2
|
Amato KR, Yeoman CJ, Cerda G, Schmitt CA, Cramer JD, Miller MEB, Gomez A, Turner TR, Wilson BA, Stumpf RM, Nelson KE, White BA, Knight R, Leigh SR. Variable responses of human and non-human primate gut microbiomes to a Western diet. MICROBIOME 2015; 3:53. [PMID: 26568112 PMCID: PMC4645477 DOI: 10.1186/s40168-015-0120-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/29/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND The human gut microbiota interacts closely with human diet and physiology. To better understand the mechanisms behind this relationship, gut microbiome research relies on complementing human studies with manipulations of animal models, including non-human primates. However, due to unique aspects of human diet and physiology, it is likely that host-gut microbe interactions operate differently in humans and non-human primates. RESULTS Here, we show that the human microbiome reacts differently to a high-protein, high-fat Western diet than that of a model primate, the African green monkey, or vervet (Chlorocebus aethiops sabaeus). Specifically, humans exhibit increased relative abundance of Firmicutes and reduced relative abundance of Prevotella on a Western diet while vervets show the opposite pattern. Predictive metagenomics demonstrate an increased relative abundance of genes associated with carbohydrate metabolism in the microbiome of only humans consuming a Western diet. CONCLUSIONS These results suggest that the human gut microbiota has unique properties that are a result of changes in human diet and physiology across evolution or that may have contributed to the evolution of human physiology. Therefore, the role of animal models for understanding the relationship between the human gut microbiota and host metabolism must be re-focused.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, USA.
- Department of Anthropology, University of Colorado Boulder, Boulder, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, USA.
| | - Carl J Yeoman
- Department of Range Sciences, Montana State University, Bozeman, USA.
| | - Gabriela Cerda
- Department of Anthropology, University of Illinois, Urbana, USA.
| | - Christopher A Schmitt
- Department of Anthropology, Boston University, Boston, USA.
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA, USA.
| | - Jennifer Danzy Cramer
- Department of Sociology, Anthropology, and Women's Studies, American Military University and American Public University, Charles Town, USA.
| | | | - Andres Gomez
- The Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, USA.
| | - Trudy R Turner
- Department of Anthropology, University of Wisconsin, Milwaukee, USA.
- Department of Genetics, University of the Free State, Bloemfontein, South Africa.
| | - Brenda A Wilson
- The Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
- Department of Microbiology, University of Illinois, Urbana, USA.
| | - Rebecca M Stumpf
- Department of Anthropology, University of Illinois, Urbana, USA.
- The Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
| | | | - Bryan A White
- The Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
- Department of Animal Sciences, University of Illinois, Urbana, USA.
| | - Rob Knight
- School of Medicine, University of California San Diego, La Jolla, USA.
| | - Steven R Leigh
- Department of Anthropology, University of Colorado Boulder, Boulder, USA.
- The Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Warren WC, Jasinska AJ, García-Pérez R, Svardal H, Tomlinson C, Rocchi M, Archidiacono N, Capozzi O, Minx P, Montague MJ, Kyung K, Hillier LW, Kremitzki M, Graves T, Chiang C, Hughes J, Tran N, Huang Y, Ramensky V, Choi OW, Jung YJ, Schmitt CA, Juretic N, Wasserscheid J, Turner TR, Wiseman RW, Tuscher JJ, Karl JA, Schmitz JE, Zahn R, O'Connor DH, Redmond E, Nisbett A, Jacquelin B, Müller-Trutwin MC, Brenchley JM, Dione M, Antonio M, Schroth GP, Kaplan JR, Jorgensen MJ, Thomas GWC, Hahn MW, Raney BJ, Aken B, Nag R, Schmitz J, Churakov G, Noll A, Stanyon R, Webb D, Thibaud-Nissen F, Nordborg M, Marques-Bonet T, Dewar K, Weinstock GM, Wilson RK, Freimer NB. The genome of the vervet (Chlorocebus aethiops sabaeus). Genome Res 2015; 25:1921-33. [PMID: 26377836 PMCID: PMC4665013 DOI: 10.1101/gr.192922.115] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/10/2015] [Indexed: 01/20/2023]
Abstract
We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.
