1
|
Oh SJ, Lim G, Han Y, Kim W, Joo HS, Kim YG, Kim JS, Bhatia SK, Yang YH. High-Yield Production of Polyhydroxybutyrate and Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) from Crude Glycerol by a Newly Isolated Burkholderia Species Oh_219. Polymers (Basel) 2025; 17:197. [PMID: 39861268 PMCID: PMC11768116 DOI: 10.3390/polym17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Crude glycerol (CG), a major biodiesel production by-product, is the focus of ongoing research to convert it into polyhydroxyalkanoate (PHA). However, few bacterial strains are capable of efficiently achieving this conversion. Here, 10 PHA-producing strains were isolated from various media. Among them, Burkholderia sp. Oh_219 exhibited the highest polyhydroxybutyrate (PHB) production from glycerol and was therefore characterized further. Burkholderia sp. Oh_219 demonstrated significant tolerance to major growth inhibitors in CG and metabolized the fatty acids present as impurities in CG. Furthermore, the Oh_219 strain was genetically engineered using phaCBP-M-CPF4 and phaJPa to enable the fatty acid-based production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), a component of CG. The resulting strain produced PHBHHx containing 1.0-1.3 mol% of 3HHx from CG. Further supplementation with capric and lauric acids increased the 3HHx molar fraction to 9.7% and 18%, respectively. In a 5 L fermenter, the Oh_219 strain produced 15.3 g/L PHB from 29.6 g/L biomass using a two-stage fermentation system. This is the highest yield reported for PHA production from glycerol by Burkholderia spp. Additionally, PHB produced from CG had a lower melting point than that from pure glycerol and fructose. Taken together, Burkholderia sp. Oh_219 is a promising new candidate strain for producing PHA from CG.
Collapse
Affiliation(s)
- Suk-Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
| | - Gaeun Lim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
| | - Yebin Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women’s University, Seoul 01370, Republic of Korea;
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea;
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Republic of Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.-J.O.); (G.L.); (Y.H.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Wang Y, Tian Y, Xu D, Cheng S, Li WW, Song H. Recent advances in synthetic biology toolkits and metabolic engineering of Ralstonia eutropha H16 for production of value-added chemicals. Biotechnol Adv 2025; 79:108516. [PMID: 39793936 DOI: 10.1016/j.biotechadv.2025.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO2 as the sole carbon source, with H2 serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals. This review firstly outlines the development of synthetic biology tools tailored for R. eutropha H16, including construction of expression vectors, regulatory elements, and transformation techniques. The availability of comprehensive omics data (i.e., transcriptomic, proteomic, and metabolomic) combined with the fully annotated genome sequence provides a robust genetic framework for advanced metabolic engineering. These advancements facilitate efficient reprogramming metabolic network of R. eutropha. The potential of R. eutropha as a versatile microbial platform for industrial biotechnology is further underscored by its ability to utilize a wide range of carbon sources for the production of value-added chemicals through both autotrophic and heterotrophic pathways. The integration of state-of-the-art genetic and genomic engineering tools and strategies with high cell-density fermentation processes enables engineered R. eutropha as promising microbial cell factories for optimizing carbon fluxes and expanding the portfolio of bio-based products.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Tian
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, 110819 Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, 110819 Shenyang, China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Hao Song
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
3
|
Jenkins Sánchez LR, Sips LM, Van Bogaert INA. Just passing through: Deploying aquaporins in microbial cell factories. Biotechnol Prog 2024; 40:e3497. [PMID: 39051848 DOI: 10.1002/btpr.3497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
As microbial membranes are naturally impermeable to even the smallest biomolecules, transporter proteins are physiologically essential for normal cell functioning. This makes transporters a key target area for engineering enhanced cell factories. As part of the wider cellular transportome, aquaporins (AQPs) are responsible for transporting small polar solutes, encompassing many compounds which are of great interest for industrial biotechnology, including cell feedstocks, numerous commercially relevant polyols and even weak organic acids. In this review, examples of cell factory engineering by targeting AQPs are presented. These AQP modifications aid in redirecting carbon fluxes and boosting bioconversions either by enhanced feedstock uptake, improved intermediate retention, increasing product export into the media or superior cell viability against stressors with applications in both bacterial and yeast production platforms. Additionally, the future potential for AQP deployment and targeting is discussed, showcasing hurdles and considerations of this strategy as well as recent advances and future directions in the field. By leveraging the natural diversity of AQPs and breakthroughs in channel protein engineering, these transporters are poised to be promising tools capable of enhancing a wide variety of biotechnological processes.
