1
|
Choi EW, Jeong Y, Ahn JO. Diagnosis of canine B-cell chronic lymphoid leukemia with a CD21 negative phenotype using the LT21 clone CD21 antibody in flow cytometry: a case report. BMC Vet Res 2024; 20:490. [PMID: 39462364 PMCID: PMC11515120 DOI: 10.1186/s12917-024-04335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Chronic lymphoid leukemia (CLL) is a hematological disorder characterized by the clonal expansion of small mature lymphocytes that accumulate in the blood and bone marrow. CLL can arise from B-, T-, or natural killer cell clones. The cytological evaluation of blood smears is often the simplest and least invasive method for diagnosing lymphoid leukemia. Immunophenotyping is used to further subclassify the type of lymphoid leukemia. CASE PRESENTATION A 15-year-old, 4.4-kg spayed female Shih Tzu was presented to the veterinary medical teaching hospital of Kangwon National University. Despite having a normal appetite and activity level, cervical and inguinal lymph node enlargement was noted on physical examination. Complete blood count revealed severe leukocytosis, severe lymphocytosis, and monocytosis. Splenomegaly, hepatomegaly, and lymph node enlargement were detected on radiographic and ultrasonographic examination. Immunophenotyping was performed using peripheral blood mononuclear cells (PBMCs). The majority of lymphocytes exhibited the following profiles: CD3-CD79a- (97.5%), CD4-CD8- (98.6%), CD21-CD79a- (98.4%), CD34- (0.1%), CD45+ (99.6%), major histocompatibility complex class II+ (99.5%), and CD14- (0.5%). Based on the immunophenotyping results, possible differentials considered included the following: the majority of lymphocytes may be natural killer (NK) cell clones, plasma cell clones, or show aberrant expression or loss of CD21 marker due to the neoplastic nature of the cells. Further flow cytometry was performed using antibodies against CD3, CD5, CD94, and granzyme B. The combined results indicated that the predominant lymphocyte subset in the PBMCs was CD3-CD5-CD21-CD94-granzyme B-. To confirm monoclonality and exclude the aberrant loss of CD markers, a polymerase chain reaction for antigen receptor rearrangement (PARR) assay was conducted. The PARR assay, using DNA from blood and lymph node samples, showed B-cell monoclonality. Immunocytochemistry using PBMCs showed that the plasma cell marker Multiple Myeloma Oncogene 1 (MUM1) was not expressed. Therefore, the diagnosis was confirmed to be B-cell CLL. CONCLUSION Immunophenotyping can help subclassify the type of lymphoid leukemia; however, as tumor cells can show aberrant expression or loss of the CD21 marker, combining immunophenotyping with the PARR assay could yield a more accurate diagnosis.
Collapse
MESH Headings
- Female
- Animals
- Flow Cytometry/veterinary
- Immunophenotyping/veterinary
- Dogs
- Dog Diseases/diagnosis
- Dog Diseases/immunology
- Dog Diseases/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/veterinary
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Receptors, Complement 3d
- Phenotype
Collapse
Affiliation(s)
- Eun Wha Choi
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Yunho Jeong
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jin-Ok Ahn
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| |
Collapse
|
2
|
Flajnik MF. The Janus (dual) model of immunoglobulin isotype evolution: Conservation and plasticity are the defining paradigms. Immunol Rev 2024. [PMID: 39223989 DOI: 10.1111/imr.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.g., sharks) Igs provide a glimpse of "how everything got off the ground," while the amphibians (e.g., the model Xenopus) reveal how the adaptive immune system made an about face with the emergence of Ig isotype switching and IgG-like structure/function. The evolution of mucosal Igs is a captivating account of malleability, convergence, and conservation, and a call to arms for future study! In between there are spellbinding chronicles of antibody evolution in each class of vertebrates and rather incredible stories of how antibodies can adapt to occupy niches, for example, single-domain variable regions, cold-adapted Igs, convergent mechanisms to dampen antibody function, provision of mucosal defense, and many more. The purpose here is not to provide an encyclopedic examination of antibody evolution, but rather to hit the high points and entice readers to appreciate how things "came to be."
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Dahl LOS, Hak S, Braaen S, Molska A, Rodà F, Parot J, Wessel Ø, Fosse JH, Bjørgen H, Borgos SE, Rimstad E. Implementation of mRNA-Lipid Nanoparticle Technology in Atlantic Salmon ( Salmo salar). Vaccines (Basel) 2024; 12:788. [PMID: 39066426 PMCID: PMC11281423 DOI: 10.3390/vaccines12070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND This study was conducted to investigate whether mRNA vaccine technology could be adapted for the ectothermic vertebrate Atlantic salmon (Salmo salar). Lipid nanoparticle (LNP) technology has been developed and optimized for mRNA vaccines in mammals, stabilizing mRNA and facilitating its delivery into cells. However, its utility at the temperatures and specific biological environments present in ectotherms remains unclear. In addition, it is unknown if modified mRNA containing non-canonical nucleotides can correctly translate in salmonid cells. METHODS We used an mRNA transcript coding for enhanced green fluorescence protein, flanked by the untranslated regions of the hemagglutinin-esterase gene of the infectious salmon anemia virus, and a 120-base-long poly(A) tail. The mRNA was generated via in vitro transcription where uridine residues were replaced with N1-methyl-pseudouridines, and then encapsulated in LNPs. RESULTS When transfected into the salmonid cell line CHH-1, the mRNA-LNP construct induced expression of EGFP. Furthermore, when mRNA-LNPs were injected intramuscularly into salmon, in vivo protein expression was demonstrated via immunohistochemistry. EGFP was observed in cells infiltrating the spaces between muscle cells in a focal inflammatory response. CONCLUSION The results indicate that N1-methyl-pseudouridine-modified mRNA encapsulated in LNPs can be used to express antigens of interest in salmonid fish.
Collapse
Affiliation(s)
- Lars Ole Sti Dahl
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway; (L.O.S.D.); (S.B.); (Ø.W.); (H.B.)
| | - Sjoerd Hak
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway; (S.H.); (A.M.); (F.R.); (J.P.); (S.E.B.)
| | - Stine Braaen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway; (L.O.S.D.); (S.B.); (Ø.W.); (H.B.)
| | - Alicja Molska
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway; (S.H.); (A.M.); (F.R.); (J.P.); (S.E.B.)
| | - Francesca Rodà
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway; (S.H.); (A.M.); (F.R.); (J.P.); (S.E.B.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Jeremie Parot
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway; (S.H.); (A.M.); (F.R.); (J.P.); (S.E.B.)
| | - Øystein Wessel
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway; (L.O.S.D.); (S.B.); (Ø.W.); (H.B.)
| | | | - Håvard Bjørgen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway; (L.O.S.D.); (S.B.); (Ø.W.); (H.B.)
| | - Sven Even Borgos
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway; (S.H.); (A.M.); (F.R.); (J.P.); (S.E.B.)
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway; (L.O.S.D.); (S.B.); (Ø.W.); (H.B.)
| |
Collapse
|
4
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Innate lymphoid cells (ILCs) in teleosts against data on ILCs in humans. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109415. [PMID: 38296004 DOI: 10.1016/j.fsi.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
It is assumed that cells corresponding to innate lymphoid cells (ILCs) in humans, in addition to lymphoid tissue inducer cells (LTi), are also found in teleosts. In this systematic group of organisms, however, they are a poorly understood cell population. In contrast to the data on ILCs in humans, which also remain incomplete despite advanced research, in teleosts, these cells require much more attention. ILCs in teleosts have been presented as cells that may be evolutionary precursors of NK cells or ILCs identified in mammals, including humans. It is a highly heterogeneous group of cells in both humans and fish and their properties, as revealed by studies in humans, are most likely to remain strictly dependent on the location of these cells and the physiological state of the individual from which they originate. They form a bridge between innate and adaptive immunity. The premise of this paper is to review the current knowledge of ILCs in teleosts, taking into account data on similar cells in humans. A review of the knowledge concerning these particular cells, elements of innate immunity mechanisms as equivalent to, or perhaps dominant over, adaptive immunity mechanisms in teleosts, as presented, may inspire the need for further research.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
5
|
Gingrich AA, Razmara AM, Gingrich PW, Rebhun RB, Murphy WJ, Kent MS, Brown CT, Siegel JB, Canter RJ. Missing a "Missing Self" Mechanism: Modeling and Detection of Ly49 Expression in Canine NK Cells. Immunohorizons 2023; 7:760-770. [PMID: 37971282 PMCID: PMC10696421 DOI: 10.4049/immunohorizons.2300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
NK cells are a key focus in immuno-oncology, based on their ability to eliminate malignant cells without prior sensitization. Dogs are valuable models for translational immunotherapy studies, especially for NK cells, where critical species differences exist between mice and humans. Given that the mechanism for recognition of "self" by canine NK cells is currently unknown, we sought to evaluate expression of Ly49 in canine NK cells using in silico and high-throughput techniques. We interrogated the identified polymorphism/mutation in canine Ly49 and assessed the potential impact on structure using computational modeling of three-dimensional protein structure and protein-protein docking of canine Ly49 with MHC class I (MHC-I). Bulk and single-cell RNA-sequencing analysis was performed to detect gene expression of Ly49/KLRA1 in resting and activated NK cells. Tertiary protein structure demonstrated significant structural similarity to the known murine system. Molecular docking of canine Ly49 with MHC-I was favorable, converging at a single low-energy conformation. RNA sequencing revealed expression of Ly49/KLRA1 in both resting and activated NK cells and demonstrated almost exclusive expression of the gene in the NK cluster at the single-cell level. Despite prior reports of a mutated, nonfunctional canine Ly49, our data support that the protein product is predicted to bind to MHC-I in a comparable conformation to the murine system and is expressed in canine NK cells with upregulation following activation. Taken together, these data suggest that Ly49 is capable of recognizing MHC-I and therefore regulating NK cell function in dogs.
