1
|
Karageorgou A, Mouiki D, Lolou DM, Hager-Theodorides AL, Theodorou G, Massouras T, Diamantopoulou P, Simitzis P, Politis I, Goliomytis M. The influence of dietary supplementation with oyster mushroom waste on laying hens' performance, egg quality and immune parameters. Poult Sci 2024; 103:104320. [PMID: 39340970 PMCID: PMC11467666 DOI: 10.1016/j.psj.2024.104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The objective of the present study was to evaluate the effects of dietary supplementation with oyster mushroom (Pleurotus ostreatus) waste (OMW) on performance, egg quality, fatty acid (FA) profile and oxidative stability, serum and yolk cholesterol and immune parameters of laying hens. Two hundred fifty-six laying hens were allocated into 4 treatment groups, with eight replicate cages, and were fed for 28 d either a control diet, or diets supplemented with OMW at 1, 2 or 4 g per 100 g feed (P1, P2 and P4 experimental groups, respectively). No significant effects were detected on the performance and egg quality (P > 0.05) except from a modest decrease in the intensity of orange yolk color from hens fed with OMW, as indicated by the reduced DSM YolkFan score and color parameter a* (redness) (P < 0.05), and the tendency for increased color parameter L* (lightness) (P < 0.1). Serum total cholesterol and high-density lipoprotein content were decreased in OMW experimental groups compared with the control group (P, P-linear < 0.05) whereas yolk cholesterol content was unaffected (P > 0.05). The ratio of heterophils to lymphocytes were not influenced by dietary treatment (P > 0.05), whereas T helper lymphocyte (Th) percentage was increased in OMW supplemented groups in comparison with control (P < 0.05, P-quadratic < 0.05). The yolk FA profile was beneficially affected, as shown by the linear increase in polyunsaturated FA and a linear decrease in saturated FA in OMW supplemented groups of hens (P-linear < 0.05), with most notable effects observed in the P4 group. Furthermore, oxidative stability, that was expressed as malondialdehyde content, of both fresh and stored egg yolks for up to 90 d, was significantly improved in OMW supplemented groups (P < 0.05). The beneficial effects of OMW on yolk oxidative stability and FA profile, without adverse effects on performance or egg quality, shows that this byproduct may be successfully employed in laying hens' diets, in a circular economy scheme, with benefits not only for the consumers and farmers but for the environment as well.
Collapse
Affiliation(s)
- Agori Karageorgou
- Department of Animal Science, Agricultural University of Athens, Athens 11855, Greece
| | - Despoina Mouiki
- Department of Animal Science, Agricultural University of Athens, Athens 11855, Greece
| | - Dimitra-M Lolou
- Department of Animal Science, Agricultural University of Athens, Athens 11855, Greece
| | | | - Georgios Theodorou
- Department of Animal Science, Agricultural University of Athens, Athens 11855, Greece
| | - Theofilos Massouras
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855, Athens, Greece
| | | | - Panagiotis Simitzis
- Department of Animal Science, Agricultural University of Athens, Athens 11855, Greece
| | - Ioannis Politis
- Department of Animal Science, Agricultural University of Athens, Athens 11855, Greece
| | - Michael Goliomytis
- Department of Animal Science, Agricultural University of Athens, Athens 11855, Greece.
| |
Collapse
|
2
|
Řezanka T, Hršelová H, Kyselová L, Jansa J. Can cardiolipins be used as a biomarker for arbuscular mycorrhizal fungi? MYCORRHIZA 2023; 33:399-408. [PMID: 37814097 DOI: 10.1007/s00572-023-01129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Specific biomarker molecules are increasingly being used for detection and quantification in plant and soil samples of arbuscular mycorrhizal (AM) fungi, an important and widespread microbial guild heavily implicated in transfers of nutrients and carbon between plants and soils and in the maintenance of soil physico-chemical properties. Yet, concerns have previously been raised as to the validity of a range of previously used approaches (e.g., microscopy, AM-specific fatty acids, sterols, glomalin-like molecules, ribosomal DNA sequences), justifying further research into novel biomarkers for AM fungal abundance and/or functioning. Here, we focused on complex polar lipids contained in pure biomass of Rhizophagus irregularis and in nonmycorrhizal and mycorrhizal roots of chicory (Cichorium intybus), leek (Allium porrum), and big bluestem (Andropogon gerardii). The lipids were analyzed by shotgun lipidomics using a high-resolution hybrid mass spectrometer. Size range between 1350 and 1550 Da was chosen for the detection of potential biomarkers among cardiolipins (1,3-bis(sn-3'-phosphatidyl)-sn-glycerols), a specific class of phospholipids. The analysis revealed a variety of molecular species, including cardiolipins containing one or two polyunsaturated fatty acids with 20 carbon atoms each, i.e., arachidonic and/or eicosapentaenoic acids, some of them apparently specific for the mycorrhizal samples. Although further verification using a greater variety of AM fungal species and samples from various soils/ecosystems/environmental conditions is needed, current results suggest the possibility to identify novel biochemical signatures specific for AM fungi within mycorrhizal roots. Whether they could be used for quantification of both root and soil colonization by the AM fungi merits further scrutiny.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, 142 00, Prague 4, Czech Republic
| | - Hana Hršelová
- Institute of Microbiology, Czech Academy of Sciences, 142 00, Prague 4, Czech Republic
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44, Prague, Czech Republic
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, 142 00, Prague 4, Czech Republic.
| |
Collapse
|
3
|
Diamantopoulou P, Sarris D, Tchakouteu SS, Xenopoulos E, Papanikolaou S. Growth Response of Non-Conventional Yeasts on Sugar-Rich Media: Part 1: High Production of Lipid by Lipomyces starkeyi and Citric Acid by Yarrowia lipolytica. Microorganisms 2023; 11:1863. [PMID: 37513034 PMCID: PMC10384381 DOI: 10.3390/microorganisms11071863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Sugar-rich waste streams, generated in very high quantities worldwide, constitute an important source of environmental pollution. Their eco-friendly conversions into a plethora of added-value compounds through the use of microbial fermentations is currently a very "hot" scientific topic. The aim of this study, was to assess the potential of single cell oil (SCO), microbial mass and citric acid (CA) production by non-conventional yeast strains growing on expired ("waste") glucose. Six yeast strains (viz. Rhodosporidium toruloides DSM 4444, Rhodotorula glutinis NRRL YB-252, R. toruloides NRRL Y-27012, Yarrowia lipolytica LFMB Y-20, Y. lipolytica ACA-DC 50109 and Lipomyces starkeyi DSM 70296) were initially grown in shake flasks with expired glucose used as substrate under nitrogen limitation, in order to "boost" the cellular metabolism towards the synthesis of SCO and CA, and their growth response was quantitatively evaluated. Initial glucose concentration (Glc0) was adjusted at c. 50 g/L. Besides Y. lipolytica, all other yeast strains produced noticeable SCO quantities [lipid in dry cell weight (DCW) ranging from 25.3% w/w to 55.1% w/w]. Lipids of all yeasts contained significant quantities of oleic acid, being perfect candidates for the synthesis of 2nd generation biodiesel. The highest DCW production (=13.6 g/L) was obtained by L. starkeyi DSM 70296, while both Y. lipolytica strains did not accumulate noticeable lipid quantities, but produced non-negligible CA amounts. The most promising CA-producing strain, namely Y. lipolytica ACA-DC 50109 was further studied in stirred-tank bioreactor systems, while the very promising DCW- and SCO-producing L. starkeyi DSM 70296 was further studied in shake flasks. Both strains were grown on media presenting higher Glc0 concentrations and the same initial nitrogen quantity as previously. Indeed, L. starkeyi grown at Glc0 = 85 g/L, produced DCWmax = 34.0 g/L, that contained lipid =34.1% w/w (thus SCO was =11.6 g/L). The strain ACA-DC 50109 in stirred tank bioreactor with Glc0 ≈ 105 g/L produced CA up to 46 g/L (yield of CA produced on glucose consumed; YCA/Glc ≈ 0.45 g/g). Finally, in fed-batch bioreactor experiment, the significant CA quantity of 82.0 g/L (YCA/Glc = 0.50 g/g) was recorded. Concluding, "waste" glucose proved to be a suitable substrate for a number of non-conventional yeast strains. Y. lipolytica ACA-DC 50109 produced significant quantities of CA while L. starkeyi DSM 70296 was a very interesting DCW- and SCO-producing candidate. These strains can be used as potential cell factories amenable to convert glucose-based residues into the mentioned metabolic compounds, that present high importance for food, chemical and biofuel facilities.