Collapse
Affiliation(s)
- Liam Richard Jenkins Sánchez
- BioPort Group, Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bio-science Engineering, Ghent University, Ghent, Belgium
| | - Lobke Maria Sips
- BioPort Group, Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bio-science Engineering, Ghent University, Ghent, Belgium
| | - Inge Noëlle Adriënne Van Bogaert
- BioPort Group, Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bio-science Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Zhao Y, Xue L, Huang Z, Lei Z, Xie S, Cai Z, Rao X, Zheng Z, Xiao N, Zhang X, Ma F, Yu H, Xie S. Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system. Nat Commun 2024; 15:9288. [PMID: 39468081 PMCID: PMC11519575 DOI: 10.1038/s41467-024-53609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Exploring microorganisms with downstream synthetic advantages in lignin valorization is an effective strategy to increase target product diversity and yield. This study ingeniously engineers the non-lignin-degrading bacterium Ralstonia eutropha H16 (also known as Cupriavidus necator H16) to convert lignin, a typically underutilized by-product of biorefinery, into valuable bioplastic polyhydroxybutyrate (PHB). The aromatic metabolism capacities of R. eutropha H16 for different lignin-derived aromatics (LDAs) are systematically characterized and complemented by integrating robust functional modules including O-demethylation, aromatic aldehyde metabolism and the mitigation of by-product inhibition. A pivotal discovery is the regulatory element PcaQ, which is highly responsive to the aromatic hub metabolite protocatechuic acid during lignin degradation. Based on the computer-aided design of PcaQ, we develop a hub metabolite-based autoregulation (HMA) system. This system can control the functional genes expression in response to heterologous LDAs and enhance metabolism efficiency. Multi-module genome integration and directed evolution further fortify the strain's stability and lignin conversion capacities, leading to PHB production titer of 2.38 g/L using heterologous LDAs as sole carbon source. This work not only marks a leap in bioplastic production from lignin components but also provides a strategy to redesign the non-LDAs-degrading microbes for efficient lignin valorization.
Collapse
Affiliation(s)
- Yiquan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Xue
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyi Huang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zixian Lei
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiyu Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenzhen Cai
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Rao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze Zheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Xiao
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Santolin L, Riedel SL, Brigham CJ. Synthetic biology toolkit of Ralstonia eutropha (Cupriavidus necator). Appl Microbiol Biotechnol 2024; 108:450. [PMID: 39207499 PMCID: PMC11362209 DOI: 10.1007/s00253-024-13284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Synthetic biology encompasses many kinds of ideas and techniques with the common theme of creating something novel. The industrially relevant microorganism, Ralstonia eutropha (also known as Cupriavidus necator), has long been a subject of metabolic engineering efforts to either enhance a product it naturally makes (polyhydroxyalkanoate) or produce novel bioproducts (e.g., biofuels and other small molecule compounds). Given the metabolic versatility of R. eutropha and the existence of multiple molecular genetic tools and techniques for the organism, development of a synthetic biology toolkit is underway. This toolkit will allow for novel, user-friendly design that can impart new capabilities to R. eutropha strains to be used for novel application. This article reviews the different synthetic biology techniques currently available for modifying and enhancing bioproduction in R. eutropha. KEY POINTS: • R. eutropha (C. necator) is a versatile organism that has been examined for many applications. • Synthetic biology is being used to design more powerful strains for bioproduction. • A diverse synthetic biology toolkit is being developed to enhance R. eutropha's capabilities.
Collapse
Affiliation(s)
- Lara Santolin
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Sebastian L Riedel
- Berliner Hochschule Für Technik, Department VIII - Mechanical Engineering, Event Technology and Process Engineering, Environmental and Bioprocess Engineering Laboratory, Berlin, Germany.
| | - Christopher J Brigham
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA.
| |
Collapse
|
6
|
Fukala I, Kučera I. Natural Polyhydroxyalkanoates-An Overview of Bacterial Production Methods. Molecules 2024; 29:2293. [PMID: 38792154 PMCID: PMC11124392 DOI: 10.3390/molecules29102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) are intracellular biopolymers that microorganisms use for energy and carbon storage. They are mechanically similar to petrochemical plastics when chemically extracted, but are completely biodegradable. While they have potential as a replacement for petrochemical plastics, their high production cost using traditional carbon sources remains a significant challenge. One potential solution is to modify heterotrophic PHA-producing strains to utilize alternative carbon sources. An alternative approach is to utilize methylotrophic or autotrophic strains. This article provides an overview of bacterial strains employed for PHA production, with a particular focus on those exhibiting the highest PHA content in dry cell mass. The strains are organized according to their carbon source utilization, encompassing autotrophy (utilizing CO2, CO) and methylotrophy (utilizing reduced single-carbon substrates) to heterotrophy (utilizing more traditional and alternative substrates).
