1
|
Pairazamán OD, Woiciechowski AL, Zevallos LA, Tanobe VOA, Zandona A, Soccol CR. Fumaric acid production by Rhizopus species from acid hydrolysate of oil palm empty fruit bunches. Braz J Microbiol 2024; 55:1179-1187. [PMID: 38671219 PMCID: PMC11153437 DOI: 10.1007/s42770-024-01322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/23/2024] [Indexed: 04/28/2024] Open
Abstract
The hemicellulosic fraction of lignocellulosic biomass is a very important material, due to the significant concentration of pentoses present in its composition and that can be used sustainably in biotechnological processes such as the production of fumaric acid. Research efforts are currently being promoted for the proper disposal and valorization of empty fruit bunches (EFB) from oil palm. In this work, seventeen Rhizopus species were evaluated in a fermentation medium with EFB hydrolyzate, without detoxification, as a carbon source for fumaric acid production. Rhizopus circicans 1475 and Rhizopus 3271 achieved productions of 5.65 g.L-1 and 5.25 g.L-1 of fumaric acid at 30 °C, 120 rpm for 96 h, respectively. The percentage of consumed sugars, mainly pentoses, was 24.88% and 34.02% for R. circicans 1475 and R 3271, respectively. Soy peptone and ammonium sulfate were evaluated as nitrogen sources, where soy peptone stimulated the formation of biomass pellets while ammonium sulfate produced mycelia and clamps.
Collapse
Affiliation(s)
- Omar D Pairazamán
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
- Biological Science Department, National University of Cajamarca, Cajamarca, Peru
- Bacteriology Laboratory, Regional Public Health Laboratory, Cajamarca, Peru
| | - Adenise L Woiciechowski
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil.
- Chemical Engineering Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil.
| | - Luis A Zevallos
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
| | | | - Arion Zandona
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
- Chemical Engineering Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
| | - Carlos R Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
- Chemical Engineering Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
| |
Collapse
|
2
|
Koga T, Ishizu M, Watanabe K, Miyamoto H, Oshiro M, Sakai K, Tashiro Y. Dilution rates and their transition modes influence organic acid productivity and bacterial community structure on continuous meta-fermentation using complex microorganisms. J Biosci Bioeng 2023; 136:391-399. [PMID: 37735063 DOI: 10.1016/j.jbiosc.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
We investigated the effect of dilution rates (D) (0.05, 0.15, and 0.4 h-1) and its transition mode strategies (constant, up, and down modes) on organic acid productivity and bacterial community structure on continuous meta-fermentation using complex microorganisms. The number of bacterial species decreased with increasing D in the constant mode while up and down modes maintained high and low values, respectively, regardless of the changing D values. Caldibacillus hisashii was the predominant species in all modes at all D values, while other bacterial species, including Anaerosalibacter bizertensis and Clostridium cochlearium were predominant in only certain modes and D values. The highest total organic acid productivity of 3.16 g L-1 h-1 was obtained with 82.2% lactic acid selectivity at D = 0.4 h⁻1 in constant mode. Heterofermentation occurred in the up mode, while the down mode exhibited the maximum butyric acid productivity of 0.348 g L-1 h-1 with 43.8% selectivity at D = 0.05 h-1. The constant, up, and down modes showed the distinct main products of lactic, acetic and formic, and butyric acids, respectively. In this study, we proposed a new parameter of species-specific productivity (SSP) to estimate which species and how much a bacterium quantitatively contributes to the targeted organic acid productivity in continuous meta-fermentation. SSP was determined based on the abundance of functional genes encoding key enzymes from the results of 16S amplicon analysis. In conclusion, D values and their transition modes affect productivity by changing the bacterial community structure, and are a significant factor in establishing a highly productive process in continuous meta-fermentation.