Collapse
Affiliation(s)
- Panagiota Diamantopoulou
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Demeter, 1 Sofokli Venizelou Street, Attiki, 14123 Lykovryssi, Greece
| | - Dimitris Sarris
- Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Demeter, 1 Sofokli Venizelou Street, Attiki, 14123 Lykovryssi, Greece
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, Metropolite Ioakeim 2, 81400 Myrina, Greece
| | - Sidoine Sadjeu Tchakouteu
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Evangelos Xenopoulos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
4
|
Filippousi R, Diamantopoulou P, Stavropoulou M, Makris DP, Papanikolaou S. Lipid production by Rhodosporidium toruloides from biodiesel-derived glycerol in shake flasks and bioreactor: Impact of initial C/N molar ratio and added onion-peel extract. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Engineering and fermenter production of fungi GLA in Pichia pastoris GS115 using oil waste. Arch Microbiol 2022; 204:635. [PMID: 36127512 DOI: 10.1007/s00203-022-03182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/02/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
γ-Linolenic acid (GLA) is an essential n-6 polyunsaturated fatty acid (PUFA) that has received considerable attention in human and animal feed. GLA is used in many nutritional and medicinal applications, such as the treatment of cancer, inflammatory disorders, and diabetes. Currently, plant seed is the primary dietary source of GLA that is not enough to utilize on an industrial scale. To generate a sustainable novel source of GLA, the gene of delta-6 desaturase, one of the essential enzymes in the GLA production pathway, was isolated from Mucor rouxii DSM1194 and expressed in P. pastoris GS115 by pPICZC vector. The recombinant yeast expressed the GLA up to 19.2% (72 mg/g) of total fatty acids. GLA production of recombinant yeast was studied in a fermenter by oil waste for 5 days, and results detected 6.3 g/l lipid, and 103 mg/g GLA was produced in 72 h. The present study may provide an opportunity to develop an alternative host for manufacturing GLA on an industrial scale.
Collapse
|
6
|
Aguieiras ECG, Abreu KEA, Oliveira RA, Almeida JMAR, Freire DMG. Fatty acid ethyl esters production from distillers corn oil by enzymatic catalysis. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Erika C. G. Aguieiras
- Universidade Federal do Rio de Janeiro Campus UFRJ—Duque de Caxias Prof. Geraldo Cidade Duque de Caxias Rio de Janeiro Brazil
- Centro de Tecnologia Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - Kévin Enrick A. Abreu
- Centro de Tecnologia Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - Renata A. Oliveira
- Centro de Tecnologia Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - João M. A. R. Almeida
- Centro de Tecnologia Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - Denise M. G. Freire
- Centro de Tecnologia Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
7
|
Qu C, Li Z, Wang X. UHPLC-HRMS-Based Untargeted Lipidomics Reveal Mechanism of Antifungal Activity of Carvacrol against Aspergillus flavus. Foods 2021; 11:foods11010093. [PMID: 35010219 PMCID: PMC8750229 DOI: 10.3390/foods11010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/13/2023] Open
Abstract
Aspergillus flavus is a common contaminant in grain, oil and their products. Its metabolite aflatoxin B1 (AFB1) has been proved to be highly carcinogenic. Therefore, it is of great importance to find possible antifungal substances to inhibit the growth and toxin production of Aspergillus flavus. Carvacrol (CV) was reported as a potent antifungal monoterpene derived from plants. In this paper, the antifungal effects and mechanism of CV on Aspergillus flavus were investigated. CV was shown good inhibition on the growth of Aspergillus flavus and the production of AFB1. CV used in concentrations ranging from 0, 50, 100 and 200 μg/mL inhibited the germination of spores, mycelia growth and AFB1 production dose-dependently. To explore the antifungal mechanism of CV on Aspergillus flavus, we also detected the ergosterol content of Aspergillus flavus mycelia, employed Scanning Electron Microscopy (SEM) to observe mycelia morphology and utilized Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) to explore the lipidome profiles of Aspergillus flavus. The results showed that the production of ergosterol of mycelia was reduced as the CV treatment concentration increased. SEM photographs demonstrated a rough surface and a reduction in the thickness of hyphae in Aspergillus flavus treated with CV (200 µg/mL). In positive ion mode, 21 lipids of Aspergillus flavus mycelium were downregulated, and 11 lipids were upregulated after treatment with 200-µg/mL CV. In negative ion mode, nine lipids of Aspergillus flavus mycelium were downregulated, and seven lipids upregulated after treatment with 200-µg/mL CV. In addition, the analysis of different lipid metabolic pathways between the control and 200-µg/mL CV-treated groups demonstrated that glycerophospholipid metabolism was the most enriched pathway related to CV treatment.
Collapse
Affiliation(s)
- Chenling Qu
- Grain and Oil Storage Department, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- Correspondence: (C.Q.); (X.W.); Tel.: +86-18623717762 (C.Q.); +86-2786812943 (X.W.)
| | - Zhuozhen Li
- Grain and Oil Storage Department, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Correspondence: (C.Q.); (X.W.); Tel.: +86-18623717762 (C.Q.); +86-2786812943 (X.W.)
| |
Collapse
|
8
|
Chang L, Lu H, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Lipid metabolism research in oleaginous fungus Mortierella alpina: Current progress and future prospects. Biotechnol Adv 2021; 54:107794. [PMID: 34245810 DOI: 10.1016/j.biotechadv.2021.107794] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The oleaginous fungus Mortierella alpina has distinct advantages in long-chain PUFAs production, and it is the only source for dietary arachidonic acid (ARA) certificated by FDA and European Commission. This review provides an overall introduction to M. alpina, including its major research methods, key factors governing lipid biosynthesis, metabolic engineering and omics studies. Currently, the research interests in M. alpina focus on improving lipid yield and fatty acid desaturation degree by enhancing fatty acid precursors and the reducing power NADPH, and genetic manipulation on PUFAs synthetic pathways is carried to optimise fatty acid composition. Besides, multi-omics studies have been applied to elucidate the global regulatory mechanism of lipogenesis in M. alpina. However, research challenges towards achieving a lipid cell factory lie in strain breeding and cost control due to the coenocytic mycelium, long fermentation period and insufficient conversion rate from carbon to lipid. We also proposed future research goals based on a multilevel regulating strategy: obtaining ideal chassis by directional evolution and high-throughput screening; rewiring central carbon metabolism and inhibiting competitive pathways by multi-gene manipulation system to enhance carbon to lipid conversion rate; optimisation of protein function based on post-translational modification; application of dynamic fermentation strategies suitable for different fermentation phases. By reviewing the comprehensive research progress of this oleaginous fungus, we aim to further comprehend the fungal lipid metabolism and provide reference information and guidelines for the exploration of microbial oils from the perspectives of fundamental research to industrial application.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
9
|
Ling F, Tang X, Zhang H, Chen YQ, Zhao J, Chen H, Chen W. Role of the mitochondrial citrate-oxoglutarate carrier in lipid accumulation in the oleaginous fungus Mortierella alpina. Biotechnol Lett 2021; 43:1455-1466. [PMID: 33907945 DOI: 10.1007/s10529-021-03133-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/10/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The transport of citrate from the mitochondria to the cytoplasm is essential during lipid accumulation. This study aimed to explore the role of mitochondrial citrate-oxoglutarate carrier in lipid accumulation in the oleaginous fungus Mortierella alpina. RESULTS Homologous MaYHM (the gene encoding the mitochondrial citrate-oxoglutarate carrier) was overexpressed in M. alpina. The fatty acid content of MaYHM-overexpressing recombinant strains was increased by up to 30% compared with the control. Moreover, the intracellular α-ketoglutarate level in recombinant strains was increased by 2.2 fold, together with a 23-35% decrease in NAD+-isocitrate dehydrogenase activity compared with the control. The overexpression of MaYHM altered the metabolic flux in the glutamate dehydrogenase shunt and 4-aminobutyric acid shunt during metabolic reprogramming, supplying more carbon to synthesize fatty acids. CONCLUSIONS Overexpression of MaYHM resulted in more efflux of citrate from mitochondria to the cytoplasm and enhanced lipid accumulation. These findings provide new perspectives for the improvement of industrial lipid production in M. alpina.
