1
|
Singh P, Bisen M, Kulshreshtha S, Kumar L, Choudhury SR, Nath MJ, Mandal M, Kumar A, Patel SKS. Advancement in Anaerobic Ammonia Oxidation Technologies for Industrial Wastewater Treatment and Resource Recovery: A Comprehensive Review and Perspectives. Bioengineering (Basel) 2025; 12:330. [PMID: 40281690 PMCID: PMC12024423 DOI: 10.3390/bioengineering12040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Anaerobic ammonium oxidation (anammox) technologies have attracted substantial interest due to their advantages over traditional biological nitrogen removal processes, including high efficiency and low energy demand. Currently, multiple side-stream applications of the anammox coupling process have been developed, including one-stage, two-stage, and three-stage systems such as completely autotrophic nitrogen removal over nitrite, denitrifying ammonium oxidation, simultaneous nitrogen and phosphorus removal, partial denitrification-anammox, and partial nitrification and integrated fermentation denitritation. The one-stage system includes completely autotrophic nitrogen removal over nitrite, oxygen-limited autotrophic nitrification/denitrification, aerobic de-ammonification, single-stage nitrogen removal using anammox, and partial nitritation. Two-stage systems, such as the single reactor system for high-activity ammonium removal over nitrite, integrated fixed-film activated sludge, and simultaneous nitrogen and phosphorus removal, have also been developed. Three-stage systems comprise partial nitrification anammox, partial denitrification anammox, simultaneous ammonium oxidation denitrification, and partial nitrification and integrated fermentation denitritation. The performance of these systems is highly dependent on interactions between functional microbial communities, physiochemical parameters, and environmental factors. Mainstream applications are not well developed and require further research and development. Mainstream applications demand a high carbon/nitrogen ratio to maintain levels of nitrite-oxidizing bacteria, high concentrations of ammonium and nitrite in wastewater, and retention of anammox bacteria biomass. To summarize various aspects of the anammox processes, this review provides information regarding the microbial diversity of different genera of anammox bacteria and the engineering aspects of various side streams and mainstream anammox processes for wastewater treatment. Additionally, this review offers detailed insights into the challenges related to anammox technology and delivers solutions for future sustainable research.
Collapse
Affiliation(s)
- Pradeep Singh
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Sourabh Kulshreshtha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Shubham R. Choudhury
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Mayur J. Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Aman Kumar
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| | - Sanjay K. S. Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| |
Collapse
|
2
|
Ude EO, Sure P, Rimjhim R, Adrian L, Ding C. Fractionating proteins with nitrite-reducing activity in " Candidatus Kuenenia stuttgartiensis" strain CSTR1. Front Microbiol 2025; 16:1483703. [PMID: 40078554 PMCID: PMC11897245 DOI: 10.3389/fmicb.2025.1483703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
The anammox bacteria "Candidatus Kuenenia stuttgartiensis" (Ca. Kuenenia) are able to gain energy by combining ammonium and nitrite to produce nitrogen gas, which is an ecologically and technically significant activity process. In this reaction, nitric oxide serves as a recognized intermediate in the reduction of nitrite, which is subsequently combined with ammonium to produce hydrazine. However, the enzyme that converts nitrite to nitric oxide remains elusive. In this study, we investigated the nitrite-reducing activity in "Ca. Kuenenia stuttgartiensis" strain CSTR1 to identify candidates for such an enzyme. An optimized in vitro assay was established to measure nitrite-reducing activities, with which we followed the activity in protein fractions obtained from various fractionation methods. Separation of the cell extract of strain CSTR1 with size exclusion chromatography yielded active fractions corresponding to a molecular size range of 150-200 kDa. Several proteins coeluted with the nitrite-reducing activity, including the hydroxylamine dehydrogenase HOX, an NADP-dependent isopropanol dehydrogenase (Adh), an electron-transfer 4Fe-4S subunit protein (Fcp), and a nitric oxide detoxifying flavorubredoxin (NorVW). However, further separation of the cell extract with anion exchange chromatography, resulted in much lower activity yields, and activities were distributed among several fractions. In addition, fractionation of cell extracts using ultracentrifugation and ultrafiltration linked the activity to HOX, but could not exclude the involvement of other proteins in the activity. Overall, our results suggest that the molecular mechanism for nitrite reduction in "Ca. Kuenenia" strains is more complex than that currently described in the literature. Nitrite reduction appears to be strongly associated with HOX but may additionally require the participation of other proteins.
Collapse
Affiliation(s)
- Emea Okorafor Ude
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Pranathi Sure
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Rimjhim Rimjhim
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Chang Ding
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
3
|
Xiong YT, Liao XW, Guo JS, Fang F, Chen YP, Yan P. Potential Role of the Anammoxosome in the Adaptation of Anammox Bacteria to Salinity Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6670-6681. [PMID: 38564406 DOI: 10.1021/acs.est.4c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The underlying adaptative mechanisms of anammox bacteria to salt stress are still unclear. The potential role of the anammoxosome in modulating material and energy metabolism in response to salinity stress was investigated in this study. The results showed that anammox bacteria increased membrane fluidity and decreased mechanical properties by shortening the ladderane fatty acid chain length of anammoxosome in response to salinity shock, which led to the breakdown of the proton motive force driving ATP synthesis and retarded energy metabolism activity. Afterward, the fatty acid chain length and membrane properties were recovered to enhance the energy metabolic activity. The relative transmission electron microscopy (TEM) area proportion of anammoxosome decreased from 55.9 to 38.9% under salinity stress. The 3D imaging of the anammox bacteria based on Synchrotron soft X-ray tomography showed that the reduction in the relative volume proportion of the anammoxosome and the concave surfaces was induced by salinity stress, which led to the lower energy expenditure of the material transportation and provided more binding sites for enzymes. Therefore, anammox bacteria can modulate nitrogen and energy metabolism by changing the membrane properties and morphology of the anammoxosome in response to salinity stress. This study broadens the response mechanism of anammox bacteria to salinity stress.
Collapse
Affiliation(s)
- Yu-Tong Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xi-Wen Liao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
4
|
Ray S, Mondal S, Mukherjee S. Enantioselective Total Synthesis of [3]-Ladderanol through Late-Stage Organocatalytic Desymmetrization. Angew Chem Int Ed Engl 2022; 61:e202201584. [PMID: 35334157 DOI: 10.1002/anie.202201584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Ladderane phospholipids, with their unusual ladder-like arrangement of concatenated cyclobutane rings, represent an architecturally unique class of natural products. However, despite their fascinating structure and other necessary impetus, only a few synthetic studies of these molecules have been reported so far. We have now devised a concise total synthesis of [3]-ladderanol, a component of natural ladderane phospholipids, using an organocatalytic enantioselective desymmetrizing formal C(sp2 )-H alkylation. Our synthetic strategy rests on the late-stage introduction of chirality, thus allowing facile access to both enantiomers of [3]-ladderanol as well as an analogue. This is the first time a desymmetrization strategy is applied to the synthesis of [3]-ladderanol. The scope of this desymmetrizing C(sp2 )-H alkylation of meso-cyclobutane-fused cyclohexenediones is also presented.