Collapse
Affiliation(s)
- Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA; Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Raquel García-Pérez
- ICREA at Institut de Biologia Evolutiva, (UPF-CSIC) and Centro Nacional de Analisis Genomico (CNAG), PRBB/PCB, 08003 Barcelona, Spain
| | - Hannes Svardal
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Chad Tomlinson
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Mariano Rocchi
- Department of Biology, University of Bari, Bari 70126, Italy
| | | | - Oronzo Capozzi
- Department of Biology, University of Bari, Bari 70126, Italy
| | - Patrick Minx
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Michael J Montague
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Kim Kyung
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - LaDeana W Hillier
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Milinn Kremitzki
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Tina Graves
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Colby Chiang
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | | - Nam Tran
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yu Huang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Vasily Ramensky
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Oi-Wa Choi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yoon J Jung
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Christopher A Schmitt
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Nikoleta Juretic
- Department of Human Genetics, McGill University, Montreal QC H3A 1B1, Canada
| | | | - Trudy R Turner
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53705, USA; Department of Genetics Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| | - Roger W Wiseman
- Department of Laboratory Medicine and Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Jennifer J Tuscher
- Department of Laboratory Medicine and Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Julie A Karl
- Department of Laboratory Medicine and Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Jörn E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Roland Zahn
- Crucell Holland B.V., 2333 CN Leiden, The Netherlands
| | - David H O'Connor
- Department of Laboratory Medicine and Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Eugene Redmond
- St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Alex Nisbett
- St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Béatrice Jacquelin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, 75015 Paris, France
| | | | - Jason M Brenchley
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland 20892-9821, USA
| | | | | | | | - Jay R Kaplan
- Center for Comparative Medicine Research, Wake Forest School of Medicine, Winston-Salem 27157-1040, USA
| | - Matthew J Jorgensen
- Center for Comparative Medicine Research, Wake Forest School of Medicine, Winston-Salem 27157-1040, USA
| | - Gregg W C Thomas
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Brian J Raney
- University of California Santa Cruz, Santa Cruz, California 95060, USA
| | - Bronwen Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Rishi Nag
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Juergen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, 48149 Münster, Germany
| | - Gennady Churakov
- Institute of Experimental Pathology (ZMBE), University of Münster, 48149 Münster, Germany; Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Angela Noll
- Institute of Experimental Pathology (ZMBE), University of Münster, 48149 Münster, Germany
| | - Roscoe Stanyon
- Department of Biology, University of Florence, 50122 Florence, Italy
| | - David Webb
- National Center for Biotechnology Information, Bethesda, Maryland 20894, USA
| | | | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Tomas Marques-Bonet
- ICREA at Institut de Biologia Evolutiva, (UPF-CSIC) and Centro Nacional de Analisis Genomico (CNAG), PRBB/PCB, 08003 Barcelona, Spain
| | - Ken Dewar
- Department of Human Genetics, McGill University, Montreal QC H3A 1B1, Canada
| | - George M Weinstock
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06001, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Nelson B Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
4
|
Kapusinszky B, Mulvaney U, Jasinska AJ, Deng X, Freimer N, Delwart E. Local Virus Extinctions following a Host Population Bottleneck. J Virol 2015; 89:8152-61. [PMID: 26018153 PMCID: PMC4524239 DOI: 10.1128/jvi.00671-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A small number of African green monkeys (AGMs) were introduced into the Caribbean from West Africa in the 1600s. To determine the impact of this population bottleneck on the AGM virome, we used metagenomics to compare the viral nucleic acids in the plasma of 43 wild AGMs from West Africa (Gambia) to those in 44 AGMs from the Caribbean (St. Kitts and Nevis). Three viruses were detected in the blood of Gambian primates: simian immunodeficiency virus (SIVagm; in 42% of animals), a novel simian pegivirus (SPgVagm; in 7% of animals), and numerous novel simian anelloviruses (in 100% of animals). Only anelloviruses were detected in the Caribbean AGMs with a prevalence and levels of viral genetic diversity similar to those in the Gambian animals. A host population bottleneck therefore resulted in the exclusion of adult-acquired SIV and pegivirus from the Caribbean AGMs. The successful importation of AGM anelloviruses into the Caribbean may be the result of their early transmission to infants, very high prevalence in African AGMs, and frequent coinfections with as many as 11 distinct variants. IMPORTANCE The extent to which viruses can persist in small isolated populations depends on multiple host, viral, and environmental factors. The absence of prior infections may put an immunologically naive population at risk for disease outbreaks. Isolated populations originating from a small number of founder individuals are therefore considered at increased risk following contact with populations with a greater variety of viruses. Here, we compared the plasma virome of West African green monkeys to that in their descendants after importation of a small number of animals to the Caribbean. A lentivirus and a pegivirus were found in the West African population but not in the Caribbean population. Highly diverse anelloviruses were found in both populations. A small founder population, limited to infants and young juvenile monkeys, may have eliminated the sexually transmitted viruses from the Caribbean AGMs, while anelloviruses, acquired at an earlier age, persisted through the host population bottleneck.
Collapse
Affiliation(s)
- Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| | - Usha Mulvaney
- Blood Systems Research Institute, San Francisco, California, USA University of San Francisco, Department of Biology, San Francisco, California, USA
| | - Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California, USA
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, California, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|