Collapse
Affiliation(s)
- Fengzhu Ling
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| |
Collapse
|
10
|
Hamimed S, Barkaoui T, Trabelsi I, Landoulsi A, Chatti A. High-performance biological treatment of tuna wash processing wastewater using Yarrowia lipolytica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1545-1554. [PMID: 32844342 DOI: 10.1007/s11356-020-10586-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
It is well known that the lack of an effective treatment of tuna wash processing wastewater may pose substantial environmental and public health hazards. The present work investigates the performance of biological treatment of tuna wash processing wastewater (TWPW) by using Yarrowia lipolytica. Under optimized experimental conditions (pH "6.40-6.50" and 29 °C), Y. lipolytica reduced the pollution level of the crude and the diluted TWPW after only 7 days of incubation. The Yarrowia treatment leaded to a reduction of 66% chemical oxygen demand, 69.8% total organic carbon, 66% salinity, and phosphorus total (100%) removal of the crude TWPW, while the treated-diluted TWPW revealed significant reductions in chemical oxygen demand and total organic carbon (75% and 74%, respectively), as well as salinity (68%). Interestingly, a total removal of nitrogen and phosphorus from the diluted TWPW was obtained. Under high salinity, an important Y. lipolytica biomass of 5 g L-1 is produced with high levels of lipids and protein contents at around 336 ± 12.2 mg g-1 and 302.15 ± 5.44 mg g-1, respectively. The phytotoxicity assessment of the treated TWPW on fenugreek seeds shows promising results, which reveals the good performance of Yarrowia treatment in reducing the toxicity of this wastewater.
Collapse
Affiliation(s)
- Selma Hamimed
- Laboratory of Biochemistry and Molecular Biology, University of Carthage, Faculty of Sciences of Bizerte, CP 7021, Jarzouna, Tunisia.
| | - Taha Barkaoui
- Laboratory of Biochemistry and Molecular Biology, University of Carthage, Faculty of Sciences of Bizerte, CP 7021, Jarzouna, Tunisia
| | - Ismail Trabelsi
- Laboratory of Treatment and Valorization of Water Rejects Water Researches and Technologies Center, Borj-Cedria Technopark, CP 8020, Soliman, Tunisia
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, University of Carthage, Faculty of Sciences of Bizerte, CP 7021, Jarzouna, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, University of Carthage, Faculty of Sciences of Bizerte, CP 7021, Jarzouna, Tunisia
| |
Collapse
|
11
|
Sarris D, Philippoussis A, Mallouchos A, Diamantopoulou P. Valorization of low-cost, carbon-rich substrates by edible ascomycetes and basidiomycetes grown on liquid cultures. FEMS Microbiol Lett 2020; 367:5923550. [PMID: 33053163 DOI: 10.1093/femsle/fnaa168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Three ascomycetes (Morchella vulgaris AMRL 36, M. elata AMRL 63, Tuber aestivum AMRL 364) and four basidiomycetes strains (Lentinula edodes AMRL 124 and 126, Agaricus bisporus AMRL 208 and 209) were screened for their ability to grow on liquid static flask cultures of glucose, glycerol, molasses and waste flour-rich hydrolysates with C/N ratio of 20 and produce biomass, exopolysaccharides and lipids. The profile of lipid fatty acids was also assessed. Selected strains were furthermore cultivated in C/N = 50. Results showed that substrate consumption, biomass formation and secondary metabolites production were strain, substrate and C/N ratio dependent. The maximum biomass (X), lipid (L) and exopolysaccharides (EPS) values noted were Xmax = 25.2 g/L (C/N = 20; molasses) and Lmax = 6.51 g/L (C/N = 50; rice cereal hydrolysates) by T. aestivum strain AMRL 364 and EPSmax = 2.41 g/L by M. elata strain AMRL 63 (C/N = 50; molasses), respectively. When C/N ratio of 50 was applied, biomass, lipid production and substrate consumption seem to be negatively affected in most of the trials. The adaptation and capability of the mushroom strains to be cultivated on substrates based on agro-industrial waste streams and infant food of expired shelf date offers the opportunity to set a circular oriented bioprocess.
Collapse
Affiliation(s)
- Dimitris Sarris
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization 'Demeter', Lycovryssi, Sof. Venizelou 1, Lykovrissi 14123, Greece.,Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos, Myrina 81400, Lemnos, Greece
| | - Antonios Philippoussis
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization 'Demeter', Lycovryssi, Sof. Venizelou 1, Lykovrissi 14123, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Iera Odos 75, Athens 11855, Greece
| | - Panagiota Diamantopoulou
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization 'Demeter', Lycovryssi, Sof. Venizelou 1, Lykovrissi 14123, Greece
| |
Collapse
|
12
|
Kothri M, Mavrommati M, Elazzazy AM, Baeshen MN, Moussa TAA, Aggelis G. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiol Lett 2020; 367:5735438. [PMID: 32053204 DOI: 10.1093/femsle/fnaa028] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of non-fish sources of polyunsaturated fatty acids (PUFAs) is of great biotechnological importance. Although various oleaginous microalgae and fungi are able of accumulating storage lipids (single cell oils - SCOs) containing PUFAs, the industrial applications utilizing these organisms are rather limited due to the high-fermentation cost. However, combining SCO production with other biotechnological applications, including waste and by-product valorization, can overcome this difficulty. In the current review, we present the major sources of fungi (i.e. members of Mucoromycota, fungoid-like Thraustochytrids and genetically modified strains of Yarrowia lipolytica) and microalgae (e.g. Isochrysis, NannochloropsisandTetraselmis) that have come recently to the forefront due to their ability to produce PUFAs. Approaches adopted in order to increase PUFA productivity and the potential of using various residues, such as agro-industrial, food and aquaculture wastes as fermentation substrates for SCO production have been considered and discussed. We concluded that several organic residues can be utilized as feedstock in the SCO production increasing the competitiveness of oleaginous organisms against conventional PUFA producers.