Collapse
Affiliation(s)
- Sayan Ray
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Subhajit Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
5
|
Ray S, Mondal S, Mukherjee S. Enantioselective Total Synthesis of [3]‐Ladderanol through Late‐Stage Organocatalytic Desymmetrization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sayan Ray
- Indian Institute of Science Department of Organic Chemistry C. V. Raman Road 560012 Bangalore INDIA
| | - Subhajit Mondal
- Indian Institute of Science Department of Organic Chemistry C. V. Raman Road 560012 Bangalore INDIA
| | - Santanu Mukherjee
- Indian Institute of Science Department of Organic Chemistry C V Raman Avenue 560012 Bangalore INDIA
| |
Collapse
|
6
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
7
|
Su JX, Chen SL. A Key Piece in the Global N-Cycle: The N–N Bond Formation Presented by Heme-Dependent Hydrazine Synthase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jing-Xuan Su
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Soler-Jofra A, Laureni M, Warmerdam M, Pérez J, van Loosdrecht MCM. Hydroxylamine metabolism of Ca. Kuenenia stuttgartiensis. WATER RESEARCH 2020; 184:116188. [PMID: 32739592 DOI: 10.1016/j.watres.2020.116188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Hydroxylamine is a key intermediate in several biological reactions of the global nitrogen cycle. However, the role of hydroxylamine in anammox is still not fully understood. In this work, the impact of hydroxylamine (also in combination with other substrates) on the metabolism of a planktonic enrichment culture of the anammox species Ca. Kuenenia stuttgartiensis was studied. Anammox bacteria were observed to produce ammonium both from hydroxylamine and hydrazine, and hydroxylamine was consumed simultaneously with nitrite. Hydrazine accumulation - signature for the presence of anammox bacteria - strongly depended on the available substrates, being higher with ammonium and lower with nitrite. Furthermore, the results presented here indicate that hydrazine accumulation is not the result of the inhibition of hydrazine dehydrogenase, as commonly assumed, but the product of hydroxylamine disproportionation. All kinetic parameters for the identified reactions were estimated by mathematical modelling. Moreover, the simultaneous consumption and growth on ammonium, nitrite and hydroxylamine of anammox bacteria was demonstrated, this was accompanied by a reduction in the nitrate production. Ultimately, this study advances the fundamental understanding of the metabolic versatility of anammox bacteria, and highlights the potential role played by metabolic intermediates (i.e. hydroxylamine, hydrazine) in shaping natural and engineered microbial communities.
Collapse
Affiliation(s)
- Aina Soler-Jofra
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands.
| | - Michele Laureni
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Marieke Warmerdam
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Julio Pérez
- Department of Chemical, Biological and Environmental Engineering, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| |
Collapse
|
9
|
Launay H, Huang W, Maberly SC, Gontero B. Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2020; 11:1033. [PMID: 32765548 PMCID: PMC7378808 DOI: 10.3389/fpls.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta, within the polyphyletic chromalveolates. They evolved as a result of secondary endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical properties that have allowed them to flourish in a wide range of different environments and cope with highly variable conditions. We review the effect of pH, light and dark, and CO2 concentration on the regulation of carbon uptake and assimilation. We discuss the regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins (proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of metabolic enzymes is important, it appears to be less common in diatoms, based on the current evidence, but regulation at the transcriptional level seems to be widespread. The role of post-translational modifications such as phosphorylation, glutathionylation, etc., and of protein-protein interactions, has been overlooked and should be investigated further. Diatoms and other chromalveolates are understudied compared to the Viridiplantae, especially given their ecological importance, but we believe that the ever-growing number of sequenced genomes combined with proteomics, metabolomics, enzyme measurements, and the application of novel techniques will provide a better understanding of how this important group of algae maintain their productivity under changing conditions.
Collapse
Affiliation(s)
- Hélène Launay
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
| | - Wenmin Huang
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
10
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Fossat MJ, Pappu RV. q-Canonical Monte Carlo Sampling for Modeling the Linkage between Charge Regulation and Conformational Equilibria of Peptides. J Phys Chem B 2019; 123:6952-6967. [PMID: 31362509 PMCID: PMC10785832 DOI: 10.1021/acs.jpcb.9b05206] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The overall charge content and the patterning of charged residues have a profound impact on the conformational ensembles adopted by intrinsically disordered proteins. These parameters can be altered by charge regulation, which refers to the effects of post-translational modifications, pH-dependent changes to charge, and conformational fluctuations that modify the pKa values of ionizable residues. Although atomistic simulations have played a prominent role in uncovering the major sequence-ensemble relationships of IDPs, most simulations assume fixed charge states for ionizable residues. This may lead to erroneous estimates for conformational equilibria if they are linked to charge regulation. Here, we report the development of a new method we term q-canonical Monte Carlo sampling for modeling the linkage between charge regulation and conformational equilibria. The method, which is designed to be interoperable with the ABSINTH implicit solvation model, operates as follows: For a protein sequence with n ionizable residues, we start with all 2n charge microstates and use a criterion based on model compound pKa values to prune down to a subset of thermodynamically relevant charge microstates. This subset is then grouped into mesostates, where all microstates that belong to a mesostate have the same net charge. Conformational distributions, drawn from a canonical ensemble, are generated for each of the charge microstates that make up a mesostate using a method we designate as proton walk sampling. This method combines Metropolis Monte Carlo sampling in conformational space with an auxiliary Markov process that enables interconversions between charge microstates along a mesostate. Proton walk sampling helps identify the most likely charge microstate per mesostate. We then use thermodynamic integration aided by the multistate Bennett acceptance ratio method to estimate the free energies for converting between mesostates. These free energies are then combined with the per-microstate weights along each mesostate to estimate standard state free energies and pH-dependent free energies for all thermodynamically relevant charge microstates. The results provide quantitative estimates of the probabilities and preferred conformations associated with every thermodynamically accessible charge microstate. We showcase the application of q-canonical sampling using two model systems. The results establish the soundness of the method and the importance of charge regulation in systems characterized by conformational heterogeneity.
Collapse
Affiliation(s)
- Martin J. Fossat
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130
| |
Collapse
|
12
|
Akram M, Dietl A, Mersdorf U, Prinz S, Maalcke W, Keltjens J, Ferousi C, de Almeida NM, Reimann J, Kartal B, Jetten MSM, Parey K, Barends TRM. A 192-heme electron transfer network in the hydrazine dehydrogenase complex. SCIENCE ADVANCES 2019; 5:eaav4310. [PMID: 31001586 PMCID: PMC6469936 DOI: 10.1126/sciadv.aav4310] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/28/2019] [Indexed: 05/21/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a major process in the biogeochemical nitrogen cycle in which nitrite and ammonium are converted to dinitrogen gas and water through the highly reactive intermediate hydrazine. So far, it is unknown how anammox organisms convert the toxic hydrazine into nitrogen and harvest the extremely low potential electrons (-750 mV) released in this process. We report the crystal structure and cryo electron microscopy structures of the responsible enzyme, hydrazine dehydrogenase, which is a 1.7 MDa multiprotein complex containing an extended electron transfer network of 192 heme groups spanning the entire complex. This unique molecular arrangement suggests a way in which the protein stores and releases the electrons obtained from hydrazine conversion, the final step in the globally important anammox process.