Collapse
Affiliation(s)
- Tomonori Koga
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuoki Ishizu
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kota Watanabe
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirokuni Miyamoto
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan; Sermas Co., Ltd., Chiba 272-0015, Japan; Japan Eco-science (Nikkan Kagaku) Co. Ltd., Chiba 263-8522, Japan
| | - Mugihito Oshiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Kahar P, Rachmadona N, Pangestu R, Palar R, Triyono Nugroho Adi D, Betha Juanssilfero A, Manurung I, Hama S, Ogino C. An integrated biorefinery strategy for the utilization of palm-oil wastes. BIORESOURCE TECHNOLOGY 2022; 344:126266. [PMID: 34740797 DOI: 10.1016/j.biortech.2021.126266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Each year, the palm oil industry generates a significant amount of biomass residue and effluent waste; both have been identified as significant sources of greenhouse gas (GHG) emissions. This issue poses a severe environmental challenge for the industry due to the possibility of long-term negative effects on human well-being. The palm-oil industry must invest significantly in the technology that is required to resolve these issues and to increase the industry's sustainability. However, current technologies for converting wastes such as lignocellulosic components and effluents into biochemical products are insufficient for optimal utilization. This review discusses the geographical availability of palm-oil biomass, its current utilization routes, and then recommends the development of technology for converting palm-oil biomass into value-added products through an integrated biorefinery strategy. Additionally, this review summarizes the palm oil industry's contribution to achieving sustainable development goals (SDGs) through a circular bioeconomy concept.
Collapse
Affiliation(s)
- Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Nova Rachmadona
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Radityo Pangestu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia
| | - Rendi Palar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia
| | - Deddy Triyono Nugroho Adi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Research Center for Biomaterial, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia
| | - Ario Betha Juanssilfero
- Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, West Java 16911, Indonesia
| | - Immanuel Manurung
- P. T. Agricinal, Kecamatan Putri Hijau, Kabupaten Bengkulu Utara, Bengkulu 38362, Indonesia
| | - Shinji Hama
- Research and Development Laboratory, Bio-energy Corporation, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
4
|
Efficient Co-Utilization of Biomass-Derived Mixed Sugars for Lactic Acid Production by Bacillus coagulans Azu-10. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lignocellulosic and algal biomass are promising substrates for lactic acid (LA) production. However, lack of xylose utilization and/or sequential utilization of mixed-sugars (carbon catabolite repression, CCR) from biomass hydrolysates by most microorganisms limits achievable titers, yields, and productivities for economical industry-scale production. This study aimed to design lignocellulose-derived substrates for efficient LA production by a thermophilic, xylose-utilizing, and inhibitor-resistant Bacillus coagulans Azu-10. This strain produced 102.2 g/L of LA from 104 g/L xylose at a yield of 1.0 g/g and productivity of 3.18 g/L/h. The CCR effect and LA production were investigated using different mixtures of glucose (G), cellobiose (C), and/or xylose (X). Strain Azu-10 has efficiently co-utilized GX and CX mixture without CCR; however, total substrate concentration (>75 g/L) was the only limiting factor. The strain completely consumed GX and CX mixture and homoferemnatively produced LA up to 76.9 g/L. On the other hand, fermentation with GC mixture exhibited obvious CCR where both glucose concentration (>25 g/L) and total sugar concentration (>50 g/L) were the limiting factors. A maximum LA production of 50.3 g/L was produced from GC mixture with a yield of 0.93 g/g and productivity of 2.09 g/L/h. Batch fermentation of GCX mixture achieved a maximum LA concentration of 62.7 g/L at LA yield of 0.962 g/g and productivity of 1.3 g/L/h. Fermentation of GX and CX mixture was the best biomass for LA production. Fed-batch fermentation with GX mixture achieved LA production of 83.6 g/L at a yield of 0.895 g/g and productivity of 1.39 g/L/h.