Collapse
Affiliation(s)
- Maria Kothri
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Maria Mavrommati
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Ahmed M Elazzazy
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi.,Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Mohamed N Baeshen
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi
| | - Tarek A A Moussa
- Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi.,Botany and Microbiology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - George Aggelis
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece.,Department of Biology, Faculty of Science, University of Jeddah, 23218 Jeddah, Saudi Arabi
| |
Collapse
|
13
|
Lipid Production by Yeasts Growing on Commercial Xylose in Submerged Cultures with Process Water Being Partially Replaced by Olive Mill Wastewaters. Processes (Basel) 2020. [DOI: 10.3390/pr8070819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Six yeast strains belonging to Rhodosporidium toruloides, Lipomyces starkeyi, Rhodotorula glutinis and Cryptococcus curvatus were shake-flask cultured on xylose (initial sugar—S0 = 70 ± 10 g/L) under nitrogen-limited conditions. C. curvatus ATCC 20509 and L. starkeyi DSM 70296 were further cultured in media where process waters were partially replaced by the phenol-containing olive mill wastewaters (OMWs). In flasks with S0 ≈ 100 g/L and OMWs added yielding to initial phenolic compounds concentration (PCC0) between 0.0 g/L (blank experiment) and 2.0 g/L, C. curvatus presented maximum total dry cell weight—TDCWmax ≈ 27 g/L, in all cases. The more the PCC0 increased, the fewer lipids were produced. In OMW-enriched media with PCC0 ≈ 1.2 g/L, TDCW = 20.9 g/L containing ≈ 40% w/w of lipids was recorded. In L. starkeyi cultures, when PCC0 ≈ 2.0 g/L, TDCW ≈ 25 g/L was synthesized, whereas lipids in TDCW = 24–28% w/w, similar to the experiments without OMWs, were recorded. Non-negligible dephenolization and species-dependent decolorization of the wastewater occurred. A batch-bioreactor trial by C. curvatus only with xylose (S0 ≈ 110 g/L) was performed and TDCW = 35.1 g/L (lipids in TDCW = 44.3% w/w) was produced. Yeast total lipids were composed of oleic and palmitic and to lesser extent linoleic and stearic acids. C. curvatus lipids were mainly composed of nonpolar fractions (i.e., triacylglycerols).
Collapse
|
14
|
Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, Matsakas L. An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries. Microorganisms 2020; 8:E434. [PMID: 32204542 PMCID: PMC7143722 DOI: 10.3390/microorganisms8030434] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Microorganisms are known to be natural oil producers in their cellular compartments. Microorganisms that accumulate more than 20% w/w of lipids on a cell dry weight basis are considered as oleaginous microorganisms. These are capable of synthesizing vast majority of fatty acids from short hydrocarbonated chain (C6) to long hydrocarbonated chain (C36), which may be saturated (SFA), monounsaturated (MUFA), or polyunsaturated fatty acids (PUFA), depending on the presence and number of double bonds in hydrocarbonated chains. Depending on the fatty acid profile, the oils obtained from oleaginous microorganisms are utilized as feedstock for either biodiesel production or as nutraceuticals. Mainly microalgae, bacteria, and yeasts are involved in the production of biodiesel, whereas thraustochytrids, fungi, and some of the microalgae are well known to be producers of very long-chain PUFA (omega-3 fatty acids). In this review article, the type of oleaginous microorganisms and their expertise in the field of biodiesel or omega-3 fatty acids, advances in metabolic engineering tools for enhanced lipid accumulation, upstream and downstream processing of lipids, including purification of biodiesel and concentration of omega-3 fatty acids are reviewed.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Dimitra Karageorgou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece; (D.K.); (P.K.)
| | - Emma Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Petros Katapodis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece; (D.K.); (P.K.)
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; (A.P.); (E.R.); (U.R.); (P.C.)
| |
Collapse
|
15
|
Sarris D, Sampani Z, Rapti A, Papanikolaou S. Valorization of Crude Glycerol, Residue Deriving from Biodiesel- Production Process, with the Use of Wild-type New Isolated Yarrowia lipolytica Strains: Production of Metabolites with Pharmaceutical and Biotechnological Interest. Curr Pharm Biotechnol 2020; 20:881-894. [PMID: 30747061 DOI: 10.2174/1389201020666190211145215] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/19/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & OBJECTIVE Crude glycerol (Glol), used as substrate for screening eleven natural Yarrowia lipolytica strains in shake-flask experiments. Aim of this study was to assess the ability of the screened strains to produce biomass (dry cell weight; X), lipid (L), citric acid (Cit), mannitol (Man), arabitol (Ara) and erythritol (Ery), compounds presenting pharmaceutical and biotechnological interest, in glycerol-based nitrogen-limited media, in which initial glycerol concentration had been adjusted to 40 g/L. METHODS Citric acid may find use in biomedical engineering (i.e. drug delivery, tissue engineering, bioimaging, orthopedics, medical device coating, wound dressings). Polyols are considered as compounds with non-cariogenic and less calorigenic properties as also with low insulin-mediated response. Microbial lipids containing polyunsaturated fatty acids (PUFA) are medically and dietetically important (selective pharmaceutical and anticancer properties, aid fetal brain development, the sight function of the eye, hormonal balance and the cardio-vascular system, prevent reasons leading to type-2 diabetes, present healing and anti-inflammatory effects). RESULTS All strains presented satisfactory microbial growth (Xmax=5.34-6.26 g/L) and almost complete substrate uptake. The principal metabolic product was citric acid (Citmax=8.5-31.7 g/L). Production of cellular lipid reached the values of 0.33-0.84 g/L. Polyols were also synthesized as strain dependent compounds (Manmax=2.8-6.1 g/L, Aramax ~2.0 g/L, Erymax= 0.5-3.8 g/L). The selected Y. lipolytica strain ACA-DC 5029 presented satisfactory growth along with synthesis of citric acid and polyols, thus, was further grown on media presenting an increased concentration of Glol~75 g/L. Biomass, lipid and citric acid production presented significant enhancement (Xmax=11.80 g/L, Lmax=1.26 g/L, Citmax=30.8 g/L), but conversion yield of citric acid produced per glycerol consumed was decreased compared to screening trials. Erythritol secretion (Erymax=15.6 g/L) was highly favored, suggesting a shift of yeast metabolism from citric acid accumulation towards erythritol production. Maximum endopolysaccharides (IPS) concentration was 4.04 g/L with yield in dry weight 34.2 % w/w. CONCLUSION Y. lipolytica strain ACA-YC 5029 can be considered as a satisfactory candidate grown in high concentrations of crude glycerol to produce added-value compounds that interest pharmaceutical and biotechnology industries.
Collapse
Affiliation(s)
- Dimitris Sarris
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece.,Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos Greece
| | - Zoe Sampani
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos, Greece
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
16
|
Ukey R, Carmon T, Hardman D, Hill N, Fakas S. The Yarrowia lipolytica PAH1 homologue contributes but is not required for triacylglycerol biosynthesis during growth on glucose. Yeast 2019; 37:93-102. [PMID: 31724221 DOI: 10.1002/yea.3447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 11/06/2022] Open
Abstract
The PAH1-encoded phosphatidate phosphatase (PAP) catalyzes the Mg2+ -dependent dephosphorylation of phosphatidate to produce diacylglycerol, which can be acylated to form triacylglycerol (TAG). In the model oleaginous yeast Yarrowia lipolytica, TAG is the major lipid produced, and its biosynthesis requires a continuous supply of diacylglycerol, which can be provided by the PAP reaction. However, the regulation of Pah1 has not been studied in detail in Y. lipolytica, and thus its contribution to the biosynthesis of TAG in this yeast is not well understood. In this work, we examined the regulation of the PAH1-mediated PAP activity and Pah1 abundance and localization in cells growing on glucose. We found that Pah1 abundance and localization were regulated in a growth-dependent manner, yet the loss of Pah1 did not have a major effect on PAP activity. We also examined the effects of the Y. lipolytica pah1Δ mutation on cell physiology and lipid biosynthesis. The lack of Pah1 in the pah1Δ mutant resulted in a moderate decrease in TAG levels and an increase in phospholipid levels. These results showed that Pah1 contributed to TAG biosynthesis in Y. lipolytica but also suggested the presence of other activities in the pah1Δ mutant that compensate for the loss of Pah1. Also, the levels of linoleic acid were elevated in pah1Δ cells with a concomitant decrease in the oleic acid levels suggesting that the pah1Δ mutation affected the biosynthesis of fatty acids.
