1
|
Takatani N, Maoka T, Sawabe T, Beppu F, Hosokawa M. Identification of a novel monocyclic carotenoid and prediction of its biosynthetic genes in Algoriphagus sp. oki45. Appl Microbiol Biotechnol 2024; 108:102. [PMID: 38212961 PMCID: PMC10784355 DOI: 10.1007/s00253-023-12995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Bacteria belonging to the genus Algoriphagus have been isolated from various sources, such as Antarctic sea ice, seawater, and sediment, and some strains are known to produce orange to red pigments. However, the pigment composition and biosynthetic genes have not been fully elucidated. A new red-pigmented Algoriphagus sp. strain, oki45, was isolated from the surface of seaweed collected from Senaga-Jima Island, Okinawa, Japan. Genome comparison revealed oki45's average nucleotide identity of less than 95% to its closely related species, Algoriphagus confluentis NBRC 111222 T and Algoriphagus taiwanensis JCM 19755 T. Comprehensive chemical analyses of oki45's pigments, including 1H and 13C nuclear magnetic resonance and circular dichroism spectroscopy, revealed that the pigments were mixtures of monocyclic carotenoids, (3S)-flexixanthin ((3S)-3,1'-dihydroxy-3',4'-didehydro-1',2'-dihydro-β,ψ-caroten-4-one) and (2R,3S)-2-hydroxyflexixanthin ((2R,3S)-2,3,1'-trihydroxy-3',4'-didehydro-1',2'-dihydro-β,ψ-caroten-4-one); in particular, the latter compound was new and not previously reported. Both monocyclic carotenoids were also found in A. confluentis NBRC 111222 T and A. taiwanensis JCM 19755 T. Further genome comparisons of carotenoid biosynthetic genes revealed the presence of eight genes (crtE, crtB, crtI, cruF, crtD, crtYcd, crtW, and crtZ) for flexixanthin biosynthesis. In addition, a crtG homolog gene encoding 2,2'-β-hydroxylase was found in the genome of the strains oki45, A. confluentis NBRC 111222 T, and A. taiwanensis JCM 19755 T, suggesting that the gene is involved in 2-hydroxyflexixanthin synthesis via 2-hydroxylation of flexixanthin. These findings expand our knowledge of monocyclic carotenoid biosynthesis in Algoriphagus bacteria. KEY POINTS: • Algoriphagus sp. strain oki45 was isolated from seaweed collected in Okinawa, Japan. • A novel monocyclic carotenoid 2-hydroxyflexixanthin was identified from strain oki45. • Nine genes for 2-hydroxyflexixanthin biosynthesis were found in strain oki45 genome.
Collapse
Affiliation(s)
- Naoki Takatani
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-Morimoto-Cho, Sakyo-Ku, Kyoto, 606-0805, Japan
| | - Tomoo Sawabe
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan.
| |
Collapse
|
2
|
Liu J, Chen Y, Song Y, Xu D, Gu Y, Wang J, Song W, Sun B, Jiang Z, Xia B. Evidence of size-dependent toxicity of polystyrene nano- and microplastics in sea cucumber Apostichopus japonicus (Selenka, 1867) during the intestinal regeneration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124394. [PMID: 38901819 DOI: 10.1016/j.envpol.2024.124394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Microplastics are ubiquitous pollutants in the global marine environment. However, few studies have adequately explored the different toxic mechanisms of microplastics (MPs) and nanoplastics (NPs) in aquatic organisms. The sea cucumber, Apostichopus japonicus, is a key organism in the marine benthic ecosystem due to its crucial roles in biogeochemical cycles and food web. This study investigated the bioaccumulation and adverse effects of polystyrene micro- and nanoplastics (PS-M/NPs) of different sizes (20 μm, 1 μm and 80 nm) in the regenerated intestine of A. japonicus using multi-omics analysis. The results showed that after 30-day exposure at the concentration of 0.1 mg L-1, PS-MPs and PS-NPs accumulated to 155.41-175.04 μg g-1 and 337.95 μg g-1, respectively. This excessive accumulation led to increased levels of antioxidases (SOD, CAT, GPx and T-AOC) and reduced activities of immune enzymes (AKP, ACP and T-NOS), indicating oxidative damage and compromised immunity in the regenerated intestine. PS-NPs had more profound negative impacts on cell proliferation and differentiation compared to PS-MPs. Transcriptomic analysis revealed that PS-NPs primarily affected pathways related to cellular components, e.g., ribosome, and oxidative phosphorylation. In comparison, PS-MPs had greater influences on actin-related organization and organic compound metabolism. In the PS-M/NPs-treated groups, differentially expressed metabolites were mainly amino acids, fatty acids, glycerol phospholipid, and purine nucleosides. Additionally, microbial community reconstruction in the regenerated intestine was severely disrupted by the presence of PS-M/NPs. In the PS-NPs group, Burkholderiaceae abundance significantly increased while Rhodobacteraceae abundance decreased. Correlation analyses demonstrated that intestinal regeneration of A. japonicus was closely linked to its enteric microorganisms. These microbiota-host interactions were notably affected by different PS-M/NPs, with PS-NPs exposure causing the most remarkable disruption of mutual symbiosis. The multi-omic approaches used here provide novel insights into the size-dependent toxicity of PS-M/NPs and highlight their detrimental effects on invertebrates in M/NPs-polluted marine benthic ecosystems.
Collapse
Affiliation(s)
- Ji Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yanru Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yize Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dongxue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yuanxue Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jinye Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wenqi Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Baiqin Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zitan Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
3
|
Raman J, Ko YJ, Kim JS, Kim DH, Kim SJ. Overproduction of Xanthophyll Pigment in Flavobacterium sp. JSWR-1 under Optimized Culture Conditions. J Microbiol Biotechnol 2024; 34:710-724. [PMID: 38044702 PMCID: PMC11016774 DOI: 10.4014/jmb.2310.10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Flavobacterium can synthesize xanthophyll, particularly the pigment zeaxanthin, which has significant economic value in nutrition and pharmaceuticals. Recently, the use of carotenoid biosynthesis by bacteria and yeast fermentation technology has shown to be very efficient and offers significant advantages in large-scale production, cost-effectiveness, and safety. In the present study, JSWR-1 strain capable of producing xanthophyll pigment was isolated from a freshwater reservoir in Wanju-gun, Republic of Korea. Based on the morphological, physiological, and molecular characteristics, JSWR-1 classified as belonging to the Flavobacterium species. The bacterium is strictly aerobic, Gram-negative, rod-shaped, and psychrophilic. The completed genome sequence of the strain Flavobacterium sp. JSWR-1 is predicted to be a single circular 3,425,829-bp chromosome with a G+C content of 35.2% and 2,941 protein-coding genes. The optimization of carotenoid production was achieved by small-scale cultivation, resulting in zeaxanthin being identified as the predominant carotenoid pigment. The enhancement of zeaxanthin biosynthesis by applying different light-irradiation, variations in pH and temperature, and adding carbon and nitrogen supplies to the growth medium. A significant increase in intracellular zeaxanthin concentrations was also recorded during fed-batch fermentation achieving a maximum of 16.69 ± 0.71 mg/l, corresponding to a product yield of 4.05 ± 0.15 mg zeaxanthin per gram cell dry weight. Batch and fed-batch culture extracts exhibit significant antioxidant activity. The results demonstrated that the JSWR-1 strain can potentially serve as a source for zeaxanthin biosynthesis.
Collapse
Affiliation(s)
- Jegadeesh Raman
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Young-Joon Ko
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jeong-Seon Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Da-Hye Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Soo-Jin Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
4
|
Cho WY, Lee PC. Metagenomic Analysis of Antarctic Ocean near the King Sejong Station Reveals the Diversity of Carotenoid Biosynthetic Genes. Microorganisms 2024; 12:390. [PMID: 38399795 PMCID: PMC10892129 DOI: 10.3390/microorganisms12020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Carotenoids, biotechnologically significant pigments, play crucial biological roles in marine microorganisms. While various environments have been explored to understand the diversity of carotenoids and their biosynthesis, the Antarctic Ocean remains relatively under-investigated. This study conducted a metagenomic analysis of seawater from two depths (16 and 25 m) near the King Sejong Station in the Antarctic Ocean. The analysis revealed a rich genetic diversity underlying C40 (astaxanthin, myxol, okenone, spheroidene, and spirilloxanthin), C30 (diaponeurosporene, diapolycopene, and staphyloxanthin), and C50 (C.p. 450) carotenoid biosynthesis in marine microorganisms, with notable differential gene abundances between depth locations. Exploring carotenoid pathway genes offers the potential for discovering diverse carotenoid structures of biotechnological value and better understanding their roles in individual microorganisms and broader ecosystems.
Collapse
Affiliation(s)
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea;
| |
Collapse
|
5
|
Silva SG, Nabhan Homsi M, Keller-Costa T, Rocha U, Costa R. Natural product biosynthetic potential reflects macroevolutionary diversification within a widely distributed bacterial taxon. mSystems 2023; 8:e0064323. [PMID: 38018967 PMCID: PMC10734526 DOI: 10.1128/msystems.00643-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE This is the most comprehensive study performed thus far on the biosynthetic potential within the Flavobacteriaceae family. Our findings reveal intertwined taxonomic and natural product biosynthesis diversification within the family. We posit that the carbohydrate, peptide, and secondary metabolism triad synergistically shaped the evolution of this keystone bacterial taxon, acting as major forces underpinning the broad host range and opportunistic-to-pathogenic behavior encompassed by species in the family. This study further breaks new ground for future research on select Flavobacteriaceae spp. as reservoirs of novel drug leads.