Collapse
Affiliation(s)
| | - Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, CZ-61137 Brno, Czech Republic;
| |
Collapse
|
7
|
Chacón M, Wongsirichot P, Winterburn J, Dixon N. Genetic and process engineering for polyhydroxyalkanoate production from pre- and post-consumer food waste. Curr Opin Biotechnol 2024; 85:103024. [PMID: 38056203 DOI: 10.1016/j.copbio.2023.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Biopolymers produced as microbial carbon storage systems, such as polyhydroxyalkanoates (PHAs), offer potential to be used in place of petrochemically derived plastics. Low-value organic feedstocks, such as food waste, have been explored as a potential substrate for the microbial production of PHAs. In this review, we discuss the biosynthesis, composition and producers of PHAs, with a particular focus on the genetic and process engineering efforts to utilise non-native substrates, derived from food waste from across the entire supply chain, for microbial growth and PHA production. We highlight a series of studies that have achieved impressive advances and discuss the challenges of producing PHAs with consistent composition and properties from mixed and variable food waste and by-products.
Collapse
Affiliation(s)
- Micaela Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Phavit Wongsirichot
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - James Winterburn
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
8
|
Ishihara S, Orita I, Matsumoto K, Fukui T. (R/S)-lactate/2-hydroxybutyrate dehydrogenases in and biosynthesis of block copolyesters by Ralstonia eutropha. Appl Microbiol Biotechnol 2023; 107:7557-7569. [PMID: 37773219 PMCID: PMC10656315 DOI: 10.1007/s00253-023-12797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Bacterial polyhydroxyalkanoates (PHAs) are promising bio-based biodegradable polyesters. It was recently reported that novel PHA block copolymers composed of (R)-3-hydroxybutyrate (3HB) and (R)-2-hydroxybutyrate (2HB) were synthesized by Escherichia coli expressing PhaCAR, a chimeric enzyme of PHA synthases derived from Aeromonas caviae and Ralstonia eutropha. In this study, the sequence-regulating PhaCAR was applied in the natural PHA-producing bacterium, R. eutropha. During the investigation, (R/S)-2HB was found to exhibit strong growth inhibitory effects on the cells of R. eutropha. This was probably due to formation of excess 2-ketobutyrate (2KB) from (R/S)-2HB and the consequent L-valine depletion caused by dominant L-isoleucine synthesis attributed to the excess 2KB. Deletion analyses for genes of lactate dehydrogenase homologs identified cytochrome-dependent D-lactate dehydrogenase (Dld) and [Fe-S] protein-dependent L-lactate dehydrogenase as the enzymes responsible for sensitivity to (R)-2HB and (S)-2HB, respectively. The engineered R. eutropha strain (phaCAR+, ldhACd-hadACd+ encoding clostridial (R)-2-hydroxyisocaproate dehydrogenase and (R)-2-hydoroxyisocaproate CoA transferase, ∆dld) synthesized PHA containing 10 mol% of 2HB when cultivated on glucose with addition of sodium (RS)-2HB, and the 2HB composition in PHA increased up to 35 mol% by overexpression phaCAR. The solvent fractionation and NMR analyses showed that the resulting PHAs were most likely to be block polymers consisting of P(3HB-co-3HV) and P(2HB) segments, suggesting that PhaCAR functions as the sequence-regulating PHA synthase independently from genetic and metabolic backgrounds of the host cell. KEY POINTS: (R/S)-2-hydroxubutyrates (2HB) caused l-valine deletion in Ralstonia eutropha (R)- and (S)-lactate/2HB dehydrogenases functional in R. eutropha were identified The engineered R. eutropha synthesized block copolymers of 2HB-containing polyhydroxyalkanoates on glucose and 2HB.
Collapse
Affiliation(s)
- Shizuru Ishihara
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Ken'ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, B-37 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
9
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
10
|
Wang S, Zhou X, Wu S, Zhao M, Hu Z. Transcriptomic and metabolomic analyses revealed regulation mechanism of mixotrophic Cylindrotheca sp. glycerol utilization and biomass promotion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:84. [PMID: 37208696 DOI: 10.1186/s13068-023-02338-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Diatoms have been viewed as ideal cell factories for production of some high-value bioactive metabolites, such as fucoxanthin, but their applications are restrained by limited biomass yield. Mixotrophy, by using both CO2 and organic carbon source, is believed effective to crack the bottleneck of biomass accumulation and achieve a sustainable bioproduct supply. RESULTS Glycerol, among tested carbon sources, was proved as the sole that could significantly promote growth of Cylindrotheca sp. with illumination, a so-called growth pattern, mixotrophy. Biomass and fucoxanthin yields of Cylindrotheca sp., grown in medium with glycerol (2 g L-1), was increased by 52% and 29%, respectively, as compared to the autotrophic culture (control) without compromise in photosynthetic performance. As Cylindrotheca sp. was unable to use glycerol without light, a time-series transcriptomic analysis was carried out to elucidate the light regulation on glycerol utilization. Among the genes participating in glycerol utilization, GPDH1, TIM1 and GAPDH1, showed the highest dependence on light. Their expressions decreased dramatically when the alga was transferred from light into darkness. Despite the reduced glycerol uptake in the dark, expressions of genes associating with pyrimidine metabolism and DNA replication were upregulated when Cylindrotheca sp. was cultured mixotrophically. Comparative transcriptomic and metabolomic analyses revealed amino acids and aminoacyl-tRNA metabolisms were enhanced at different timepoints of diurnal cycles in mixotrophic Cylindrotheca sp., as compared to the control. CONCLUSIONS Conclusively, this study not only provides an alternative for large-scale cultivation of Cylindrotheca, but also pinpoints the limiting enzymes subject to further metabolic manipulation. Most importantly, the novel insights in this study should aid to understand the mechanism of biomass promotion in mixotrophic Cylindrotheca sp.