Collapse
Affiliation(s)
- Rahul Ukey
- Department of Food and Animal Sciences, Alabama A&M University, Normal, Alabama
| | - Taylor Carmon
- Department of Food and Animal Sciences, Alabama A&M University, Normal, Alabama
| | - Derell Hardman
- Department of Food and Animal Sciences, Alabama A&M University, Normal, Alabama
| | - Na'Taja Hill
- Department of Food and Animal Sciences, Alabama A&M University, Normal, Alabama
| | - Stylianos Fakas
- Department of Food and Animal Sciences, Alabama A&M University, Normal, Alabama
| |
Collapse
|
17
|
Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica. Appl Microbiol Biotechnol 2019; 103:8585-8596. [DOI: 10.1007/s00253-019-10088-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Accepted: 08/08/2019] [Indexed: 01/19/2023]
|
18
|
Sarris D, Rapti A, Papafotis N, Koutinas AA, Papanikolaou S. Production of Added-Value Chemical Compounds through Bioconversions of Olive-Mill Wastewaters Blended with Crude Glycerol by a Yarrowia lipolytica Strain. Molecules 2019; 24:E222. [PMID: 30634450 PMCID: PMC6359483 DOI: 10.3390/molecules24020222] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022] Open
Abstract
Olive mill wastewaters (OMW) are the major effluent deriving from olive oil production and are considered as one of the most challenging agro-industrial wastes to treat. Crude glycerol is the main by-product of alcoholic beverage and oleochemical production activities including biodiesel production. The tremendous quantities of glycerol produced worldwide represent a serious environmental challenge. The aim of this study was to assess the ability of Yarrowia lipolytica strain ACA-DC 5029 to grow on nitrogen-limited submerged shake-flask cultures, in crude glycerol and OMW blends as well as in media with high initial glycerol concentration and produce biomass, cellular lipids, citric acid and polyols. The rationale of using such blends was the dilution of concentrated glycerol by OMW to (partially or fully) replace process tap water with a wastewater stream. The strain presented satisfactory growth in blends; citric acid production was not affected by OMW addition (Citmax~37.0 g/L, YCit/Glol~0.55 g/g) and microbial oil accumulation raised proportionally to OMW addition (Lmax~2.0 g/L, YL/X~20% w/w). Partial removal of color (~30%) and phenolic compounds (~10% w/w) of the blended media occurred. In media with high glycerol concentration, a shift towards erythritol production was noted (Erymax~66.0 g/L, YEry/Glol~0.39 g/g) simultaneously with high amounts of produced citric acid (Citmax~79.0 g/L, YCit/Glol~0.46 g/g). Fatty acid analysis of microbial lipids demonstrated that OMW addition in blended media and in excess carbon media with high glycerol concentration favored oleic acid production.
Collapse
Affiliation(s)
- Dimitris Sarris
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Anna Rapti
- Department of Food Science & Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Nikolaos Papafotis
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| | - Apostolis A Koutinas
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| | - Seraphim Papanikolaou
- Department of Food Science & Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| |
Collapse
|
19
|
Li S, Yu H, Liu Y, Zhang X, Ma F. The lipid strategies in Cunninghamella echinulata for an allostatic response to temperature changes. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Bernat P, Nykiel-Szymańska J, Stolarek P, Słaba M, Szewczyk R, Różalska S. 2,4-dichlorophenoxyacetic acid-induced oxidative stress: Metabolome and membrane modifications in Umbelopsis isabellina, a herbicide degrader. PLoS One 2018; 13:e0199677. [PMID: 29933393 PMCID: PMC6014680 DOI: 10.1371/journal.pone.0199677] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/12/2018] [Indexed: 01/13/2023] Open
Abstract
The study reports the response to herbicide of the 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading fungal strain Umbelopsis isabellina. A comparative analysis covered 41 free amino acids as well as 140 lipid species of fatty acids, phospholipids, acylglycerols, sphingolipids, and sterols. 2,4-D presence led to a decrease in fungal catalase activity, associated with a higher amount of thiobarbituric acid-reactive substances (TBARS). Damage to cells treated with the herbicide resulted in increased membrane permeability and decreased membrane fluidity. Detailed lipidomic profiling showed changes in the fatty acids composition such as an increase in the level of linoleic acid (C18:2). Moreover, an increase in the phosphatidylethanolamine/phosphatidylcholine ratio was observed. Analysis of fungal lipid profiles revealed that the presence of 2,4-D was accompanied by the accumulation of triacylglycerols, a decrease in ergosterol content, and a considerable rise in the level of sphingolipid ceramides. In the exponential phase of growth, increased levels of leucine, glycine, serine, asparagine, and hydroxyproline were found. The results obtained in our study confirmed that in the cultures of U. isabellina oxidative stress was caused by 2,4-D. The herbicide itself forced changes not only to membrane lipids but also to neutral lipids and amino acids, as the difference of tested compounds profiles between 2,4-D-containing and control samples was consequently lower as the pesticide degradation progressed. The presented findings may have a significant impact on the basic understanding of 2,4-D biodegradation and may be applied for process optimization on metabolomic and lipidomic levels.
Collapse
Affiliation(s)
- Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- * E-mail:
| | - Justyna Nykiel-Szymańska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paulina Stolarek
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Mirosława Słaba
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol 2018; 102:2509-2523. [DOI: 10.1007/s00253-018-8813-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
|
22
|
Abomohra AEF, El-Naggar AH, Baeshen AA. Potential of macroalgae for biodiesel production: Screening and evaluation studies. J Biosci Bioeng 2018; 125:231-237. [PMID: 29037768 DOI: 10.1016/j.jbiosc.2017.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/30/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022]
Abstract
Nowadays, biofuel production is a fast expanding industry and is facing a growing dilemma about a feedstock source capable of keeping up with demand. Recently, macroalgae have been attracting a wide attention as a source for biofuel. In the present study, ten macroalgae were collected and screened as biodiesel feedstocks. As a result of their high biomass production and relatively high lipid content, Ulva lactuca, Padina boryana and Ulva intestinalis showed the highest significant lipids and fatty acid methyl esters (FAMEs) areal productivities among the studied species. Saturated fatty acids (SAFs) showed insignificant differences in the selected species, with noticeably significant higher polyunsaturated fatty acids (PUFAs) content in U. lactuca by 4.2 and 3 times, with respect to P. boryana and U. intestinalis, respectively. The recorded increase in PUFAs was attributed to higher content of C16:4n-3, C18:3n-3 and C18:4n-3. By lipid fractionation, P. boryana showed significant higher concentration of neutral lipids (37.7 mg g-1 CDW, representing 46.7% of total fatty acids) in comparison to U. lactuca and U. intestinalis, which showed 16% and 17% lower neutral lipid fractions, respectively. In addition, biodiesel characteristics of the studied macroalgae complied with that of international standards. Furthermore, oil-free residual biomass can be readily converted into fermentable sugars or biogas due to its high carbohydrates content, which adds to the economics of macroalgae as biofuel feedstock. In conclusion, the present study confirmed that macroalgae represent an attractive alternative renewable feedstock for biodiesel and other biofuels.