Collapse
Affiliation(s)
- Sandra Godinho Silva
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- iBB–Institute for Bioengineering and Biosciences and i4HB–Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Masun Nabhan Homsi
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Tina Keller-Costa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- iBB–Institute for Bioengineering and Biosciences and i4HB–Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Ulisses Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Rodrigo Costa
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- iBB–Institute for Bioengineering and Biosciences and i4HB–Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
6
|
Liu WJ, Gao JW, Zhang Y, Sun C, Xu L. Complete genome sequence of carotenoid-producing Aestuariibaculum lutulentum L182 T isolated from the tidal sediment. Mar Genomics 2023; 72:101074. [PMID: 38008534 DOI: 10.1016/j.margen.2023.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Aestuariibaculum lutulentum L182T (= KCTC 92530T = MCCC 1K08065T) was isolated from the tidal sediment collected in Beihai, People's Republic of China. The genome was sequenced and consisted of a single chromosome with the size of 3,782,725 bp and DNA G + C content of 35.1%. Genomic annotations demonstrated that it encoded 12 rRNA genes, 56 tRNA genes and 3210 ORFs. The percentages of ORFs assigned to CAZy, COG, and KEGG databases were 5.5, 86.2 and 45.5%, respectively. Comparative genomic analysis indicated that the pan- and core-genomes of the genus Aestuariibaculum consisted of 4826 and 2257 orthologous genes, respectively. Carbohydrate-active enzyme annotations of the genus Aestuariibaculum genomes revealed that they shared three polysaccharide lyase (PL) families including PL1, PL22 and PL42. Meanwhile, one carotenoid biosynthetic gene cluster related to biosynthesizing flexixanthin was found in the genus Aestuariibaculum. Furthermore, the core-genome of the genus Aestuariibaculum showed that this genus played a role in cleaving pectate, degrading ulvan, and biosynthesizing carotenoids. This study is a complete genomic report of the genus Aestuariibaculum and broadens understandings of its ecological roles and biotechnological applications.
Collapse
Affiliation(s)
- Wen-Jia Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, People's Republic of China
| | - Jia-Wei Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, People's Republic of China
| | - Yu Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, People's Republic of China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, People's Republic of China; Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China; Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, People's Republic of China; Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
7
|
Kim Y, Subramanian P, Choi H, Weon HY, Kim S, Kwon SW, Lee D, Han BH, Hong SB, Heo J. Five novel Hymenobacter species isolated from air: Hymenobacter cellulosilyticus sp. nov., Hymenobacter cellulosivorans sp. nov., Hymenobacter aerilatus sp. nov., Hymenobacter sublimis sp. nov. and Hymenobacter volaticus sp. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37725077 DOI: 10.1099/ijsem.0.006026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Five Hymenobacter strains isolated from air samples collected from the Suwon and Jeju regions of the Republic of Korea were studied using polyphasic taxonomic methods. Using 16S rRNA gene sequences and the resulting phylogenetic tree, the strains were primarily identified as members of the genus Hymenobacter. Digital DNA-DNA hybridization values and average nucleotide identities values for species delineation (70 and 95-96 %, respectively) between the five strains and their nearest type strains indicated that each strain represented a novel species. All strains were aerobic, Gram-stain-negative, mesophilic, rod-shaped and catalase- and oxidase-positive, with red to pink coloured colonies. The genome sizes of the five strains varied from 4.8 to 7.1 Mb and their G+C contents were between 54.1 and 59.4 mol%. Based on their phenotypic, chemotaxonomic and genotypic characteristics, we propose to classify these isolates into five novel species within the genus Hymenobacter for which we propose the names, Hymenobacter cellulosilyticus sp. nov., Hymenobacter cellulosivorans sp. nov., Hymenobacter aerilatus sp. nov., Hymenobacter sublimis sp. nov. and Hymenobacter volaticus sp. nov., with strains 5116 S-3T (=KACC 21925T=JCM 35216T), 5116 S-27T (=KACC 21926T=JCM 35217T), 5413 J-13T (=KACC 21928T=JCM 35219T), 5516 S-25T (=KACC 21931T=JCM 35222T) and 5420 S-77T (=KACC 21932T=JCM 35223T) as the type strains, respectively.
Collapse
Affiliation(s)
- Yiseul Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Parthiban Subramanian
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hyorim Choi
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Seunghwan Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Daseul Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Byeong-Hak Han
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| | - Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, Republic of Korea
| |
Collapse
|
8
|
Hussain A, Kumar SHK, Prathiviraj R, Kumar AA, Renjith K, Kiran GS, Selvin J. The genome of Symbiodiniaceae-associated Stutzerimonas frequens CAM01 reveals a broad spectrum of antibiotic resistance genes indicating anthropogenic drift in the Palk Bay coral reef of south-eastern India. Arch Microbiol 2023; 205:319. [PMID: 37626254 DOI: 10.1007/s00203-023-03656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
An increase in antibiotic pollution in reef areas will lead to the emergence of antibiotic-resistant bacteria, leading to ecological disturbances in the sensitive coral holobiont. This study provides insights into the genome of antibiotics-resistant Stutzerimonas frequens CAM01, isolated from Favites-associated Symbiodiniaceae of a near-shore polluted reef of Palk Bay, India. The draft genome contains 4.67 Mbp in size with 52 contigs. Further genome analysis revealed the presence of four antibiotic-resistant genes, namely, adeF, rsmA, APH (3")-Ib, and APH (6)-Id that provide resistance by encoding resistance-nodulation-cell division (RND) antibiotic efflux pump and aminoglycoside phosphotransferase. The isolate showed resistance against 73% of the antibiotics tested, concurrent with the predicted AMR genes. Four secondary metabolites, namely Aryl polyene, NRPS-independent-siderophore, terpenes, and ectoine were detected in the isolate, which may play a role in virulence and pathogenicity adaptation in microbes. This study provides key insights into the genome of Stutzerimonas frequens CAM01 and highlights the emergence of antibiotic-resistant bacteria in coral reef ecosystems.
Collapse
Grants
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Afreen Hussain
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - S Hari Krishna Kumar
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Ashish Ashwin Kumar
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Kalyani Renjith
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - G Seghal Kiran
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
9
|
Xie XD, Zhou Y, Sun YB, Yi SL, Zhao Y, Chen Q, Xie YH, Cao MX, Yu ML, Wei YY, Zhang L, Hu TJ. RNA-Seq and 16S rRNA Reveals That Tian-Dong-Tang-Gan Powder Alleviates Environmental Stress-Induced Decline in Immune and Antioxidant Function and Gut Microbiota Dysbiosis in Litopenaeus vannami. Antioxidants (Basel) 2023; 12:1262. [PMID: 37371991 DOI: 10.3390/antiox12061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Ammonia stress and nitrite stress can induce immune depression and oxidative stress in Litopenaeus vannami (L. vannamei). Earlier reports showed that L. vannamei immunity, resistance to ammonia stress, and resistance to nitrite stress improved after Tian-Dong-Tang-Gan Powder (TDTGP) treatment, but the mechanism is not clear. In this study, three thousand L. vannamei were fed different doses of TDTGP for 35 days and then subjected to ammonia and nitrite stress treatments for 72 h. Transcriptome and 16-Seq ribosomal RNA gene sequencing (16S rRNA-seq) were used to analyze hepatopancreas gene expression and changes in gut microbiota abundance in each group. The results showed that after TDTGP treatment, hepatopancreas mRNA expression levels of immunity- and antioxidant-related genes were increased, the abundance of Vibrionaceae in the gut microbiota was decreased, and the abundance of Rhodobacteraceae and Flavobacteriaceae was increased. In addition, after TDTGP treatment, the effects of ammonia and nitrite stress on the mRNA expression of Pu, cat-4, PPAF2, HO, Hsp90b1, etc. were reduced and the disruption of the gut microbiota was alleviated. In short, TDTGP can regulate the immunity and antioxidant of L. vannamei by increasing the expression levels of immunity- and antioxidant-related genes and regulating the abundance of Rhodobacteraceae and Flavobacteriaceae in the gut microbiota.