Collapse
Affiliation(s)
- M. Akram
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - A. Dietl
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - U. Mersdorf
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - S. Prinz
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - W. Maalcke
- Department of Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - J. Keltjens
- Department of Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - C. Ferousi
- Department of Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - N. M. de Almeida
- Department of Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - J. Reimann
- Department of Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - B. Kartal
- Department of Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - M. S. M. Jetten
- Department of Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - K. Parey
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
- Corresponding author. (K.P.); (T.R.M.B.)
| | - T. R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Corresponding author. (K.P.); (T.R.M.B.)
| |
Collapse
|
13
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
14
|
Zhang Y, Ji G, Wang C, Zhang X, Xu M. Importance of denitrification driven by the relative abundances of microbial communities in coastal wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:47-54. [PMID: 30321711 DOI: 10.1016/j.envpol.2018.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/16/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Excessive nitrogen (N) loadings from human activities have led to increased eutrophication and associated water quality impacts in China's coastal wetlands. Denitrification accounts for significant reduction of inorganic N to nitrous oxide (N2O) or dinitrogen gas (N2), and thereby curtails harmful effects of N pollution in coastal and marine ecosystems. However, the molecular drivers and limiting steps of denitrification in coastal wetlands are not well understood. Here, we quantified the abundances of functional genes involved in N cycling and determined denitrification rates using 15N paring technique in the coastal wetland sediments of Bohai Economic Rim in eastern China. Denitrification accounting for 80.7 ± 12.6% of N removal was the dominant pathway for N removal in the coastal wetlands. In comparison, anaerobic ammonium oxidation (ANAMMOX) removed up to 36.9 ± 7.3% of inorganic N. Structural equation modeling analysis indicated that the effects of ammonium on denitrification potential were mainly mediated by the relative abundances of nosZ/nirS, nirS/(narG + napA) and amoA/nirK. Denitrification was limited by the relative strength of two steps, namely N2O reduction to N2 and nitrite (NO2-) reduction to nitric oxide (NO). Our results suggest that the relative abundances of functional genes which are more stable than sediment chemical compounds in the context of environmental changes are indictive of denitrification potential in coastal wetlands.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| | - Chen Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xuanrui Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Ming Xu
- Department of Ecological, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
15
|
Moss FR, Shuken SR, Mercer JAM, Cohen CM, Weiss TM, Boxer SG, Burns NZ. Ladderane phospholipids form a densely packed membrane with normal hydrazine and anomalously low proton/hydroxide permeability. Proc Natl Acad Sci U S A 2018; 115:9098-9103. [PMID: 30150407 PMCID: PMC6140541 DOI: 10.1073/pnas.1810706115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ladderane lipids are unique to anaerobic ammonium-oxidizing (anammox) bacteria and are enriched in the membrane of the anammoxosome, an organelle thought to compartmentalize the anammox process, which involves the toxic intermediate hydrazine (N2H4). Due to the slow growth rate of anammox bacteria and difficulty of isolating pure ladderane lipids, experimental evidence of the biological function of ladderanes is lacking. We have synthesized two natural and one unnatural ladderane phosphatidylcholine lipids and compared their thermotropic properties in self-assembled bilayers to distinguish between [3]- and [5]-ladderane function. We developed a hydrazine transmembrane diffusion assay using a water-soluble derivative of a hydrazine sensor and determined that ladderane membranes are as permeable to hydrazine as straight-chain lipid bilayers. However, pH equilibration across ladderane membranes occurs 5-10 times more slowly than across straight-chain lipid membranes. Langmuir monolayer analysis and the rates of fluorescence recovery after photobleaching suggest that dense ladderane packing may preclude formation of proton/hydroxide-conducting water wires. These data support the hypothesis that ladderanes prevent the breakdown of the proton motive force rather than blocking hydrazine transmembrane diffusion in anammox bacteria.
Collapse
Affiliation(s)
- Frank R Moss
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Steven R Shuken
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jaron A M Mercer
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Carolyn M Cohen
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Stanford University, Menlo Park, CA 94025
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| |
Collapse
|
16
|
Blum JM, Su Q, Ma Y, Valverde-Pérez B, Domingo-Félez C, Jensen MM, Smets BF. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2O production. Environ Microbiol 2018; 20:1623-1640. [DOI: 10.1111/1462-2920.14063] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Jan-Michael Blum
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Qingxian Su
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Yunjie Ma
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Carlos Domingo-Félez
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Marlene Mark Jensen
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Barth F. Smets
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| |
Collapse
|
17
|
Tomaszewski M, Cema G, Ziembińska-Buczyńska A. Influence of temperature and pH on the anammox process: A review and meta-analysis. CHEMOSPHERE 2017; 182:203-214. [PMID: 28499181 DOI: 10.1016/j.chemosphere.2017.05.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The anammox (anaerobic ammonium oxidation) process was considered a very efficient and economic wastewater treatment technology immediately after its discovery in 1995, thus research in this field was intensified. The anammox process is characterised by a high temperature optimum and is very sensitive to both temperature and pH fluctuations. The process can also be inhibited by many factors, including by its substrates, i.e. nitrite and ammonium (or its unionised forms: free ammonia and free nitrous acid). This paper presents a comprehensive study of the most important and recent findings on the influence of two parameters that are crucial in wastewater treatment, i.e. temperature and pH. Because both parameters may influence the anammox process simultaneously, a meta-analysis was conducted of the data from the literature. Although meta-analysis is commonly used in medical research, mathematical analysis of the literature data has become an interesting and important step in the environmental sciences. This paper presents information on the influence of both temperature and pH on process efficiency and microbial composition. Additionally, the responses of different operating systems on both temperature and pH changes are described. Moreover, the role of both adaptation to changed conditions and of pH control as well as indicated areas of process operation are discussed.
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- The Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100, Gliwice, Poland.
| | - Grzegorz Cema
- The Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100, Gliwice, Poland
| | | |
Collapse
|
18
|
Li G, Carvajal-Arroyo JM, Sierra-Alvarez R, Field JA. Mechanisms and Control of NO 2- Inhibition of Anaerobic Ammonium Oxidation (Anammox). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2017; 89:330-336. [PMID: 28377002 DOI: 10.2175/106143017x14839994523064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nitrite (NO2-), one of the main substrates in the anaerobic ammonium oxidation (anammox) process, has the potential to inhibit anammox bacteria. The sensitivity of anammox cells with different energy status to NO2- was evaluated, and addition of nitrate (NO3-) inhibition on the basis of narK gene with the putative function of facilitating NO3-/NO2- antiporter. The results showed that the resistance of anammox bacteria to NO2- inhibition follows the order: active-cells > starved-cells > resting-cells > starved-/resting-cells. Anammmox resting cells have increasing tolerance to NO2- in the pH range from 7.0 to 7.5. Dissipating the proton gradient by using carbonyl cyanide m-chlorophenyl hydrazine (CCCP) caused severe inhibition at all pH values including pH = 7.5. Addition of NO3- enabled activity recovery of NO2--inhibited anammox bacteria regardless of whether the proton gradient was disrupted or not, supporting the hypothesis of NO3--dependent detoxification via a secondary transport system.