Collapse
|
5
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
6
|
Zhang Z, Li Y, Zhang J, Peng N, Liang Y, Zhao S. High-Titer Lactic Acid Production by Pediococcus acidilactici PA204 from Corn Stover through Fed-Batch Simultaneous Saccharification and Fermentation. Microorganisms 2020; 8:microorganisms8101491. [PMID: 32998448 PMCID: PMC7600695 DOI: 10.3390/microorganisms8101491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Lignocellulose comprised of cellulose and hemicellulose is one of the most abundant renewable feedstocks. Lactic acid bacteria have the ability to ferment sugar derived from lignocellulose. In this study, Pediococcus acidilactici PA204 is a lactic acid bacterium with a high tolerance of temperature and high-efficiency utilization of xylose. We developed a fed-batch simultaneous saccharification and fermentation (SSF) process at 37 °C (pH 6.0) using the 30 FPU (filter paper units)/g cellulase and 20 g/L corn steep powder in a 5 L bioreactor to produce lactic acid (LA). The titer, yield, and productivity of LA produced from 12% (w/w) NaOH-pretreated and washed stover were 92.01 g/L, 0.77 g/g stover, and 1.28 g/L/h, respectively, and those from 15% NaOH-pretreated and washed stover were 104.11 g/L, 0.69 g/g stover, and 1.24 g/L/h, respectively. This study develops a feasible fed-batch SSF process for LA production from corn stover and provides a promising candidate strain for high-titer and -yield lignocellulose-derived LA production.
Collapse
Affiliation(s)
- Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
| | - Yanan Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
| | - Jianguo Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
- Correspondence: ; Tel.: +86-27-8728-1267; Fax: +86-27-8728-0670
| |
Collapse
|
7
|
Caldeira C, Vlysidis A, Fiore G, De Laurentiis V, Vignali G, Sala S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. BIORESOURCE TECHNOLOGY 2020; 312:123575. [PMID: 32521468 DOI: 10.1016/j.biortech.2020.123575] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 05/15/2023]
Abstract
The need to increase circularity of industrial systems to address limited resources availability and climate change has triggered the development of the food waste biorefinery concept. However, for the development of future sustainable industrial processes focused on the valorisation of food waste, critical aspects such as (i) the technical feasibility of the processes at industrial scale, (ii) the analysis of their techno-economic potential, including available quantities of waste, and (iii) a life cycle-based environmental assessment of benefits and burdens need to be considered. The goal of this review is to provide an overview of food waste valorisation pathways and to analyse to which extent these aspects have been considered in the literature. Although a plethora of food waste valorisation pathways exist, they are mainly developed at lab-scale. Further research is necessary to assess upscaled performance, feedstock security, and economic and environmental assessment of food waste valorisation processes.
Collapse
Affiliation(s)
- Carla Caldeira
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Anestis Vlysidis
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Gianluca Fiore
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Valeria De Laurentiis
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy
| | - Giuseppe Vignali
- University of Parma, Department of Engineering and Architecture, Viale delle Scienze 181/A, 43124 Parma, Italy
| | - Serenella Sala
- European Commission-Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra, VA, Italy.
| |
Collapse
|
8
|
A review on the current developments in continuous lactic acid fermentations and case studies utilising inexpensive raw materials. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Ong KL, Kaur G, Pensupa N, Uisan K, Lin CSK. Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. BIORESOURCE TECHNOLOGY 2018; 248:100-112. [PMID: 28662903 DOI: 10.1016/j.biortech.2017.06.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Staggering amounts of food waste are being generated in Asia by means of agricultural processing, food transportation and storage, and human food consumption activities. This along with the recent sustainable development goals of food security, environmental protection, and energy efficiency are the key drivers for food waste valorization. The aim of this review is to provide an insight on the latest trends in food waste valorization in Asian countries such as India, Thailand, Singapore, Malaysia and Indonesia. Landfilling, incineration, and composting are the first-generation food waste processing technologies. The advancement of valorisation alternatives to tackle the food waste issue is the focus of this review. Furthermore, a series of examples of key food waste valorization schemes in this Asian region as case studies to demonstrate the advancement in bioconversions in these countries are described. Finally, important legislation aspects for food waste disposal in these Asian countries are also reported.