Collapse
Affiliation(s)
- Alicia A. Gingrich
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA
| | - Aryana M. Razmara
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA
| | - Phillip W. Gingrich
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA
| | - Robert B. Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis School of Veterinary Medicine, Davis, CA
| | - William J. Murphy
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, University of California, Davis School of Veterinary Medicine, Davis, CA
| | - C. Titus Brown
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA
| | - Justin B. Siegel
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA
| | - Robert J. Canter
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA
| |
Collapse
|
6
|
Wang J, Gurupalli HV, Stafford JL. Teleost leukocyte immune-type receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104768. [PMID: 37414235 DOI: 10.1016/j.dci.2023.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Leukocyte immune-type receptors (LITRs) are a large family of teleost immunoregulatory receptor-types belonging to the immunoglobulin superfamily. These immune genes are phylogenetically and syntenically related to Fc receptor-like protein genes (fcrls) present in other vertebrates, including amphibians, birds, mice, and man. In vitro-based functional analyses of LITRs, using transfection approaches, have shown that LITRs have diverse immunoregulatory potentials including the activation and inhibition of several innate immune effector responses such as cell-mediated killing responses, degranulation, cytokine secretion, and phagocytosis. The purpose of this mini review is to provide an overview of fish LITR-mediated immunoregulatory potentials obtained from various teleost model systems, including channel catfish, zebrafish, and goldfish. We will also describe preliminary characterization of a new goldish LITR-specific polyclonal antibody (pAb) and discuss the significance of this tool for further investigation of the functions of fish LITRs.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | | | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta, Canada.
| |
Collapse
|
7
|
Eltschkner S, Mellinger S, Buus S, Nielsen M, Paulsson KM, Lindkvist-Petersson K, Westerdahl H. The structure of songbird MHC class I reveals antigen binding that is flexible at the N-terminus and static at the C-terminus. Front Immunol 2023; 14:1209059. [PMID: 37483599 PMCID: PMC10360169 DOI: 10.3389/fimmu.2023.1209059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Long-distance migratory animals such as birds and bats have evolved to withstand selection imposed by pathogens across the globe, and pathogen richness is known to be particularly high in tropical regions. Immune genes, so-called Major Histocompatibility Complex (MHC) genes, are highly duplicated in songbirds compared to other vertebrates, and this high MHC diversity has been hypothesised to result in a unique adaptive immunity. To understand the rationale behind the evolution of the high MHC genetic diversity in songbirds, we determined the structural properties of an MHC class I protein, Acar3, from a long-distance migratory songbird, the great reed warbler Acrocephalus arundinaceus (in short: Acar). The structure of Acar3 was studied in complex with pathogen-derived antigens and shows an overall antigen presentation similar to human MHC class I. However, the peptides bound to Acar3 display an unusual conformation: Whereas the N-terminal ends of the peptides display enhanced flexibility, the conformation of their C-terminal halves is rather static. This uncommon peptide-binding mode in Acar3 is facilitated by a central Arg residue within the peptide-binding groove that fixes the backbone of the peptide at its central position, and potentially permits successful interactions between MHC class I and innate immune receptors. Our study highlights the importance of investigating the immune system of wild animals, such as birds and bats, to uncover unique immune mechanisms which may neither exist in humans nor in model organisms.
Collapse
Affiliation(s)
- Sandra Eltschkner
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Samantha Mellinger
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Soren Buus
- Department of Experimental Immunology, Institute of International Health, Immunology and Microbiology, Copenhagen, Denmark
| | - Morten Nielsen
- Immunoinformatics and Machine Learning, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kajsa M. Paulsson
- Antigen Presentation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karin Lindkvist-Petersson
- Medical Structural Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- LINXS - Institute of Advanced Neutron and X-ray Science, Lund University, Lund, Sweden
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Wcisel DJ, Dornburg A, McConnell SC, Hernandez KM, Andrade J, de Jong JLO, Litman GW, Yoder JA. A highly diverse set of novel immunoglobulin-like transcript (NILT) genes in zebrafish indicates a wide range of functions with complex relationships to mammalian receptors. Immunogenetics 2023; 75:53-69. [PMID: 35869336 PMCID: PMC9845131 DOI: 10.1007/s00251-022-01270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Multiple novel immunoglobulin-like transcripts (NILTs) have been identified from salmon, trout, and carp. NILTs typically encode activating or inhibitory transmembrane receptors with extracellular immunoglobulin (Ig) domains. Although predicted to provide immune recognition in ray-finned fish, we currently lack a definitive framework of NILT diversity, thereby limiting our predictions for their evolutionary origin and function. In order to better understand the diversity of NILTs and their possible roles in immune function, we identified five NILT loci in the Atlantic salmon (Salmo salar) genome, defined 86 NILT Ig domains within a 3-Mbp region of zebrafish (Danio rerio) chromosome 1, and described 41 NILT Ig domains as part of an alternative haplotype for this same genomic region. We then identified transcripts encoded by 43 different NILT genes which reflect an unprecedented diversity of Ig domain sequences and combinations for a family of non-recombining receptors within a single species. Zebrafish NILTs include a sole putative activating receptor but extensive inhibitory and secreted forms as well as membrane-bound forms with no known signaling motifs. These results reveal a higher level of genetic complexity, interindividual variation, and sequence diversity for NILTs than previously described, suggesting that this gene family likely plays multiple roles in host immunity.
Collapse
Affiliation(s)
- Dustin J Wcisel
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, 27607, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, 28223, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Kyle M Hernandez
- Center for Translational Data Science and Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL, USA
- Current Affiliation: Kite Pharma, Santa Monica, 90404, CA, USA
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, 33701, FL, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, 27607, NC, USA.
| |
Collapse
|
9
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Gabay G, Ben-Asher S. An Inverted Container in Containing and Not Containing Hospitalized Patients—A Multidisciplinary Narrative Inquiry. Front Public Health 2022; 10:919516. [PMID: 35875012 PMCID: PMC9304809 DOI: 10.3389/fpubh.2022.919516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePatient-centered care calls to contain patients in their time of crisis. This study extends the knowledge of provider patient interactions in the hectic environment of acute care applying Bion's container-contained framework from psychoanalysis.MethodsFollowing ethical approval, we performed a narrative inquiry of the experiences of ten patients upon discharge from lengthy hospitalizations in acute care. Interviews were conducted upon discharge and about one-month post-discharge.FindingsData analysis suggests four modes of containing of patients by providers. In nurturing interactions, typical of an active container-contained mode, patients experienced humanized care, symptom control, hope, and internal locus of control. This mode yielded patient gratitude toward providers, wellbeing, and post-discharge self-management of diseases. In rigid and wall-free modes of containing, patients experienced a sense of powerlessness and discomfort. A new mode of container-contained was identified, the “Inverted Container”, which extends Bion's theory and contradicts patient-centered care. In inverted containers, patients contained the providers yet reported feeling gratitude toward providers. The gratitude constitutes a defense mechanism and reflects a traumatic experience during hospitalization, which led to post-discharge distrust in providers and hospitals and poor self-management of illness.ConclusionsTo effectively provide patient-centered care, provider-patient interaction in lengthy hospitalizations must move along a clinical axis and a relationship axis. This shifting may facilitate containing patients in their time of crisis so essential processes of reflection, projection, and transference are facilitated in-hospital care.
