPR in the tea plantation showed significantly reduced population occurrences of tea green leafhoppers (Empoasca onukii Matsuda), tea thrips (Thysanoptera:Thripidae), Aleurocanthus spiniferus (Quaintanca) and alleviated anthracnose disease in tea seedlings. Therefore, PGPR biofertilizers may serve as a viable biological control method to improve tobacco and tea plant yield and quality. Our findings revealed part of the mechanism by which PGPR helped improve plant biostresses resistance, enabling better application in agricultural production.
Collapse
Affiliation(s)
- Qinhao Jian
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Tongrui Zhang
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yingying Wang
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Li Guan
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Linlin Li
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Longna Wu
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Shiyan Chen
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yumei He
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | | | - Shugang Tian
- Wengfu Group Agriservice Co, Ltd, 550500, Fuquan, China
| | - Hu Tang
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Litang Lu
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China.
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
7
|
Pérez-Moncada UA, Santander C, Ruiz A, Vidal C, Santos C, Cornejo P. Design of Microbial Consortia Based on Arbuscular Mycorrhizal Fungi, Yeasts, and Bacteria to Improve the Biochemical, Nutritional, and Physiological Status of Strawberry Plants Growing under Water Deficits. PLANTS (BASEL, SWITZERLAND) 2024; 13:1556. [PMID: 38891364 PMCID: PMC11175115 DOI: 10.3390/plants13111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Drought affects several plant physiological characteristics such as photosynthesis, carbon metabolism, and chlorophyll content, causing hormonal and nutritional imbalances and reducing nutrient uptake and transport, which inhibit growth and development. The use of bioinoculants based on plant growth-promoting microorganisms such as plant growth-promoting rhizobacteria (PGPR), yeasts, and arbuscular mycorrhizal fungi (AMF) has been proposed as an alternative to help plants tolerate drought. However, most studies have been based on the use of a single type of microorganism, while consortia studies have been scarcely performed. Therefore, the aim of this study was to evaluate different combinations of three PGPR, three AMF, and three yeasts with plant growth-promoting attributes to improve the biochemical, nutritional, and physiological behavior of strawberry plants growing under severe drought. The results showed that the growth and physiological attributes of the non-inoculated plants were significantly reduced by drought. In contrast, plants inoculated with the association of the fungus Claroideoglomus claroideum, the yeast Naganishia albida, and the rhizobacterium Burkholderia caledonica showed a stronger improvement in tolerance to drought. High biomass, relative water content, fruit number, photosynthetic rate, transpiration, stomatal conductance, quantum yield of photosystem II, N concentration, P concentration, K concentration, antioxidant activities, and chlorophyll contents were significantly improved in inoculated plants by up to 16.6%, 12.4%, 81.2%, 80%, 79.4%, 71.0%, 17.8%, 8.3%, 6.6%, 57.3%, 41%, and 22.5%, respectively, compared to stressed non-inoculated plants. Moreover, decreased malondialdehyde levels by up to 32% were registered. Our results demonstrate the feasibility of maximizing the effects of inoculation with beneficial rhizosphere microorganisms based on the prospect of more efficient combinations among different microbial groups, which is of interest to develop bioinoculants oriented to increase the growth of specific plant species in a global scenario of increasing drought stress.
Collapse
Affiliation(s)
- Urley A. Pérez-Moncada
- Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile;
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (C.S.); (A.R.); (C.V.)
| | - Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (C.S.); (A.R.); (C.V.)
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (C.S.); (A.R.); (C.V.)
| | - Catalina Vidal
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (C.S.); (A.R.); (C.V.)
| | - Cledir Santos
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco 4780000, Chile; (C.S.); (A.R.); (C.V.)
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
| | - Pablo Cornejo
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| |
Collapse
|
8
|
Nie X, Zhao Z, Zhang X, Bastías DA, Nan Z, Li C. Endophytes Alleviate Drought-Derived Oxidative Damage in Achnatherum inebrians Plants Through Increasing Antioxidants and Regulating Host Stress Responses. MICROBIAL ECOLOGY 2024; 87:73. [PMID: 38758374 PMCID: PMC11101377 DOI: 10.1007/s00248-024-02391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Endophytes generally increase antioxidant contents of plants subjected to environmental stresses. However, the mechanisms by which endophytes alter the accumulation of antioxidants in plant tissues are not entirely clear. We hypothesized that, in stress situations, endophytes would simultaneously reduce oxidative damage and increase antioxidant contents of plants and that the accumulation of antioxidants would be a consequence of the endophyte ability to regulate the expression of plant antioxidant genes. We investigated the effects of the fungal endophyte Epichloë gansuensis (C.J. Li & Nan) on oxidative damage, antioxidant contents, and expression of representative genes associated with antioxidant pathways in Achnatherum inebrians (Hance) Keng plants subjected to low (15%) and high (60%) soil moisture conditions. Gene expression levels were measured using RNA-seq. As expected, the endophyte reduced the oxidative damage by 17.55% and increased the antioxidant contents by 53.14% (on average) in plants subjected to low soil moisture. In line with the accumulation of antioxidants in plant tissues, the endophyte increased the expression of most plant genes associated with the biosynthesis of antioxidants (e.g., MIOX, crtB, gpx) while it reduced the expression of plant genes related to the metabolization of antioxidants (e.g., GST, PRODH, ALDH). Our findings suggest that endophyte ability of increasing antioxidant contents in plants may reduce the oxidative damage caused by stresses and that the fungal regulation of plant antioxidants would partly explain the accumulation of these compounds in plant tissues.
Collapse
Affiliation(s)
- Xiumei Nie
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhenrui Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xingxu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Daniel A Bastías
- Grasslands Research Centre, AgResearch Limited, Palmerston North, 4442, New Zealand.