Collapse
Affiliation(s)
- Xiao-Dong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ying Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yu-Bo Sun
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shou-Li Yi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Qi Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ying-Hong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Mi-Xia Cao
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Mei-Ling Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ying-Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ling Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ting-Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
10
|
Polyakov NE, Focsan AL, Gao Y, Kispert LD. The Endless World of Carotenoids-Structural, Chemical and Biological Aspects of Some Rare Carotenoids. Int J Mol Sci 2023; 24:9885. [PMID: 37373031 PMCID: PMC10298575 DOI: 10.3390/ijms24129885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Carotenoids are a large and diverse group of compounds that have been shown to have a wide range of potential health benefits. While some carotenoids have been extensively studied, many others have not received as much attention. Studying the physicochemical properties of carotenoids using electron paramagnetic resonance (EPR) and density functional theory (DFT) helped us understand their chemical structure and how they interact with other molecules in different environments. Ultimately, this can provide insights into their potential biological activity and how they might be used to promote health. In particular, some rare carotenoids, such as sioxanthin, siphonaxanthin and crocin, that are described here contain more functional groups than the conventional carotenoids, or have similar groups but with some situated outside of the rings, such as sapronaxanthin, myxol, deinoxanthin and sarcinaxanthin. By careful design or self-assembly, these rare carotenoids can form multiple H-bonds and coordination bonds in host molecules. The stability, oxidation potentials and antioxidant activity of the carotenoids can be improved in host molecules, and the photo-oxidation efficiency of the carotenoids can also be controlled. The photostability of the carotenoids can be increased if the carotenoids are embedded in a nonpolar environment when no bonds are formed. In addition, the application of nanosized supramolecular systems for carotenoid delivery can improve the stability and biological activity of rare carotenoids.
Collapse
Affiliation(s)
- Nikolay E. Polyakov
- Institute of Chemical Kinetics & Combustion, Institutskaya Str. 3, 630090 Novosibirsk, Russia;
| | - A. Ligia Focsan
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, USA;
| | - Yunlong Gao
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Lowell D. Kispert
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
11
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
12
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
13
|
Kim DY, Jeong IC, Lee SY, Jeong YS, Han JE, Tak EJ, Lee JY, Kim PS, Hyun DW, Bae JW. Nocardioides palaemonis sp. nov. and Tessaracoccus palaemonis sp. nov., isolated from the gastrointestinal tract of lake prawn. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748471 DOI: 10.1099/ijsem.0.005643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Two novel Gram-stain-positive, non-motile and non-spore-forming bacterial strains, designated J2M5T and J1M15T, were isolated from the gastrointestinal tract of a lake prawn Palaemon paucidens. Strain J2M5T was an obligately aerobic bacterium that formed milky-coloured colonies and showed a rod-coccus cell cycle, while strain J1M15T was a facultatively aerobic bacterium that formed orangish-yellow-coloured colonies and showed rod-shaped cells. Strains J2M5T and J1M15T showed the highest 16S rRNA gene sequence similarity to Nocardioides ganghwensis JC2055T (98.63 %) and Tessaracoccus flavescens SST-39T (98.08 %), respectively. The whole-genome sequence of strain J2M5T was 4.52 Mbp in size and the genomic G+C content directly calculated from the genome sequence of strain J2M5T was 72.5 mol%. The whole-genome sequence of strain J1M15T was 3.20 Mbp in size and the genomic G+C content directly calculated from the genome sequence of strain J1M15T was 69.6mol %. Strains J2M5T and J1M15T showed high OrthoANI similarity to N. ganghwensis JC2055T (83.6 %) and T. flavescens (77.2 %), respectively. We analysed the genome sequences of strains J2M5T and J1M15T in terms of carbohydrate-active enzymes, antibiotic resistance genes and virulence factor genes. Strains J2M5T and J1M15T contained MK-8 (H4) and MK-9 (H4) as the predominant respiratory quinones, respectively. The major polar lipids of both strains were phosphatidylglycerol and diphosphatidylglycerol. Additionally, strain J2M5T possessed phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine. The cellular sugar components of strain J2M5T were ribose, mannose, glucose and galactose, and its cellular amino acid components were l-alanine and l-lysine. The cellular sugar components of strain J1M15T were rhamnose, ribose, mannose and glucose, and its cellular amino acid component was l-alanine. The major cellular fatty acids of strains J2M5T and J1M15T were iso-C16 : 0 and anteiso-C15 : 0, respectively. The multiple taxonomic analyses indicated that strains J2M5T and J1M15T represent novel species of the genus Nocardioides and Tessaracoccus, respectively. We propose the names Nocardioides palaemonis sp. nov. and Tessaracoccus palaemonis sp. nov. for strain J2M5T (=KCTC 49461T=CCUG 74767T) and strain J1M15T (=KCTC 49462T=CCUG 74766T), respectively.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In-Chul Jeong
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Yeon Lee
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yun-Seok Jeong
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeong Eun Han
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Euon Jung Tak
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - June-Young Lee
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Pil Soo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Wook Hyun
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
14
|
Ding J, Wu B, Chen L. Application of Marine Microbial Natural Products in Cosmetics. Front Microbiol 2022; 13:892505. [PMID: 35711762 PMCID: PMC9196241 DOI: 10.3389/fmicb.2022.892505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
As the market size of the cosmetics industry increases, the safety and effectiveness of new products face higher requirements. The marine environment selects for species of micro-organisms with metabolic pathways and adaptation mechanisms different from those of terrestrial organisms, resulting in their natural products exhibiting unique structures, high diversity, and significant biological activities. Natural products are usually safe and non-polluting. Therefore, considerable effort has been devoted to searching for cosmetic ingredients that are effective, safe, and natural for marine micro-organisms. However, marine micro-organisms can be difficult, or impossible, to culture because of their special environmental requirements. Metagenomics technology can help to solve this problem. Moreover, using marine species to produce more green and environmentally friendly products through biotransformation has become a new choice for cosmetic manufacturers. In this study, the natural products of marine micro-organisms are reviewed and evaluated with respect to various cosmetic applications.
Collapse
Affiliation(s)
- Jinwang Ding
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Baochuan Wu
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Liqun Chen
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- *Correspondence: Liqun Chen,
| |
Collapse
|
15
|
Steven R, Humaira Z, Natanael Y, Dwivany FM, Trinugroho JP, Dwijayanti A, Kristianti T, Tallei TE, Emran TB, Jeon H, Alhumaydhi FA, Radjasa OK, Kim B. Marine Microbial-Derived Resource Exploration: Uncovering the Hidden Potential of Marine Carotenoids. Mar Drugs 2022; 20:352. [PMID: 35736155 PMCID: PMC9229179 DOI: 10.3390/md20060352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Microbes in marine ecosystems are known to produce secondary metabolites. One of which are carotenoids, which have numerous industrial applications, hence their demand will continue to grow. This review highlights the recent research on natural carotenoids produced by marine microorganisms. We discuss the most recent screening approaches for discovering carotenoids, using in vitro methods such as culture-dependent and culture-independent screening, as well as in silico methods, using secondary metabolite Biosynthetic Gene Clusters (smBGCs), which involves the use of various rule-based and machine-learning-based bioinformatics tools. Following that, various carotenoids are addressed, along with their biological activities and metabolic processes involved in carotenoids biosynthesis. Finally, we cover the application of carotenoids in health and pharmaceutical industries, current carotenoids production system, and potential use of synthetic biology in carotenoids production.
Collapse
Affiliation(s)
- Ray Steven
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Zalfa Humaira
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Yosua Natanael
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Fenny M. Dwivany
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Joko P. Trinugroho
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, UK;
| | - Ari Dwijayanti
- CNRS@CREATE Ltd., 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore;
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Heewon Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Ocky Karna Radjasa
- Oceanography Research Center, The Earth Sciences and Maritime Research Organization, National Research and Innovation Agency, North Jakarta 14430, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| |
Collapse
|
16
|
Brinkmann S, Spohn MS, Schäberle TF. Bioactive natural products from Bacteroidetes. Nat Prod Rep 2022; 39:1045-1065. [PMID: 35315462 DOI: 10.1039/d1np00072a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Covering: up to end of January 2022Bacteria representing the phylum Bacteroidetes produce a diverse range of natural products, including polyketides, peptides and lactams. Here, we discuss unique aspects of the bioactive compounds discovered thus far, and the corresponding biosynthetic pathways if known, providing a comprehensive overview of the Bacteroidetes as a natural product reservoir.
Collapse
Affiliation(s)
- Stephan Brinkmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Marius S Spohn
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Till F Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany. .,Institute for Insect Biotechnology, Justus Liebig University of Giessen, 35392 Giessen, Germany.,German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
17
|
Pietrasik S, Cichon N, Bijak M, Gorniak L, Saluk-Bijak J. Carotenoids from Marine Sources as a New Approach in Neuroplasticity Enhancement. Int J Mol Sci 2022; 23:ijms23041990. [PMID: 35216103 PMCID: PMC8877331 DOI: 10.3390/ijms23041990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people experience disorders related to the central nervous system (CNS). Thus, new forms of therapy, which may be helpful in repairing processes' enhancement and restoring declined brain functions, are constantly being sought. One of the most relevant physiological processes occurring in the brain for its entire life is neuroplasticity. It has tremendous significance concerning CNS disorders since neurological recovery mainly depends on restoring its structural and functional organization. The main factors contributing to nerve tissue damage are oxidative stress and inflammation. Hence, marine carotenoids, abundantly occurring in the aquatic environment, being potent antioxidant compounds, may play a pivotal role in nerve cell protection. Furthermore, recent results revealed another valuable characteristic of these compounds in CNS therapy. By inhibiting oxidative stress and neuroinflammation, carotenoids promote synaptogenesis and neurogenesis, consequently presenting neuroprotective activity. Therefore, this paper focuses on the carotenoids obtained from marine sources and their impact on neuroplasticity enhancement.
Collapse
Affiliation(s)
- Sylwia Pietrasik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (S.P.); (J.S.-B.)