Collapse
Affiliation(s)
- Song Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering; Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Engineering Laboratory for Marine Algal Biotechnology; Longhua Innovation Institute for Biotechnology; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xiyi Zhou
- Guangdong Technology Research Center for Marine Algal Bioengineering; Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Engineering Laboratory for Marine Algal Biotechnology; Longhua Innovation Institute for Biotechnology; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Sha Wu
- Guangdong Technology Research Center for Marine Algal Bioengineering; Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Engineering Laboratory for Marine Algal Biotechnology; Longhua Innovation Institute for Biotechnology; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mengkai Zhao
- Guangdong Technology Research Center for Marine Algal Bioengineering; Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Engineering Laboratory for Marine Algal Biotechnology; Longhua Innovation Institute for Biotechnology; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering; Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Engineering Laboratory for Marine Algal Biotechnology; Longhua Innovation Institute for Biotechnology; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
11
|
Sangtani R, Nogueira R, Yadav AK, Kiran B. Systematizing Microbial Bioplastic Production for Developing Sustainable Bioeconomy: Metabolic Nexus Modeling, Economic and Environmental Technologies Assessment. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:2741-2760. [PMID: 36811096 PMCID: PMC9933833 DOI: 10.1007/s10924-023-02787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 06/12/2023]
Abstract
The excessive usage of non-renewable resources to produce plastic commodities has incongruously influenced the environment's health. Especially in the times of COVID-19, the need for plastic-based health products has increased predominantly. Given the rise in global warming and greenhouse gas emissions, the lifecycle of plastic has been established to contribute to it significantly. Bioplastics such as polyhydroxy alkanoates, polylactic acid, etc. derived from renewable energy origin have been a magnificent alternative to conventional plastics and reconnoitered exclusively for combating the environmental footprint of petrochemical plastic. However, the economically reasonable and environmentally friendly procedure of microbial bioplastic production has been a hard nut to crack due to less scouted and inefficient process optimization and downstream processing methodologies. Thereby, meticulous employment of computational tools such as genome-scale metabolic modeling and flux balance analysis has been practiced in recent times to understand the effect of genomic and environmental perturbations on the phenotype of the microorganism. In-silico results not only aid us in determining the biorefinery abilities of the model microorganism but also curb our reliance on equipment, raw materials, and capital investment for optimizing the best conditions. Additionally, to accomplish sustainable large-scale production of microbial bioplastic in a circular bioeconomy, extraction, and refinement of bioplastic needs to be investigated extensively by practicing techno-economic analysis and life cycle assessment. This review put forth state-of-the-art know-how on the proficiency of these computational techniques in laying the foundation of an efficient bioplastic manufacturing blueprint, chiefly focusing on microbial polyhydroxy alkanoates (PHA) production and its efficacy in outplacing fossil based plastic products.
Collapse
Affiliation(s)
- Rimjhim Sangtani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, 453552, Indore, India
| | - Regina Nogueira
- Institute for Sanitary Engineering and Waste Management, Leibniz Universität Hannover, Hannover, Germany
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Bala Kiran
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, 453552, Indore, India
| |
Collapse
|
12
|
Wang X, Luo H, Wang Y, Wang Y, Tu T, Qin X, Su X, Huang H, Bai Y, Yao B, Zhang J. Direct conversion of carbon dioxide to glucose using metabolically engineered Cupriavidus necator. BIORESOURCE TECHNOLOGY 2022; 362:127806. [PMID: 36031135 DOI: 10.1016/j.biortech.2022.127806] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Artificial synthesis of glucose, the monomer of starch, from renewable resources and CO2 is a promising method for addressing food crisis and alleviating climate change. Here, the construction of a microbial biocatalyst for glucose production from renewable resources and CO2 was reported. Initially, blocking the glucose catabolic pathway via deletion of glk gene generated a glucose-producing strain of Cupriavidus necator with titers of 24.7, 47.5 and 180.1 mg/L from fructose, glycerol and CO2, respectively. Subsequently, the Entner-Doudoroff pathway and polyhydroxybutyrate biosynthesis pathway were disrupted to further increase glucose accumulation. The maximum glucose titer and yield on biomass from CO2 reached 253.3 mg/L and 91.6 mg/L/OD600, respectively. Finally, the phosphatases that mediate the dephosphorylation of phosphorylated glucose were identified. Overexpression of HAD1 and cbbY2 could enhance glucose titer by 5.5-fold when fructose was used as sole carbon source. This study demonstrates a feasible route for microbial-based synthesis of glucose from CO2.