Collapse
|
19
|
Lu X, Yin Z, Sobotka D, Wisniewski K, Czerwionka K, Xie L, Zhou Q, Makinia J. Modeling the pH effects on nitrogen removal in the anammox-enriched granular sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:378-386. [PMID: 28112665 DOI: 10.2166/wst.2016.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of the study was to determine the pH effects on nitrogen removal in the anammox-enriched granular sludge. The experimental data were extracted from a 4 L completely-mixed batch reactor with the granular sludge at different initial pH values (6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5) and constant temperature T = 30 °C. Simulations were run in GPS-X 6.4 using a comprehensive mechanistic model Mantis2. Two kinetic parameters, the maximum specific growth rates of ammonia oxidizing bacteria (AOB) and anammox bacteria, were optimized at different pH scenarios. The inhibitory effects of the pH extremes on the anammox-enriched sludge were discussed in terms of the inhibition of free nitrous acid and free ammonia and metabolic mechanisms. Two different pH functions were used to examine the pH effects on the nitrogen removal kinetics. The pH optima for AOB and anammox bacteria were 7.4 and 7.6, respectively. The maximum specific growth rates of AOB and anammox bacteria at the pH optima were 0.81-0.85 d-1 and 0.36-0.38 d-1 (at T = 30 °C). The measured specific anammox activities (SAAs), predicted SAAs by Mantis2 and fitted SAAs by the Michaelis pH function at the pH optima were 0.895, 0.858 and 0.831 gN/(gVSS·d), respectively (VSS: volatile suspended solids).
Collapse
Affiliation(s)
- Xi Lu
- Institute of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail:
| | - Zhixuan Yin
- Institute of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail:
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Kamil Wisniewski
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Krzysztof Czerwionka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Li Xie
- Institute of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail:
| | - Qi Zhou
- Institute of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail:
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk 80-233, Poland
| |
Collapse
|
20
|
Yin Z, Santos CEDD, Vilaplana JG, Sobotka D, Czerwionka K, Damianovic MHRZ, Xie L, Morales FJF, Makinia J. Importance of the combined effects of dissolved oxygen and pH on optimization of nitrogen removal in anammox-enriched granular sludge. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Li G, Vilcherrez D, Carvajal-Arroyo JM, Sierra-Alvarez R, Field JA. Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria. CHEMOSPHERE 2016; 144:2360-2367. [PMID: 26610295 DOI: 10.1016/j.chemosphere.2015.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Anaerobic ammonium oxidizing bacteria (anammox) can be severely inhibited by one of its main substrates, nitrite (NO2(-)). At present, there is limited information on the processes by which anammox bacteria are able to tolerate toxic NO2(-). Intracellular consumption or electrochemically driven (transmembrane proton motive force) NO2(-) export are considered the main mechanisms of NO2(-) detoxification. In this work, we evaluated the potential of exogenous nitrate (NO3(-)) on relieving NO2(-) toxicity, putatively facilitated by NarK, a NO3(-)/NO2(-) transporter encoded in the anammox genome. The relative contribution of NO3(-) to NO2(-) detoxification was found to be pH dependent. Exposure of anammox cells to NO2(-) in absence of their electron donating substrate, ammonium (NH4(+)), causes NO2(-) stress. At pH 6.7 and 7.0, the activity of NO2(-) stressed cells was respectively 0 and 27% of the non-stressed control activity (NO2(-) and NH4(+) fed simultaneously). Exogenous NO3(-) addition caused the recovery to 42% and 80% of the control activity at pH 6.7 and 7.0, respectively. The recovery of the activity of NO2(-) stressed cells improved with increasing NO3(-) concentration, the maximum recovery being achieved at 0.85 mM. The NO3(-) pre-incubation time is less significant at pH 7.0 than at pH 6.7 due to a more severe NO2(-) toxicity at lower pH. Additionally, NO3(-) caused almost complete attenuation of NO2(-) toxicity in cells exposed to the proton gradient disruptor carbonyl cyanide m-chlorophenyl hydrazone at pH 7.5, providing evidence that the NO3(-) attenuation is independent of the proton motive force. The absence of a measurable NO3(-) consumption (or NO3(-) dependent N2 production) during the batch tests leaves NO3(-) dependent active transport of NO2(-) as the only plausible explanation for the relief of NO2(-) inhibition. We suggest that anammox cells can use a secondary transport system facilitated by exogenous NO3(-) to alleviate NO2(-) toxicity.
Collapse
Affiliation(s)
- Guangbin Li
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721-001, USA.
| | - David Vilcherrez
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721-001, USA
| | - Jose Maria Carvajal-Arroyo
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721-001, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721-001, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721-001, USA
| |
Collapse
|
22
|
Oshiki M, Satoh H, Okabe S. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ Microbiol 2016; 18:2784-96. [DOI: 10.1111/1462-2920.13134] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering National Institute of Technology Nagaoka College 888 Nishikatakaimachi Nagaoka Niigata 940‐0834 Japan
| | - Hisashi Satoh
- Division of Environmental Engineering Faculty of Engineering Hokkaido University North 13, West‐8 Sapporo Hokkaido 060‐8628 Japan
| | - Satoshi Okabe
- Division of Environmental Engineering Faculty of Engineering Hokkaido University North 13, West‐8 Sapporo Hokkaido 060‐8628 Japan
| |
Collapse
|
23
|
Zhang ZZ, Cheng YF, Zhou YH, Buayi X, Jin RC. Roles of EDTA washing and Ca²⁺ regulation on the restoration of anammox granules inhibited by copper(II). JOURNAL OF HAZARDOUS MATERIALS 2016; 301:92-99. [PMID: 26342580 DOI: 10.1016/j.jhazmat.2015.08.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/11/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
We investigated the feasibility of using ethylene diamine tetraacetic acid (EDTA) washing followed by Ca(2+) enhancement for the recovery of anammox reactors inhibited by Cu(II). Kinetic experiments and batch activity assays were employed to determine the optimal concentration of EDTA and washing time; and the performance and physiological dynamics were tracked by continuous-flow monitoring to evaluate the long-term effects. The two-step desorption process revealed that the Cu in anammox granules was primarily introduced via adsorption (approximately, 80.5%), and the portion of Cu in the dispersible layer was predominant (accounting for 71.1%). Afterwards, the Cu internalized in the cells (approximately, 14.7%) could diffuse out of the cells and be gradually washed out of the reactor over the next 20 days. The Ca(2+) addition that followed led to an accelerated nitrogen removal rate recovery slope (0.1491 kgN m(-3) d(-2)) and a normal biomass growth rate (0.054 d(-1)). The nitrogen removal rate returned to normal levels within 90 days and gradual improvements in granular characteristics were also achieved. Therefore, this study provides a new insight that externally removing the adsorbed heavy metals followed by internally repairing the metabolic system may represent an optimal restoration strategy for anammox consortium damaged by heavy metals.
Collapse
Affiliation(s)
- Zheng-Zhe Zhang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ya-Fei Cheng
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Huang Zhou
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiemuguli Buayi
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
| | - Ren-Cun Jin
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
24
|
Yao Z, Lu P, Zhang D, Wan X, Li Y, Peng S. Stoichiometry and kinetics of the anaerobic ammonium oxidation (Anammox) with trace hydrazine addition. BIORESOURCE TECHNOLOGY 2015; 198:70-76. [PMID: 26364230 DOI: 10.1016/j.biortech.2015.08.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
Purpose of this study is to investigate the stoichiometry and kinetics of anaerobic ammonium oxidation (Anammox) with trace hydrazine addition. The stoichiometry was established based on the electron balance of Anammox process with trace N2H4 addition. The stoichiometric coefficients were determined by the proton consumption and the changes in substrates and products. It was found that trace N2H4 addition can increase the yield of Anammox bacteria (AnAOB) and reduce NO3(-) yield, which enhances the Anammox. Subsequently, kinetic model of Anammox with trace N2H4 addition was developed, and the parameters of the anaerobic degradation model of N2H4 were obtained for the first time. The maximum specific substrate utilization rate, half-saturation constant and inhibition constant of N2H4 were 25.09mgN/g VSS/d, 10.42mgN/L and 1393.88mgN/L, respectively. These kinetic parameters might provide important information for the engineering applications of Anammox with trace N2H4 addition.