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
9
|
Olanrewaju OS, Glick BR, Babalola OO. Metabolomics-guided utilization of beneficial microbes for climate-resilient crops. Curr Opin Chem Biol 2024; 79:102427. [PMID: 38290195 DOI: 10.1016/j.cbpa.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
In the rhizosphere, plants and microbes communicate chemically, especially under environmental stress. Over millions of years, plants and their microbiome have coevolved, sharing various chemicals, including signaling molecules. This mutual exchange impacts bacterial communication and influences plant metabolism. Inter-kingdom signal crosstalk affects bacterial colonization and plant fitness. Beneficial microbes and their metabolomes offer eco-friendly ways to enhance plant resilience and agriculture. Plant metabolites are pivotal in this dynamic interaction between host plants and their interacting beneficial microbes. Understanding these associations is key to engineering a robust microbiome for stress mitigation and improved plant growth. This review explores mechanisms behind plant-microbe interactions, the role of beneficial microbes and metabolomics, and the practical applications for addressing climate change's impact on agriculture. Integrating beneficial microbes' activities and metabolomics' application to study metabolome-driven interaction between host plants and their corresponding beneficial microbes holds promise for enhancing crop resilience and productivity.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa.
| |
Collapse
|
10
|
Zhang W, Xia K, Feng Z, Qin Y, Zhou Y, Feng G, Zhu H, Yao Q. Tomato plant growth promotion and drought tolerance conferred by three arbuscular mycorrhizal fungi is mediated by lipid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108478. [PMID: 38430785 DOI: 10.1016/j.plaphy.2024.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and enhance plant drought tolerance with varying effect size among different fungal species. However, the linkage between the variation and the lipid metabolism, which is exclusively derived from plants, has been little explored thus far. Here, we established AM symbiosis between tomato (Solanum lycopersicum) plants and three AMF species (Rhizophagus intraradices, Funneliformis mosseae, Rhizophagus irregularis) under well watered (WW) or drought stressed (DS) conditions in pot experiment. The plant biomass, chlorophyll fluorescence Fv/Fm, shoot P content and mycorrhizal colonization were determined. Meanwhile, fatty acid (FA) profiles and relative expression of genes encoding for nutrition exchange (SlPT4, SlPT5, RAM2, STR/STR2) in roots were also monitored. DS significantly decreased plant biomass while AMF significantly increased it, with three fungal species varying in their growth promoting capacity and drought tolerance capacity. The growth promoting effect of R. irregularis was lower than those of R. intraradices and F. mosseae, and was associated with higher mycorrhizal colonization and more consumption of lipids. However, the drought tolerance capacity of R. irregularis was greater than those of R. intraradices and F. mosseae, and was associated with less decrease in mycorrhizal colonization and lipid content. We also found that AMF mediated plant drought tolerance via regulating both AM specific FAs and non-AM specific FAs in a complementary manner. These data suggest that lipid metabolism in AM plays a crucial role in plant drought tolerance mediated by AMF.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, China
| | - Kaili Xia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Yongqiang Qin
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Guangda Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China.
| | - Qing Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, China.
| |
Collapse
|
11
|
Singh D, Thapa S, Singh JP, Mahawar H, Saxena AK, Singh SK, Mahla HR, Choudhary M, Parihar M, Choudhary KB, Chakdar H. Prospecting the Potential of Plant Growth-Promoting Microorganisms for Mitigating Drought Stress in Crop Plants. Curr Microbiol 2024; 81:84. [PMID: 38294725 DOI: 10.1007/s00284-023-03606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Drought is a global phenomenon affecting plant growth and productivity, the severity of which has impacts around the whole world. A number of approaches, such as agronomic, conventional breeding, and genetic engineering, are followed to increase drought resilience; however, they are often time consuming and non-sustainable. Plant growth-promoting microorganisms are used worldwide to mitigate drought stress in crop plants. These microorganisms exhibit multifarious traits, which not only help in improving plant and soil health, but also demonstrate capabilities in ameliorating drought stress. The present review highlights various adaptive strategies shown by these microbes in improving drought resilience, such as modulation of various growth hormones and osmoprotectant levels, modification of root morphology, exopolysaccharide production, and prevention of oxidative damage. Gene expression patterns providing an adaptive edge for further amelioration of drought stress have also been studied in detail. Furthermore, the practical applications of these microorganisms in soil are highlighted, emphasizing their potential to increase crop productivity without compromising long-term soil health. This review provides a comprehensive coverage of plant growth-promoting microorganisms-mediated drought mitigation strategies, insights into gene expression patterns, and practical applications, while also guiding future research directions.
Collapse
Affiliation(s)
- Devendra Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, Uttar Pradesh, 275103, India
| | - Jyoti Prakash Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, Uttar Pradesh, 275103, India
| | - Himanshu Mahawar
- ICAR-Directorate of Weed Research (DWR) Maharajpur, Jabalpur, 482004, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, Uttar Pradesh, 275103, India
| | | | - Hans Raj Mahla
- ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | | | - Manoj Parihar
- ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | | | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
12
|
Wang Q, Liu M, Wang Z, Li J, Liu K, Huang D. The role of arbuscular mycorrhizal symbiosis in plant abiotic stress. Front Microbiol 2024; 14:1323881. [PMID: 38312502 PMCID: PMC10835807 DOI: 10.3389/fmicb.2023.1323881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can penetrate plant root cortical cells, establish a symbiosis with most land plant species, and form branched structures (known as arbuscules) for nutrient exchange. Plants have evolved a complete plant-AMF symbiosis system to sustain their growth and development under various types of abiotic stress. Here, we highlight recent studies of AM symbiosis and the regulation of symbiosis process. The roles of mycorrhizal symbiosis and host plant interactions in enhancing drought resistance, increasing mineral nutrient uptake, regulating hormone synthesis, improving salt resistance, and alleviating heavy metal stress were also discussed. Overall, studies of AM symbiosis and a variety of abiotic stresses will aid applications of AMF in sustainable agriculture and can improve plant production and environmental safety.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Mengmeng Liu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Zhifan Wang
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| | - Junrong Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Ke Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Dong Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