Collapse
Affiliation(s)
- Gillie Gabay
- Multi-Disciplinary Studies, Achva Academic College, Shikmim, Israel
- *Correspondence: Gillie Gabay
| | | |
Collapse
|
11
|
Dornburg A, Yoder JA. On the relationship between extant innate immune receptors and the evolutionary origins of jawed vertebrate adaptive immunity. Immunogenetics 2022; 74:111-128. [PMID: 34981186 DOI: 10.1007/s00251-021-01232-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023]
Abstract
For over half a century, deciphering the origins of the genomic loci that form the jawed vertebrate adaptive immune response has been a major topic in comparative immunogenetics. Vertebrate adaptive immunity relies on an extensive and highly diverse repertoire of tandem arrays of variable (V), diversity (D), and joining (J) gene segments that recombine to produce different immunoglobulin (Ig) and T cell receptor (TCR) genes. The current consensus is that a recombination-activating gene (RAG)-like transposon invaded an exon of an ancient innate immune VJ-bearing receptor, giving rise to the extant diversity of Ig and TCR loci across jawed vertebrates. However, a model for the evolutionary relationships between extant non-recombining innate immune receptors and the V(D)J receptors of the jawed vertebrate adaptive immune system has only recently begun to come into focus. In this review, we provide an overview of non-recombining VJ genes, including CD8β, CD79b, natural cytotoxicity receptor 3 (NCR3/NKp30), putative remnants of an antigen receptor precursor (PRARPs), and the multigene family of signal-regulatory proteins (SIRPs), that play a wide range of roles in immune function. We then focus in detail on the VJ-containing novel immune-type receptors (NITRs) from ray-finned fishes, as recent work has indicated that these genes are at least 50 million years older than originally thought. We conclude by providing a conceptual model of the evolutionary origins and phylogenetic distribution of known VJ-containing innate immune receptors, highlighting opportunities for future comparative research that are empowered by this emerging evolutionary perspective.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
12
|
Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system. Immunogenetics 2021; 73:479-497. [PMID: 34510270 DOI: 10.1007/s00251-021-01225-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/06/2021] [Indexed: 01/16/2023]
Abstract
Over 99% of ray-finned fishes (Actinopterygii) are teleosts, a clade that comprises half of all living vertebrate species that have diversified across virtually all fresh and saltwater ecosystems. This ecological breadth raises the question of how the immunogenetic diversity required to persist under heterogeneous pathogen pressures evolved. The teleost genome duplication (TGD) has been hypothesized as the evolutionary event that provided the substrate for rapid genomic evolution and innovation. However, studies of putative teleost-specific innate immune receptors have been largely limited to comparisons either among teleosts or between teleosts and distantly related vertebrate clades such as tetrapods. Here we describe and characterize the receptor diversity of two clustered innate immune gene families in the teleost sister lineage: Holostei (bowfin and gars). Using genomic and transcriptomic data, we provide a detailed investigation of the phylogenetic history and conserved synteny of gene clusters encoding diverse immunoglobulin domain-containing proteins (DICPs) and novel immune-type receptors (NITRs). These data demonstrate an ancient linkage of DICPs to the major histocompatibility complex (MHC) and reveal an evolutionary origin of NITR variable-joining (VJ) exons that predate the TGD by at least 50 million years. Further characterizing the receptor diversity of Holostean DICPs and NITRs illuminates a sequence diversity that rivals the diversity of these innate immune receptor families in many teleosts. Taken together, our findings provide important historical context for the evolution of these gene families that challenge prevailing expectations concerning the consequences of the TGD during actinopterygiian evolution.
Collapse
|
13
|
Yin X, Li X, Chen N, Mu L, Wu H, Yang Y, Han K, Huang Y, Wang B, Jian J, Wang A, Ye J. Hemopexin as an acute phase protein regulates the inflammatory response against bacterial infection of Nile tilapia (Oreochromis niloticus). Int J Biol Macromol 2021; 187:166-178. [PMID: 34298052 DOI: 10.1016/j.ijbiomac.2021.07.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
Hemopexin, a high affinity heme-binding protein is widely involved in variety physiological and pathological processes. It is an important acute phase response protein, and is important in regulating the inflammatory response. In this study, the open reading frame of Nile tilapia hemopexin (OnHpx) gene was amplified. The expression pattern of OnHpx in natural and bacterial challenged tilapia tissues were analyzed through RT-qPCR. The results indicated the OnHpx was most abundant in liver, and increased significantly in liver, spleen, head kidney and peripheral blood after bacterial challenge. Furthermore, the OnHpx mRNA was also significantly up-regulated in monocytes/macrophages and hepatocytes under the stimulation of S. agalactiae or A. hydrophila. In addition, the recombinant OnHpx protein could effectively reduce the bacteria proliferation and alleviate the inflammatory reaction caused by bacteria. Moreover, the (r)OnHpx also regulated the respiratory burst of monocytes/macrophages and played an important role in the antioxidant process. To our knowledge, these results provide the first evidence on the antibacterial and anti-inflammatory response mechanism of Hpx in early vertebrates. This brings new insights about the understanding of the evolutionary origins and ancient roles of the Hpx in the innate immune defense.
Collapse
Affiliation(s)
- Xiaoxue Yin
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Xiaoyu Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Life Omics, Beijing 102206, PR China
| | - Nuo Chen
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Liangliang Mu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China.
| | - Hairong Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Yanjian Yang
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Kailiang Han
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Yu Huang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Bei Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jichang Jian
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Anli Wang
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China.
| |
Collapse
|
14
|
Kinlein A, Janes ME, Kincer J, Almeida T, Matz H, Sui J, Criscitiello MF, Flajnik MF, Ohta Y. Analysis of shark NCR3 family genes reveals primordial features of vertebrate NKp30. Immunogenetics 2021; 73:333-348. [PMID: 33742259 DOI: 10.1007/s00251-021-01209-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Natural killer (NK) cells play major roles in innate immunity against viruses and cancer. Natural killer receptors (NKR) expressed by NK cells recognize foreign- or self-ligands on infected and transformed cells as well as healthy cells. NKR genes are the most rapidly evolving loci in vertebrates, and it is generally difficult to detect orthologues in different taxa. The unique exception is NKp30, an activating NKR in mammals that binds to the self-ligand B7H6. The NKp30-encoding gene, NCR3, has been found in most vertebrates including sharks, the oldest vertebrates with human-type adaptive immunity. NCR3 has a special, non-rearranging VJ-type immunoglobulin superfamily (IgSF) domain that predates the emergence of the rearranging antigen receptors. Herein we show that NCR3 loci are linked to the shark major histocompatibility complex (MHC), proving NCR3's primordial association with the MHC. We identified eight subtypes of differentially expressed highly divergent shark NCR3 family genes. Using in situ hybridization, we detected one subtype, NS344823, to be expressed by predominantly single cells outside of splenic B cell zones. The expression by non-B cells was also confirmed by PCR in peripheral blood lymphocytes. Surprisingly, high expression of NS344823 was detected in the thymic cortex, demonstrating NS344823 expression in developing T cells. Finally, we show for the first time that shark T cells are found as single cells or in small clusters in the splenic red pulp, also unassociated with the large B cell follicles we previously identified.
Collapse
Affiliation(s)
- Allison Kinlein
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Morgan E Janes
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jacob Kincer
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Tereza Almeida
- Centro de Investigacão Em Biodiversidade E Recursos Genéticos, CIBIO-InBIO, Campus Agrário de Vairão, Universidade Do Porto, Vairão, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade Do Porto, Porto, Portugal
| | - Hanover Matz
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jianxin Sui
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Michael F Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Diaz-Salazar C, Sun JC. Natural killer cell responses to emerging viruses of zoonotic origin. Curr Opin Virol 2020; 44:97-111. [PMID: 32784125 PMCID: PMC7415341 DOI: 10.1016/j.coviro.2020.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Emerging viral diseases pose a major threat to public health worldwide. Nearly all emerging viruses, including Ebola, Dengue, Nipah, West Nile, Zika, and coronaviruses (including SARS-Cov2, the causative agent of the current COVID-19 pandemic), have zoonotic origins, indicating that animal-to-human transmission constitutes a primary mode of acquisition of novel infectious diseases. Why these viruses can cause profound pathologies in humans, while natural reservoir hosts often show little evidence of disease is not completely understood. Differences in the host immune response, especially within the innate compartment, have been suggested to be involved in this divergence. Natural killer (NK) cells are innate lymphocytes that play a critical role in the early antiviral response, secreting effector cytokines and clearing infected cells. In this review, we will discuss the mechanisms through which NK cells interact with viruses, their contribution towards maintaining equilibrium between the virus and its natural host, and their role in disease progression in humans and other non-natural hosts.
Collapse
Affiliation(s)
- Carlos Diaz-Salazar
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, United States
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
16
|
Wang J, Belosevic M, Stafford JL. Identification of goldfish (Carassius auratus L.) leukocyte immune-type receptors shows alternative splicing as a potential mechanism for receptor diversification. Mol Immunol 2020; 125:83-94. [PMID: 32652363 DOI: 10.1016/j.molimm.2020.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/31/2022]
Abstract
Leukocyte immune-type receptors (LITRs) are a multigene family of teleost immunoregulatory proteins that share structural, phylogenetic, and likely functional relationships with several innate immune receptor proteins in other vertebrates, including mammals. Originally discovered in channel catfish (Ictalurus punctatus), representative IpLITR-types have been shown to regulate diverse innate immune cell effector responses including phagocytosis, degranulation, and cytokine secretion. To date, IpLITRs have been primarily characterized using mammalian cell line expression systems, therefore many unanswered questions remain regarding their actual regulatory roles in fish immunity. In the present study, we report on the preliminary molecular characterization of five goldfish (Carassius auratus) CaLITR-types and the identification of several putative splice variants of these receptors cloned from various goldfish tissues and primary myeloid cell cultures. In general, CaLITR mRNA transcripts were detected in all goldfish tissues tested, and also in primary kidney macrophage and neutrophil cultures. Specifically, CaLITR1 is a functionally ambiguous receptor with no charged amino acids in its transmembrane (TM) segment and is devoid of tyrosine-based signaling motifs in its short cytoplasmic tail (CYT) region. CaLITR2 is a putative activating receptor-type that contains immunotyrosine-based activation motifs (ITAMs) within its long CYT region, and CaLITR3 has a positively charged TM segment, suggesting that it may recruit intracellular stimulatory adaptor signaling molecules. CaLITR4 and CaLITR5 appear to have diverse signaling capabilities since they contain various immunoregulatory signaling motifs within their CYT regions including putative Nck and STAT recruitment motifs as well as ITAM-like and ITIM sequences. We also identified putative CaLITR splice variants with altered extracellular Ig-like domain compositions and variable CYT regions. Interestingly, this suggests that alternative splicing-mediated diversification of CaLITRs can generate receptor forms with possible variable binding and/or intracellular signaling abilities. Overall, these findings reveal new information about the teleost LITRs and sets the stage for exploring how alternative splicing leads to the functional diversification of this complex multigene immunoregulatory receptor family.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta, Canada.