Collapse
Affiliation(s)
- Abd El-Fatah Abomohra
- New Energy Department, School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Amal Hamed El-Naggar
- Biological Science Department, Science Faculty for Girls, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Areej Ali Baeshen
- Biological Science Department, Science Faculty for Girls, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
Athenaki M, Gardeli C, Diamantopoulou P, Tchakouteu S, Sarris D, Philippoussis A, Papanikolaou S. Lipids from yeasts and fungi: physiology, production and analytical considerations. J Appl Microbiol 2018; 124:336-367. [DOI: 10.1111/jam.13633] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/20/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022]
Affiliation(s)
- M. Athenaki
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - C. Gardeli
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - P. Diamantopoulou
- Laboratory of Edible Fungi; Institute of Technology of Agricultural Products; Hellenic Agricultural Organization ‘Demeter’; Lycovryssi Greece
| | - S.S. Tchakouteu
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - D. Sarris
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| | - A. Philippoussis
- Laboratory of Edible Fungi; Institute of Technology of Agricultural Products; Hellenic Agricultural Organization ‘Demeter’; Lycovryssi Greece
| | - S. Papanikolaou
- Department of Food Science and Human Nutrition; Agricultural University of Athens; Athens Greece
| |
Collapse
|
24
|
Papadaki A, Mallouchos A, Efthymiou MN, Gardeli C, Kopsahelis N, Aguieiras ECG, Freire DMG, Papanikolaou S, Koutinas AA. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams. BIORESOURCE TECHNOLOGY 2017; 245:274-282. [PMID: 28892702 DOI: 10.1016/j.biortech.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries.
Collapse
Affiliation(s)
- Aikaterini Papadaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Maria-Nefeli Efthymiou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Chryssavgi Gardeli
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; Department of Food Technology, Technological Educational Institute (TEI) of Ionian Islands, Argostoli 28100, Kefalonia, Greece
| | - Erika C G Aguieiras
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia, Bloco A, Lab 549, Rio de Janeiro, RJ, Brazil
| | - Denise M G Freire
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia, Bloco A, Lab 549, Rio de Janeiro, RJ, Brazil
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
25
|
Gardeli C, Athenaki M, Xenopoulos E, Mallouchos A, Koutinas AA, Aggelis G, Papanikolaou S. Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. J Appl Microbiol 2017; 123:1461-1477. [PMID: 28921786 DOI: 10.1111/jam.13587] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
AIMS To study and characterize the lipids produced by Mortierella (Umbelopsis) isabellina, during its growth on mixtures of glucose and xylose. METHODS AND RESULTS Glucose and xylose were utilized as carbon sources, solely or in blends, under nitrogen-limited conditions, in batch-flask trials (initial sugars at 80 g l-1 ). Significant lipid production (maximum lipid 17·8 g l-1 ; lipid in DCW 61·0% w/w; lipid on glucose consumed 0·23 g g-1 ) occurred on glucose employed solely, while xylose concentration in the growth medium was conversely correlated with lipid accumulation. With increasing xylose concentrations into the blend, lipid storage decreased while xylitol in significant concentrations (up to 24 g l-1 ) was produced. Irrespective of the sugar blend employed, significant quantities of endopolysaccharides were detected in the first growth steps (in the presence of nitrogen into the medium or barely after its disappearance) while lipids were stored thereafter. Neutral lipids, mainly composed of triacylglycerols, were the main microbial lipid fraction. Phospholipids were quantified both through fractionation and subsequent gravimetric determination and also through determination of phosphorus, and it seemed that the second method was more accurate. Phospholipids were mainly composed of phosphatidylcholine and another nonidentified compound presumably being phosphatidyldimethylethanolamine. CONCLUSIONS Mortierella isabellina is suitable to convert lignocellulosic sugars into lipids. SIGNIFICANCE AND IMPACT OF THE STUDY Differentiations between metabolism on xylose and glucose were reported. Moreover, this is one of the first reports indicating extensive analysis of microbial lipids produced by M. isabellina.
Collapse
Affiliation(s)
- C Gardeli
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - M Athenaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - E Xenopoulos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - A Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - A A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - G Aggelis
- Department of Biology, University of Patras, Patras, Greece
| | - S Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
26
|
Compositional profiles of Rhodosporidium toruloides cells under nutrient limitation. Appl Microbiol Biotechnol 2017; 101:3801-3809. [DOI: 10.1007/s00253-017-8157-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/18/2023]
|
27
|
Abomohra AEF, El-Sheekh M, Hanelt D. Screening of marine microalgae isolated from the hypersaline Bardawil lagoon for biodiesel feedstock. RENEWABLE ENERGY 2017; 101:1266-1272. [DOI: 10.1016/j.renene.2016.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
28
|
Batbileg T, Xu X, Park JM. Retracted Article: Oleaginous yeast-based production of microbial oil from volatile fatty acids obtained by anaerobic digestion of red algae (Gelidium amansii). KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-016-0063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Hardman D, McFalls D, Fakas S. Characterization of phosphatidic acid phosphatase activity in the oleaginous yeastYarrowia lipolyticaand its role in lipid biosynthesis. Yeast 2016; 34:83-91. [DOI: 10.1002/yea.3216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/05/2023] Open
Affiliation(s)
- Derell Hardman
- Department of Food and Animal Sciences; Alabama A&M University; Normal, AL 35762 USA
| | - Daniel McFalls
- Department of Food and Animal Sciences; Alabama A&M University; Normal, AL 35762 USA
| | - Stylianos Fakas
- Department of Food and Animal Sciences; Alabama A&M University; Normal, AL 35762 USA
| |
Collapse
|
30
|
Souza KST, Ramos CL, Schwan RF, Dias DR. Lipid production by yeasts grown on crude glycerol from biodiesel industry. Prep Biochem Biotechnol 2016; 47:357-363. [PMID: 27737603 DOI: 10.1080/10826068.2016.1244689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The main carbon source used for growth by four yeast strains (Yarrowia lipolytica CCMA 0357, Y. lipolytica CCMA 0242, Wickerhamomyces anomalus CCMA 0358, and Cryptococcus humicola CCMA 0346) and their lipid production were evaluated, using different concentrations of crude and pure glycerol and glucose. Whereas crude glycerol (100 g/L) was the main carbon source used by Y. lipolytica CCMA 0357 (nearly 15 g/L consumed at 120 hr) and W. anomalus CCMA 0358 (nearly 45.10 g/L consumed at 48 hr), pure glycerol (150 g/L) was the main one used by C. humicola CCMA 0346 (nearly 130 g/L consumed). On the other hand, Y. lipolytica CCMA 0242 used glucose (100 g/L) as its main source of carbon (nearly 96.48 g/L consumed). Y. lipolytica CCMA 0357 demonstrated the highest lipid production [about 70% (wt/wt)], forming palmitic (45.73% of fatty acid composition), stearic (16.43%), palmitoleic (13.29%), linolenic (10.77%), heptadecanoic (4.07%), and linoleic (14.14%) acids. Linoleic acid, an essential fatty acid, was produced by all four yeast strains but in varying degrees, representing 70.42% of the fatty acid profile of lipids produced by C. humicola CCMA 0346.