- College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Boudjabi S, Ababsa N, Chenchouni H. Enhancing soil resilience and crop physiology with biochar application for mitigating drought stress in durum wheat ( Triticumdurum). Heliyon 2023; 9:e22909. [PMID: 38125537 PMCID: PMC10731064 DOI: 10.1016/j.heliyon.2023.e22909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The use of biochar has recently garnered significant attention as an agricultural management technique highly endorsed by the scientific community. Biochar, owing to its high carbon content, contributes to increased organic matter storage in the soil, consequently enhancing crop growth. This study aimed to elucidate changes in physicochemical soil fertility and durum wheat (Triticum durum) var. Vitron production under the influence of three biochar doses (0 g/kg, 5 g/kg, and 15 g/kg of soil) in combination with varying levels of drought stress (100 %, 80 %, 40 %, and 20 % of field capacity 'FC'). Notably, we observed a substantial increase in all physicochemical soil parameters, except for active calcium carbonate equivalent (ACCE), which displayed lower values (8.78 ± 1.43 %) in soils treated with biochar compared to control soil (15.69 ± 4.03 %). The biochar dose of 5 g/kg yielded the highest moisture content (8.81 %) and pH value (7.83). However, the highest organic matter content (4.89 ± 0.17 %) and total calcium carbonate equivalent 'TCCE' (3.67 ± 0.48 %) were observed with the dose 15 g/kg. Nevertheless, regarding plant growth, no improvements were observed in terms of height and above-ground biomass (AGB). Conversely, leaf surface area exhibited significant changes with biochar application, along with an increase in chlorophyll pigment content. On the other hand, drought stress significantly hindered plant height, AGB, and leaf water reserves, resulting in values of 13.48 ± 1.60 cm, 1.57 ± 0.31g/plant, and 41.79 ± 1.67 %, respectively. The interaction between biochar and water stress appeared to mitigate and limit the impact of stress. Notably, an enhancement in organic matter storage and soil water reserves was observed. For example, the moisture content in the control soil was 6.95 %, while it increased to 12.76 % for 15g biochar/kg and 80 % FC. A similar trend was observed for organic matter, TCCE, and electrical conductivity. This effect positively influenced chlorophyll a and b content, as well as leaf water content. However, when stress was combined with biochar amendment, plant height and AGB decreased. The addition of biochar improved soil fertility and physiological parameters of wheat plants. Nevertheless, when combined with water stress, especially in cases of reduced water reserves, productivity did not witness any significant improvements.
Collapse
Affiliation(s)
- Sonia Boudjabi
- Department of Nature and Life Sciences, Faculty of Exact Sciences and Nature and Life Sciences, University of Tebessa, 12002 Tebessa, Algeria
- Laboratory “Water and Environment”, Faculty of Exact Sciences and Nature and Life Sciences, University of Tebessa, 12002 Tebessa, Algeria
- Laboratory of Natural Resources and Management of Sensitive Environments ‘RNAMS’, University of Oum-El-Bouaghi, 04000 Oum-El-Bouaghi, Algeria
| | - Nawal Ababsa
- Laboratory of Natural Resources and Management of Sensitive Environments ‘RNAMS’, University of Oum-El-Bouaghi, 04000 Oum-El-Bouaghi, Algeria
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, University of Khenchela, 40016 El-Hamma, Khenchela, Algeria
| | - Haroun Chenchouni
- Laboratory of Natural Resources and Management of Sensitive Environments ‘RNAMS’, University of Oum-El-Bouaghi, 04000 Oum-El-Bouaghi, Algeria
- Department of Forest Management, Higher National School of Forests, 40000 Khenchela, Algeria
- Laboratory of Algerian Forests and Climate Change, Higher National School of Forests, 40000 Khenchela, Algeria
| |
Collapse
|
14
|
Singh D, Kaushik R, Chakdar H, Saxena AK. Unveiling novel insights into haloarchaea (Halolamina pelagica CDK2) for alleviation of drought stress in wheat. World J Microbiol Biotechnol 2023; 39:328. [PMID: 37792124 DOI: 10.1007/s11274-023-03781-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Plant growth promoting microorganisms have various implications for plant growth and drought stress alleviation; however, the roles of archaea have not been explored in detail. Herein, present study was aimed for elucidating potential of haloarchaea (Halolamina pelagica CDK2) on plant growth under drought stress. Results showed that haloarchaea inoculated wheat plants exhibited significant improvement in total chlorophyll (100%) and relative water content (30.66%) compared to the uninoculated water-stressed control (30% FC). The total root length (2.20-fold), projected area (1.60-fold), surface area (1.52-fold), number of root tips (3.03-fold), number of forks (2.76-fold) and number of links (1.45-fold) were significantly higher in the inoculated plants than in the uninoculated water stressed control. Additionally, the haloarchaea inoculation resulted in increased sugar (1.50-fold), protein (2.40-fold) and activity of antioxidant enzymes such as superoxide dismutase (1.93- fold), ascorbate peroxidase (1.58-fold), catalase (2.30-fold), peroxidase (1.77-fold) and glutathione reductase (4.70-fold), while reducing the accumulation of proline (46.45%), glycine betaine (35.36%), lipid peroxidation (50%), peroxide and superoxide radicals in wheat leaves under water stress. Furthermore, the inoculation of haloarchaea significantly enhanced the expression of stress-responsive genes (DHN, DREB, L15, and TaABA-8OH) and wheat vegetative growth under drought stress over the uninoculated water stressed control. These results provide novel insights into the plant-archaea interaction for plant growth and stress tolerance in wheat and pave the way for future research in this area.
Collapse
Affiliation(s)
- Devendra Singh
- ICAR- Central Arid Zone Research Institute, 342003, Jodhpur, Rajasthan, India
- ICAR-National Bureau of Agriculturally Important Microorganisms, 275103, Kushmaur, Mau, Uttar Pradesh, India
| | - Rajeev Kaushik
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms, 275103, Kushmaur, Mau, Uttar Pradesh, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, 275103, Kushmaur, Mau, Uttar Pradesh, India.
| |
Collapse
|
15
|
Mandal S, Anand U, López-Bucio J, Radha, Kumar M, Lal MK, Tiwari RK, Dey A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. ENVIRONMENTAL RESEARCH 2023; 233:116357. [PMID: 37295582 DOI: 10.1016/j.envres.2023.116357] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Pesticide and fertilizer usage is at the center of agricultural production to meet the demands of an ever-increasing global population. However, rising levels of chemicals impose a serious threat to the health of humans, animals, plants, and even the entire biosphere because of their toxic effects. Biostimulants offer the opportunity to reduce the agricultural chemical footprint owing their multilevel, beneficial properties helping to make agriculture more sustainable and resilient. When applied to plants or to the soil an increased absorption and distribution of nutrients, tolerance to environmental stress, and improved quality of plant products explain the mechanisms by which these probiotics are useful. In recent years, the use of plant biostimulants has received widespread attention across the globe as an ecologically acceptable alternative to sustainable agricultural production. As a result, their worldwide market continues to grow, and further research will be conducted to broaden the range of the products now available. Through this review, we present a current understanding of biostimulants, their mode of action and their involvement in modulating abiotic stress responses, including omics research, which may provide a comprehensive assessment of the crop's response by correlating molecular changes to physiological pathways activated under stress conditions aggravated by climate change.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India; Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra, 411018, India.