Collapse
Affiliation(s)
- Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Koller M, Obruča S. Biotechnological production of polyhydroxyalkanoates from glycerol: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Strittmatter CS, Eggers J, Biesgen V, Pauels I, Becker F, Steinbüchel A. The reliance of glycerol utilization by Cupriavidus necator on CO 2 fixation and improved glycerol catabolism. Appl Microbiol Biotechnol 2022; 106:2541-2555. [PMID: 35325274 DOI: 10.1007/s00253-022-11842-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
While crude glycerol is a cheap carbon source for industrial-scale cultivation of microorganisms, its application relies on fast growth and conversion. The biopolymer producing Cupriavidus necator H16 (synonym: Ralstonia eutropha H16) grows poorly on glycerol. The heterologous expression of glycerol facilitator glpF, glycerol kinase glpK, and glycerol dehydrogenase glpD from E. coli accelerated the growth considerably. The naturally occurring glycerol utilization is inhibited by low glycerol kinase activity. A limited heterotrophic growth promotes the dependency on autotrophic growth by carbon dioxide (CO2) fixation and refixation. As mixotrophic growth occurs in the wildtype due to low consumption rates of glycerol, CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle is essential. The deletion of both cbbX copies encoding putative RuBisCO-activases (AAA + ATPase) resulted in a sharp slowdown of growth and glycerol consumption. Activase activity is necessary for functioning carboxylation by RuBisCO. Each of the two copies compensates for the loss of the other, as suggested by observed expression levels. The strong tendency towards autotrophy supports previous investigations of glycerol growth and emphasizes the versatility of the metabolism of C. necator H16. Mixotrophy with glycerol-utilization and CO2 fixation with a high dependence on the CBB is automatically occurring unless transportation and degradation of glycerol are optimized. Parallel engineering of CO2 fixation and glycerol degradation is suggested towards application for value-added production from crude glycerol. KEY POINTS: • Growth on glycerol is highly dependent on efficient carbon fixation via CBB cycle. • CbbX is essential for the efficiency of RuBisCO in C. necator H16. • Expression of glycerol degradation pathway enzymes accelerates glycerol utilization.
Collapse
Affiliation(s)
- Carl Simon Strittmatter
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Jessica Eggers
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Vanessa Biesgen
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Inga Pauels
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Florian Becker
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Insitut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universtität Münster, Münster, Germany. .,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
15
|
Mittal M, Mittal D, Aggarwal NK. Plastic accumulation during COVID-19: call for another pandemic; bioplastic a step towards this challenge? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11039-11053. [PMID: 35022970 PMCID: PMC8754557 DOI: 10.1007/s11356-021-17792-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/23/2021] [Indexed: 04/16/2023]
Abstract
Plastic pollution has become a serious transboundary challenge to nature and human health, with estimation of reports published - predicting a twofold increase in plastic waste by 2030. However, due to the COVID-19 pandemic, the excessive use of single-use plastics (including face masks, gloves and personal protective equipment) would possibly exacerbate such forecasts. The transition towards eco-friendly alternatives like bio-based plastics and new emerging sustainable technologies would be vital to deal with future pandemics, even though the use or consumption of plastics has greatly enhanced our quality of life; it is however critical to move towards bioplastics. We cannot deny the fact that bioplastics have some challenges and shortcomings, but still, it is an ideal option for opt. The circular economy is the need of the hour for waste management. Along with all these practices, individual accountability, corporate intervention and government policy are also needed to prevent us from moving from one crisis to the next. Only through cumulative efforts, we will be able to cope up with this problem. This article collected scattered information and data about accumulation of plastic during COVID-19 worldwide. Additionally, this paper illustrates the substitution of petroleum-based plastics with bio-based plastics. Different aspects are discussed, ranging from advantages to challenges in the way of bioplastics.