Collapse
Affiliation(s)
- Khai Lun Ong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Guneet Kaur
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Nattha Pensupa
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Kristiadi Uisan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
10
|
Juturu V, Wu JC. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12. Biotechnol Appl Biochem 2017; 65:145-149. [PMID: 28436165 DOI: 10.1002/bab.1567] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022]
Abstract
Thermophilic Bacillus coagulans JI12 was used to ferment hemicellulose hydrolysate obtained by acid hydrolysis of oil palm empty fruit bunch at 50 °C and pH 6, producing 105.4 g/L of l-lactic acid with a productivity of 9.3 g/L/H by fed-batch fermentation under unsterilized conditions. Simultaneous saccharification and fermentation (SSF) was performed at pH 5.5 and 50 °C to convert both hemicellulose hydrolysate and cellulose-lignin complex in the presence of Cellic Ctec2 cellulases using yeast extract (20 g/L) as the nitrogen source, giving 114.0 g/L of l-lactic acid with a productivity of 5.7 g/L/H. The SSF was also conducted by replacing yeast extract with equal amount of dry Bakers' yeast, achieving 120.0 g/L of l-lactic acid with a productivity of 4.3 g/L/H. To the best of our knowledge, these lactic acid titers and productivities are the highest ever reported from lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Veeresh Juturu
- Department of Industrial biotechnology, Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833
| | - Jin Chuan Wu
- Department of Industrial biotechnology, Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833
| |
Collapse
|
11
|
Johnravindar D, Murugesan K, Wong JWC, Elangovan N. Waste-to-biofuel: production of biobutanol from sago waste residues. ENVIRONMENTAL TECHNOLOGY 2017; 38:1725-1734. [PMID: 28091177 DOI: 10.1080/09593330.2017.1283362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
The main concern of extensive production of biobutanol has been associated with the high cost of the substrate and the relatively low tolerance of Clostridia to biobutanol production. In this study, the use of fermentable cassava waste residue (CWR) as substrate for biobutanol production was investigated using solvent-tolerant Clostridium sp. Four of obligatory, solvent-producing bacteria were isolated from sago industry waste sites. The NSW, PNAS1, SB5 and SBI4 strains showed identical profiles of 16S rRNA gene sequence similarity of Bacillus coagulans, Clostridium bifermentans and Clostridium sp. (97% similarity) and a wide range of carbohydrate substrate; however, the CWR was found to be suitable for the production of biobutanol considerably. Batch culture study was carried out using parameters such as time and temperature and carbon sources have been studied and optimized. Using pre-optimized CWR medium, significant amount of solvent production was observed in NSW, PNAS1, SB5 and SBI4 with 1.53, 3.36, 1.56 and 2.5 g L-1of butanol yield and 6.84, 9.012, 8.32 and 8.22 g L-1of total solvents, respectively. On the basis of these studies, NSW is proposed to represent the B. coagulans for butanol production directly from sago waste residues.
Collapse
Affiliation(s)
- Davidraj Johnravindar
- a Department of Biotechnology , School of Biosciences, Periyar University , Salem , Tamil Nadu , India
| | - Kumarasamy Murugesan
- b Department of Environmental Science , Periyar University , Salem , Tamil Nadu , India
| | - Jonathan W C Wong
- c Applied Research Centre for Pearl River Delta Environment, Department of Biology , Hong Kong Baptist University , Kowloon , Hong Kong
| | - Namasivayam Elangovan
- a Department of Biotechnology , School of Biosciences, Periyar University , Salem , Tamil Nadu , India
| |
Collapse
|
12
|
Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid. Appl Biochem Biotechnol 2017; 183:412-425. [DOI: 10.1007/s12010-017-2454-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/07/2017] [Indexed: 01/29/2023]
|
13
|
Comparison of high-titer lactic acid fermentation from NaOH- and NH 3-H 2O 2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation. Sci Rep 2016; 6:37245. [PMID: 27853308 PMCID: PMC5112544 DOI: 10.1038/srep37245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH3-H2O2-pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH3-H2O2-pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water.