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
16
|
Saadaoui W, Tarchoun N, Msetra I, Pavli O, Falleh H, Ayed C, Amami R, Ksouri R, Petropoulos SA. Effects of drought stress induced by D-Mannitol on the germination and early seedling growth traits, physiological parameters and phytochemicals content of Tunisian squash ( Cucurbita maximaDuch.) landraces. FRONTIERS IN PLANT SCIENCE 2023; 14:1215394. [PMID: 37600166 PMCID: PMC10432687 DOI: 10.3389/fpls.2023.1215394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023]
Abstract
Introduction Drought stress is one of the most devastating environmental stressors, especially in the arid and semi-arid regions of the world. Considering the major constraints that drought stress poses to crop production and the consequent yield losses in food crops, breeding for climate-resilient crops is an efficient means to mitigate stress conditions. Materials and methods This study aimed at evaluating the response of four squash (Cucurbita maxima Duchesne) landraces to drought stress at germination and at plant stage. Drought stress was induced by different concentrations of D-mannitol (-0.24, -0.47 and -0.73 MPa). The tested parameters at germination stage included germination percentage, seedling vigor index, seed water absorbance and seedling growth potential. At the plant stage, leaf chlorophyll and carotenoids content, chlorophyll fluorescence, evapotranspiration, photosynthesis activity and several biomarkers, namely malondialdehyde, proline, total phenols content, total flavonoids content and DPPH radical scavenging activity were evaluated in both roots and leaves. Results and discussion Our results indicate a magnitude of drought stress effects reflected via repression of germination and seedling growth as well as adjustments in physiological functions at later growth stages, in a genotype depended manner. Among landraces, "751" and "746" showed better performance, as evidenced by higher seed germination and seedling growth potential even at high stress levels (-0.47 and - 0.73 MPa), whereas "747" was the most sensitive landrace to drought stress at both tested stages. In conclusion, our findings highlight the importance of squash landraces selection for the identification of elite genotypes with increased tolerance to drought stress.
Collapse
Affiliation(s)
- Wassim Saadaoui
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Neji Tarchoun
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Insaf Msetra
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Ourania Pavli
- Laboratory of Genetics and Plant Breeding, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Hanen Falleh
- Laboratory of Aromatic and Medicinal Plant, Centre of Biotechnology of Borj Cedria, Tunis, Tunisia
| | - Chadha Ayed
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Roua Amami
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plant, Centre of Biotechnology of Borj Cedria, Tunis, Tunisia
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
17
|
Tian M, Zhang C, Zhang Z, Jiang T, Hu X, Qiu H, Li Z. Aspergillus niger Fermentation Broth Promotes Maize Germination and Alleviates Low Phosphorus Stress. Microorganisms 2023; 11:1737. [PMID: 37512909 PMCID: PMC10384586 DOI: 10.3390/microorganisms11071737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Aspergillus niger is a type of soil fungus with the ability to dissolve insoluble phosphate and secrete organic metabolites such as citric acid. However, whether cell-free Aspergillus niger fermentation broth (AFB) promotes maize growth and alleviates low-phosphorus stress has not been reported. In this study, we explored their relationship through a hydroponics system. The results indicated that either too low or too high concentrations of AFB may inhibit seed germination potential and germination rate. Under low phosphorus conditions, all physiological indexes (biomass, soluble sugar content, root length, etc.) increased after AFB was applied. A qRT-PCR analysis revealed that the expression of the EXPB4 and KRP1 genes, which are involved in root development, was upregulated, while the expression of the CAT2 and SOD9 genes, which are keys to the synthesis of antioxidant enzymes, was downregulated. The expression of LOX3, a key gene in lipid peroxidation, was down-regulated, consistent with changes in the corresponding enzyme activity. These results indicate that the application of AFB may alleviate the oxidative stress in maize seedlings, reduce the oxidative damage caused by low P stress, and enhance the resistance to low P stress in maize seedlings. In addition, it reveals the potential of A. niger to promote growth and provides new avenues for research on beneficial plant-fungal interactions.
Collapse
Affiliation(s)
- Maoxian Tian
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Changhui Zhang
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Zhi Zhang
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Tao Jiang
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Xiaolan Hu
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Hongbo Qiu
- College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Zhu Li
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
18
|
Rasouli F, Amini T, Skrovankova S, Asadi M, Hassanpouraghdam MB, Ercisli S, Buckova M, Mrazkova M, Mlcek J. Influence of drought stress and mycorrhizal ( Funneliformis mosseae) symbiosis on growth parameters, chlorophyll fluorescence, antioxidant activity, and essential oil composition of summer savory ( Satureja hortensis L.) plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1151467. [PMID: 37342133 PMCID: PMC10278574 DOI: 10.3389/fpls.2023.1151467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023]
Abstract
Introduction Drought stress unfavorably influences the growth and physiological traits of plants in the arid and semi-arid regions of the world. This study aimed to determine the effects of arbuscular mycorrhiza fungi (AMF; Funneliformis mosseae) inoculation on the physiological and biochemical responses of summer savory (Satureja hortensis L.) under different irrigation regimes. Methods The first factor was different irrigation regimes, including no drought stress (100% field capacity; FC), moderate drought stress (60% FC), and severe drought stress (30% FC); the second factor included the plants without AMF (AMF0) and with AMF inoculation (AMF1). Results The results showed that better values, higher plant height, shoot mass (fresh and dry weight), relative water content (RWC), membrane stability index (MSI), photosynthesis pigments, Fv, Fm, Fv/Fm, and total soluble proteins were obtained in the plants inoculated with AMF. The highest values were obtained for plants with no drought stress, then the plants subjected to AMF1 under 60% FC, and the lowest ones for plants under 30% FC without AMF inoculation. Thus, these properties are reduced under moderate and severe drought stress. At the same time, the utmost activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and the highest malondialdehyde (MDA), H2O2, proline, and antioxidant activity (TAA) were achieved for 30% FC + AMF0. It was also found that AMF inoculation improved essential oil (EO) composition, also as EO obtained from plants under drought stress. Carvacrol (50.84-60.03%) was the dominant component in EO; γ-terpinene (19.03-27.33%), p-cymene, α-terpinene, and myrcene, were recognized as other important components in EO. The higher carvacrol and γ-terpinene contents were obtained from summer savory plants with AMF inoculation and the lowest for plants without AMF and under 30% FC. Conclusion According to the present findings, using AMF inoculation could be a sustainable and eco-friendly approach to improve physiological and biochemical characteristics and the essential oil quality of summer savory plants under water shortage conditions.