| |
Collapse
|
17
|
Guselnikov SV, Taranin AV. Unraveling the LRC Evolution in Mammals: IGSF1 and A1BG Provide the Keys. Genome Biol Evol 2019; 11:1586-1601. [PMID: 31106814 PMCID: PMC6557307 DOI: 10.1093/gbe/evz102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Receptors of the leukocyte receptor cluster (LRC) play a range of important functions in the human immune system. However, the evolution of the LRC remains poorly understood, even in m\ammals not to mention nonmammalian vertebrates. We conducted a comprehensive bioinformatics analysis of the LRC-related genes in the publicly available genomes of six species that represent eutherian, marsupial, and monotreme lineages of mammals. As a result, the LRCs of African elephant and armadillo were characterized, two new genes, IGSF1 and A1BG, were attributed to the LRC of eutherian mammals, the LRC gene content was substantially extended in the short-tailed opossum and Tasmanian devil and, finally, four LRC genes were identified in the platypus genome. These findings have for the first time provided a solid basis for inference of the LRC phylogeny across mammals. Our analysis suggests that the mammalian LRC family likely derived from two ancestral genes, which evolved in a lineage-specific manner by expansion/contraction, extensive exon shuffling, and sequence divergence. The striking structural and functional diversity of eutherian LRC molecules appears largely lineage specific. The only family member retained in all the three mammalian lineages is a collagen-binding receptor OSCAR. Strong sequence conservation of a transmembrane domain known to associate with FcRγ suggests an adaptive role of this domain subtype in the LRC evolution.
Collapse
Affiliation(s)
- Sergey V Guselnikov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Russia
| | - Alexander V Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Russia
| |
Collapse
|
18
|
|
19
|
Banach M, Edholm ES, Gonzalez X, Benraiss A, Robert J. Impacts of the MHC class I-like XNC10 and innate-like T cells on tumor tolerance and rejection in the amphibian Xenopus. Carcinogenesis 2019; 40:924-935. [PMID: 31155639 DOI: 10.1093/carcin/bgz100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/23/2023] Open
Abstract
The conditions that lead to antitumor or protumor functions of natural killer T (NKT) cells against mammalian tumors are only partially understood. Therefore, insights into the evolutionary conservation of NKT and their analogs-innate-like T (iT) cells-may reveal factors that contribute to tumor eradication. As such, we investigated the amphibian Xenopus laevis iT cells and interacting MHC class I-like (XNC or mhc1b.L) genes against ff-2 thymic lymphoid tumors. Upon ff-2 intraperitoneal transplantation into syngeneic tadpoles, two iT cell subsets iVα6 and iVα22, characterized by an invariant T-cell receptor α chain rearrangement (Vα6-Jα1.43 and Vα22-Jα1.32 respectively), were recruited to the peritoneum, concomitant with a decreased level of these transcripts in the spleen and thymus. To address the hypothesize that different iT cell subsets have distinct, possibly opposing, roles upon ff-2 tumor challenge, we determined whether ff-2 tumor growth could be manipulated by impairing Vα6 iT cells or by deleting their restricting element, the XNC gene, XNC10 (mhc1b10.1.L), on ff-2 tumors. Accordingly, the in vivo depletion of Vα6 iT cells using XNC10-tetramers enhanced tumor growth, indicating Vα6 iT cell-mediated antitumor activities. However, XNC10-deficient transgenic tadpoles that also lack Vα6 iT cells were resistant to ff-2 tumors, uncovering a potential new function of XNC10 besides Vα6 iT cell development. Furthermore, the CRISPR/Cas9-mediated knockout of XNC10 in ff-2 tumors broke the immune tolerance. Together, our findings demonstrate the relevance of XNC10/iT cell axis in controlling Xenopus tumor tolerance or rejection.
Collapse
Affiliation(s)
- Maureen Banach
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Eva-Stina Edholm
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Xavier Gonzalez
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Abdellatif Benraiss
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
20
|
Banach M, Robert J. Evolutionary Underpinnings of Innate-Like T Cell Interactions with Cancer. Immunol Invest 2019; 48:737-758. [PMID: 31223047 DOI: 10.1080/08820139.2019.1631341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancers impose a significant health and economic burden. By harnessing the immune system, current immunotherapies have revolutionized the treatment against human cancers and potentially offer a long-term cure. Among others, innate-like T (iT) cells, including natural killer T cells, are promising candidates for immunotherapies. Unlike conventional T cells, iT cells regulate multiple immune processes and express an invariant T cell receptor that is shared among different individuals. However, the conditions that activate the pro- and antitumor functions of iT cells are partially understood. These gaps in knowledge hamper the use of iT cell in clinics. It might be beneficial to examine the roles of iT cells in an alternative animal model - the amphibian Xenopus whose immune system shares many similarities to that of mammals. Here, we review the iT cell biology in the context of mammalian cancers and discuss the challenges currently found in the field. Next, we introduce the advantages of Xenopus as a model to investigate the role of iT cells and interacting major histocompatibility complex (MHC) class I-like molecules in tumor immunity. In Xenopus, 2 specific iT cell subsets, Vα6 and Vα22 iT cells, recognize and fight tumor cells. Furthermore, our recent data reveal the complex functions of the Xenopus MHC class I-like (XNC) gene XNC10 in tumor immune responses. By utilizing reverse genetics, transgenesis, and MHC tetramers, we have a unique opportunity to uncover the relevance of XNC genes and iT cell in Xenopus tumor immunity.
Collapse
Affiliation(s)
- Maureen Banach
- Department of Immunology & Microbiology, University of Colorado School of Medicine , Aurora , CO , USA.,Department of Microbiology & Immunology, University of Rochester Medical Center , Rochester , NY , USA
| | - Jacques Robert
- Department of Microbiology & Immunology, University of Rochester Medical Center , Rochester , NY , USA
| |
Collapse
|
21
|
Lin A, Yan WH. The Emerging Roles of Human Leukocyte Antigen-F in Immune Modulation and Viral Infection. Front Immunol 2019; 10:964. [PMID: 31134067 PMCID: PMC6524545 DOI: 10.3389/fimmu.2019.00964] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/15/2019] [Indexed: 12/29/2022] Open
Abstract
Human leukocyte antigens (HLAs) play various critical roles in both innate and adaptive immunity through processes such as presenting antigens to T cells and serving as ligands for receptors expressed on natural killer (NK) cells. Among the HLA class I family, the clinical significance and biological function of HLA-F have been the least investigated and have remained elusive for a long period of time. Previous studies have revealed that HLA-F expression might be involved in various physiological and pathological processes, such as pregnancy, viral infection, cancer, transplantation, and autoimmune diseases. However, recent data have shown that, akin to other HLA family members, HLA-F molecules can interact with both activating and inhibitory receptors on immune cells, such as NK cells, and can present a diverse panel of peptides. These important findings pave new avenues for investigations regarding the functions of HLA-F as an important immune regulatory molecule. In the present review, we summarize the studies on the role of HLA-F in immune modulation, with a special emphasis placed on the roles of HLA-F and KIR3DS1 interactions in viral infection.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
22
|
Gao FX, Lu WJ, Wang Y, Zhang QY, Zhang YB, Mou CY, Li Z, Zhang XJ, Liu CW, Zhou L, Gui JF. Differential expression and functional diversification of diverse immunoglobulin domain-containing protein (DICP) family in three gynogenetic clones of gibel carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:396-407. [PMID: 29555550 DOI: 10.1016/j.dci.2018.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Diverse immunoglobulin (Ig) domain-containing protein (DICP) family is a novel bony fish-specific multi-gene family encoding diversified immune receptors. However, their function and the implication of binding partners remain unknown. In this study, we first identified 28 DICPs from three gibel carp gynogenetic clones and revealed their high variability and clone-specific feature. After crucian carp herpesvirus (CaHV) infection, these DICPs were significantly upregulated in head kidney, kidney and spleen. The up-regulation folds in clone A+, F and H were related to the susceptibility to CaHV, progressively increasing from resistant clone to susceptible clone. Overexpression of gibel carp DICPs inhibited interferon (IFN) and viperin promoter-driven luciferase activity. The additions of E. coli extracts and lipid A significantly enhanced the inhibition effect. In addition, gibel carp DICPs can interact with SHP-1 and SHP-2. These findings suggest that gible carp DICPs, as inhibitory receptors, might specifically recognize lipid A, and then interact with SHP-1 and SHP-2 to inhibit the induction of IFN and ISGs.