Collapse
|
14
|
Ma K, Hu G, Pan L, Wang Z, Zhou Y, Wang Y, Ruan Z, He M. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. BIORESOURCE TECHNOLOGY 2016; 219:114-122. [PMID: 27479802 DOI: 10.1016/j.biortech.2016.07.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 05/13/2023]
Abstract
A thermophilic strain Bacillus coagulans (NBRC 12714) was employed to produce l-lactic acid from corn stover hydrolysate in membrane integrated continuous fermentation. The strain NBRC 12714 metabolized glucose and xylose by the Embden-Meyerhof-Parnas pathway (EMP) and the pentose phosphate pathway (PPP), producing l-lactic acid with optical purity >99.5%. The overall l-lactic acid titer of 92g/l with a yield of 0.91g/g and a productivity of 13.8g/l/h were achieved at a dilution rate of 0.15h(-1). The productivity obtained was 1.6-fold than that of conventional continuous fermentation without cell recycling, and also was the highest among the relevant studies ever reported. These results indicated that the process developed had great potential for economical industrial production of l-lactic acid from lignocellulosic biomass.
Collapse
Affiliation(s)
- Kedong Ma
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Liwei Pan
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Zichao Wang
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Yi Zhou
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Yanwei Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Zhiyong Ruan
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China.
| |
Collapse
|
15
|
Hu J, Lin Y, Zhang Z, Xiang T, Mei Y, Zhao S, Liang Y, Peng N. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. BIORESOURCE TECHNOLOGY 2016; 214:74-80. [PMID: 27128191 DOI: 10.1016/j.biortech.2016.04.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 06/05/2023]
Abstract
Because the cost of refined sugar substrate and limit of worldwide food availability, lignocellulosic materials are attractive for use in lactic acid (LA) production. In this study, we found Lactobacillus pentosus strain FL0421 produced LA with high yields (0.52-0.82g/g stover) from five NaOH-pretreated and washed agro stovers through simultaneous saccharification and fermentation (SSF). We developed a fed-batch SSF process at 37°C and pH 6.0 using the cellulase of 30FPU/g stover and 10g/L yeast extract in a 5-L bioreactor to produce LA from 14% (w/w) NaOH-pretreated and washed corn stover under non-sterile condition. The LA-titer, yield and productivity reached 92.30g/L, 0.66g/g stover and 1.92g/L/h, respectively; and acetic acid titer and yield reached 34.27g/L and 0.24g/g stover. This study presented a feasible process for LA production from agro stovers and provided a candidate strain for genetic engineering for high-titer and -yield lignocellulosic LA production.
Collapse
Affiliation(s)
- Jinlong Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yanxu Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Ting Xiang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, Hubei, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, Hubei, PR China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, Hubei, PR China; Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
16
|
Production of high concentration of l-lactic acid from cellobiose by thermophilic Bacillus coagulans WCP10-4. Appl Microbiol Biotechnol 2016; 100:6501-6508. [DOI: 10.1007/s00253-016-7600-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/10/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
17
|
Poudel P, Tashiro Y, Sakai K. New application of Bacillus strains for optically pure l-lactic acid production: general overview and future prospects. Biosci Biotechnol Biochem 2016; 80:642-54. [DOI: 10.1080/09168451.2015.1095069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Members of the genus Bacillus are considered to be both, among the best studied and most commonly used bacteria as well as the most still unexplored and the most wide-applicable potent bacteria because novel Bacillus strains are continuously being isolated and used in various areas. Production of optically pure l-lactic acid (l-LA), a feedstock for bioplastic synthesis, from renewable resources has recently attracted attention as a valuable application of Bacillus strains. l-LA fermentation by other producers, including lactic acid bacteria and Rhizopus strains (fungi) has already been addressed in several reviews. However, despite the advantages of l-LA fermentation by Bacillus strains, including its high growth rate, utilization of various carbon sources, tolerance to high temperature, and growth in simple nutritional conditions, it has not been reviewed. This review article discusses new findings on LA-producing Bacillus strains and compares them to other producers. The future prospects for LA-producing Bacillus strains are also discussed.