Collapse
Affiliation(s)
- Zongbao Yao
- Department of Environmental Science, Chongqing University, Chongqing 400044, PR China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Department of Environmental Science, Chongqing University, Chongqing 400044, PR China.
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Department of Environmental Science, Chongqing University, Chongqing 400044, PR China
| | - Xinyu Wan
- Department of Environmental Science, Chongqing University, Chongqing 400044, PR China
| | - Yulian Li
- Department of Environmental Science, Chongqing University, Chongqing 400044, PR China
| | - Shuchan Peng
- Department of Environmental Science, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
25
|
The inner workings of the hydrazine synthase multiprotein complex. Nature 2015; 527:394-7. [PMID: 26479033 DOI: 10.1038/nature15517] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/21/2015] [Indexed: 11/08/2022]
Abstract
Anaerobic ammonium oxidation (anammox) has a major role in the Earth's nitrogen cycle and is used in energy-efficient wastewater treatment. This bacterial process combines nitrite and ammonium to form dinitrogen (N2) gas, and has been estimated to synthesize up to 50% of the dinitrogen gas emitted into our atmosphere from the oceans. Strikingly, the anammox process relies on the highly unusual, extremely reactive intermediate hydrazine, a compound also used as a rocket fuel because of its high reducing power. So far, the enzymatic mechanism by which hydrazine is synthesized is unknown. Here we report the 2.7 Å resolution crystal structure, as well as biophysical and spectroscopic studies, of a hydrazine synthase multiprotein complex isolated from the anammox organism Kuenenia stuttgartiensis. The structure shows an elongated dimer of heterotrimers, each of which has two unique c-type haem-containing active sites, as well as an interaction point for a redox partner. Furthermore, a system of tunnels connects these active sites. The crystal structure implies a two-step mechanism for hydrazine synthesis: a three-electron reduction of nitric oxide to hydroxylamine at the active site of the γ-subunit and its subsequent condensation with ammonia, yielding hydrazine in the active centre of the α-subunit. Our results provide the first, to our knowledge, detailed structural insight into the mechanism of biological hydrazine synthesis, which is of major significance for our understanding of the conversion of nitrogenous compounds in nature.
Collapse
|
26
|
Zhang ZZ, Buayi X, Cheng YF, Zhou YH, Wang HZ, Jin RC. Anammox endogenous metabolism during long-term starvation: Impacts of intermittent and persistent modes and phosphates. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.07.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Kletzin A, Heimerl T, Flechsler J, van Niftrik L, Rachel R, Klingl A. Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front Microbiol 2015; 6:439. [PMID: 26029183 PMCID: PMC4429474 DOI: 10.3389/fmicb.2015.00439] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023] Open
Abstract
Cytochromes c (Cytc) are widespread electron transfer proteins and important enzymes in the global nitrogen and sulfur cycles. The distribution of Cytc in more than 300 archaeal proteomes deduced from sequence was analyzed with computational methods including pattern and similarity searches, secondary and tertiary structure prediction. Two hundred and fifty-eight predicted Cytc (with single, double, or multiple heme c attachment sites) were found in some but not all species of the Desulfurococcales, Thermoproteales, Archaeoglobales, Methanosarcinales, Halobacteriales, and in two single-cell genome sequences of the Thermoplasmatales, all of them Cren- or Euryarchaeota. Other archaeal phyla including the Thaumarchaeota are so far free of these proteins. The archaeal Cytc sequences were bundled into 54 clusters of mutual similarity, some of which were specific for Archaea while others had homologs in the Bacteria. The cytochrome c maturation system I (CCM) was the only one found. The highest number and variability of Cytc were present in those species with known or predicted metal oxidation and/or reduction capabilities. Paradoxical findings were made in the haloarchaea: several Cytc had been purified biochemically but corresponding proteins were not found in the proteomes. The results are discussed with emphasis on cell morphologies and envelopes and especially for double-membraned Archaea-like Ignicoccus hospitalis. A comparison is made with compartmentalized bacteria such as the Planctomycetes of the Anammox group with a focus on the putative localization and roles of the Cytc and other electron transport proteins.
Collapse
Affiliation(s)
- Arnulf Kletzin
- Department of Biology, Sulfur Biochemistry and Microbial Bioenergetics, Technische Universität Darmstadt Darmstadt, Germany
| | - Thomas Heimerl
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Jennifer Flechsler
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | - Reinhard Rachel
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Andreas Klingl
- Department of Biology I, Plant Development, Biocenter LMU Munich Planegg-Martinsried, Germany
| |
Collapse
|
28
|
Carvajal-Arroyo JM, Puyol D, Li G, Sierra-Álvarez R, Field JA. The intracellular proton gradient enables anaerobic ammonia oxidizing (anammox) bacteria to tolerate NO2− inhibition. J Biotechnol 2014; 192 Pt A:265-7. [DOI: 10.1016/j.jbiotec.2014.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/25/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
|
29
|
Carvajal-Arroyo JM, Puyol D, Li G, Swartwout A, Sierra-Álvarez R, Field JA. Starved anammox cells are less resistant to NO₂⁻ inhibition. WATER RESEARCH 2014; 65:170-176. [PMID: 25108528 DOI: 10.1016/j.watres.2014.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/22/2014] [Accepted: 07/12/2014] [Indexed: 06/03/2023]
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria are be inhibited by their terminal electron acceptor, nitrite. Serious nitrite inhibition of the anammox bacteria occurs if the exposure coincides with the absence of the electron donating substrate, ammonium and pH < 7.2. Starvation of biomass occurs during underloading of bioreactors or biomass storage. This work investigated the effect of starvation on the sensitivity of anammox bacteria to nitrite exposure. Batch activity tests were carried out evaluating the response of anammox biomass subjected to different levels of starvation upon exposure to nitrite in the presence and absence of ammonium (active- and resting-cells, respectively). The response of the bacteria was evaluated by measuring the specific anammox activity and the evolution of the ATP content in the biomass over time. The 50% inhibitory concentrations of nitrite in starved- and fresh-resting-cells was 7 mg N L(-1) and 52 mg N L(-1), respectively. By contrast, only moderate nitrite inhibition occurred to starved anammox biomass when exposed to nitrite and ammonium simultaneously. Maximum ATP levels were observed in fresh cells. The ATP content in starved resting cells peaked 2-3 h after addition of NO2(-)(-). The response was hindered in cells starved for long periods. These findings agreed with a bioreactor study in which underloading of anammox biomass (0.10 g N L(-1) d(-1)) decreased its tolerance to a nitrite (only) exposure (101 mg NO2(-)-N L(-1)) and completely disrupted the N removal capacity of the biomass. A similar accumulation of 108 mg NO2(-)-N L(-1) after operation at 0.95 g N L(-1) d(-1) did not cause observable inhibition of the bacteria. The results taken as a whole demonstrate that starved anammox biomass is highly sensitive to nitrite toxicity. An explanation is proposed based on energy requirements to translocate nitrite in the cell.