Collapse
Affiliation(s)
| | | | | | - Disney Ribeiro Dias
- b Department of Food Science , Federal University of Lavras , Lavras , MG , Brazil
| |
Collapse
|
31
|
Arous F, Mechichi T, Nasri M, Aggelis G. Fatty acid biosynthesis during the life cycle of Debaryomyces etchellsii. Microbiology (Reading) 2016; 162:1080-1090. [DOI: 10.1099/mic.0.000298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Fatma Arous
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
- Unit of Microbiology, Department of Biology, University of Patras, Patras, Greece
| | - Tahar Mechichi
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - George Aggelis
- Unit of Microbiology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
32
|
Papanikolaou S, Rontou M, Belka A, Athenaki M, Gardeli C, Mallouchos A, Kalantzi O, Koutinas AA, Kookos IK, Zeng AP, Aggelis G. Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Eng Life Sci 2016; 17:262-281. [PMID: 32624773 DOI: 10.1002/elsc.201500191] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/12/2016] [Accepted: 03/10/2016] [Indexed: 01/02/2023] Open
Abstract
Oleochemical activities (e.g. biodiesel production, fat saponification) generate annually very high amounts of concentrated glycerol-containing waters (called crude glycerol) as the principal residues of these processes. Crude glycerol is an industrial residue the valorization of which attracts remarkable and constantly increasing interest. In the current investigation, biodiesel-derived glycerol was employed as substrate for yeast and fungal strains cultivated under nitrogen-limited conditions in shake flasks. Glucose was employed as reference substrate. Several yeasts (Candida diddensiae, Candida tropicalis, Pichia ciferrii, Williopsis saturnus, Candida boidinii, and Candida oleophila) rapidly assimilated glucose and converted it into ethanol, despite aerobic conditions imposed, and were Crabtree-positive. None of these yeasts produced ethanol during growth on glycerol or accumulated significant quantities of lipid during growth on glucose or glycerol. Only Rhodosporidium toruloides produced notable lipid quantities from glucose and to lesser extent from glycerol. Yarrowia lipolytica LFMB 20 produced citrate ≈58 g/L growing on high-glucose media, while on high-glycerol media ≈42 g/L citrate and ≈18 g/L mannitol. During growth on glucose/glycerol blends, glycerol was assimilated first and thereafter glucose was consumed. Fungi produced higher lipid quantities compared with yeasts. High lipid quantities were produced by Mortierella ramanniana, Mucor sp., and mainly Mortierella isabellina, with glycerol being more adequate for M. ramanniana and glucose for Mucor sp. and M. isabellina. M. isabellina ATHUM 2935 produced lipids of 8.5 g/L, 83.3% w/w in dry cell weight (DCW) and conversion yield per unit of glucose consumed ≈0.25 g/g. The respective values on glycerol were 5.4 g/L, 66.6% w/w in DCW and ≈0.22 g/g. Lipids of all microorganisms were analyzed with regards to their fatty acid composition, and M. isabellina presented the closest similitude with rapeseed oil. Crude lipids produced by this fungus and extracted with chloroform/methanol blend, were composed mostly of triacylglycerols, thus indicating that these solvents are adequate for triacylglycerol extraction.
Collapse
Affiliation(s)
- Seraphim Papanikolaou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Maria Rontou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Aikaterini Belka
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Maria Athenaki
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Chryssavgi Gardeli
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Ourania Kalantzi
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Ioannis K Kookos
- Department of Chemical Engineering University of Patras Patras Greece
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering Hamburg University of Technology (TUHH) Hamburg Germany
| | - George Aggelis
- Department of Biology University of Patras Patras Greece.,Department of Biology King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
33
|
Wu W, Yan J, Ji X, Zhang X, Shang J, Sun L, Ren L, Huang H. Lipid characterization of an arachidonic acid-rich oil producing fungus Mortierella alpina. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2015.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Isolation of Cunninghamella bigelovii sp.nov. CGMCC 8094 as a new endophytic oleaginous fungus from Salicornia bigelovii. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Fatty acid lithium salts fromCunninghamella echinulatahave cytotoxic and genotoxic effects on HL-60 human leukemia cells. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
36
|
Yang X, Jin G, Gong Z, Shen H, Bai F, Zhao ZK. Recycling microbial lipid production wastes to cultivate oleaginous yeasts. BIORESOURCE TECHNOLOGY 2015; 175:91-6. [PMID: 25459808 DOI: 10.1016/j.biortech.2014.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 05/10/2023]
Abstract
To reduce wastes and the costs of microbial lipid production, it is imperative to recycle resources, including spent cell mass, mineral nutrients and water. In the present study, lipid production by the oleaginous yeast Rhodosporidium toruloides was used as a model system to demonstrate resources recycling. It was found that the hydrolysates of spent cell mass were good media to support cell growth of various oleaginous yeasts. When serial repitching experiments were performed using 70g/L glucose and the hydrolysates alone as nutrients, it produced 16.6, 14.6 and 12.9g/L lipids, for three successive cycles, while lipid titre remained almost constant when spent water was also recycled. The cell mass hydrolysates could be used as equivalents to the mixture of yeast extract and peptone to support lipid production from corn stalk hydrolysates. Our results showed efficient recycling of lipid production wastes and should be helpful to advance microbial lipid technology.
Collapse
Affiliation(s)
- Xiaobing Yang
- Division of Biotechnology and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guojie Jin
- Division of Biotechnology and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Zhiwei Gong
- Division of Biotechnology and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Hongwei Shen
- Division of Biotechnology and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Zongbao Kent Zhao
- Division of Biotechnology and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| |
Collapse
|
37
|
Xu X, Kim JY, Oh YR, Park JM. Production of biodiesel from carbon sources of macroalgae, Laminaria japonica. BIORESOURCE TECHNOLOGY 2014; 169:455-461. [PMID: 25084043 DOI: 10.1016/j.biortech.2014.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 05/29/2023]
Abstract
As aquatic biomass which is called "the third generation biomass", Laminaria japonica (also known as Saccharina japonica) consists of mannitol and alginate which are the main polysaccharides of algal carbohydrates. In this study, oleaginous yeast (Cryptococcus curvatus) was used to produce lipid from carbon sources derived from Laminaria japonica. Volatile fatty acids (VFAs) were produced by fermentation of alginate extracted from L. japonica. Thereafter, mannitol was mixed with VFAs to culture the oleaginous yeast. The highest lipid content was 48.30%. The composition of the fatty acids was similar to vegetable oils. This is the first confirmation of the feasibility of using macroalgae as a carbon source for biodiesel production.
Collapse
Affiliation(s)
- Xu Xu
- School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Ji Young Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Yu Ri Oh
- Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Jong Moon Park
- School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea; Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea; Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea.
| |
Collapse
|
38
|
Repeated batch fermentation biotechnology for the biosynthesis of lipid and gamma-linolenic acid by Cunninghamella bainieri 2A1. BIOMED RESEARCH INTERNATIONAL 2014; 2014:831783. [PMID: 25147817 PMCID: PMC4131457 DOI: 10.1155/2014/831783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/21/2014] [Accepted: 05/26/2014] [Indexed: 02/05/2023]
Abstract
The biosynthesis of biomedical products including lipid and gamma-linolenic acid (GLA) by Cunninghamella bainieri 2A1 was studied in repeated batch fermentation. Three key process variables, namely, glucose concentration, ammonium tartrate concentration, and harvesting time, were optimized using response surface methodology. Repeated batch fermentation was carried out by the cultivation of Cunninghamella bainieri 2A1 in nitrogen-limited medium with various nitrogen concentration (1-4 g/L) and glucose concentration (20-40 g/L) at three time intervals (12 h, 24 h, and 48 h). Experimental results showed that the highest lipid concentration of 6.2 g/L and the highest GLA concentration of 0.4 g/L were obtained in optimum conditions, where 20.2 g/L glucose, 2.12 g/L ammonium tartrate, and 48 h harvesting time were utilized. Statistical results showed that the interaction between glucose and ammonium tartrate concentration had highly significant effects on lipid and GLA biosynthesis (P < 0.01). Moreover, harvesting time had a significant interaction effect with glucose and ammonium tartrate concentration on lipid production (P < 0.05).
Collapse
|
39
|
Ren LJ, Sun GN, Ji XJ, Hu XC, Huang H. Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2014; 157:107-113. [PMID: 24534791 DOI: 10.1016/j.biortech.2014.01.078] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
Single cell oils (SCOs), a complex lipid system, contains neutral lipids (NLs), polar lipids (PLs) and unsaponifiable matters (UMs). To investigate the dynamic changes and the metabolic competition mechanism of different components of SCOs, changes in lipid composition of Schizochytrium sp. were monitored in lipid accumulation and turnover stages. Lipid content could reach 69.98% in biomass during the lipid accumulation stage, while, after the exhaustion of glucose, the content decreased to 45.51% and 20.6g/L non-oil biomass was synthesis. Polyunsaturated fatty acids (PUFAs) were easier to bind with PLs. NLs were preferentially converted to PLs during lipid turnover stage, accompanied by the degradation of saturated fatty acids and the increase of UMs. Meanwhile, a positive correlation between the synthesis of PUFAs and unsaponifiable matters exited in Schizochytrium sp., and increasing the content of UMs from 45 to 100mg/L could increase the PUFA percentage from 64% to 74% effectively.