Collapse
Affiliation(s)
- Pramod Poudel
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Wang Y, Wang M, Cai D, Wang B, Wang Z, Qin P, Tan T. Efficient l-lactic acid production from sweet sorghum bagasse by open simultaneous saccharification and fermentation. RSC Adv 2016. [DOI: 10.1039/c6ra04538c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An open SSF process using B. coagulans LA1507 introduces an effective way to produce l-lactic acid from abundant SSB.
Collapse
Affiliation(s)
- Y. Wang
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - M. Wang
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - D. Cai
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - B. Wang
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Z. Wang
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - P. Qin
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - T. Tan
- National Energy R&D Center for Biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| |
Collapse
|
19
|
Liu G, Sun J, Zhang J, Tu Y, Bao J. High titer L-lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling. BIORESOURCE TECHNOLOGY 2015; 198:803-810. [PMID: 26454367 DOI: 10.1016/j.biortech.2015.09.098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Technological potentials of l-lactic acid production from corn stover feedstock were investigated by experimental and techno-economic studies. An optimal performance with 104.5 g/L in l-lactic acid titer and 71.5% in overall yield from cellulose in corn stover to l-lactic acid using an engineered Pediococcus acidilactici strain were obtained by overcoming several technical barriers. A rigorous Aspen plus model for l-lactic acid production starting from dry dilute acid pretreated and biodetoxified corn stover was developed. The techno-economic analysis shows that the minimum l-lactic acid selling price (MLSP) was $0.523 per kg, which was close to that of the commercial l-lactic acid produced from starch feedstock, and 24% less expensive than that of ethanol from corn stover, even though the xylose utilization was not considered. The study provided a prototype of industrial application and an evaluation model for high titer l-lactic acid production from lignocellulose feedstock.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiaoe Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yi Tu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
20
|
Use of dry yeast cells as a cheap nitrogen source for lactic acid production by thermophilic Bacillus coagulans WCP10-4. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1534-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Li Q, Hudari MSB, Wu JC. Production of Optically Pure D-Lactic Acid by the Combined use of Weissella sp. S26 and Bacillus sp. ADS3. Appl Biochem Biotechnol 2015; 178:285-93. [DOI: 10.1007/s12010-015-1871-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/23/2015] [Indexed: 11/24/2022]
|
22
|
Gandolfi S, Pistone L, Ottolina G, Xu P, Riva S. Hemp hurds biorefining: A path to green L-(+)-lactic acid production. BIORESOURCE TECHNOLOGY 2015; 191:59-65. [PMID: 25983223 DOI: 10.1016/j.biortech.2015.04.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
Sugars streams generated by organosolv pretreatment of hemp hurds, cellulose (C6) and hemicellulose (C5) fractions, were fermented to lactic acid (LA) by Bacillus coagulans strains XZL4 and DSM1. Pretreatment conditions and enzymatic hydrolysis were optimized and B. coagulans aptness to use lignocellulosic-derived sugars as a carbon source was evaluated. Methanolic organosolv pretreatment with 2.5% (w/w) H2SO4 gave the best results in terms of glucan recovery (98%), enzymatic hydrolysis of pretreated biomass (70%) and hemicellulosic sugars recovery (61%). C6 and C5 sugars fermentation by strain XZL4 gave, high LA yields (0.90 and 0.84 g/g), high titers (141 and 109 g/L), and high enantiomeric excess (>99%). Overall, 42 g of l-LA were obtained from 100 g of raw hemp hurds. These results can be considered promising for lignocellulosic feedstock valorization toward the production of polymer-grade LA.
Collapse
Affiliation(s)
- Stefano Gandolfi
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazioneale delle Ricerche (CNR), Via Mario Bianco 9, 20131 Milano, Italy; The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Università degli Studi dell'Insubria, Politecnico di Milano, ICRM CNR, Milano, Italy.