Collapse
Affiliation(s)
- José M Carvajal-Arroyo
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, USA.
| | - Daniel Puyol
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, USA
| | - Guangbin Li
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, USA
| | - Andrew Swartwout
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, USA
| | - Reyes Sierra-Álvarez
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, USA
| |
Collapse
|
30
|
Puyol D, Carvajal-Arroyo JM, Li GB, Dougless A, Fuentes-Velasco M, Sierra-Alvarez R, Field JA. High pH (and not free ammonia) is responsible for Anammox inhibition in mildly alkaline solutions with excess of ammonium. Biotechnol Lett 2014; 36:1981-6. [DOI: 10.1007/s10529-014-1564-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/23/2014] [Indexed: 11/30/2022]
|
31
|
Carvajal-Arroyo JM, Puyol D, Li G, Sierra-Álvarez R, Field JA. The role of pH on the resistance of resting- and active anammox bacteria to NO2- inhibition. Biotechnol Bioeng 2014; 111:1949-56. [PMID: 24771200 DOI: 10.1002/bit.25269] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/13/2014] [Accepted: 04/15/2014] [Indexed: 11/08/2022]
Abstract
The anaerobic oxidation of ammonium (anammox) uses nitrite as terminal electron acceptor. The nitrite can cause inhibition to the bacteria that catalyze the anammox reaction. The literature shows a great divergence on the levels of NO2 (-) causing inhibition. Moreover, the conditions influencing the resistance of anammox bacteria to NO2 (-) inhibitory effect are not well understood. This work investigated the effect of the pH and the concentration of nitrite on the activity and metabolism of anammox granular sludge under different physiological conditions. Batch activity tests in a range of pH values were carried out in which either actively metabolizing cells or resting cells were exposed to nitrite in the presence or absence of the electron donating substrate ammonium, respectively. The response of the bacteria was evaluated by analyzing the specific anammox activity, the accumulation of nitric oxide, and the evolution of the ATP content in the biomass. Additionally, the effect of the pH on the tolerance of the biomass to single substrate feeding interruptions was evaluated in continuous anammox bioreactors. The results show that the influence of the pH on the NO2 (-) inhibition of anammox bacteria is greater under non-metabolizing conditions than during active metabolism. The exposure of resting cells to NO2 (-) (100 mg N L(-1) ) at pH values below 7.2 caused complete inhibition of the anammox activity. The inhibition was accompanied by accumulation of the intermediate, nitric oxide, in the gas phase. In contrast, just mild inhibition was observed for resting cells exposed to the same NO2 (-) concentration at pH values higher than 7.5 or any of the pH values tested in assays with actively metabolizing cells. ATP initially increased and subsequently decreased in time after resting cells were exposed to NO2 (-) suggesting an active response of the cells to nitrite stress. Furthermore, bioreactors operated at pH lower than 6.8 had greater sensitivity to NO2 (-) during an ammonium feed interruption than a bioreactor operated at pH 7.1. The results suggest that the ability of resting cells to tolerate NO2 (-) inhibition is seriously impeded at mildly acidic pH values; whereas actively metabolizing biomass is resistant to NO2 (-) toxicity over a wide range of pH values.
Collapse
Affiliation(s)
- José M Carvajal-Arroyo
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, Arizona.
| | | | | | | | | |
Collapse
|
32
|
Karlsson R, Karlsson A, Bäckman O, Johansson BR, Hulth S. Subcellular localization of an ATPase in anammox bacteria using proteomics and immunogold electron microscopy. FEMS Microbiol Lett 2014; 354:10-8. [PMID: 24635406 DOI: 10.1111/1574-6968.12425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/14/2014] [Accepted: 03/11/2014] [Indexed: 11/27/2022] Open
Abstract
Anaerobic ammonium oxidation (anammox) has received significant attention during optimization of waste-water treatment and constitutes an important pathway for the removal of bioavailable nitrogen from natural environments. Studies of key catabolic enzymes indicate that the anammox reaction takes place inside the anammoxosome, an organelle-like membranous compartment of anammox bacteria. The anammoxosome has also been suggested as a site for ATP synthesis. A lipid-based protein immobilization technique, previously used to identify proteins essential for the anammox reaction, was in this study used to select linear epitopes for antibodies specifically targeted against an identified ATPase. The approach of using proteomics and bioinformatics as tools for selecting antibody targets for immunolocalization provides an important alternative to traditional methods for selection of specific antibodies. Immunogold electron microscopy and statistical evaluations indicated that the antibodies against the ATPase were exclusively found associated with the anammoxosome membrane. This provides strong evidence for ATP synthesis by an intracellular proton motive force in anammox bacteria. Within prokaryotes, an ATP synthase associated with an intracellular compartment is a feature unique for anammox bacteria.
Collapse
|
33
|
Wang J, Dong H, Wang W, Gu JD. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China. Appl Microbiol Biotechnol 2014; 98:2675-86. [PMID: 24077726 DOI: 10.1007/s00253-013-5242-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
The relative gene expression of hydrazine oxidoreductase encoding gene (hzo) for anaerobic ammonium oxidizing bacteria (anammox) and ammonia monooxygenase encoding gene (amoA) for both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in Sanjiang Plain soybean and rice paddy soils of Northeast China was investigated by using real-time reverse-transcriptional quantitative PCR. Metabolically active populations of anammox, AOA, and AOB in rice paddy soils were evident by the presence and successful quantification of hzo mRNA and amoA mRNA genes. The expression ratio of amoA gene for both AOA and AOB varied between soybean soils and different rice paddy soils while the expression of hzo gene for anammox was detectable only in rice paddy soils by showing a diverse relative expression ratio in each soil sample. Gene expression of both archaeal and bacterial amoA genes in rice paddy soils differed among the three sampling depths, but that of hzo was not. Both archaeal and bacterial amoA genes showed an increase trend of expression level with continuation of rice paddy cultivation, but the low expression ratio of hzo gene indicated a relatively small contribution of anammox in overall removal of inorganic nitrogen through N2 even under anoxic and high nitrogen input in agriculture. Bacterial amoA gene from two soybean fields and three rice paddy fields were also analyzed for community composition by denaturing gradient gel electrophoresis fingerprint. Community shift was observed between soybean and paddy fields and within each of them. The consistent occurrence of three bands 5, 6, and 7 in all samples showed their high adaptability for both arid cultivation and continuous rice paddy cultivation. Our data suggest that AOA and AOB are playing a more important role in nitrogen transformation in agricultural soils in oxic or anoxic environment and anammox bacteria may also contribute but in a less extent to N transformation in these agricultural soils under anoxic condition.