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
- Correspondence:
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (S.P.); (J.S.-B.)
| |
Collapse
|
18
|
Jeong SW, Yang JE, Choi YJ. Isolation and Characterization of a Yellow Xanthophyll Pigment-Producing Marine Bacterium, Erythrobacter sp. SDW2 Strain, in Coastal Seawater. Mar Drugs 2022; 20:md20010073. [PMID: 35049928 PMCID: PMC8777836 DOI: 10.3390/md20010073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Xanthophylls, a yellow pigment belonging to the carotenoid family, have attracted much attention for industrial applications due to their versatile nature. We report the isolation of a homo xanthophyll pigment-producing marine bacterium, identified as the Erythrobacter sp. SDW2 strain, from coastal seawater. The isolated Erythrobacter sp. SDW2 strain can produce 263 ± 12.9 mg/L (89.7 ± 5.4 mg/g dry cell weight) of yellow xanthophyll pigment from 5 g/L of glucose. Moreover, the xanthophyll pigment produced by the SDW2 strain exhibits remarkable antioxidative activities, confirmed by the DPPH (73.4 ± 1.4%) and ABTS (84.9 ± 0.7%) assays. These results suggest that the yellow xanthophyll pigment-producing Erythrobacter sp. SDW2 strain could be a promising industrial microorganism for producing marine-derived bioactive compounds with potential for foods, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Sun Wook Jeong
- School of Environmental Engineering, University of Seoul, Seoul 02504, Korea;
| | - Jung Eun Yang
- World Institute ok Kimchi, Gwangju 61775, Korea
- Correspondence: (J.E.Y.); (Y.J.C.); Tel.: +82-62-610-1753 (J.E.Y.); +82-02-6490-2873 (Y.J.C.)
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul 02504, Korea;
- Correspondence: (J.E.Y.); (Y.J.C.); Tel.: +82-62-610-1753 (J.E.Y.); +82-02-6490-2873 (Y.J.C.)
| |
Collapse
|
19
|
Manochkumar J, Doss CGP, Efferth T, Ramamoorthy S. Tumor preventive properties of selected marine pigments against colon and breast cancer. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Dungan AM, Bulach D, Lin H, van Oppen MJH, Blackall LL. Development of a free radical scavenging bacterial consortium to mitigate oxidative stress in cnidarians. Microb Biotechnol 2021; 14:2025-2040. [PMID: 34259383 PMCID: PMC8449677 DOI: 10.1111/1751-7915.13877] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 06/13/2021] [Indexed: 12/19/2022] Open
Abstract
Corals are colonized by symbiotic microorganisms that profoundly influence the animal’s health. One noted symbiont is a single‐celled alga (in the dinoflagellate family Symbiodiniaceae), which provides the coral with most of its fixed carbon. Thermal stress increases the production of reactive oxygen species (ROS) by Symbiodiniaceae during photosynthesis. ROS can both damage the algal symbiont’s photosynthetic machinery and inhibit its repair, causing a positive feedback loop for the toxic accumulation of ROS. If not scavenged by the antioxidant network, excess ROS may trigger a signaling cascade ending with the coral host and algal symbiont disassociating in a process known as bleaching. We use Exaiptasia diaphana as a model for corals and constructed a consortium comprised of E. diaphana–associated bacteria capable of neutralizing ROS. We identified six strains with high free radical scavenging (FRS) ability belonging to the families Alteromonadaceae, Rhodobacteraceae, Flavobacteriaceae and Micrococcaceae. In parallel, we established a consortium of low FRS isolates consisting of genetically related strains. Bacterial whole genome sequences were used to identify key pathways that are known to influence ROS.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of Biosciences, The University of Melbourne, Melbourne, Vic., Australia
| | - Dieter Bulach
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Vic., Australia
| | - Heyu Lin
- School of Earth Sciences, The University of Melbourne, Melbourne, Vic., Australia
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, Vic., Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Linda L Blackall
- School of Biosciences, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
21
|
Pereira AG, Otero P, Echave J, Carreira-Casais A, Chamorro F, Collazo N, Jaboui A, Lourenço-Lopes C, Simal-Gandara J, Prieto MA. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Mar Drugs 2021; 19:md19040188. [PMID: 33801636 PMCID: PMC8067268 DOI: 10.3390/md19040188] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Algae are considered pigment-producing organisms. The function of these compounds in algae is to carry out photosynthesis. They have a great variety of pigments, which can be classified into three large groups: chlorophylls, carotenoids, and phycobilins. Within the carotenoids are xanthophylls. Xanthophylls (fucoxanthin, astaxanthin, lutein, zeaxanthin, and β-cryptoxanthin) are a type of carotenoids with anti-tumor and anti-inflammatory activities, due to their chemical structure rich in double bonds that provides them with antioxidant properties. In this context, xanthophylls can protect other molecules from oxidative stress by turning off singlet oxygen damage through various mechanisms. Based on clinical studies, this review shows the available information concerning the bioactivity and biological effects of the main xanthophylls present in algae. In addition, the algae with the highest production rate of the different compounds of interest were studied. It was observed that fucoxanthin is obtained mainly from the brown seaweeds Laminaria japonica, Undaria pinnatifida, Hizikia fusiformis, Sargassum spp., and Fucus spp. The main sources of astaxanthin are the microalgae Haematococcus pluvialis, Chlorella zofingiensis, and Chlorococcum sp. Lutein and zeaxanthin are mainly found in algal species such as Scenedesmus spp., Chlorella spp., Rhodophyta spp., or Spirulina spp. However, the extraction and purification processes of xanthophylls from algae need to be standardized to facilitate their commercialization. Finally, we assessed factors that determine the bioavailability and bioaccesibility of these molecules. We also suggested techniques that increase xanthophyll’s bioavailability.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Anxo Carreira-Casais
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Nicolas Collazo
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Amira Jaboui
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
22
|
Silva TRE, Silva LCF, de Queiroz AC, Alexandre Moreira MS, de Carvalho Fraga CA, de Menezes GCA, Rosa LH, Bicas J, de Oliveira VM, Duarte AWF. Pigments from Antarctic bacteria and their biotechnological applications. Crit Rev Biotechnol 2021; 41:809-826. [PMID: 33622142 DOI: 10.1080/07388551.2021.1888068] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pigments from microorganisms have triggered great interest in the market, mostly by their "natural" appeal, their favorable production conditions, in addition to the potential new chemical structures or naturally overproducing strains. They have been used in: food, feed, dairy, textile, pharmaceutical, and cosmetic industries. The high rate of pigment production in microorganisms recovered from Antarctica in response to selective pressures such as: high UV radiation, low temperatures, and freezing and thawing cycles makes this a unique biome which means that much of its biological heritage cannot be found elsewhere on the planet. This vast arsenal of pigmented molecules has different functions in bacteria and may exhibit different biotechnological activities, such as: extracellular sunscreens, photoprotective function, antimicrobial activity, biodegradability, etc. However, many challenges for the commercial use of these compounds have yet to be overcome, such as: the low stability of natural pigments in cosmetic formulations, the change in color when subjected to pH variations, the low yield and the high costs in their production. This review surveys the different types of natural pigments found in Antarctic bacteria, classifying them according to their chemical structure. Finally, we give an overview of the main pigments that are used commercially today.
Collapse
Affiliation(s)
- Tiago Rodrigues E Silva
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrárias, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | | | | | | | | | | | - Luiz Henrique Rosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliano Bicas
- Departamento de Ciência de Alimentos, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | - Valéria Maia de Oliveira
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrárias, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | | |
Collapse
|
23
|
Varasteh T, Hamerski L, Tschoeke D, Lima AS, Garcia G, Cosenza CAN, Thompson C, Thompson F. Conserved Pigment Profiles in Phylogenetically Diverse Symbiotic Bacteria Associated with the Corals Montastraea cavernosa and Mussismilia braziliensis. MICROBIAL ECOLOGY 2021; 81:267-277. [PMID: 32681284 DOI: 10.1007/s00248-020-01551-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Pigmented bacterial symbionts play major roles in the health of coral holobionts. However, there is scarce knowledge on the diversity of these microbes for several coral species. To gain further insights into holobiont health, pigmented bacterial isolates of Fabibacter pacificus (Bacteroidetes; n = 4), Paracoccus marcusii (Alphaproteobacteria; n = 1), and Pseudoalteromonas shioyasakiensis (Gammaproteobacteria; n = 1) were obtained from the corals Mussismilia braziliensis and Montastraea cavernosa in Abrolhos Bank, Brazil. Cultures of these bacterial symbionts produced strong antioxidant activity (catalase, peroxidase, and oxidase). To explore these bacterial isolates further, we identified their major pigments by HPLC and mass spectrometry. The six phylogenetically diverse symbionts had similar pigment patterns and produced myxol and keto-carotene. In addition, similar carotenoid gene clusters were confirmed in the whole genome sequences of these symbionts, which reinforce their antioxidant potential. This study highlights the possible roles of bacterial symbionts in Montastraea and Mussismilia holobionts.