Collapse
Affiliation(s)
- Fan-Xiang Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chao-Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Abstract
The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) vertebrates. Classically, the adaptive immune system has been defined by the presence of lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish based on an entirely different set of antigen receptors - the variable lymphocyte receptors - the divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all vertebrates. This Review explores how recent developments in comparative immunology have furthered our understanding of the origins and function of the adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
24
|
Kaufman J. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates. Annu Rev Immunol 2018; 36:383-409. [DOI: 10.1146/annurev-immunol-051116-052450] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0ES, United Kingdom
| |
Collapse
|
25
|
Zhou Y, Xu X, Tian Z, Wei H. "Multi-Omics" Analyses of the Development and Function of Natural Killer Cells. Front Immunol 2017; 8:1095. [PMID: 28928751 PMCID: PMC5591885 DOI: 10.3389/fimmu.2017.01095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
For over four decades, our understanding of natural killer (NK) cells has evolved from the original description of cluster of differentiation (CD)56+CD3− to establishing NK cells as an important subset of innate lymphocytes in the host’s surveillance against viral infections and malignancy. The progress of research on the fundamental properties and therapeutic prospects for translational medicine using NK cells excites immunologists and clinicians. Over the past decade, numerous advances in “-omics”-scale methods and new technological approaches have addressed many essential questions in the biology of NK cells. We now have further understanding of the overall molecular mechanisms of action that determine the development, function, plasticity, diversity, and immune reactivity of NK cells. These findings are summarized here, and our view on how to study NK cells using “multi-omics” is highlighted. We also describe “-omics” analyses of the relationships between NK cells and viral infection, tumorigenesis, and autoimmune diseases. Ultimately, a deeper and more comprehensive understanding of NK cells in multiple conditions will provide more effective strategies to manipulate NK cells for the treatment of human disease.
Collapse
Affiliation(s)
- Yonggang Zhou
- School of Life Science and Medical Center, Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Xiuxiu Xu
- School of Life Science and Medical Center, Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- School of Life Science and Medical Center, Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- School of Life Science and Medical Center, Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
26
|
Abstract
Host-microbe interactions are influenced by complex host genetics and environment. Studies across animal taxa have aided our understanding of how intestinal microbiota influence vertebrate development, disease, and physiology. However, traditional mammalian studies can be limited by the use of isogenic strains, husbandry constraints that result in small sample sizes and limited statistical power, reliance on indirect characterization of gut microbial communities from fecal samples, and concerns of whether observations in artificial conditions are actually reflective of what occurs in the wild. Fish models are able to overcome many of these limitations. The extensive variation in the physiology, ecology, and natural history of fish enriches studies of the evolution and ecology of host-microbe interactions. They share physiological and immunological features common among vertebrates, including humans, and harbor complex gut microbiota, which allows identification of the mechanisms driving microbial community assembly. Their accelerated life cycles and large clutch sizes and the ease of sampling both internal and external microbial communities make them particularly well suited for robust statistical studies of microbial diversity. Gnotobiotic techniques, genetic manipulation of the microbiota and host, and transparent juveniles enable novel insights into mechanisms underlying development of the digestive tract and disease states. Many diseases involve a complex combination of genes which are difficult to manipulate in homogeneous model organisms. By taking advantage of the natural genetic variation found in wild fish populations, as well as of the availability of powerful genetic tools, future studies should be able to identify conserved genes and pathways that contribute to human genetic diseases characterized by dysbiosis.
Collapse
Affiliation(s)
- Emily A Lescak
- University of Alaska Anchorage, Department of Biological Sciences, Anchorage, Alaska, USA
| | | |
Collapse
|
27
|
The evolution of innate lymphoid cells. Nat Immunol 2017; 17:790-4. [PMID: 27328009 DOI: 10.1038/ni.3459] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022]
Abstract
Innate lymphoid cells (ILCs) are the most recently discovered group of immune cells. Understanding their biology poses many challenges. We discuss here the current knowledge on the appearance of ILC subsets during evolution and propose how the connection between ILCs and T cells contributes to the robustness of immunity and hence to the fitness of the hosts.
Collapse
|
28
|
Wcisel DJ, Ota T, Litman GW, Yoder JA. Spotted Gar and the Evolution of Innate Immune Receptors. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:666-684. [PMID: 28544607 DOI: 10.1002/jez.b.22738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/02/2023]
Abstract
The resolution of the gar genome affords an opportunity to examine the diversification and functional specialization of immune effector molecules at a distant and potentially informative point in phylogenetic development. Although innate immunity is effected by a particularly large number of different families of molecules, the focus here is to provide detailed characterization of several families of innate receptors that are encoded in large multigene families, for which orthologous forms can be identified in other species of bony fish but not in other vertebrate groups as well as those for which orthologs are present in other vertebrate species. The results indicate that although teleost fish and the gar, as a holostean reference species, share gene families thought previously to be restricted to the teleost fish, the manner in which the members of the multigene families of innate immune receptors have undergone diversification is different in these two major phylogenetic radiations. It appears that both the total genome duplication and different patterns of genetic selection have influenced the derivation and stabilization of innate immune genes in a substantial manner during the course of vertebrate evolution.
Collapse
Affiliation(s)
- Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, Florida, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
29
|
Carmona SJ, Teichmann SA, Ferreira L, Macaulay IC, Stubbington MJT, Cvejic A, Gfeller D. Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types. Genome Res 2017; 27:451-461. [PMID: 28087841 PMCID: PMC5340972 DOI: 10.1101/gr.207704.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022]
Abstract
The immune system of vertebrate species consists of many different cell types that have distinct functional roles and are subject to different evolutionary pressures. Here, we first analyzed conservation of genes specific for all major immune cell types in human and mouse. Our results revealed higher gene turnover and faster evolution of trans-membrane proteins in NK cells compared with other immune cell types, and especially T cells, but similar conservation of nuclear and cytoplasmic protein coding genes. To validate these findings in a distant vertebrate species, we used single-cell RNA sequencing of lck:GFP cells in zebrafish and obtained the first transcriptome of specific immune cell types in a nonmammalian species. Unsupervised clustering and single-cell TCR locus reconstruction identified three cell populations, T cells, a novel type of NK-like cells, and a smaller population of myeloid-like cells. Differential expression analysis uncovered new immune-cell-specific genes, including novel immunoglobulin-like receptors, and neofunctionalization of recently duplicated paralogs. Evolutionary analyses confirmed the higher gene turnover of trans-membrane proteins in NK cells compared with T cells in fish species, suggesting that this is a general property of immune cell types across all vertebrates.
Collapse
Affiliation(s)
- Santiago J Carmona
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Sarah A Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Lauren Ferreira
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Iain C Macaulay
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, United Kingdom
| | - Michael J T Stubbington
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ana Cvejic
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - David Gfeller
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Wałajtys-Rode E, Dzik JM. Monocyte/Macrophage: NK Cell Cooperation-Old Tools for New Functions. Results Probl Cell Differ 2017; 62:73-145. [PMID: 28455707 DOI: 10.1007/978-3-319-54090-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monocyte/macrophage and natural killer (NK) cells are partners from a phylogenetic standpoint of innate immune system development and its evolutionary progressive interaction with adaptive immunity. The equally conservative ways of development and differentiation of both invertebrate hemocytes and vertebrate macrophages are reviewed. Evolutionary conserved molecules occurring in macrophage receptors and effectors have been inherited by vertebrates after their common ancestor with invertebrates. Cytolytic functions of mammalian NK cells, which are rooted in immune cells of invertebrates, although certain NK cell receptors (NKRs) are mammalian new events, are characterized. Broad heterogeneity of macrophage and NK cell phenotypes that depends on surrounding microenvironment conditions and expression profiles of specific receptors and activation mechanisms of both cell types are discussed. The particular tissue specificity of macrophages and NK cells, as well as their plasticity and mechanisms of their polarization to different functional subtypes have been underlined. The chapter summarized studies revealing the specific molecular mechanisms and regulation of NK cells and macrophages that enable their highly specific cross-cooperation. Attention is given to the evolving role of human monocyte/macrophage and NK cell interaction in pathogenesis of hypersensitivity reaction-based disorders, including autoimmunity, as well as in cancer surveillance and progression.
Collapse
Affiliation(s)
- Elżbieta Wałajtys-Rode
- Faculty of Chemistry, Department of Drug Technology and Biotechnology, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland.
| | - Jolanta M Dzik
- Faculty of Agriculture and Biology, Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
31
|
Wcisel DJ, Yoder JA. The confounding complexity of innate immune receptors within and between teleost species. FISH & SHELLFISH IMMUNOLOGY 2016; 53:24-34. [PMID: 26997203 DOI: 10.1016/j.fsi.2016.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Teleost genomes encode multiple multigene families of immunoglobulin domain-containing innate immune receptors (IIIRs) with unknown function and no clear mammalian orthologs. However, the genomic organization of IIIR gene clusters and the structure and signaling motifs of the proteins they encode are similar to those of mammalian innate immune receptor families such as the killer cell immunoglobulin-like receptors (KIRs), leukocyte immunoglobulin-like receptors (LILRs), Fc receptors, triggering receptors expressed on myeloid cells (TREMs) and CD300s. Teleost IIIRs include novel immune-type receptors (NITRs); diverse immunoglobulin domain containing proteins (DICPs); polymeric immunoglobulin receptor-like proteins (PIGRLs); novel immunoglobulin-like transcripts (NILTs) and leukocyte immune-type receptors (LITRs). The accumulation of genomic sequence data has revealed that IIIR gene clusters in zebrafish display haplotypic and gene content variation. This intraspecific genetic variation, as well as significant interspecific variation, frequently confounds the identification of definitive orthologous IIIR sequences between teleost species. Nevertheless, by defining which teleost lineages encode (and do not encode) different IIIR families, predictions can be made about the presence (or absence) of specific IIIR families in each teleost lineage. It is anticipated that further investigations into available genomic resources and the sequencing of a variety of multiple teleost genomes will identify additional IIIR families and permit the modeling of the evolutionary origins of IIIRs.