Collapse
|
34
|
Carvajal-Arroyo JM, Puyol D, Li G, Lucero-Acuña A, Sierra-Álvarez R, Field JA. Pre-exposure to nitrite in the absence of ammonium strongly inhibits anammox. WATER RESEARCH 2014; 48:52-60. [PMID: 24091185 DOI: 10.1016/j.watres.2013.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/31/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
Anaerobic ammonium oxidizing bacteria (Anammox) are known to be inhibited by their substrate, nitrite. However, the mechanism of inhibition and the physiological conditions under which nitrite impacts the performance of anammox bioreactors are still unknown. This study investigates the role of pre-exposing anammox bacteria to nitrite alone on their subsequent activity and metabolism after ammonium has been added. Batch experiments were carried out with anammox granular biofilm pre-exposed to nitrite over a range of concentrations and durations in the absence of ammonium. The effect of pre-exposure to nitrite alone compared to nitrite simultaneously fed with ammonium was evaluated by measuring the anammox activity and the accumulation of the intermediate, nitric oxide. The results show that the inhibitory effect was more dramatic when bacteria were pre-exposed to nitrite in absence of ammonium, as revealed by the lower activity and the higher accumulation of nitric oxide. The nitrite concentration causing 50% inhibition was 53 and 384 mg N L(-1) in the absence or the presence of ammonium, respectively. The nitrite inhibition was thus 7.2-fold more severe in the absence of ammonium. Biomass exposure to nitrite (25 mg N L(-1)), in absence of ammonium, led to accumulation of nitric oxide. On the other hand when the biomass was exposed to nitrite in presence of ammonium, accumulation of nitric oxide was only observed at much higher nitrite concentrations (500 mg N L(-1)). The inhibitory effect of nitrite in the absence of ammonium was very rapid. The rate of decay of the anammox activity was equivalent to the diffusion rate of nitrite up to 46% of activity loss. The results taken as a whole suggest that nitrite inhibition is more acute when anammox cells are not actively metabolizing. Accumulation of nitric oxide in the headspace most likely indicates disruption of the anammox biochemistry by nitrite inhibition, caused by an interruption of the hydrazine synthesis step.
Collapse
Affiliation(s)
- José M Carvajal-Arroyo
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Devos DP. Re-interpretation of the evidence for the PVC cell plan supports a Gram-negative origin. Antonie van Leeuwenhoek 2013; 105:271-4. [DOI: 10.1007/s10482-013-0087-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/22/2013] [Indexed: 11/30/2022]
|
36
|
ten Brink F, Schoepp-Cothenet B, van Lis R, Nitschke W, Baymann F. Multiple Rieske/cytb complexes in a single organism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1392-406. [PMID: 23507620 DOI: 10.1016/j.bbabio.2013.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 11/28/2022]
Abstract
Most organisms contain a single Rieske/cytb complex. This enzyme can be integrated in any respiratory or photosynthetic electron transfer chain that is quinone-based and sufficiently energy rich to allow for the turnover of three enzymes - a quinol reductase, a Rieske/cytb complex and a terminal oxidase. Despite this universal usability of the enzyme a variety of phylogenetically distant organisms have multiple copies thereof and no reason for this redundancy is obvious. In this review we present an overview of the distribution of multiple copies among species and describe their properties from the scarce experimental results, analysis of their amino acid sequences and genomic context. We discuss the predicted redox properties of the Rieske cluster in relation to the nature of the pool quinone. It appears that acidophilic iron-oxidizing bacteria specialized one of their two copies for reverse electron transfer, archaeal Thermoprotei adapted their three copies to the interaction with different oxidases and several, phylogenetically unrelated species imported a second complex with a putative heme ci that may confer some yet to be determined properties to the complex. These hypothesis and all the more the so far completely unexplained cases call for further studies and we put forward a number of suggestions for future research that we hope to be stimulating for the field. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- F ten Brink
- BIP/UMR7281, FR3479, CNRS/AMU, 13 chemin Joseph Aiguier, 13009 Marseille, France
| | | | | | | | | |
Collapse
|
37
|
Carvajal-Arroyo JM, Sun W, Sierra-Alvarez R, Field JA. Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents. CHEMOSPHERE 2013; 91:22-7. [PMID: 23245574 DOI: 10.1016/j.chemosphere.2012.11.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 05/21/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is an emerging technology for nitrogen removal that provides a more environmentally sustainable and cost effective alternative compared to conventional biological treatment methods. The objective of this study was to investigate the inhibitory impact of anammox substrates, metabolites and common wastewater constituents on the microbial activity of two different anammox enrichment cultures (suspended and granular), both dominated by bacteria from the genus Brocadia. Inhibition was evaluated in batch assays by comparing the N(2) production rates in the absence or presence of each compound supplied in a range of concentrations. The optimal pH was 7.5 and 7.3 for the suspended and granular enrichment cultures, respectively. Among the substrates or products, ammonium and nitrate caused low to moderate inhibition, whereas nitrite caused almost complete inhibition at concentrations higher than 15 mM. The intermediate, hydrazine, either stimulated or caused low inhibition of anammox activity up to 3mM. Of the common constituents in wastewater, hydrogen sulfide was the most severe inhibitor, with 50% inhibitory concentrations (IC(50)) as low as 0.03 mM undissociated H(2)S. Dissolved O(2) showed moderate inhibition (IC(50)=2.3-3.8 mg L(-1)). In contrast, phosphate and salinity (NaCl) posed very low inhibition. The suspended- and granular anammox enrichment cultures had similar patterns of response to the various inhibitory stresses with the exception of phosphate. The findings of this study provide comprehensive insights on the tolerance of the anammox process to a wide variety of potential inhibiting compounds.
Collapse
Affiliation(s)
- José M Carvajal-Arroyo
- Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, 85721 Tucson, AZ, USA.
| | | | | | | |
Collapse
|
38
|
Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJM, Jetten MSM, Keltjens JT. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev 2013; 37:428-61. [PMID: 23210799 DOI: 10.1111/1574-6976.12014] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/25/2012] [Accepted: 11/21/2012] [Indexed: 11/28/2022] Open
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria primarily grow by the oxidation of ammonium coupled to nitrite reduction, using CO2 as the sole carbon source. Although they were neglected for a long time, anammox bacteria are encountered in an enormous species (micro)diversity in virtually any anoxic environment that contains fixed nitrogen. It has even been estimated that about 50% of all nitrogen gas released into the atmosphere is made by these 'impossible' bacteria. Anammox catabolism most likely resides in a special cell organelle, the anammoxosome, which is surrounded by highly unusual ladder-like (ladderane) lipids. Ammonium oxidation and nitrite reduction proceed in a cyclic electron flow through two intermediates, hydrazine and nitric oxide, resulting in the generation of proton-motive force for ATP synthesis. Reduction reactions associated with CO2 fixation drain electrons from this cycle, and they are replenished by the oxidation of nitrite to nitrate. Besides ammonium or nitrite, anammox bacteria use a broad range of organic and inorganic compounds as electron donors. An analysis of the metabolic opportunities even suggests alternative chemolithotrophic lifestyles that are independent of these compounds. We note that current concepts are still largely hypothetical and put forward the most intriguing questions that need experimental answers.
Collapse
Affiliation(s)
- Boran Kartal
- Department of Microbiology, Faculty of Science, Institute of Wetland and Water Research, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
van Niftrik L, Jetten MSM. Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev 2012; 76:585-96. [PMID: 22933561 PMCID: PMC3429623 DOI: 10.1128/mmbr.05025-11] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called "prokaryotic organelle" analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya.