Collapse
Affiliation(s)
- Tooba Varasteh
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Lidilhone Hamerski
- Instituto de Pesquisas de Produtos Naturais, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Diogo Tschoeke
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Arthur Silva Lima
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Gizele Garcia
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil
- Departamento de Ensino de Graduação, Universidade Federal do Rio de Janeiro - Campus UFRJ - Macaé Professor Aloisio Teixeira, Macaé, Rio de Janeiro, RJ, 27930-480, Brazil
| | | | - Cristiane Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil
| | - Fabiano Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brazil.
- SAGE - COPPE, Centro de Gestão Tecnológica - CT2, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
24
|
Nawaz A, Chaudhary R, Shah Z, Dufossé L, Fouillaud M, Mukhtar H, ul Haq I. An Overview on Industrial and Medical Applications of Bio-Pigments Synthesized by Marine Bacteria. Microorganisms 2020; 9:microorganisms9010011. [PMID: 33375136 PMCID: PMC7822155 DOI: 10.3390/microorganisms9010011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Marine bacterial species contribute to a significant part of the oceanic population, which substantially produces biologically effectual moieties having various medical and industrial applications. The use of marine-derived bacterial pigments displays a snowballing effect in recent times, being natural, environmentally safe, and health beneficial compounds. Although isolating marine bacteria is a strenuous task, these are still a compelling subject for researchers, due to their promising avenues for numerous applications. Marine-derived bacterial pigments serve as valuable products in the food, pharmaceutical, textile, and cosmetic industries due to their beneficial attributes, including anticancer, antimicrobial, antioxidant, and cytotoxic activities. Biodegradability and higher environmental compatibility further strengthen the use of marine bio-pigments over artificially acquired colored molecules. Besides that, hazardous effects associated with the consumption of synthetic colors further substantiated the use of marine dyes as color additives in industries as well. This review sheds light on marine bacterial sources of pigmented compounds along with their industrial applicability and therapeutic insights based on the data available in the literature. It also encompasses the need for introducing bacterial bio-pigments in global pigment industry, highlighting their future potential, aiming to contribute to the worldwide economy.
Collapse
Affiliation(s)
- Ali Nawaz
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Rida Chaudhary
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Zinnia Shah
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Laurent Dufossé
- CHEMBIOPRO Lab, ESIROI Agroalimentaire, University of Réunion Island, 97400 Saint-Denis, France;
- Correspondence: ; Tel.: +33-668-731-906
| | - Mireille Fouillaud
- CHEMBIOPRO Lab, ESIROI Agroalimentaire, University of Réunion Island, 97400 Saint-Denis, France;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| |
Collapse
|
25
|
Separation of the Glycosylated Carotenoid Myxoxanthophyll from Synechocystis Salina by HPCCC and Evaluation of Its Antioxidant, Tyrosinase Inhibitory and Immune-Stimulating Properties. SEPARATIONS 2020. [DOI: 10.3390/separations7040073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Global demand for natural pigments has increased in the past few years. Myxoxanthophyll, a glycosylated monocyclic carotenoid, is a pigment that occurs naturally in cyanobacteria but no scalable isolation process has been developed to obtain it from its natural source to date. In this study, myxoxanthophyll was isolated from unicellular cyanobacterium Synechocystis salina (S. salina) using high-performance countercurrent chromatography (HPCCC), where the lower phase of the biphasic solvent system composed of n-heptane–ethanol–water (2:4:4, v/v/v) was used as a mobile phase, whereas its upper phase was the stationary phase. For the HPCCC isolation, a multi-injection method was developed, and four consecutive sample injections (70 mg each) were performed, obtaining, in total, 20 mg of myxoxanthophyll, which was finally purified with high-performance liquid chromatography (HPLC). Overall, a final myxoxanthophyll yield of 15 mg (98% purity) was obtained. The target pigment showed a weak antioxidant and tyrosinase inhibitory effect, and exhibited immune-stimulating properties by activating human granulocytes. The results presented here form a basis for the large-scale production of myxoxanthophyll, and show the potential benefits of this pigment for human health.
Collapse
|
26
|
Zhang H, Wang Q, Zhao J, Liu S, Zhang L, Zhao Y, Yang H, Sun L. Quantitative microbiome profiling links microbial community variation to the intestine regeneration rate of the sea cucumber Apostichopus japonicus. Genomics 2020; 112:5012-5020. [PMID: 32919016 DOI: 10.1016/j.ygeno.2020.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 09/06/2020] [Indexed: 11/26/2022]
Abstract
The intestinal microbiota may play important roles in regenerating intestine of the sea cucumber Apostichopus japonicus, the underlying mechanism remains unclear. In the present study, a germ-free sea cucumber model was developed, and the intestinal microbial differentiation of faster and slower regenerating A. japonicus individuals during intestine regeneration was analyzed. The results revealed that depletion of the intestinal microbiota resulted in elevated abundance of the potential key players Flavobacteriaceae and Rhodobacteraceae during intestine regeneration and thus promoted the intestine regeneration rate of A. japonicus. Metagenomic analysis revealed that the increased abundance of Flavobacteriaceae elevated the enrichment of genes associated with carbohydrate utilization, whereas the abundant Rhodobacteraceae-enriched genes were associated with polyhydroxybutyrate production. We identified microbiota abundance as a key driver of microbial community alterations, especially beneficial microbiota members, in the developing intestine of A. japonicus. This study provides new insights into the mechanism of host-microbiota interactions related to organ regeneration.
Collapse
Affiliation(s)
- Hongxia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Qing Wang
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jianmin Zhao
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Ye Zhao
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, PR China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
27
|
Gavriilidou A, Gutleben J, Versluis D, Forgiarini F, van Passel MWJ, Ingham CJ, Smidt H, Sipkema D. Comparative genomic analysis of Flavobacteriaceae: insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis. BMC Genomics 2020; 21:569. [PMID: 32819293 PMCID: PMC7440613 DOI: 10.1186/s12864-020-06971-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/05/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Members of the bacterial family Flavobacteriaceae are widely distributed in the marine environment and often found associated with algae, fish, detritus or marine invertebrates. Yet, little is known about the characteristics that drive their ubiquity in diverse ecological niches. Here, we provide an overview of functional traits common to taxonomically diverse members of the family Flavobacteriaceae from different environmental sources, with a focus on the Marine clade. We include seven newly sequenced marine sponge-derived strains that were also tested for gliding motility and antimicrobial activity. RESULTS Comparative genomics revealed that genome similarities appeared to be correlated to 16S rRNA gene- and genome-based phylogeny, while differences were mostly associated with nutrient acquisition, such as carbohydrate metabolism and gliding motility. The high frequency and diversity of genes encoding polymer-degrading enzymes, often arranged in polysaccharide utilization loci (PULs), support the capacity of marine Flavobacteriaceae to utilize diverse carbon sources. Homologs of gliding proteins were widespread among all studied Flavobacteriaceae in contrast to members of other phyla, highlighting the particular presence of this feature within the Bacteroidetes. Notably, not all bacteria predicted to glide formed spreading colonies. Genome mining uncovered a diverse secondary metabolite biosynthesis arsenal of Flavobacteriaceae with high prevalence of gene clusters encoding pathways for the production of antimicrobial, antioxidant and cytotoxic compounds. Antimicrobial activity tests showed, however, that the phenotype differed from the genome-derived predictions for the seven tested strains. CONCLUSIONS Our study elucidates the functional repertoire of marine Flavobacteriaceae and highlights the need to combine genomic and experimental data while using the appropriate stimuli to unlock their uncharted metabolic potential.
Collapse
Affiliation(s)
- Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Johanna Gutleben
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Francesca Forgiarini
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mark W. J. van Passel
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Present address: Ministry of Health, Welfare and Sport, Parnassusplein 5, 2511 VX, The Hague, The Netherlands
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
28
|
Genç Y, Bardakci H, Yücel Ç, Karatoprak GŞ, Küpeli Akkol E, Hakan Barak T, Sobarzo-Sánchez E. Oxidative Stress and Marine Carotenoids: Application by Using Nanoformulations. Mar Drugs 2020; 18:md18080423. [PMID: 32823595 PMCID: PMC7459739 DOI: 10.3390/md18080423] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Carotenoids are natural fat-soluble pigments synthesized by plants, algae, fungi and microorganisms. They are responsible for the coloration of different photosynthetic organisms. Although they play a role in photosynthesis, they are also present in non-photosynthetic plant tissues, fungi, and bacteria. These metabolites have mainly been used in food, cosmetics, and the pharmaceutical industry. In addition to their utilization as pigmentation, they have significant therapeutically applications, such as improving immune system and preventing neurodegenerative diseases. Primarily, they have attracted attention due to their antioxidant activity. Several statistical investigations indicated an association between the use of carotenoids in diets and a decreased incidence of cancer types, suggesting the antioxidant properties of these compounds as an important factor in the scope of the studies against oxidative stress. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. Numerous of bioactive compounds such as marine carotenoids have low stability, are poorly absorbed, and own very limited bioavailability. The new technique is nanoencapsulation, which can be used to preserve marine carotenoids and their original properties during processing, storage, improve their physiochemical properties and increase their health-promoting effects. This review aims to describe the role of marine carotenoids, their potential applications and different types of advanced nanoformulations preventing and treating oxidative stress related disorders.