Collapse
Affiliation(s)
- Mahak Mittal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Divya Mittal
- Maharishi Markandeshwar (Deemed To Be University), Mullana, 133207, Haryana, India
| | - Neeraj K Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
16
|
Ganesh Saratale R, Cho SK, Dattatraya Saratale G, Kadam AA, Ghodake GS, Kumar M, Naresh Bharagava R, Kumar G, Su Kim D, Mulla SI, Seung Shin H. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. BIORESOURCE TECHNOLOGY 2021; 325:124685. [PMID: 33508681 DOI: 10.1016/j.biortech.2021.124685] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are appealing as an important alternative to replace synthetic plastics owing to its comparable physicochemical properties to that of synthetic plastics, and biodegradable and biocompatible nature. This review gives an inclusive overview of the current research activities dealing with PHA production by utilizing different waste fluxes generated from food, milk and sugar processing industries. Valorization of these waste fluxes makes the process cost effective and practically applicable. Recent advances in the approaches adopted for waste treatment, fermentation strategies, and genetic engineering can give insights to the researchers for future direction of waste to bioplastics production. Lastly, synthesis and application of PHA-nanocomposites, research and development challenges, future perspectives for sustainable and cost-effective PHB production are also discussed. In addition, the review addresses the useful information about the opportunities and confines associated with the sustainable PHA production using different waste streams and their evaluation for commercial implementation within a biorefinery.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| | - Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Ram Naresh Bharagava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, U.P., India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| |
Collapse
|
17
|
Löwe H, Beentjes M, Pflüger-Grau K, Kremling A. Trehalose production by Cupriavidus necator from CO 2 and hydrogen gas. BIORESOURCE TECHNOLOGY 2021; 319:124169. [PMID: 33254445 DOI: 10.1016/j.biortech.2020.124169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/12/2023]
Abstract
In this work, the hydrogen-oxidizing bacterium Cupriavidus necator H16 was engineered for trehalose production from gaseous substrates. First, it could be shown that C. necator is a natural producer of trehalose when stressed with sodium chloride. Bioinformatic investigations revealed a so far unknown mode of trehalose and glycogen metabolism in this organism. Next, it was found that expression of the sugar efflux transporter A (setA) from Escherichia coli lead to a trehalose leaky phenotype of C. necator. Finally, the strain was characterized under autotrophic conditions using a H2/CO2/O2-mixture and other substrates reaching titers of up to 0.47 g L-1 and yields of around 0.1 g g-1. Taken together, this process represents a new way to produce sugars with high areal efficiency. With further metabolic engineering, an application of this technology for the renewable production of trehalose and other sugars, as well as for the synthesis of 13C-labeled sugars seems promising.
Collapse
Affiliation(s)
- Hannes Löwe
- Systems Biotechnology, Technical University of Munich, Germany
| | | | | | | |
Collapse
|
18
|
|
19
|
Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:374-388. [PMID: 33139190 DOI: 10.1016/j.wasman.2020.10.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Increased awareness of environmental sustainability with associated strict environmental regulations has incentivized the pursuit of novel materials to replace conventional petroleum-derived plastics. Polyhydroxyalkanoates (PHAs) are appealing intracellular biopolymers and have drawn significant attention as a viable alternative to petrochemical based plastics not only due to their comparable physiochemical properties but also, their outstanding characteristics such as biodegradability and biocompatibility. This review provides a comprehensive overview of the recent developments on the involved PHA producer microorganisms, production process from different waste streams by both pure and mixed microbial cultures (MMCs). Bio-based PHA production, particularly using cheap carbon sources with MMCs, is getting more attention. The main bottlenecks are the low production yield and the inconsistency of the biopolymers. Bioaugmentation and metabolic engineering together with cost effective downstream processing are promising approaches to overcome the hurdles of commercial PHA production from waste streams.
Collapse
Affiliation(s)
- Kasra Khatami
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mariel Perez-Zabaleta
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
20
|
The gene dosage effect of carbonic anhydrase on the biosynthesis of poly(3-hydroxybutyrate) under autotrophic and mixotrophic culture conditions. Polym J 2020. [DOI: 10.1038/s41428-020-00409-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Poladyan A, Blbulyan S, Sahakyan M, Lenz O, Trchounian A. Growth of the facultative chemolithoautotroph Ralstonia eutropha on organic waste materials: growth characteristics, redox regulation and hydrogenase activity. Microb Cell Fact 2019; 18:201. [PMID: 31739794 PMCID: PMC6859627 DOI: 10.1186/s12934-019-1251-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The chemolithoautotrophic β-proteobacterium Ralstonia eutropha H16 (Cupriavidus necator) is one of the most studied model organisms for growth on H2 and CO2. R. eutropha H16 is also a biologically significant bacterium capable of synthesizing O2-tolerant [NiFe]-hydrogenases (Hyds), which can be used as anode biocatalysts in enzyme fuel cells. For heterotrophic growth of R. eutropha, various sources of organic carbon and energy can be used. RESULTS Growth, bioenergetic properties, and oxidation-reduction potential (ORP) kinetics were investigated during cultivation of R. eutropha H16 on fructose and glycerol or lignocellulose-containing brewery spent grain hydrolysate (BSGH). BSGH was used as carbon and energy source by R. eutropha H16, and the activities of the membrane-bound hydrogenase (MBH) and cytoplasmic, soluble hydrogenase (SH) were measured in different growth phases. Growth of R. eutropha H16 on optimized BSGH medium yielded ~ 0.7 g cell dry weight L-1 with 3.50 ± 0.02 (SH) and 2.3 ± 0.03 (MBH) U (mg protein)-1 activities. Upon growth on fructose and glycerol, a pH drop from 7.0 to 6.7 and a concomitant decrease of ORP was observed. During growth on BSGH, in contrast, the pH and ORP stayed constant. The growth rate was slightly stimulated through addition of 1 mM K3[Fe(CN)6], whereas temporarily reduced growth was observed upon addition of 3 mM dithiothreitol. The overall and N,N'-dicyclohexylcarbodiimide-sensitive ATPase activities of membrane vesicles were ~ 4- and ~ 2.5-fold lower, respectively, upon growth on fructose and glycerol (FGN) compared with only fructose utilization (FN). Compared to FN, ORP was lower upon bacterial growth on FGN, GFN, and BSGH. CONCLUSIONS Our results suggest that reductive conditions and low ATPase activity might be signals for energy depletion, which, in turn, leads to increased hydrogenase biosynthesis to overcome this unfavorable situation. Addition of fructose or microelements have no, or a negative, influence on hydrogenase activity. Organic wastes (glycerol, BSGH) are promising carbon and energy sources for the formation of biomass harboring significant amounts of the biotechnologically relevant hydrogenases MBH and SH. The results are valuable for using microbial cells as producers of hydrogenase enzymes as catalysts in enzymatic fuel cells.