Collapse
Affiliation(s)
- Laura van Niftrik
- Department of Microbiology, Institute for Water & Wetland Research, Faculty of Science, Radboud University Nijmegen, The Netherlands.
| | | |
Collapse
|
40
|
Speth DR, van Teeseling MCF, Jetten MSM. Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in planctomycetes and verrucomicrobia. Front Microbiol 2012; 3:304. [PMID: 22934092 PMCID: PMC3422733 DOI: 10.3389/fmicb.2012.00304] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/31/2012] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the phylum Planctomycetes are of special interest for the study of compartmental cellular organization. Members of this phylum share a very unusual prokaryotic cell plan, featuring several membrane-bound compartments. Recently, it was shown that this cellular organization might extend to certain members of the phylum Verrucomicrobia. The Planctomycete cell plan has been defined as featuring a proteinaceous cell wall, a cytoplasmic membrane surrounding the paryphoplasm, and an intracytoplasmic membrane defining the riboplasm. So far it was presumed that Planctomycetes did not have an asymmetric bilayer outer membrane as observed in Gram-negative bacteria. However, recent work on outer membrane biogenesis has provided several marker genes in the outer membrane protein (OMP) assembly and the lipopolysaccharide (LPS) insertion complexes. Additionally, advances in computational prediction of OMPs provided new tools to perform more accurate genomic screening for such proteins. Here we searched all 22 Planctomycetes and Verrucomicrobia genomes available in GenBank, plus the recently published genome of "Candidatus Scalindua profunda," for markers of outer membrane biogenesis and OMPs. We were able to identify the key components of LPS insertion, OMP assembly and at least eight OMPs in all genomes tested. Additionally, we have analyzed the transcriptome and proteome data of the Planctomycetes "Candidatus Kuenenia stuttgartiensis" and "Ca. S. profunda" and could confirm high expression of several predicted OMPs, including the biomarkers of outer membrane biogenesis. These analyses provide a strong indication that an asymmetrical outer membrane may be present in bacteria of both phyla. However, previous experiments have made obvious that the cell envelope of Planctomycetes is clearly divergent from both the Gram-negative and Gram-positive cell types. Thus, the functional implications of the presence of an outer membrane for the Planctomycete cell plan and compartmentalization are discussed and a revised model including an outer membrane is proposed. Although this model agrees with most experimental data, we do note that the presence, location, and role of an outer membrane within the Planctomycetes and Verrucomicrobia awaits further experimental validation.
Collapse
Affiliation(s)
- Daan R. Speth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
| | - Muriel C. F. van Teeseling
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
| | - Mike S. M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| |
Collapse
|
41
|
Kraft B, Strous M, Tegetmeyer HE. Microbial nitrate respiration – Genes, enzymes and environmental distribution. J Biotechnol 2011; 155:104-17. [DOI: 10.1016/j.jbiotec.2010.12.025] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/07/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023]
|
42
|
Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 2011; 9:403-13. [PMID: 21572457 DOI: 10.1038/nrmicro2578] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Planctomycetes form a distinct phylum of the domain Bacteria and possess unusual features such as intracellular compartmentalization and a lack of peptidoglycan in their cell walls. Remarkably, cells of the genus Gemmata even contain a membrane-bound nucleoid analogous to the eukaryotic nucleus. Moreover, the so-called 'anammox' planctomycetes have a unique anaerobic, autotrophic metabolism that includes the ability to oxidize ammonium; this process is dependent on a characteristic membrane-bound cell compartment called the anammoxosome, which might be a functional analogue of the eukaryotic mitochondrion. The compartmentalization of planctomycetes challenges our hypotheses regarding the origins of eukaryotic organelles. Furthermore, the recent discovery of both an endocytosis-like ability and proteins homologous to eukaryotic clathrin in a planctomycete marks this phylum as one to watch for future research on the origin and evolution of the eukaryotic cell.
Collapse
|
43
|
van Niftrik L, van Helden M, Kirchen S, van Donselaar EG, Harhangi HR, Webb RI, Fuerst JA, Op den Camp HJM, Jetten MSM, Strous M. Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium 'Candidatus Kuenenia stuttgartiensis'. Mol Microbiol 2010; 77:701-15. [PMID: 20545867 PMCID: PMC2936114 DOI: 10.1111/j.1365-2958.2010.07242.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2010] [Indexed: 11/28/2022]
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria are divided into three compartments by bilayer membranes (from out- to inside): paryphoplasm, riboplasm and anammoxosome. It is proposed that the anammox reaction is performed by proteins located in the anammoxosome and on its membrane giving rise to a proton-motive-force and subsequent ATP synthesis by membrane-bound ATPases. To test this hypothesis, we investigated the location of membrane-bound ATPases in the anammox bacterium 'Candidatus Kuenenia stuttgartiensis'. Four ATPase gene clusters were identified in the K. stuttgartiensis genome: one typical F-ATPase, two atypical F-ATPases and a prokaryotic V-ATPase. K. stuttgartiensis transcriptomic and proteomic analysis and immunoblotting using antisera directed at catalytic subunits of the ATPase gene clusters indicated that only the typical F-ATPase gene cluster most likely encoded a functional ATPase under these cultivation conditions. Immunogold localization showed that the typical F-ATPase was predominantly located on both the outermost and anammoxosome membrane and to a lesser extent on the middle membrane. This is consistent with the anammox physiology model, and confirms the status of the outermost cell membrane as cytoplasmic membrane. The occurrence of ATPase in the anammoxosome membrane suggests that anammox bacteria have evolved a prokaryotic organelle; a membrane-bounded compartment with a specific cellular function: energy metabolism.
Collapse
Affiliation(s)
- Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Medema MH, Zhou M, van Hijum SAFT, Gloerich J, Wessels HJCT, Siezen RJ, Strous M. A predicted physicochemically distinct sub-proteome associated with the intracellular organelle of the anammox bacterium Kuenenia stuttgartiensis. BMC Genomics 2010; 11:299. [PMID: 20459862 PMCID: PMC2881027 DOI: 10.1186/1471-2164-11-299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/12/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anaerobic ammonium-oxidizing (anammox) bacteria perform a key step in global nitrogen cycling. These bacteria make use of an organelle to oxidize ammonia anaerobically to nitrogen (N2) and so contribute approximately 50% of the nitrogen in the atmosphere. It is currently unknown which proteins constitute the organellar proteome and how anammox bacteria are able to specifically target organellar and cell-envelope proteins to their correct final destinations. Experimental approaches are complicated by the absence of pure cultures and genetic accessibility. However, the genome of the anammox bacterium Candidatus "Kuenenia stuttgartiensis" has recently been sequenced. Here, we make use of these genome data to predict the organellar sub-proteome and address the molecular basis of protein sorting in anammox bacteria. RESULTS Two training sets representing organellar (30 proteins) and cell envelope (59 proteins) proteins were constructed based on previous experimental evidence and comparative genomics. Random forest (RF) classifiers trained on these two sets could differentiate between organellar and cell envelope proteins with ~89% accuracy using 400 features consisting of frequencies of two adjacent amino acid combinations. A physicochemically distinct organellar sub-proteome containing 562 proteins was predicted with the best RF classifier. This set included almost all catabolic and respiratory factors encoded in the genome. Apparently, the cytoplasmic membrane performs no catabolic functions. We predict that the Tat-translocation system is located exclusively in the organellar membrane, whereas the Sec-translocation system is located on both the organellar and cytoplasmic membranes. Canonical signal peptides were predicted and validated experimentally, but a specific (N- or C-terminal) signal that could be used for protein targeting to the organelle remained elusive. CONCLUSIONS A physicochemically distinct organellar sub-proteome was predicted from the genome of the anammox bacterium K. stuttgartiensis. This result provides strong in silico support for the existing experimental evidence for the existence of an organelle in this bacterium, and is an important step forward in unravelling a geochemically relevant case of cytoplasmic differentiation in bacteria. The predicted dual location of the Sec-translocation system and the apparent absence of a specific N- or C-terminal signal in the organellar proteins suggests that additional chaperones may be necessary that act on an as-yet unknown property of the targeted proteins.
Collapse
Affiliation(s)
- Marnix H Medema
- Department of Microbiology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|