Collapse
Affiliation(s)
- Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
32
|
Abstract
NKG2D ligands (NKG2DLs) are a group of stress-inducible major histocompatibility complex (MHC) class I-like molecules that act as a danger signal alerting the immune system to the presence of abnormal cells. In mammals, two families of NKG2DL genes have been identified: the MIC gene family encoded in the MHC region and the ULBP gene family encoded outside the MHC region in most species. Some mammals have a third family of NKG2DL-like class I genes which we named MILL (MHC class I-like located near the leukocyte receptor complex). Despite the fact that MILL genes are more closely related to MIC genes than ULBP genes are to MIC genes, MILL molecules do not function as NKG2DLs, and their function remains unknown. With the progress of mammalian genome projects, information on the MIC, ULBP, and MILL gene families became available in many mammalian species. Here, we summarize such information and discuss the origin and evolution of the NKG2DL gene family from the viewpoint of host-pathogen coevolution.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoichi Sutoh
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
33
|
Ohta Y, Flajnik MF. Coevolution of MHC genes (LMP/TAP/class Ia, NKT-class Ib, NKp30-B7H6): lessons from cold-blooded vertebrates. Immunol Rev 2016; 267:6-15. [PMID: 26284468 DOI: 10.1111/imr.12324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Comparative immunology provides the long view of what is conserved across all vertebrate taxa versus what is specific to particular organisms or group of organisms. Regarding the major histocompatibility complex (MHC) and coevolution, three striking cases have been revealed in cold-blooded vertebrates: lineages of class Ia antigen-processing and -presenting genes, evolutionary conservation of NKT-class Ib recognition, and the ancient emergence of the natural cytotoxicity receptor NKp30 and its ligand B7H6. While coevolution of transporter associated with antigen processing (TAP) and class Ia has been documented in endothermic birds and two mammals, lineages of LMP7 are restricted to ectotherms. The unambiguous discovery of natural killer T (NKT) cells in Xenopus demonstrated that NKT cells are not restricted to mammals and are likely to have emerged at the same time in evolution as classical α/β and γ/δ T cells. NK cell receptors evolve at a rapid rate, and orthologues are nearly impossible to identify in different vertebrate classes. By contrast, we have detected NKp30 in all gnathostomes, except in species where it was lost. The recently discovered ligand of NKp30, B7H6, shows strong signs of coevolution with NKp30 throughout evolution, i.e. coincident loss or expansion of both genes in some species. NKp30 also offers an attractive IgSF candidate for the invasion of the RAG transposon, which is believed to have initiated T-cell receptor/immunoglobulin adaptive immunity. Besides reviewing these intriguing features of MHC evolution and coevolution, we offer suggestions for future studies and propose a model for the primordial or proto MHC.
Collapse
Affiliation(s)
- Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Kasamatsu J, Deng M, Azuma M, Funami K, Shime H, Oshiumi H, Matsumoto M, Kasahara M, Seya T. Double-stranded RNA analog and type I interferon regulate expression of Trem paired receptors in murine myeloid cells. BMC Immunol 2016; 17:9. [PMID: 27141827 PMCID: PMC4855714 DOI: 10.1186/s12865-016-0147-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/22/2016] [Indexed: 12/02/2022] Open
Abstract
Background Triggering receptors expressed on myeloid cells (Trem) proteins are a family of cell surface receptors used to control innate immune responses such as proinflammatory cytokine production in mice. Trem genes belong to a rapidly expanding family of receptors that include activating and inhibitory paired-isoforms. Results By comparative genomic analysis, we found that Trem4, Trem5 and Trem-like transcript-6 (Treml6) genes typically paired receptors. These paired Trem genes were murine-specific and originated from an immunoreceptor tyrosine-based inhibition motif (ITIM)-containing gene. Treml6 encoded ITIM, whereas Trem4 and Trem5 lacked the ITIM but possessed positively-charged residues to associate with DNAX activating protein of 12 kDa (DAP12). DAP12 was directly associated with Trem4 and Trem5, and DAP12 coupling was mandatory for their expression on the cell surface. In bone marrow-derived dendritic cells (BMDCs) and macrophages (BMDMs), and splenic DC subsets, polyinosinic-polycytidylic acid (polyI:C) followed by type I interferon (IFN) production induced Trem4 and Treml6 whereas polyI:C or other TLR agonists failed to induce the expression of Trem5. PolyI:C induced Treml6 and Trem4 more efficiently in BMDMs than BMDCs. Treml6 was more potentially up-regulated in conventional DC (cDCs) and plasmacytoid DC (pDCs) than Trem4 in mice upon in vivo stimulation with polyI:C. Discussion Treml6-dependent inhibitory signal would be dominant in viral infection compared to resting state. Though no direct ligands of these Trem receptors have been determined, the results infer that a set of Trem receptors are up-regulated in response to viral RNA to regulate myeloid cell activation through modulation of DAP12-associated Trem4 and ITIM-containing Treml6. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0147-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Kasamatsu
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Department of Pathology I, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Present address: Department of Microbiology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Mengyao Deng
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masahiro Azuma
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kenji Funami
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroaki Shime
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.,Present address: Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masanori Kasahara
- Department of Pathology I, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan. .,Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
35
|
Biochemical and Functional Insights into the Integrated Regulation of Innate Immune Cell Responses by Teleost Leukocyte Immune-Type Receptors. BIOLOGY 2016; 5:biology5010013. [PMID: 27005670 PMCID: PMC4810170 DOI: 10.3390/biology5010013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/22/2022]
Abstract
Across vertebrates, innate immunity consists of a complex assortment of highly specialized cells capable of unleashing potent effector responses designed to destroy or mitigate foreign pathogens. The execution of various innate cellular behaviors such as phagocytosis, degranulation, or cell-mediated cytotoxicity are functionally indistinguishable when being performed by immune cells isolated from humans or teleost fishes; vertebrates that diverged from one another more than 450 million years ago. This suggests that vital components of the vertebrate innate defense machinery are conserved and investigating such processes in a range of model systems provides an important opportunity to identify fundamental features of vertebrate immunity. One characteristic that is highly conserved across vertebrate systems is that cellular immune responses are dependent on specialized immunoregulatory receptors that sense environmental stimuli and initiate intracellular cascades that can elicit appropriate effector responses. A wide variety of immunoregulatory receptor families have been extensively studied in mammals, and many have been identified as cell- and function-specific regulators of a range of innate responses. Although much less is known in fish, the growing database of genomic information has recently allowed for the identification of several immunoregulatory receptor gene families in teleosts. Many of these putative immunoregulatory receptors have yet to be assigned any specific role(s), and much of what is known has been based solely on structural and/or phylogenetic relationships with mammalian receptor families. As an attempt to address some of these shortcomings, this review will focus on our growing understanding of the functional roles played by specific members of the channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs), which appear to be important regulators of several innate cellular responses via classical as well as unique biochemical signaling networks.
Collapse
|
36
|
Sun H, Liu P, Nolan LK, Lamont SJ. Avian pathogenic Escherichia coli (APEC) infection alters bone marrow transcriptome in chickens. BMC Genomics 2015; 16:690. [PMID: 26369556 PMCID: PMC4570614 DOI: 10.1186/s12864-015-1850-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
Background Avian pathogenic Escherichia coli (APEC) is a major cause of disease impacting animal health. The bone marrow is the reservoir of immature immune cells; however, it has not been examined to date for gene expression related to developmental changes (cell differentiation, maturation, programming) after APEC infection. Here, we study gene expression in the bone marrow between infected and non-infected animals, and between infected animals with mild (resistant) versus severe (susceptible) pathology, at two times post-infection. Results We sequenced 24 bone marrow RNA libraries generated from the six different treatment groups with four replicates each, and obtained an average of 22 million single-end, 100-bp reads per library. Genes were detected as differentially expressed (DE) between APEC treatments (mild pathology, severe pathology, and mock-challenged) at a given time point, or DE between 1 and 5 days post-infection (dpi) within the same treatment group. Results demonstrate that many immune cells, genes and related pathways are key contributors to the different responses to APEC infection between susceptible and resistant birds and between susceptible and non-challenged birds, at both times post-infection. In susceptible birds, lymphocyte differentiation, proliferation, and maturation were greatly impaired, while the innate and adaptive immune responses, including dendritic cells, monocytes and killer cell activity, TLR- and NOD-like receptor signaling, as well as T helper cells and many cytokine activities, were markedly enhanced. The resistant birds’ immune system, however, was similar to that of non-challenged birds. Conclusion The DE genes in the immune cells and identified signaling models are representative of activation and resolution of infection in susceptible birds at both post-infection days. These novel results characterizing transcriptomic response to APEC infection reveal that there is combinatorial activity of multiple genes controlling myeloid cells, and B and T cell lymphopoiesis, as well as immune responses occurring in the bone marrow in these early stages of response to infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1850-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA.