Collapse
Affiliation(s)
- Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey;
| | - Hilal Bardakci
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| |
Collapse
|
29
|
Alves A, Sousa E, Kijjoa A, Pinto M. Marine-Derived Compounds with Potential Use as Cosmeceuticals and Nutricosmetics. Molecules 2020; 25:molecules25112536. [PMID: 32486036 PMCID: PMC7321322 DOI: 10.3390/molecules25112536] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The cosmetic industry is among the fastest growing industries in the last decade. As the beauty concepts have been revolutionized, many terms have been coined to accompany the innovation of this industry, since the beauty products are not just confined to those that are applied to protect and enhance the appearance of the human body. Consequently, the terms such as cosmeceuticals and nutricosmetics have emerged to give a notion of the health benefits of the products that create the beauty from inside to outside. In the past years, natural products-based cosmeceuticals have gained a huge amount of attention not only from researchers but also from the public due to the general belief that they are harmless. Notably, in recent years, the demand for cosmeceuticals from the marine resources has been exponentially on the rise due to their unique chemical and biological properties that are not found in terrestrial resources. Therefore, the present review addresses the importance of marine-derived compounds, stressing new chemical entities with cosmeceutical potential from the marine natural resources and their mechanisms of action by which these compounds exert on the body functions as well as their related health benefits. Marine environments are the most important reservoir of biodiversity that provide biologically active substances whose potential is still to be discovered for application as pharmaceuticals, nutraceuticals, and cosmeceuticals. Marine organisms are not only an important renewable source of valuable bulk compounds used in cosmetic industry such as agar and carrageenan, which are used as gelling and thickening agents to increase the viscosity of cosmetic formulations, but also of small molecules such as ectoine (to promote skin hydration), trichodin A (to prevent product alteration caused by microbial contamination), and mytiloxanthin (as a coloring agent). Marine-derived molecules can also function as active ingredients, being the main compounds that determine the function of cosmeceuticals such as anti-tyrosinase (kojic acid), antiacne (sargafuran), whitening (chrysophanol), UV protection (scytonemin, mycosporine-like amino acids (MAAs)), antioxidants, and anti-wrinkle (astaxanthin and PUFAs).
Collapse
Affiliation(s)
- Ana Alves
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| |
Collapse
|
30
|
García-Romo JS, Noguera-Artiaga L, Gálvez-Iriqui AC, Hernández-Zazueta MS, Valenzuela-Cota DF, González-Vega RI, Plascencia-Jatomea M, Burboa-Zazueta MG, Sandoval-Petris E, Robles-Sánchez RM, Juárez J, Hernández-Martínez J, Santacruz-Ortega HDC, Burgos-Hernández A. Antioxidant, antihemolysis, and retinoprotective potentials of bioactive lipidic compounds from wild shrimp (Litopenaeus stylirostris) muscle. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1719210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joel Said García-Romo
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Mexico
| | - Luis Noguera-Artiaga
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, Grupo Calidad y Seguridad Alimentaria, Alicante, Spain
| | | | | | | | | | | | | | - Edgar Sandoval-Petris
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, Mexico
| | | | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Hermosillo, Mexico
| | | | | | - Armando Burgos-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Mexico
| |
Collapse
|
31
|
Kallscheuer N, Moreira C, Airs R, Llewellyn CA, Wiegand S, Jogler C, Lage OM. Pink- and orange-pigmented Planctomycetes produce saproxanthin-type carotenoids including a rare C 45 carotenoid. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:741-748. [PMID: 31600855 DOI: 10.1111/1758-2229.12796] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Planctomycetes are ubiquitous and environmentally important Gram-negative aquatic bacteria with key roles in global carbon and nitrogen cycles. Many planctomycetal species have a pink or orange colour and have been suggested to produce carotenoids. Potential applications as food colorants or anti-oxidants have been proposed. Hitherto, the planctomycetal metabolism is largely unexplored and the strain pigmentation has not been explored. For a holistic view of the complex planctomycetal physiology, we analysed carotenoid profiles of the pink-pigmented strain Rhodopirellula rubra LF2T and of the orange strain Rubinisphaera brasiliensis Gr7. During LC-MS/MS analysis of culture extracts, we could identify three saproxanthin-type carotenoids including a rare C45 carotenoid. These compounds, saproxanthin, dehydroflexixanthin and 2'-isopentenyldehydrosaproxanthin, derive from the common carotenoid precursor lycopene and are characterized by related end groups, namely a 3-hydroxylated β-carotene-like cyclohexene ring as one end group and simple hydration on the other end of the molecule. Based on the observed molecule structure we present putative pathways for their biosynthesis. Results support Planctomycetes as a promising, yet mostly untapped source of carotenoids.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Department of Microbiology, Radboud University, Institute for Water and Wetland Research (IWWR), Nijmegen, The Netherlands
| | - Catia Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ruth Airs
- Plymouth Marine Laboratory (PML), Plymouth, UK
| | - Carole A Llewellyn
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Institute for Water and Wetland Research (IWWR), Nijmegen, The Netherlands
| | - Christian Jogler
- Department of Microbiology, Radboud University, Institute for Water and Wetland Research (IWWR), Nijmegen, The Netherlands
| | - Olga M Lage
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Jeong YS, Kang W, Sung H, Lee JY, Yun JH, Shin NR, Kim HS, Lee SY, Han JE, Lee JY, Tak EJ, Kim PS, Hyun DW, Jung MJ, Whon TW, Kang MS, Lee KE, Lee BH, Bae JW. Flammeovirga pectinis sp. nov., isolated from the gut of the Korean scallop, Patinopecten yessoensis. Int J Syst Evol Microbiol 2019; 70:499-504. [PMID: 31613737 DOI: 10.1099/ijsem.0.003783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, aerobic, rod-shaped, reddish-orange-coloured, gliding bacterial strain, designated L12M1T, was isolated from the gut of the Korean scallop, Patinopecten yessoensis. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain L12M1T formed a monophyletic clade with the strains in the genus Flammeovirga and showed highest 16S rRNA gene sequence similarity to Flammeovirga kamogawensis YS10T (98.66 %). The major cellular fatty acids of strain L12M1T were iso-C15 : 0 and C20 : 4ω6,9,12,15c. The predominant isoprenoid quinone was MK-7. The major polyamines were spermidine, cadaverine and the minor polyamine was putrescine. The DNA G+C content was 32.1 mol%. The phylogenetic, phenotypic, biochemical, chemotaxonomic and genotypic results indicated that strain L12M1T represents a novel species of the genus Flammeovirga, for which the name Flammeovirga pectinis sp. nov. is proposed. The type strain is L12M1T (=KCTC 62750T=JCM 33169T).
Collapse
Affiliation(s)
- Yun-Seok Jeong
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woorim Kang
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hojun Sung
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - June-Young Lee
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Hyun Yun
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Ri Shin
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Sik Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Yeon Lee
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeong Eun Han
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Yun Lee
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Euon Jung Tak
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Pil Soo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Wook Hyun
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi-Ja Jung
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Woong Whon
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung-Suk Kang
- Biological Resources Utilization Department, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Byoung-Hee Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
33
|
Zhang H, Wang Q, Liu S, Huo D, Zhao J, Zhang L, Zhao Y, Sun L, Yang H. Genomic and Metagenomic Insights Into the Microbial Community in the Regenerating Intestine of the Sea Cucumber Apostichopus japonicus. Front Microbiol 2019; 10:1165. [PMID: 31214136 PMCID: PMC6558059 DOI: 10.3389/fmicb.2019.01165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
Host-intestine microbiota interactions have been widely studied in aquatic animals, but these interactions in the intestine regeneration process of the sea cucumber Apostichopus japonicus have been rarely investigated. To understand how intestine regeneration impacts the developing intestinal microbiome composition and function, we performed a case study to characterize the intestinal microbial composition and functional genes of A. japonicus during intestine regeneration stages. High-throughput 16S rRNA gene sequencing revealed significantly different intestine microbiota compositions in different regeneration stages. The phylogenetic diversity and composition of the intestinal microbiota changed significantly in the early regeneration stage and tended to recover in the end stage. During the regeneration process, the abundance of Bacteroidetes and Rhodobacterales increased significantly. A network analysis revealed that Rhodobacteraceae and Flavobacteriaceae may function as keystone taxa in the intestinal microbial community of A. japonicus during intestine regeneration. Metagenomic analyses of representative samples revealed that the microbiomes of regenerating intestines were enriched in genes facilitating cell proliferation, digestion and immunity. The increased abundance of Bacteroidetes elevated the enrichment of genes associated with carbohydrate utilization. Some functional features in the subsystem category changed in a pattern that was consistent with the changing pattern of microbiota composition during intestine regeneration. Our results revealed that seemingly regular alterations in the intestinal microbiome composition and function are associated with intestine regeneration stages. Intestinal microbiota can increase the abundance of beneficial bacterial members and upregulate related functional genes to adapt to intestine regeneration and reconstruct a stable community structure. This study provides a new insight into the mechanism of the host-microbiota interaction response to organ regeneration.