Collapse
Affiliation(s)
- Farzad Rasouli
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Trifa Amini
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Sona Skrovankova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| | - Mohammad Asadi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Martina Buckova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| | - Martina Mrazkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| |
Collapse
|
19
|
Chávez D, Rivas G, Machuca Á, Santos C, Deramond C, Aroca R, Cornejo P. Contribution of Arbuscular Mycorrhizal and Endophytic Fungi to Drought Tolerance in Araucaria araucana Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112116. [PMID: 37299094 DOI: 10.3390/plants12112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In its natural distribution, Araucaria araucana is a plant species usually exposed to extreme environmental constraints such as wind, volcanism, fires, and low rainfall. This plant is subjected to long periods of drought, accentuated by the current climate emergency, causing plant death, especially in its early growth stages. Understanding the benefits that both arbuscular mycorrhizal fungi (AMF) and endophytic fungi (EF) could provide plants under different water regimes would generate inputs to address the above-mentioned issues. Here, the effect of AMF and EF inoculation (individually and combined) on the morphophysiological variables of A. araucana seedlings subjected to different water regimes was evaluated. Both the AMF and EF inocula were obtained from A. araucana roots growing in natural conditions. The inoculated seedlings were kept for 5 months under standard greenhouse conditions and subsequently subjected to three different irrigation levels for 2 months: 100, 75, and 25% of field capacity (FC). Morphophysiological variables were evaluated over time. Applying AMF and EF + AMF yielded a noticeable survival rate in the most extreme drought conditions (25% FC). Moreover, both the AMF and the EF + AMF treatments promoted an increase in height growth between 6.1 and 16.1%, in the production of aerial biomass between 54.3 and 62.6%, and in root biomass between 42.5 and 65.4%. These treatments also kept the maximum quantum efficiency of PSII (Fv/Fm 0.71 for AMF and 0.64 for EF + AMF) stable, as well as high foliar water content (>60%) and stable CO2 assimilation under drought stress. In addition, the EF + AMF treatment at 25% FC increased the total chlorophyll content. In conclusion, using indigenous strains of AMF, alone or in combination with EF, is a beneficial strategy to produce A. araucana seedlings with an enhanced ability to tolerate prolonged drought periods, which could be of great relevance for the survival of these native species under the current climate change.
Collapse
Affiliation(s)
- Daniel Chávez
- Departamento de Ciencias y Tecnología Vegetal, Universidad de Concepción, Campus Los Ángeles, Juan Antonio Coloma 0201, Los Ángeles 4440000, Chile
| | - Gustavo Rivas
- Departamento de Ciencias y Tecnología Vegetal, Universidad de Concepción, Campus Los Ángeles, Juan Antonio Coloma 0201, Los Ángeles 4440000, Chile
| | - Ángela Machuca
- Departamento de Ciencias y Tecnología Vegetal, Universidad de Concepción, Campus Los Ángeles, Juan Antonio Coloma 0201, Los Ángeles 4440000, Chile
| | - Cledir Santos
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Christian Deramond
- Departamento de Ciencias y Tecnología Vegetal, Universidad de Concepción, Campus Los Ángeles, Juan Antonio Coloma 0201, Los Ángeles 4440000, Chile
| | - Ricardo Aroca
- Estación Experimental del Zaidín, CSIC, Profesor Albareda N°1, 18008 Granada, Spain
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| |
Collapse
|
20
|
Haghighi TM, Saharkhiz MJ, Ramezanian A, Zarei M. The use of silicon and mycorrhizal fungi to mitigate changes in licorice leaf micromorphology, chlorophyll fluorescence, and rutin content under water-deficit conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107662. [PMID: 36989994 DOI: 10.1016/j.plaphy.2023.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
In this study, the effects of water-deficit conditions, silicon (Si) fertilizer (300 ppm), and arbuscular mycorrhizal (AM) inoculation by Claroiedoglomus etunicatum were evaluated on several features of licorice (Glycyrrhiza glabra L.). The measurable features were photosynthetic parameters, rutin content in aerial parts, and leaf micromorphology. Drought was administered at five levels determined by the percentage of field capacity (FC), i.e. 100, 80, 60, 40, and 20% of FC. Leaf extracts were utilized for measuring rutin content (via HPLC), and photosynthetic pigments; measurement of stomatal density, and trichome analysis were performed by scanning electron microscopy (SEM). Under severe drought stress, leaf area decreased by 50.84%, compared to well-irrigated plants. A significant decrease in leaf numbers (32.52%) was observed because of deficit irrigation. AM and Si improved chlorophyll fluorescence, which corresponded to the maximum efficiency of photosystem II. Rutin content decreased significantly under deficit irrigation. Also, the integration of AM and Si treatments positively affected rutin quantity under various irrigation regimes. Under moderate stress (60% FC), using AM and/or Si treatments reduced the stomatal length by 61.22 and 52.98%, respectively. Interestingly, a significant reduction in stomatal density towards control was observed as a result of the integrated treatments of Si and AM (58.28% at W20 and 59.82% at W100), which helped plants reduce water loss when facing drought stress. Principal component analysis (PCA) showed that photosynthetic pigments, chlorophyll fluorescence, and rutin changed quantitatively under moderate drought stress, while more variations were observed in leaf epidermal micromorphology under severe drought stress. These findings revealed that Si and AM, by exogenous application, synergistically mitigated the effects of drought stress on licorice.