Collapse
Affiliation(s)
- Anna Poladyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str, 0025, Yerevan, Armenia
| | - Syuzanna Blbulyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str, 0025, Yerevan, Armenia
| | - Mayramik Sahakyan
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str, 0025, Yerevan, Armenia
| | - Oliver Lenz
- Institute of Chemistry, Technical University of Berlin, 17. Juni 135, 10623, Berlin, Germany
| | - Armen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str, 0025, Yerevan, Armenia. .,Research Institute of Biology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str, 0025, Yerevan, Armenia.
| |
Collapse
|
22
|
Adaptive Laboratory Evolution of Cupriavidus necator H16 for Carbon Co-Utilization with Glycerol. Int J Mol Sci 2019; 20:ijms20225737. [PMID: 31731699 PMCID: PMC6888959 DOI: 10.3390/ijms20225737] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023] Open
Abstract
Cupriavidus necator H16 is a non-pathogenic Gram-negative betaproteobacterium that can utilize a broad range of renewable heterotrophic resources to produce chemicals ranging from polyhydroxybutyrate (biopolymer) to alcohols, alkanes, and alkenes. However, C. necator H16 utilizes carbon sources to different efficiency, for example its growth in glycerol is 11.4 times slower than a favorable substrate like gluconate. This work used adaptive laboratory evolution to enhance the glycerol assimilation in C. necator H16 and identified a variant (v6C6) that can co-utilize gluconate and glycerol. The v6C6 variant has a specific growth rate in glycerol 9.5 times faster than the wild-type strain and grows faster in mixed gluconate-glycerol carbon sources compared to gluconate alone. It also accumulated more PHB when cultivated in glycerol medium compared to gluconate medium while the inverse is true for the wild-type strain. Through genome sequencing and expression studies, glycerol kinase was identified as the key enzyme for its improved glycerol utilization. The superior performance of v6C6 in assimilating pure glycerol was extended to crude glycerol (sweetwater) from an industrial fat splitting process. These results highlight the robustness of adaptive laboratory evolution for strain engineering and the versatility and potential of C. necator H16 for industrial waste glycerol valorization.
Collapse
|
23
|
Modification of acetoacetyl-CoA reduction step in Ralstonia eutropha for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from structurally unrelated compounds. Microb Cell Fact 2019; 18:147. [PMID: 31466527 PMCID: PMC6716841 DOI: 10.1186/s12934-019-1197-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background Poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)] is a bacterial polyester with high biodegradability, even in marine environments. Ralstonia eutropha has been engineered for the biosynthesis of P(3HB-co-3HHx) from vegetable oils, but its production from structurally unrelated carbon sources remains unsatisfactory. Results Ralstonia eutropha strains capable of synthesizing P(3HB-co-3HHx) from not only fructose but also glucose and glycerol were constructed by integrating previously established engineering strategies. Further modifications were made at the acetoacetyl-CoA reduction step determining flux distribution responsible for the copolymer composition. When the major acetoacetyl-CoA reductase (PhaB1) was replaced by a low-activity paralog (PhaB2) or enzymes for reverse β-oxidation, copolyesters with high 3HHx composition were efficiently synthesized from glucose, possibly due to enhanced formation of butyryl-CoA from acetoacetyl-CoA via (S)-3HB-CoA. P(3HB-co-3HHx) composed of 7.0 mol% and 12.1 mol% 3HHx fractions, adequate for practical applications, were produced at cellular contents of 71.4 wt% and 75.3 wt%, respectively. The replacement by low-affinity mutants of PhaB1 had little impact on the PHA biosynthesis on glucose, but slightly affected those on fructose, suggesting altered metabolic regulation depending on the sugar-transport machinery. PhaB1 mostly acted in the conversion of acetoacetyl-CoA when the cells were grown on glycerol, as copolyester biosynthesis was severely impaired by the lack of phaB1. Conclusions The present results indicate the importance of flux distribution at the acetoacetyl-CoA node in R. eutropha for the biosynthesis of the PHA copolyesters with regulated composition from structurally unrelated compounds.