Collapse
Affiliation(s)
- Lu-Jing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Guan-Nan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xue-Chao Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| |
Collapse
|
40
|
Zhao Y, Wang H, Liu T, Xin Z. The individual lipid compositions produced by Cunninghamella sp. Salicorn 5, an endophytic oleaginous fungus from Salicornia bigelovii Torr. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2141-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
|
42
|
Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 2013; 164:318-29. [PMID: 23376618 DOI: 10.1016/j.jbiotec.2013.01.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
Chlorella sp. and Nannochloropsis salina cultivated in a lab-scale open pond simulating reactor grew well and produced 350-500mgL(-1) of biomass containing approximately 40% and 16% of lipids, respectively, while different trends in storage material (lipid and sugar) synthesis were identified for the two strains. In continuous culture the highest biomass and lipid productivity was respectively 0.7 and 0.06mgL(-1)h(-1) at D=0.0096h(-1), for Chlorella sp. and 0.8 and 0.09mgL(-1)h(-1) at D=0.007h(-1) for N. salina. The major polyunsaturated fatty acid (PUFA) in the lipid of Chlorella sp. was α-linolenic acid, found at a percentage of 23.0%, w/w, while N. salina synthesized eicosapentaenoic acid at a percentage of 27.0%, w/w. Glycolipids plus sphingolipids were predominant and richer in PUFA, compared to neutral lipids and phospholipids. Activities of some key enzymes, such as pyruvate dehydrogenase (PDC), ATP-citrate lyase (ATP:CL), malic enzyme (ME) and NAD-isocitrate dehydrogenase (ICDH), which are implicated in acetyl-CoA and NADPH biosynthesis, were studied in cells grown in batch and continuous modes. PDC involved in the conversion of pyruvate to acetyl-CoA presented a constant activity in all growth phases. The high ATP:CL activity observed in algal cells, combined with low or zero ICDH activity, indicated the algae ability to generate acetyl-CoA from sugar via citrate. However, the lipogenic capacity of the strains under investigation seemed to be restricted by the low ME activity resulting to limited NADPH synthesis.
Collapse
|
43
|
Zikou E, Chatzifragkou A, Koutinas A, Papanikolaou S. Evaluating glucose and xylose as cosubstrates for lipid accumulation and γ
-linolenic acid biosynthesis of Thamnidium elegans. J Appl Microbiol 2013; 114:1020-32. [DOI: 10.1111/jam.12116] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
Affiliation(s)
- E. Zikou
- Department of Food Science and Technology; Agricultural University of Athens; Athens Greece
| | - A. Chatzifragkou
- Department of Food Science and Technology; Agricultural University of Athens; Athens Greece
| | - A.A. Koutinas
- Department of Food Science and Technology; Agricultural University of Athens; Athens Greece
| | - S. Papanikolaou
- Department of Food Science and Technology; Agricultural University of Athens; Athens Greece
| |
Collapse
|
44
|
Davey PT, Hiscox WC, Lucker BF, O'Fallon JV, Chen S, Helms GL. Rapid triacylglyceride detection and quantification in live micro-algal cultures via liquid state 1H NMR. ALGAL RES 2012. [DOI: 10.1016/j.algal.2012.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Birkou M, Bokas D, Aggelis G. Improving Fatty Acid Composition of Lipids Synthesized by Brachionus plicatilis in Large Scale Experiments. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2107-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Xiaowei P, Hongzhang C. Hemicellulose sugar recovery from steam-exploded wheat straw for microbial oil production. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
47
|
Bellou S, Moustogianni A, Makri A, Aggelis G. Lipids containing polyunsaturated fatty acids synthesized by zygomycetes grown on glycerol. Appl Biochem Biotechnol 2011; 166:146-58. [PMID: 22057906 DOI: 10.1007/s12010-011-9411-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
Abstract
Several strains of Zygomycetes cultivated on glycerol produced mycelia rich in lipids containing higher amounts of neutral lipids (NL) than glycolipids plus sphingolipids and phospholipids (P), while biosynthesis of P in Mortierella ramanniana, Mucor sp., and Cunninghamella echinulata occurred though NL accumulation process was in progress. Polyunsaturated fatty acids (PUFA) concentration gradually decreased in all lipid fractions of M. ramanniana during growth. In contrast, in C. echinulata concentration of both linoleic and γ-linolenic acids increased with time, especially in P. Taking for granted that the main function of PUFA is associated to their participation in mycelial membranes, we could suppose that biosynthesis of these fatty acids is associated to mycelial growth. However, this is accurate only for some Zygomycetes, e.g., M. ramanniana. On the contrary, PUFA biosynthesis in C. echinulata persists after growth cessation, suggesting that in this species biosynthetic ability is not a strictly growth-associated process. Phosphatidyl-inositol and phosphatidyl-choline were the major P classes in C. echinulata and M. ramanniana, respectively. In M. ramanniana, a decrease of PUFA concentration was noticed even when mycelia were incubated in low temperature (conditions that normally favor PUFA biosynthesis), indicating that PUFA biosynthesis in this fungus is associated to primary metabolism.
Collapse
Affiliation(s)
- Stamatia Bellou
- Unit of Microbiology, Division of Genetics, Cell and Development Biology, Department of Biology, University of Patras, Patras, Greece
| | | | | | | |
Collapse
|
48
|
Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100014] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part II: Technology and potential applications. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100015] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Molecular analysis of ∆6 desaturase and ∆6 elongase from Conidiobolus obscurus in the biosynthesis of eicosatetraenoic acid, a ω3 fatty acid with nutraceutical potentials. Appl Microbiol Biotechnol 2011; 90:591-601. [PMID: 21210105 DOI: 10.1007/s00253-010-3060-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/05/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
Conidiobolus obscurus, an entomopathogenic fungus able to infect aphids, was previously reported to produce substantial amounts of very long chain polyunsaturated fatty acids (VLCPUFAs) that may mediate the insect infection. However, the genes involved in the biosynthesis of these VLCPUFAs from the order Entomophthorales have yet to be identified. Using degenerate reverse transcriptase-polymerase chain reaction and rapid amplification of the cDNA end methods, we cloned a ∆6 desaturase cDNA (CoD6) and a ∆6 elongase cDNA (CoE6) from C. obscurus. Expression of CoD6 and CoE6 in Saccharomyces cerevisiae revealed CoD6 could introduce a Δ6 double bond into α-linolenic acid (18:3n-3), and CoE6 preferentially elongated 18-carbon Δ6 desaturated fatty acid stearidonic acid (18:4n-3). When the fungus was grown under a temperature shift from 20 °C to 10 °C, the transcript level of CoD6 and CoE6 increased, whereas when the fungal culture was shifted from 20 °C to 30 °C, the transcript level of both genes decreased. The entire eicosatetraenoic acid biosynthetic pathway was reconstituted in yeast using four genes, CoD6 and CoE6 from C. obscurus, CpDes12 (a Δ12 desaturase) and CpDesX (a ω3 desaturase) from Claviceps purpurea. Yeast transformants expressing the four genes produced ten new fatty acids including the final product eicosatetraenoic acid (ETA). This represents the reconstitution of the entire ETA pathway in yeast without supplementation of any exogenous fatty acids.
Collapse
|