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, 50011, USA.
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
37
|
Neulen ML, Viertlboeck BC, Straub C, Göbel TW. Identification of novel chicken CD4⁺ CD3⁻ blood population with NK cell like features. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:72-78. [PMID: 25445913 DOI: 10.1016/j.dci.2014.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
Chicken NK cells have been defined in embryonic spleen and intestinal epithelium as CD8(+) lymphoid cells that lack BCR and TCR, whereas blood NK cells have not been phenotypically defined. Here we employed the mab, 8D12 directed against CHIR-AB1, a chicken Fc receptor, to define a previously uncharacterized lymphoid cell population in the blood. Although CHIR-AB1 expression was found on several cell populations, cells with extraordinary high CHIR-AB1 levels ranged between 0.4 and 2.8% in five different chicken lines. The widespread applicability of the CHIR-AB1 mab was unexpected, since CHIR-AB1-like genes form a polygenic and polymorphic subfamily. Surprisingly the CHIR-AB1 high cells coexpressed low MHCII, low CD4 and CD5, while other T cell markers CD3 and CD8, the B cell marker Bu1, the macrophage marker KUL01 were absent. Moreover, they stained with the mab 28-4, 20E5 and 1G7, which define chicken NK cells and they also expressed CD25, CD57, CD244 and the vitronectin receptor (αVβ3 integrin). In functional assays, PMA stimulation led to high levels of IFNγ release, while spontaneous cytotoxicity was not detectable. The expression of typical NK cell markers in the absence of characteristic B- or T-cell markers, and their IFNγ release is suggestive of a yet unidentified NK like population.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD4 Antigens/immunology
- CD4 Antigens/metabolism
- CD5 Antigens/immunology
- CD5 Antigens/metabolism
- CD57 Antigens/immunology
- CD57 Antigens/metabolism
- Cells, Cultured
- Chickens/blood
- Chickens/immunology
- Enzyme-Linked Immunospot Assay
- Flow Cytometry
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-2 Receptor alpha Subunit/immunology
- Interleukin-2 Receptor alpha Subunit/metabolism
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Vitronectin/immunology
- Receptors, Vitronectin/metabolism
- Signaling Lymphocytic Activation Molecule Family
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- Marie-Luise Neulen
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Birgit C Viertlboeck
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Christian Straub
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Thomas W Göbel
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany.
| |
Collapse
|
38
|
Kanwal Z, Wiegertjes GF, Veneman WJ, Meijer AH, Spaink HP. Comparative studies of Toll-like receptor signalling using zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:35-52. [PMID: 24560981 DOI: 10.1016/j.dci.2014.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish model systems for infectious disease are increasingly used for the functional analysis of molecular pattern recognition processes. These studies benefit from the high conservation level of all innate immune factors in vertebrates. Zebrafish studies are strategically well positioned for this because of the ease of comparisons with studies in other fish species of which the immune system also has been intensively studied, but that are currently still less amendable to detailed genetic or microscopic studies. In this paper we focus on Toll-like receptor (TLR) signalling factors, which currently are the best characterized in mammalian systems. We review the knowledge on TLR signalling in the context of recent advances in zebrafish studies and discuss possibilities for future approaches that can complement studies in cell cultures and rodent models. A focus in these comparisons is the role of negative control mechanisms in immune responses that appear very important in a whole organism to keep adverse systemic responses in check. We also pay much attention to comparisons with studies in common carp that is highly related to zebrafish and that because of its large body mass can complement immune studies in zebrafish.
Collapse
Affiliation(s)
- Zakia Kanwal
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Wouter J Veneman
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Annemarie H Meijer
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman P Spaink
- Department of Animal Sciences and Health, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
39
|
Rodríguez-Nunez I, Wcisel DJ, Litman GW, Yoder JA. Multigene families of immunoglobulin domain-containing innate immune receptors in zebrafish: deciphering the differences. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:24-34. [PMID: 24548770 PMCID: PMC4028400 DOI: 10.1016/j.dci.2014.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Five large multigene families encoding innate-type immune receptors that are comprised of immunoglobulin domains have been identified in bony fish, of which four do not possess definable mammalian orthologs. The members of some of the multigene families exhibit unusually extensive patterns of divergence and the individual family members demonstrate marked variation in interspecific comparisons. As a group, the gene families reveal striking differences in domain type and content, mechanisms of intracellular signaling, basic structural features, haplotype and allelic variation and ligand binding. The potential functional roles of these innate immune receptors, their relationships to immune genes in higher vertebrate species and the basis for their adaptive evolution are of broad interest. Ongoing investigations are expected to provide new insight into alternative mechanisms of immunity.
Collapse
Affiliation(s)
- Iván Rodríguez-Nunez
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL 33701, USA; Department of Molecular Genetics, All Children's Hospital, 501 6th Avenue South, St. Petersburg, FL 33701, USA; H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
40
|
Nash WT, Teoh J, Wei H, Gamache A, Brown MG. Know Thyself: NK-Cell Inhibitory Receptors Prompt Self-Tolerance, Education, and Viral Control. Front Immunol 2014; 5:175. [PMID: 24795719 PMCID: PMC3997006 DOI: 10.3389/fimmu.2014.00175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells provide essential protection against viral infections. One of the defining features of this lymphocyte population is the expression of a wide array of variable cell surface stimulatory and inhibitory NK receptors (sNKR and iNKR, respectively). The iNKR are particularly important in terms of NK-cell education. As receptors specific for MHC class I (MHC I) molecules, they are responsible for self-tolerance and adjusting NK-cell reactivity based on the expression level of self-MHC I. The end result of this education is twofold: (1) inhibitory signaling tunes the functional capacity of the NK cell, endowing greater potency with greater education, and (2) education on self allows the NK cell to detect aberrations in MHC I expression, a common occurrence during many viral infections. Many studies have indicated an important role for iNKR and MHC I in disease, making these receptors attractive targets for manipulating NK-cell reactivity in the clinic. A greater understanding of iNKR and their ability to regulate NK cells will provide a basis for future attempts at translating their potential utility into benefits for human health.
Collapse
Affiliation(s)
- William T Nash
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Jeffrey Teoh
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Hairong Wei
- Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Awndre Gamache
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - Michael G Brown
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia , Charlottesville, VA , USA ; Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
41
|
Michael HT, Ito D, McCullar V, Zhang B, Miller JS, Modiano JF. Isolation and characterization of canine natural killer cells. Vet Immunol Immunopathol 2013; 155:211-7. [PMID: 23876304 DOI: 10.1016/j.vetimm.2013.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 11/28/2022]
Abstract
NK cells are non-T, non-B lymphocytes that kill target cells without previous activation. The immunophenotype and function of these cells in humans and mice are well defined, but canine NK cells remain incompletely characterized. Our objectives were to isolate and culture canine peripheral blood NK cells, and to define their immunophenotype and killing capability. PBMC were obtained from healthy dogs and T cells were depleted by immunomagnetic separation. The residual cells were cultured in media supplemented with IL-2, IL-15 or both, or with mouse embryonic liver (EL) feeder cells. Non-T, non-B lymphocytes survived and expanded in these cultures. IL-2 was necessary and sufficient for survival; the addition of IL-15 was necessary for expansion, but IL-15 alone did not support survival. Culture with EL cells and IL-2 also fostered survival and expansion. The non-T, non-B lymphocytes uniformly expressed CD45, MHC I, and showed significant cytotoxic activity against CTAC targets. Expression of MHC II, CD11/18 was restricted to subsets of these cells. The data show that cells meeting the criteria for NK cells in other species, i.e., non-T, non-B lymphocytes with cytotoxic activity, can be expanded from canine PBMC by T-cell depletion and culture with cytokines or feeder cells.
Collapse
Affiliation(s)
- Helen T Michael
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1352 Boyd Avenue, St. Paul, MN 55108, United States.
| | | | | | | | | | | |
Collapse
|
42
|
Targeting of a natural killer cell receptor family by a viral immunoevasin. Nat Immunol 2013; 14:699-705. [DOI: 10.1038/ni.2605] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/03/2013] [Indexed: 02/01/2023]
|
43
|
Sunyer JO. Fishing for mammalian paradigms in the teleost immune system. Nat Immunol 2013; 14:320-6. [PMID: 23507645 PMCID: PMC4203445 DOI: 10.1038/ni.2549] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 01/17/2013] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed a renaissance in the study of fish immune systems. Such studies have greatly expanded the knowledge of the evolution and diversification of vertebrate immune systems. Several findings in those studies have overturned old paradigms about the immune system and led to the discovery of novel aspects of mammalian immunity. Here I focus on how findings pertaining to immunity in teleost (bony) fish have led to major new insights about mammalian B cell function in innate and adaptive immunity. Additionally, I illustrate how the discovery of the most ancient mucosal immunoglobulin described thus far will help resolve unsettled paradigms of mammalian mucosal immunity.