| | - Lucia Pistone
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazioneale delle Ricerche (CNR), Via Mario Bianco 9, 20131 Milano, Italy; The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Università degli Studi dell'Insubria, Politecnico di Milano, ICRM CNR, Milano, Italy
| | - Gianluca Ottolina
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazioneale delle Ricerche (CNR), Via Mario Bianco 9, 20131 Milano, Italy; The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Università degli Studi dell'Insubria, Politecnico di Milano, ICRM CNR, Milano, Italy
| | - Ping Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazioneale delle Ricerche (CNR), Via Mario Bianco 9, 20131 Milano, Italy; The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Università degli Studi dell'Insubria, Politecnico di Milano, ICRM CNR, Milano, Italy
| |
Collapse
|
23
|
Affiliation(s)
- Veeresh Juturu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Jurong Island, Singapore
| | - Jin Chuan Wu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Jurong Island, Singapore
| |
Collapse
|
24
|
Hu J, Zhang Z, Lin Y, Zhao S, Mei Y, Liang Y, Peng N. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. BIORESOURCE TECHNOLOGY 2015; 182:251-257. [PMID: 25704098 DOI: 10.1016/j.biortech.2015.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 05/20/2023]
Abstract
Lactic acid (LA) is an important chemical with various industrial applications. Non-food feedstock is commercially attractive for use in LA production; however, efficient LA fermentation from lignocellulosic biomass resulting in both high yield and titer faces technical obstacles. In this study, the thermophilic bacterium Bacillus coagulans LA204 demonstrated considerable ability to ferment glucose, xylose, and cellobiose to LA. Importantly, LA204 produces LA from several NaOH-pretreated agro stovers, with remarkably high yields through simultaneous saccharification and fermentation (SSF). A fed-batch SSF process conducted at 50°C and pH 6.0, using a cellulase concentration of 30 FPU (filter paper unit)/g stover and 10 g/L yeast extract in a 5-L bioreactor, was developed to produce LA from 14.4% (w/w) NaOH-pretreated non-sterile corn stover. LA titer, yield, and average productivity reached 97.59 g/L, 0.68 g/g stover, and 1.63 g/L/h, respectively. This study presents a feasible process for lignocellulosic LA production from abundant agro stovers.
Collapse
Affiliation(s)
- Jinlong Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanxu Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430070, PR China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430070, PR China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430070, PR China.
| |
Collapse
|
25
|
Li Q, Ng WT, Wu JC. Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch. Microb Cell Fact 2014; 13:157. [PMID: 25384340 PMCID: PMC4232651 DOI: 10.1186/s12934-014-0157-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023] Open
Abstract
Background Oil palm empty fruit bunch (EFB) is a lignocellulosic waste produced in palm oil industry. EFB mainly consists of cellulose, hemicellulose (mainly xylan) and lignin and has a great potential to be reused. Converting EFB to fermentable sugars and value-added chemicals is a much better choice than treating EFB as waste. Results A cellulase-producing strain growing on oil palm empty fruit bunch (EFB) was isolated and identified as Neurospora crassa S1, which is able to produce cellulases using EFB as the sole carbon source. The strain started to secret cellulases into the medium after 24 h of cultivation at 30°C and reached its maximal cellulase activity at 240 h. Mass spectroscopy (MS) analysis showed that more than 50 proteins were secreted into the medium when EFB was used as the sole carbon source. Among them, 7 proteins were identified as putative enzymes associated with cellulose degradation. The whole cell culture of Neurospora crassa S1 was used to hydrolyze acid-treated EFB, giving a total sugar yield of 83.2%, which is comparable with that (82.0%) using a well-known cellulase producer Trichoderma reesei RUT-C30 (ATCC56765). Conclusion Neurospora crassa S1 is a commercially promising native cellulase producer for EFB hydrolysis especially when the sugars obtained are to be fermented to products that require use of non-genetically engineered strains.