Collapse
Affiliation(s)
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Asghar Ramezanian
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, College of Agriculture, University of Shiraz, Shiraz, Iran; Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, 73819-43885, Eghlid, Iran
| |
Collapse
|
21
|
Muthuraja R, Muthukumar T, Natthapol C. Drought tolerance of Aspergillus violaceofuscus and Bacillus licheniformis and their influence on tomato growth and potassium uptake in mica amended tropical soils under water-limiting conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1114288. [PMID: 36938042 PMCID: PMC10014471 DOI: 10.3389/fpls.2023.1114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Drought is a significant abiotic stress that alters plant physiology and ultimately affects crop productivity. Among essential plant nutrients, potassium (K) is known to mitigate the deleterious effect of drought on plant growth. If so, K addition or inoculation of potassium solubilizing microorganisms (KSMs) that are tolerant to drought should promote plant growth during water stress. Therefore, in this study, K solubilizing Aspergillus violaceofuscus and Bacillus licheniformis, isolated from saxicolous environments, were tested for their capacity to tolerate drought using different molecular weights (~4000, 6000, and 8000 Da), and concentrations (0, 250, 500, 750, 1000, and 1250 mg/L) of polyethylene glycol (PEG) under in vitro conditions. The results showed that high concentrations (750 and 1000 mg/L) of PEG with different molecular weight considerably improved bacterial cell numbers/fungal biomass and catalase (CAT) and proline activities. Moreover, the ability of KSMs alone or in combination to impart drought tolerance and promote plant growth in the presence and absence of mica (9.3% K2O) supplementation was tested in Alfisol and Vertisol soil types under greenhouse conditions. The results revealed that the tomato plants inoculated with KSMs individually or dually with/without mica improved the physiological and morphological traits of the tomato plants under drought. Generally, tomato plants co-inoculated with KSMs and supplemented with mica were taller (2.62 and 3.38-fold) and had more leaf area (2.03 and 1.98-fold), total root length (3.26 and 8.86-fold), shoot biomass (3.87 and 3.93-fold), root biomass (9.00 and 7.24-fold), shoot K content (3.08 and 3.62-fold), root K content (3.39 and 2.03-fold), relative water content (1.51 and 1.27-fold), CAT activity (2.11 and 2.14-fold), proline content (3.41 and 3.28-fold), and total chlorophyll content (1.81 and 1.90-fold), in unsterilized Alfisol and Vertisol soil types, respectively, than uninoculated ones. Dual inoculation of the KSMs along with mica amendment, also improved the endorrhizal symbiosis of tomato plants more than their individual inoculation or application in both soil types. These findings imply that the A. violaceofuscus and B. licheniformis isolates are promising as novel bioinoculants for improving crop growth in water-stressed and rainfed areas of the tropics in the future.
Collapse
Affiliation(s)
- Raji Muthuraja
- Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Department of Botany, Bharathiar University, Coimbatore, India
| | | | - Chittamart Natthapol
- Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
22
|
Adedayo AA, Babalola OO. Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. J Fungi (Basel) 2023; 9:239. [PMID: 36836352 PMCID: PMC9966197 DOI: 10.3390/jof9020239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The fungi species dwelling in the rhizosphere of crop plants, revealing functions that endeavor sustainability of the plants, are commonly referred to as 'plant-growth-promoting fungi' (PGPF). They are biotic inducers that provide benefits and carry out important functions in agricultural sustainability. The problem encountered in the agricultural system nowadays is how to meet population demand based on crop yield and protection without putting the environment and human and animal health at risk based on crop production. PGPF including Trichoderma spp., Gliocladium virens, Penicillium digitatum, Aspergillus flavus, Actinomucor elegans, Podospora bulbillosa, Arbuscular mycorrhizal fungi, etc., have proven their ecofriendly nature to ameliorate the production of crops by improving the growth of the shoots and roots of crop plants, the germination of seeds, the production of chlorophyll for photosynthesis, and the abundant production of crops. PGPF's potential mode of action is as follows: the mineralization of the major and minor elements required to support plants' growth and productivity. In addition, PGPF produce phytohormones, induced resistance, and defense-related enzymes to inhibit or eradicate the invasion of pathogenic microbes, in other words, to help the plants while encountering stress. This review portrays the potential of PGPF as an effective bioagent to facilitate and promote crop production, plant growth, resistance to disease invasion, and various abiotic stresses.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
23
|
Wang J, Zhao S, Xu S, Zhao W, Zhang X, Lei Y, Zhai H, Huang Z. Co-inoculation of antagonistic Bacillus velezensis FH-1 and Brevundimonas diminuta NYM3 promotes rice growth by regulating the structure and nitrification function of rhizosphere microbiome. Front Microbiol 2023; 14:1101773. [PMID: 36846752 PMCID: PMC9948033 DOI: 10.3389/fmicb.2023.1101773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Microbial inoculation with plant growth-promoting microorganisms (PGPMs) is one of the most promising technologies to solve the current global challenges. Co-inoculants is more efficient and stable than mono-inoculants. However, the growth promoting mechanism of co-inoculants in complex soil system is still poorly understood. In this study, the effects on rice, soil and the microbiome of the mono-inoculant Bacillus velezensis FH-1 (F) and Brevundimonas diminuta NYM3 (N) and the co-inoculant FN obtained in previous works were compared. Correlation analysis and PLS-PM were used to explore the primary mechanism of different inoculants promoting rice growth. We hypothesized that inoculants promoted plant growth (i) by themselves, (ii) by improving soil nutrient availability or (iii) by regulating the rhizosphere microbiome in complex soil system. We also assumed that different inoculants had different ways of promoting plant growth. The results showed that FN significantly promoted rice growth and nitrogen absorption and slightly increased soil total nitrogen and microbial network complexity compared with F, N and the control (CK). B. velezensis FH-1 and B. diminuta NYM3 interfered with each other's colonization in FN. FN increased the complexity of the microbial network compared to F and N. The bacterial community of FN was quite different from CK and N, while the fungal community was not significantly different from other treatments. The species and functions enriched or inhibited by FN are part of F. The correlation analysis and PLS-PM results showed that inoculants (F/N/FN) promoted the growth of rice mainly by regulating the rhizosphere microbiome rather than by themselves or by improving soil nutrient availability. Co-inoculant FN promotes rice growth specifically by enhancing microbial nitrification function through enriching related species compared with F or N. This may provide theoretical guidance for the construction and application of co-inoculants in the future.