Collapse
Affiliation(s)
- Hongxia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Qing Wang
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianmin Zhao
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhao
- Ocean School, Yantai University, Yantai, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Pandey A. Pharmacological Potential of Marine Microbes. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [DOI: 10.1007/978-3-030-04675-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Torregrosa-Crespo J, Montero Z, Fuentes JL, Reig García-Galbis M, Garbayo I, Vílchez C, Martínez-Espinosa RM. Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganisms. Mar Drugs 2018; 16:E203. [PMID: 29890662 PMCID: PMC6025630 DOI: 10.3390/md16060203] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are among the most abundant natural pigments available in nature. These pigments have received considerable attention because of their biotechnological applications and, more importantly, due to their potential beneficial uses in human healthcare, food processing, pharmaceuticals and cosmetics. These bioactive compounds are in high demand throughout the world; Europe and the USA are the markets where the demand for carotenoids is the highest. The in vitro synthesis of carotenoids has sustained their large-scale production so far. However, the emerging modern standards for a healthy lifestyle and environment-friendly practices have given rise to a search for natural biocompounds as alternatives to synthetic ones. Therefore, nowadays, biomass (vegetables, fruits, yeast and microorganisms) is being used to obtain naturally-available carotenoids with high antioxidant capacity and strong color, on a large scale. This is an alternative to the in vitro synthesis of carotenoids, which is expensive and generates a large number of residues, and the compounds synthesized are sometimes not active biologically. In this context, marine biomass has recently emerged as a natural source for both common and uncommon valuable carotenoids. Besides, the cultivation of marine microorganisms, as well as the downstream processes, which are used to isolate the carotenoids from these microorganisms, offer several advantages over the other approaches that have been explored previously. This review summarizes the general properties of the most-abundant carotenoids produced by marine microorganisms, focusing on the genuine/rare carotenoids that exhibit interesting features useful for potential applications in biotechnology, pharmaceuticals, cosmetics and medicine.
Collapse
Affiliation(s)
- Javier Torregrosa-Crespo
- Department of Agrochemistry and Biochemistry, Biochemistry and Molecular Biology division, Faculty of Science, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - Zaida Montero
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Juan Luis Fuentes
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Manuel Reig García-Galbis
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Atacama, Copayapu 2862, CP 1530000 Copiapó, Chile.
| | - Inés Garbayo
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Carlos Vílchez
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Rosa María Martínez-Espinosa
- Department of Agrochemistry and Biochemistry, Biochemistry and Molecular Biology division, Faculty of Science, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| |
Collapse
|
36
|
Hameed A, Shahina M, Huang HC, Lai WA, Lin SY, Stothard P, Young CC. Complete genome sequence of Siansivirga zeaxanthinifaciens CC-SAMT-1 T, a flavobacterium isolated from coastal surface seawater. Mar Genomics 2018; 37:21-25. [PMID: 33250121 DOI: 10.1016/j.margen.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/24/2022]
Abstract
Here we present the complete genome sequence of Siansivirga zeaxanthinifaciens CC-SAMT-1T, a flavobacterium isolated from coastal surface seawater. A 3.3Mb genome revealed remarkable specialization of this bacterium particularly in the degradation of sulfated polysaccharides available as detritus or in dissolved phase. Besides utilizing high molecular weight organic biopolymers, this strain appears to accomplish assimilatory sulfate reduction, sulfide oxidation, and acquisition and inter-conversion of inorganic carbon. Genes encoding zeaxanthin and three different kinds of DNA photolyase/cryptochrome (senses blue light) were present, while genes that code for blue light sensing BLUF domain proteins and red/far-red light sensing phytochromes were absent. Furthermore, CC-SAMT-1T lacked the rhodopsin photosystem and all other genes that confer any other known forms of phototrophy. The genomic data revealed that CC-SAMT-1T is highly adapted to sulfur-rich coastal environments, where it most likely contributes to marine carbon and sulfur cycles by metabolizing sulfated polysaccharides as well as inorganic sulfur.
Collapse
Affiliation(s)
- Asif Hameed
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan
| | - Mariyam Shahina
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsin-Chieh Huang
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-An Lai
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Yao Lin
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 1427 College Plaza, Edmonton, Canada
| | - Chiu-Chung Young
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 402, Taiwan; Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
37
|
Galasso C, Corinaldesi C, Sansone C. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Antioxidants (Basel) 2017; 6:E96. [PMID: 29168774 PMCID: PMC5745506 DOI: 10.3390/antiox6040096] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 01/02/2023] Open
Abstract
As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene) that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein), which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i) the biological functions of carotenoids and their benefits for human health, (ii) the most common carotenoids from marine organisms and (iii) carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.
Collapse
Affiliation(s)
- Christian Galasso
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Università Politecnica delle Marche, 60121 Ancona, Italy.
| | | |
Collapse
|
38
|
Abstract
Marine resources represent an interesting source of active ingredients for the cosmetics industry. Algae (macro and micro) are rich in proteins, amino acids, carbohydrates, vitamins (A, B, and C) and oligo-elements such as copper, iron and zinc. All those active principles play roles in hydration, firming, slimming, shine and protection. Marine organisms inhabit a wide spectrum of habitats. Photo-protective compounds can be obtained from organisms subjected to strong light radiation, such as in tropical systems or in shallow water. In the same way, molecules with antioxidant potential can be obtained from microorganisms inhabiting extreme systems such as hydrothermal vents. For example, marine bacteria collected around deep-sea hydrothermal vents produce complex and innovative polysaccharides in the laboratory which are useful in cosmetics. There are many properties that will be put forward by the cosmetic industries.
Collapse
|
39
|
Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Mar Drugs 2017; 15:md15040118. [PMID: 28417932 PMCID: PMC5408264 DOI: 10.3390/md15040118] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 11/29/2022] Open
Abstract
The oceans encompass a wide range of habitats and environmental conditions, which host a huge microbial biodiversity. The unique characteristics of several marine systems have driven a variety of biological adaptations, leading to the production of a large spectrum of bioactive molecules. Fungi, fungi-like protists (such as thraustochytrids) and bacteria are among the marine organisms with the highest potential of producing bioactive compounds, which can be exploited for several commercial purposes, including cosmetic and cosmeceutical ones. Mycosporines and mycosporine-like amino acids, carotenoids, exopolysaccharides, fatty acids, chitosan and other compounds from these microorganisms might represent a sustainable, low-cost and fast-production alternative to other natural molecules used in photo-protective, anti-aging and skin-whitening products for face, body and hair care. Here, we review the existing knowledge of these compounds produced by marine microorganisms, highlighting the marine habitats where such compounds are preferentially produced and their potential application in cosmetic and cosmeceutical fields.
Collapse
|
40
|
Bertsova YV, Arutyunyan AM, Bogachev AV. Na+-translocating rhodopsin from Dokdonia sp. PRO95 does not contain carotenoid antenna. BIOCHEMISTRY (MOSCOW) 2016; 81:414-9. [DOI: 10.1134/s000629791604012x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Sowmya R, Sachindra NM. Biochemical and Molecular Characterization of Carotenogenic Flavobacterial Isolates from Marine Waters. Pol J Microbiol 2016; 65:77-88. [DOI: 10.5604/17331331.1197278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Sathe P, Richter J, Myint MTZ, Dobretsov S, Dutta J. Self-decontaminating photocatalytic zinc oxide nanorod coatings for prevention of marine microfouling: a mesocosm study. BIOFOULING 2016; 32:383-95. [PMID: 26930216 DOI: 10.1080/08927014.2016.1146256] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The antifouling (AF) properties of zinc oxide (ZnO) nanorod coated glass substrata were investigated in an out-door mesocosm experiment under natural sunlight (14:10 light: dark photoperiod) over a period of five days. The total bacterial density (a six-fold reduction) and viability (a three-fold reduction) was significantly reduced by nanocoatings in the presence of sunlight. In the absence of sunlight, coated and control substrata were colonized equally by bacteria. MiSeq Illumina sequencing of 16S rRNA genes revealed distinct bacterial communities on the nanocoated and control substrata in the presence and absence of light. Diatom communities also varied on nanocoated substrata in the presence and the absence of light. The observed AF activity of the ZnO nanocoatings is attributed to the formation of reactive oxygen species (ROS) through photocatalysis in the presence of sunlight. These nanocoatings are a significant step towards the production of an environmentally friendly AF coating that utilizes a sustainable supply of sunlight.
Collapse
Affiliation(s)
- Priyanka Sathe
- a Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences , Sultan Qaboos University , Muscat , Sultanate of Oman
- b Chair in Nanotechnology, Water Research Center , Sultan Qaboos University , Muscat , Sultanate of Oman
| | - Jutta Richter
- a Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences , Sultan Qaboos University , Muscat , Sultanate of Oman
- c Hochschule Bremerhaven , Bremerhaven , Germany
| | - Myo Tay Zar Myint
- b Chair in Nanotechnology, Water Research Center , Sultan Qaboos University , Muscat , Sultanate of Oman
- d Department of Physics, College of Science , Sultan Qaboos University , Muscat , Sultanate of Oman
| | - Sergey Dobretsov
- a Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences , Sultan Qaboos University , Muscat , Sultanate of Oman
| | - Joydeep Dutta
- b Chair in Nanotechnology, Water Research Center , Sultan Qaboos University , Muscat , Sultanate of Oman
- e Functional Materials Division, Materials and Nano-Physics Department , ICT School, KTH Royal Institute of Technology , Kista Stockholm , Sweden
| |
Collapse
|
43
|
Abstract
Carotenoids are naturally occurring red, orange and yellow pigments that are synthesized by plants and some microorganisms and fulfill many important physiological functions. This chapter describes the distribution of carotenoid in microorganisms, including bacteria, archaea, microalgae, filamentous fungi and yeasts. We will also focus on their functional aspects and applications, such as their nutritional value, their benefits for human and animal health and their potential protection against free radicals. The central metabolic pathway leading to the synthesis of carotenoids is described as the three following principal steps: (i) the synthesis of isopentenyl pyrophosphate and the formation of dimethylallyl pyrophosphate, (ii) the synthesis of geranylgeranyl pyrophosphate and (iii) the synthesis of carotenoids per se, highlighting the differences that have been found in several carotenogenic organisms and providing an evolutionary perspective. Finally, as an example, the synthesis of the xanthophyll astaxanthin is discussed.