Collapse
Affiliation(s)
- Qingxin Li
- Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.
| | - Wei Ting Ng
- Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.
| | - Jin Chuan Wu
- Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.
| |
Collapse
|
26
|
Zhang Y, Chen X, Qi B, Luo J, Shen F, Su Y, Khan R, Wan Y. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions. BIORESOURCE TECHNOLOGY 2014; 163:160-6. [PMID: 24811443 DOI: 10.1016/j.biortech.2014.04.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 05/13/2023]
Abstract
Bacillus coagulans IPE22 was used to produce lactic acid (LA) from mixed sugar and wheat straw hydrolysates, respectively. All fermentations were conducted under non-sterilized conditions and sodium hydroxide was used as neutralizing agent to avoid the production of insoluble CaSO4. In order to eliminate the sequential utilization of mixed sugar and feedback inhibition during batch fermentation, membrane integrated repeated batch fermentation (MIRB) was used to improve LA productivity. With MIRB, a high cell density was obtained and the simultaneous fermentation of glucose, xylose and arabinose was successfully realized. The separation of LA from broth by membrane in batch fermentation also decreased feedback inhibition. MIRB was carried out using wheat straw hydrolysates (29.72 g/L glucose, 24.69 g/L xylose and 5.14 g/L arabinose) as carbon source, LA productivity was increased significantly from 1.01 g/L/h (batch 1) to 2.35 g/L/h (batch 6) by the repeated batch fermentation.
Collapse
Affiliation(s)
- Yuming Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Benkun Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianquan Luo
- Department of Chemical and Biochemical Engineering, Center for Bioprocess Engineering, Building 229, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Fei Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Rashid Khan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
27
|
Isolation of thermophilic l-lactic acid producing bacteria showing homo-fermentative manner under high aeration condition. J Biosci Bioeng 2014; 117:318-24. [DOI: 10.1016/j.jbiosc.2013.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/20/2022]
|
28
|
Li Q, Ng WT, Puah SM, Bhaskar RV, Soh LS, MacBeath C, Parakattil P, Green P, Wu JC. Efficient production of fermentable sugars from oil palm empty fruit bunch by combined use of acid and whole cell culture-catalyzed hydrolyses. Biotechnol Appl Biochem 2014; 61:426-31. [PMID: 24329860 DOI: 10.1002/bab.1188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/02/2013] [Indexed: 11/08/2022]
Abstract
Empty fruit bunch (EFB) of oil palm trees was converted to fermentable sugars by the combined use of dilute acids and whole fungal cell culture-catalyzed hydrolyses. EFB (5%, w/v) was hydrolyzed in the presence of 0.5% H2 SO4 and 0.2% H3 PO4 at 160 °C for 10 Min. The solid fraction was separated from the acid hydrolysate by filtration and subjected to enzymatic hydrolysis at 50 °C using the whole cell culture of Trichoderma reesei RUT-C30 (2%, w/v), which was prepared by cultivation at 30 °C for 7 days to reach its maximal cellulase activity. The combined hydrolyses of EFB gave a total sugar yield of 82.0%. When used as carbon sources for cultivating Escherichia coli in M9 medium at 37 °C, the combined EFB hydrolysates were shown to be more favorable or at least as good as pure glucose for cell growth in terms of the higher (1.1 times) optical density of E. coli cells. The by-products generated during the acid-catalyzed hydrolysis did not seem to obviously affect cell growth. The combined use of acid and whole cell culture hydrolyses might be a commercially promising method for pretreatment of lignocellulose to get fermentable sugars.
Collapse
Affiliation(s)
- Qingxin Li
- Institute of Chemical & Engineering Sciences, Singapore
| | - Wei Ting Ng
- Institute of Chemical & Engineering Sciences, Singapore
| | - Sze Min Puah
- Institute of Chemical & Engineering Sciences, Singapore
| | | | - Loon Siong Soh
- Procter & Gamble International Operations, Biopolis, Singapore
| | - Calum MacBeath
- Procter & Gamble International Operations, Biopolis, Singapore
| | - Pius Parakattil
- Procter & Gamble International Operations, Biopolis, Singapore
| | - Phil Green
- Procter & Gamble Company, West Chester, OH, USA
| | - Jin Chuan Wu
- Institute of Chemical & Engineering Sciences, Singapore
| |
Collapse
|
29
|
Ye L, Hudari MSB, Li Z, Wu JC. Simultaneous detoxification, saccharification and co-fermentation of oil palm empty fruit bunch hydrolysate for l-lactic acid production by Bacillus coagulans JI12. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|