Collapse
Affiliation(s)
- Jingjing Wang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,*Correspondence: Jingjing Wang, ✉
| | - Siqi Zhao
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Song Xu
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Wei Zhao
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoxia Zhang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yu Lei
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,Core Facility, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Huanhuan Zhai
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,Core Facility, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiyong Huang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,National Technology Innovation Center of Synthetic Biology, Tianjin, China,Zhiyong Huang, ✉
| |
Collapse
|
24
|
Zhao Y, Zhang F, Mickan B, Wang D. Inoculation of wheat with Bacillus sp. wp-6 altered amino acid and flavonoid metabolism and promoted plant growth. PLANT CELL REPORTS 2023; 42:165-179. [PMID: 36348065 DOI: 10.1007/s00299-022-02947-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Inoculation of wheat seedling with Bacillus sp. wp-6 changed amino acid metabolism and flavonoid synthesis and promoted plant growth. Plant growth-promoting rhizobacteria (PGPR), which can reduce the use of agrochemicals, is vital for the development of sustainable agriculture. In this study, proteomics and metabolomics analyses were performed to investigate the effects of inoculation with a PGPR, Bacillus sp. wp-6, on wheat (Triticum aestivum L.) seedling growth. The results showed that inoculation with Bacillus sp. wp-6 increased shoot and root fresh weights by 19% and 18%, respectively, after 40 days. The expression levels of alpha-linolenic acid metabolism-related proteins and metabolites (lipoxygenase 2, allene oxide synthase 2, jasmonic acid, 17-hydroxylinolenic acid) and flavonoid biosynthesis-related proteins and metabolites (chalcone synthase 2 and PHC 4'-O-glucoside) were up-regulated. In addition, the expression levels of amino acid metabolism-related proteins (NADH-dependent glutamate synthase, bifunctional aspartokinase/homoserine, anthranilate synthase alpha subunit 1, and 3-phosphoshikimate 1-carboxyvinyltransferase) and metabolites (L-aspartate, L-arginine, and S-glutathionyl-L-cysteine) were also significantly up-regulated. Among them, NADH-dependent glutamate synthase and bifunctional aspartokinase/homoserine could act as regulators of nitrogen metabolism. Overall, inoculation of wheat with Bacillus sp. wp-6 altered alpha-linolenic acid metabolism, amino acid metabolism, and flavonoid synthesis and promoted wheat seedling growth. This study will deepen our understanding of the mechanism by which Bacillus sp. wp-6 promotes wheat growth using proteomics and metabolomics.
Collapse
Affiliation(s)
- Yaguang Zhao
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, North 4th Street No. 221, Shihezi, 832003, Xinjiang, China
| | - Fenghua Zhang
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, North 4th Street No. 221, Shihezi, 832003, Xinjiang, China.
| | - Bede Mickan
- Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6001, Australia
| | - Dan Wang
- Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Corps, Shihezi University, North 4th Street No. 221, Shihezi, 832003, Xinjiang, China
| |
Collapse
|
25
|
Complementary Effects of Dark Septate Endophytes and Trichoderma Strains on Growth and Active Ingredient Accumulation of Astragalus mongholicus under Drought Stress. J Fungi (Basel) 2022; 8:jof8090920. [PMID: 36135646 PMCID: PMC9506129 DOI: 10.3390/jof8090920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/23/2022] Open
Abstract
Drought is a major abiotic stress factor affecting plant growth and production, while utilizing beneficial endophytic fungi is one of the most promising strategies for enhancing plant growth and drought tolerance. In the current study, a pot experiment was conducted to investigate the beneficial effects of dark septate endophyte (DSE) (Macrophomina pseudophaseolina, Paraphoma radicina) and Trichoderma (Trichoderma afroharzianum, Trichoderma longibrachiatum) inoculum on Astragalus mongholicus grown in sterile soil under drought stress, alone, or in combination. The addition of Trichoderma enhanced the DSE colonization in roots regardless of the water condition. Under well-watered conditions, M. pseudophaseolina inoculation significantly enhanced the biomass and root length of A. mongholicus. The two DSE and Trichoderma inoculum significantly improved calycosin-7-O-β-D-glucoside content. However, M. pseudophaseolina + T. afroharzianum inoculation better promoted root growth, whereas co-inoculation had higher active ingredient contents compared with single inoculation, except for P. radicina + T. afroharzianum. Under drought stress, DSE and Trichoderma inoculum significantly improved root biomass, root length, calycosin-7-O-β-D-glucoside content, and activities of nitrate reductase and soil urease. P. radicina + T. afroharzianum and P. radicina + T. longibrachiatum better increased root length, and all combinations of DSE and Trichoderma had a greater impact on the increase in formononetin content compared with the single treatments. Additionally, Trichoderma relies on antioxidant enzymes, growth hormones, and the redox system (ascorbic acid−glutathione) to resist drought, while DSE strains have an additional osmotic regulation system in addition to the drought resistance function possessed by Trichoderma, and the effect of co-inoculation (especially M. pseudophaseolina + T. longibrachiatum and P. radicina + T. afroharzianum) on plant physiological parameters was greater than that of single inoculation. This study provides a new research direction for the effects of DSE and Trichoderma on medicinal plant cultivated in dryland.