Collapse
Affiliation(s)
- J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
44
|
The Turkey Ig-like receptor family: identification, expression and function. PLoS One 2013; 8:e59577. [PMID: 23527222 PMCID: PMC3601082 DOI: 10.1371/journal.pone.0059577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/15/2013] [Indexed: 11/29/2022] Open
Abstract
The chicken leukocyte receptor complex located on microchromosome 31 encodes the chicken Ig-like receptors (CHIR), a vastly expanded gene family which can be further divided into three subgroups: activating CHIR-A, bifunctional CHIR-AB and inhibitory CHIR-B. Here, we investigated the presence of CHIR homologues in other bird species. The available genome databases of turkey, duck and zebra finch were screened with different strategies including BLAST searches employing various CHIR sequences, and keyword searches. We could not identify CHIR homologues in the distantly related zebra finch and duck, however, several partial and complete sequences of CHIR homologues were identified on chromosome 3 of the turkey genome. They were designated as turkey Ig-like receptors (TILR). Using cDNA derived from turkey blood and spleen RNA, six full length TILR could be amplified and further divided according to the typical sequence features into one activating TILR-A, one inhibitory TILR-B and four bifunctional TILR-AB. Since the TILR-AB sequences all displayed the critical residues shown to be involved in binding to IgY, we next confirmed the IgY binding using a soluble TILR-AB1-huIg fusion protein. This fusion protein reacted with IgY derived from various gallinaceous birds, but not with IgY from other bird species. Finally, we tested various mab directed against CHIR for their crossreactivity with either turkey or duck leukocytes. Whereas no staining was detectable with duck cells, the CHIR-AB1 specific mab 8D12 and the CHIR-A2 specific mab 13E2 both reacted with a leukocyte subpopulation that was further identified as thrombocytes by double immunofluorescence employing B-cell, T-cell and thrombocyte specific reagents. In summary, although the turkey harbors similar LRC genes as the chicken, their distribution seems to be distinct with predominance on thrombocytes rather than lymphocytes.
Collapse
|
45
|
Neulen ML, Göbel TW. Chicken CD56 defines NK cell subsets in embryonic spleen and lung. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:410-415. [PMID: 22922589 DOI: 10.1016/j.dci.2012.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 06/01/2023]
Abstract
NK cells have been widely investigated in various mammalian species, but their characterization in non-mammalian vertebrates has been hampered by the lack of appropriate markers. Here, we tested the suitability of a novel anti-chicken CD56 mab as a marker on NK cells. The entire CD56 extracellular domain was cloned into a vector providing a FLAG epitope as well as the CD8 transmembrane and CD3ζ cytoplasmic domain. This construct was used to stably transfect the chicken 2D8 B cell line as monitored by anti-FLAG staining. BALB/c mice were repeatedly immunized with this cell line before generation of hybridomas and screening of supernatants on the transfected cell line versus untransfected cells. The 4B5 hybridoma was further selected due to its reactivity with transfected cells only. Staining of various cell preparations isolated from blood, spleen, embryonic spleen, lung and intestine revealed a CD56 positive subpopulation in lung and embryonic spleen, whereas no reactivity could be observed with other cells. In two colour immunofluorescence, some of the CD56(+) lung cells coexpressed CD8, while they were largely negative for the markers 28-4 and 20E5. CD8 expression was also observed for a subset of CD56(+) embryonic splenocytes and 28-4 was found to be coexpressed on about half of the CD56(+) embryonic splenocytes. CD56 is therefore expressed on a subset of chicken NK cells predominantly found in embryonic spleen and lung.
Collapse
Affiliation(s)
- Marie-Luise Neulen
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstr. 13, 80539 Munich, Germany
| | | |
Collapse
|
46
|
Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii). Immunogenetics 2012; 65:25-35. [PMID: 23007952 DOI: 10.1007/s00251-012-0643-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/30/2012] [Indexed: 10/27/2022]
Abstract
Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction.
Collapse
|
47
|
Development and characterization of anti-nitr9 antibodies. Adv Hematol 2012; 2012:596925. [PMID: 23049557 PMCID: PMC3463160 DOI: 10.1155/2012/596925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/13/2012] [Accepted: 06/27/2012] [Indexed: 11/17/2022] Open
Abstract
The novel immune-type receptors (NITRs), which have been described in numerous bony fish species, are encoded by multigene families of inhibitory and activating receptors and are predicted to be functional orthologs to the mammalian natural killer cell receptors (NKRs). Within the zebrafish NITR family, nitr9 is the only gene predicted to encode an activating receptor. However, alternative RNA splicing generates three distinct nitr9 transcripts, each of which encodes a different isoform. Although nitr9 transcripts have been detected in zebrafish lymphocytes, the specific hematopoietic lineage(s) that expresses Nitr9 remains to be determined. In an effort to better understand the role of NITRs in zebrafish immunity, anti-Nitr9 monoclonal antibodies were generated and evaluated for the ability to recognize the three Nitr9 isoforms. The application of these antibodies to flow cytometry should prove to be useful for identifying the specific lymphocyte lineages that express Nitr9 and may permit the isolation of Nitr9-expressing cells that can be directly assessed for cytotoxic (e.g., NK) function.
Collapse
|
48
|
Papenfuss AT, Baker ML, Feng ZP, Tachedjian M, Crameri G, Cowled C, Ng J, Janardhana V, Field HE, Wang LF. The immune gene repertoire of an important viral reservoir, the Australian black flying fox. BMC Genomics 2012; 13:261. [PMID: 22716473 PMCID: PMC3436859 DOI: 10.1186/1471-2164-13-261] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/16/2012] [Indexed: 01/05/2023] Open
Abstract
Background Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. Results Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. Conclusions This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection.
Collapse
Affiliation(s)
- Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Boehm T, Iwanami N, Hess I. Evolution of the immune system in the lower vertebrates. Annu Rev Genomics Hum Genet 2012; 13:127-49. [PMID: 22703179 DOI: 10.1146/annurev-genom-090711-163747] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolutionary emergence of vertebrates was accompanied by the invention of adaptive immunity. This is characterized by extraordinarily diverse repertoires of somatically assembled antigen receptors and the facility of antigen-specific memory, leading to more rapid and efficient secondary immune responses. Adaptive immunity emerged twice during early vertebrate evolution, once in the lineage leading to jawless fishes (such as lamprey and hagfish) and, independently, in the lineage leading to jawed vertebrates (comprising the overwhelming majority of extant vertebrates, from cartilaginous fishes to mammals). Recent findings on the immune systems of jawless and jawed fishes (here referred to as lower vertebrates) impact on the identification of general principles governing the structure and function of adaptive immunity and its coevolution with innate defenses. The discovery of conserved features of adaptive immunity will guide attempts to generate synthetic immunological functionalities and thus provide new avenues for intervening with faulty immune functions in humans.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| | | | | |
Collapse
|
50
|
Montgomery BC, Cortes HD, Burshtyn DN, Stafford JL. Channel catfish leukocyte immune-type receptor mediated inhibition of cellular cytotoxicity is facilitated by SHP-1-dependent and -independent mechanisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:151-163. [PMID: 21945134 DOI: 10.1016/j.dci.2011.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are immunoregulatory proteins belonging to the immunoglobulin superfamily that likely play an important role in the regulation of teleost immune cell effector responses. IpLITRs are expressed by myeloid and lymphoid subsets and based on their structural features can be classified as either putative stimulatory or inhibitory forms. We have recently demonstrated at the biochemical and functional levels that stimulatory IpLITR-types induced intracellular signaling cascades resulting in immune cell activation. Alternatively, we have shown that putative inhibitory IpLITRs may abrogate immune cell responses by recruiting teleost Src homology 2 (SH2) domain-containing cytoplasmic phosphatases (SHP) to their tyrosine-containing cytoplasmic tails. In the present study, we used vaccinia virus to express recombinant chimeric proteins encoding the extracellular and transmembrane regions of human KIR2DL3 fused with the cytoplasmic tails of two putative inhibitory IpLITRs (i.e. IpLITR1.2a and IpLITR1.1b) in mouse spleen-derived cytotoxic lymphocytes. This approach allowed us to study the specific effects of IpLITR-induced signaling on lymphocyte killing of B cell targets (e.g. 721.221 cells) using a standard chromium release assay. Our results suggest that both IpLITR1.2a and IpLITR1.1b are potent inhibitors of lymphocyte-mediated cellular cytotoxicity. Furthermore, using a catalytically inactive SHP-1 mutant in combination with site-directed mutagenesis and co-immunoprecipitations, we also demonstrate that the IpLITR1.2a-mediated functional inhibitory response is SHP-1-dependent. Alternatively, IpLITR1.1b-mediated inhibition of cellular cytotoxicity is facilitated by both SHP-1-dependent and independent mechanisms, possibly involving the C-terminal Src kinase (Csk). The involvement of this inhibitory kinase requires binding to a tyrosine residue encoded in the unique membrane proximal cytoplasmic tail region of IpLITR1.1b. Overall, this represents the first functional information for inhibitory IpLITR-types and reveals that catfish LITRs engage SHP-dependent and -independent inhibitory signaling pathways to abrogate lymphocyte-mediated killing.
Collapse
|