Collapse
Affiliation(s)
- Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile.
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| |
Collapse
|
44
|
Teramoto M, Onodera KI, Moriyama H, Komatsu A, Akakabe M, Nishijima M. Aurantiacicella marina gen. nov., sp. nov., a myxol-producing bacterium from surface seawater. Int J Syst Evol Microbiol 2015; 66:248-254. [PMID: 26493321 DOI: 10.1099/ijsem.0.000706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-motile, mesophilic, aerobic, rod-shaped bacterium, strain 2A-8T, was isolated from surface seawater at Muroto city, Kochi prefecture, Japan. The strain produced myxol as a major carotenoid. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain fell within the family Flavobacteriaceae and was related most closely to the genus Aquimarina (91.0-94.4 % 16S rRNA gene sequence similarity to the type strains of species of this genus). The DNA G+C content was 35 mol%. The major fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. The major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and five unidentified lipids. Menaquinone 6 was detected as the sole isoprenoid quinone. On the basis of phenotypic, genotypic and chemotaxonomic data, strain 2A-8T represents a novel genus and species, for which the name Aurantiacicella marina gen. nov., sp. nov. is proposed. The type strain of Aurantiacicella marina is 2A-8T ( = NBRC 111187T = KCTC 42676T).
Collapse
Affiliation(s)
- Maki Teramoto
- Oceanography Section, Kochi University, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Ken-Ichi Onodera
- Oceanography Section, Kochi University, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Hironori Moriyama
- Kochi Prefectural Industrial Technology Center, Nunoshida 3992-3, Kochi 781-5101, Japan
| | - Ayumi Komatsu
- Oceanography Section, Kochi University, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Mai Akakabe
- Oceanography Section, Kochi University, Kohasu, Oko, Nankoku, Kochi 783-8505, Japan
| | - Miyuki Nishijima
- TechnoSuruga Laboratory Co. Ltd, 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan
| |
Collapse
|
45
|
Sowmya R, Sachindra N. Carotenoid production by Formosa sp. KMW, a marine bacteria of Flavobacteriaceae family: Influence of culture conditions and nutrient composition. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Gammone MA, Riccioni G, D'Orazio N. Marine Carotenoids against Oxidative Stress: Effects on Human Health. Mar Drugs 2015; 13:6226-46. [PMID: 26437420 PMCID: PMC4626686 DOI: 10.3390/md13106226] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.
Collapse
Affiliation(s)
- Maria Alessandra Gammone
- Human and Clinical Nutrition Unit, Department of Medical Oral and Biotechnological Sciences, Via Dei Vestini, "G. D'Annunzio" University, Chieti 66013, Italy.
| | - Graziano Riccioni
- Human and Clinical Nutrition Unit, Department of Medical Oral and Biotechnological Sciences, Via Dei Vestini, "G. D'Annunzio" University, Chieti 66013, Italy.
- Cardiology Unit, San Camillo De Lellis Hospital, Manfredonia 71043, Foggia, Italy.
| | - Nicolantonio D'Orazio
- Human and Clinical Nutrition Unit, Department of Medical Oral and Biotechnological Sciences, Via Dei Vestini, "G. D'Annunzio" University, Chieti 66013, Italy.
| |
Collapse
|
47
|
Crystal structure of 1'-OH-carotenoid 3,4-desaturase from Nonlabens dokdonensis DSW-6. Enzyme Microb Technol 2015; 77:29-37. [PMID: 26138397 DOI: 10.1016/j.enzmictec.2015.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022]
Abstract
The γ-carotenoids, such as myxol and saproxanthin, have a high potential to be utilized in nutraceutical and pharmaceutical industries for their neuro-protective and antioxidant effects. CrtD is involved in the production of γ-carotenoids by desaturating the C3'-C4' position of 1'-OH-γ-carotenoid. We determined the crystal structure of CrtD from Nonlabens dokdonensis DSW-6 (NdCrtD), the first structure of CrtD family enzymes. The NdCrtD structure was composed of two distinct domains, an FAD-binding domain and a substrate-binding domain, and the substrate-binding domain can be divided into two subdomains, a Rossmann fold-like subdomain and a lid subdomain. Although the FAD-binding domain showed a structure similar to canonical FAD-containing enzymes, the substrate-binding domain exhibited a novel structure to constitute a long and hydrophobic tunnel with a length of ∼40 Å. The molecular docking-simulation reveals that the tunnel provides an appropriate substrate-binding site for the carotenoid such as 1'-OH-γ-carotene with a length of ∼35 Å. We could predict residues related to recognize the 1'-hydroxyl group and to stabilize the hydrophobic end without hydroxyl group. Moreover, we suggest that the flexible entrance loop may undergo an open-closed formational change during the binding of the substrate.
Collapse
|
48
|
Osawa A, Kaseya Y, Koue N, Schrader J, Knief C, Vorholt JA, Sandmann G, Shindo K. 4-[2-O-11Z-Octadecenoyl-β-glucopyranosyl]-4,4′-diapolycopene-4,4′-dioic acid and 4-[2-O-9Z-hexadecenoyl-β-glucopyranosyl]-4,4′-diapolycopene-4,4′-dioic acid: new C30-carotenoids produced by Methylobacterium. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Structure of a novel monocyclic carotenoid, 3″-hydroxy-2′-isopentenylsaproxanthin ((3R,2′S)-2′-(3-hydroxy-3-methylbutyl)-3′, 4′-didehydro-1′, 2′-dihydro-β, ψ-carotene-3, 1′-diol), from a flavobacterium Gillisia limnaea strain DSM 15749. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Pawar R, Mohandass C, Sivaperumal E, Sabu E, Rajasabapathy R, Jagtap T. Epiphytic marine pigmented bacteria: A prospective source of natural antioxidants. Braz J Microbiol 2015; 46:29-39. [PMID: 26221086 PMCID: PMC4512047 DOI: 10.1590/s1517-838246120130353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/06/2014] [Indexed: 11/21/2022] Open
Abstract
Awareness on antioxidants and its significance in human healthcare has increased many folds in recent time. Increased demand requisite on welcoming newer and alternative resources for natural antioxidants. Seaweed associated pigmented bacteria screened for its antioxidant potentials reveals 55.5% of the organisms were able to synthesize antioxidant compounds. DPPH assay showed 20% of the organisms to reach a antioxidant zone of 1 cm and 8.3% of the strains more than 3 cm. Pseudomonas koreensis (JX915782) a Sargassum associated yellowish brown pigmented bacteria have better activity than known commercial antioxidant butylated hydroxytoluene (BHT) against DPPH scavenging. Serratia rubidaea (JX915783), an associate of Ulva sp. and Pseudomonas argentinensis (JX915781) an epiphyte of Chaetomorpha media , were also contributed significantly towards ABTS (7.2% ± 0.03 to 15.2 ± 0.09%; 1.8% ± 0.01 to 15.7 ± 0.22%) and FRAP (1.81 ± 0.01 to 9.35 ± 0.98; 7.97 ± 0.12 to 18.70 ± 1.84 μg/mL of AsA Eq.) respectively. 16S rRNA gene sequence analysis revealed bacteria that have higher antioxidant activity belongs to a bacterial class Gammaproteobacteria. Statistical analysis of phenolic contents in relation with other parameters like DPPH, ABTS, reducing power and FRAP are well correlated (p < 0.05). Results obtained from the current study inferred that the seaweed associated pigmented bacteria have enormous potential on antioxidant compounds and need to be extracted in a larger way for clinical applications.
Collapse
Affiliation(s)
- Ravindra Pawar
- Biological Oceanography Division, National Institute of Oceanography, Panaji, India
| | - Chellandi Mohandass
- Biological Oceanography Division, National Institute of Oceanography, Panaji, India
| | - Elakkiya Sivaperumal
- Nallamuthu Gounder Mahalingam Centre for Research and Development, Nallamuthu Gounder Mahalingam College, Bharathiar University, Tamilnadu, India
| | - Elaine Sabu
- Biological Oceanography Division, National Institute of Oceanography, Panaji, India
| | - Raju Rajasabapathy
- Biological Oceanography Division, National Institute of Oceanography, Panaji, India
| | - Tanaji Jagtap
- Cholamandalam MS Risk Services Pvt Ltd., Panaji, India
| |
Collapse
|