Collapse
|
26
|
Najafi Vafa Z, Sohrabi Y, Mirzaghaderi G, Heidari G. Soil Microorganisms and Seaweed Application With Supplementary Irrigation Improved Physiological Traits and Yield of Two Dryland Wheat Cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:855090. [PMID: 35720598 PMCID: PMC9198557 DOI: 10.3389/fpls.2022.855090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
To evaluate the effect of useful soil microorganisms and organic compounds on physiological characteristics and yield of two wheat cultivars under supplementary irrigation conditions, a study was conducted in the Agriculture Research Farm of Kurdistan University during the two cropping seasons of 2017-2018 and 2018-2019. A split-split plot-based study on a randomized complete block design with four replicates was used as an experimental design. The main factor was irrigation at three levels, including control without irrigation, supplementary irrigation in the booting stage, and supplementary irrigation in the booting and flowering stages. Two wheat cultivars, namely, Sardari and Sirvan, as sub-factors and application of bio-fertilizers in eight levels, including the use of bio-fertilizers containing: Mycorrhiza, Seaweed extract, Nitrozist and Phosphozist, Mycorrhiza + Nitrozist and Phosphozist, Seaweed extract + Nitrozist and Phosphozist, Mycorrhiza + Seaweed extract, Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract, and non-application of bio-fertilizers, were considered as sub-factors. The results of both seasons of the experiment showed that the application of bio-fertilizers compared to the control treatment at all irrigation levels increased root volume, leaf relative water content (RWC), membrane stability index (MSI), and photosynthetic pigment content. The highest amount of H2O2, proline, and soluble carbohydrates were obtained in wheat under dry land conditions, and supplementary irrigation, especially two-time irrigation, significantly reduced the values of these traits. Supplementary irrigation also increased grain yield, so that in the conditions of two-time irrigation compared to the non-irrigation treatment (dry land), in the first and second seasons, the grain yield increased by 79.51 and 78.69%, respectively. Application of bio-fertilizers (Mycorrhiza + Nitrozist and Phosphozist + Seaweed extract) in comparison with the non-application of these fertilizers, due to increased root volume, RWC, MSI, and content of photosynthetic pigments, increased the grain yield in the first and second seasons of the experiment by 8.04 and 6.96%, respectively. As a result, suitable microorganisms and seaweed can improve wheat resistance mechanisms to water deficit, which along with using supplementary irrigation that saves water consumption improves plant growth and yield in areas faced with water shortage.
Collapse
Affiliation(s)
| | - Yousef Sohrabi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | | | |
Collapse
|
27
|
Jamil F, Mukhtar H, Fouillaud M, Dufossé L. Rhizosphere Signaling: Insights into Plant-Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms 2022; 10:microorganisms10050899. [PMID: 35630345 PMCID: PMC9147336 DOI: 10.3390/microorganisms10050899] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rhizospheric plant-microbe interactions have dynamic importance in sustainable agriculture systems that have a reduced reliance on agrochemicals. Rhizosphere signaling focuses on the interactions between plants and the surrounding symbiotic microorganisms that facilitate the development of rhizobiome diversity, which is beneficial for plant productivity. Plant-microbe communication comprises intricate systems that modulate local and systemic defense mechanisms to mitigate environmental stresses. This review deciphers insights into how the exudation of plant secondary metabolites can shape the functions and diversity of the root microbiome. It also elaborates on how rhizosphere interactions influence plant growth, regulate plant immunity against phytopathogens, and prime the plant for protection against biotic and abiotic stresses, along with some recent well-reported examples. A holistic understanding of these interactions can help in the development of tailored microbial inoculants for enhanced plant growth and targeted disease suppression.
Collapse
Affiliation(s)
- Fatima Jamil
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Mireille Fouillaud
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Laurent Dufossé
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, ESIROI Département Agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France;
| |
Collapse
|
28
|
Cheng F, Gao M, Lu J, Huang Y, Bie Z. Spatial-Temporal Response of Reactive Oxygen Species and Salicylic Acid Suggest Their Interaction in Pumpkin Rootstock-Induced Chilling Tolerance in Watermelon Plants. Antioxidants (Basel) 2021; 10:2024. [PMID: 34943126 PMCID: PMC8698449 DOI: 10.3390/antiox10122024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Grafting with pumpkin rootstock could improve chilling tolerance in watermelon, and salicylic acid (SA) as a signal molecule is involved in regulating plant tolerance to chilling and other abiotic stresses. To clarify the mechanism in pumpkin rootstock-induced systemic acquired acclimation in grafted watermelon under chilling stress, we used self-grafted (Cl/Cl) and pumpkin rootstock-grafted (Cl/Cm) watermelon seedlings to study the changes in lipid peroxidation, photosystem II (PSII) activity and antioxidant metabolism, the spatio-temporal response of SA biosynthesis and H2O2 accumulation to chilling, and the role of H2O2 signal in SA-induced chilling tolerance in grafted watermelon. The results showed that pumpkin rootstock grafting promoted SA biosynthesis in the watermelon scions. Chilling induced hydrolysis of conjugated SA into free SA in the roots and accumulation of free SA in the leaves in Cl/Cm plants. Further, pumpkin rootstock grafting induced early response of antioxidant enzyme system in the roots and increased activities of ascorbate peroxidase and glutathione reductase in the leaves, thus maintaining cellular redox homeostasis. Exogenous SA improved while the inhibition of SA biosynthesis reduced chilling tolerance in Cl/Cl seedlings. The application of diphenyleneiodonium (DPI, inhibitor of NADPH oxidase) and dimethylthiourea (DMTU, H2O2 scavenger) decreased, while exogenous H2O2 improved the PSII activity in Cl/Cl plants under chilling stress. Additionally, the decrease of the net photosynthetic rate in DMTU- and DPI-pretreated Cl/Cl plants under chilling conditions could be alleviated by subsequent application of H2O2 but not SA. In conclusion, pumpkin rootstock grafting induces SA biosynthesis and redistribution in the leaves and roots and participates in the regulation of antioxidant metabolism probably through interaction with the H2O2 signal, thus improving chilling tolerance in watermelon.
Collapse
Affiliation(s)
| | | | | | | | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (F.C.); (M.G.); (J.L.); (Y.H.)
| |
Collapse
|