Collapse
|
24
|
Zheng Y, Chen JC, Ma YM, Chen GQ. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metab Eng 2019; 58:82-93. [PMID: 31302223 DOI: 10.1016/j.ymben.2019.07.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/23/2019] [Accepted: 07/11/2019] [Indexed: 11/29/2022]
Abstract
PHA, a family of natural biopolymers aiming to replace non-degradable plastics for short-term usages, has been developed to include various structures such as short-chain-length (scl) and medium-chain-length (mcl) monomers as well as their copolymers. However, PHA market has been grown slowly since 1980s due to limited variety with good mechanical properties and the high production cost. Here, we review most updated strategies or approaches including metabolic engineering, synthetic biology and morphology engineering on expanding PHA diversity, reducing production cost and enhancing PHA production. The extremophilic Halomonas spp. are taken as examples to show the feasibility and challenges to develop next generation industrial biotechnology (NGIB) for producing PHA more competitively.
Collapse
Affiliation(s)
- Yang Zheng
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Chun Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi-Ming Ma
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Center for Nano- and Micro-Mechanics, Tsinghua University, Beijing, 100084, China; Dept of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Aboulnaga EA, Zou H, Selmer T, Xian M. Development of a plasmid-based, tunable, tolC-derived expression system for application in Cupriavidus necator H16. J Biotechnol 2018; 274:15-27. [PMID: 29549002 DOI: 10.1016/j.jbiotec.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/24/2018] [Accepted: 03/11/2018] [Indexed: 12/13/2022]
Abstract
Cupriavidus necator H16 gains increasing attention in microbial research and biotechnological application due to its diverse metabolic features. Here we present a tightly controlled gene expression system for C. necator including the pBBR1-vector that contains hybrid promoters originating from C. necator native tolC-promoter in combination with a synthetic tetO-operator. The expression of the reporter gene from these plasmids relies on the addition of the exogenous inducer doxycycline (dc). The novel expression system offers a combination of advantageous features as; (i) high and dose-dependent recombinant protein production, (ii) tight control with a high dynamic range (On/Off ratio), which makes it applicable for harmful pathways or for toxic protein production, (iii) comparable cheap inducer (doxycycline, dc), (iv) effective at low inducer concentration, that makes it useful for large scale application, (v) rapid, diffusion controlled induction, and (vi) the inducer does not interfere within the cell metabolism. As applications of the expression system in C. necator H16, the growth ability on glycerol was enhanced by constitutively expressing the E. coli glpk gene-encoding for glycerol kinase. Likewise, we used the system to overcome the expression toxicity of mevalonate pathway in C. necator H16. With this system, the mevalonate-genes were successfully introduced in the host and the recombinant strains could produce about 200 mg/l mevalonate.
Collapse
Affiliation(s)
- Elhussiny A Aboulnaga
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China; Mansoura University, Faculty of Agriculture, 35516 Mansoura, Egypt.
| | - Huibin Zou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Thorsten Selmer
- Aachen University of Applied Sciences, Campus Juelich, Department of Chemistry and Biotechnology, Heinrich-Mussmann-Str.1, D-52428 Juelich, Germany
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China.
| |
Collapse
|
26
|
Yousuf RG, Winterburn JB. Date seed characterisation, substrate extraction and process modelling for the production of polyhydroxybutyrate by Cupriavidus necator. BIORESOURCE TECHNOLOGY 2016; 222:242-251. [PMID: 27721098 DOI: 10.1016/j.biortech.2016.09.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
Poly-3-hydroxybutrate (PHB) is a biodegradable polymer synthesised via bacterial fermentation as a means of storing carbon and energy under unbalanced growth conditions. The production cost of petroleum-based plastics is currently lower than that for biopolymers, and the carbon source is the most significant contributor to biopolymer production cost. A feasibility study to assess the suitability of using a date seed derived media as an alternative for PHB production under various stress conditions was investigated. Results include fructose extraction from date seeds and a mass transfer model to describe the process, demonstrating that the high nutrient content of date seeds makes them a promising raw material for microbial growth and that a meaningful amount of PHB can be produced without supplementation. Maximum dry cell weight and PHB concentrations were 6.3g/l and 4.6g/l respectively, giving a PHB content of 73%, when an initial fructose concentration of 10.8g/l was used.
Collapse
Affiliation(s)
- R G Yousuf
- School of Chemical Engineering and Analytical Science, The Mill, The University of Manchester, Manchester M13 9PL, UK; Chemical Engineering Department, University of Baghdad, Iraq
| | - J B Winterburn
- School of Chemical Engineering and Analytical Science, The Mill, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
27
|
Kawashima Y, Orita I, Nakamura S, Fukui T. Compositional regulation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by replacement of granule-associated protein in Ralstonia eutropha. Microb Cell Fact 2015; 14:187. [PMID: 26597300 PMCID: PMC4657207 DOI: 10.1186/s12934-015-0380-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/04/2015] [Indexed: 11/10/2022] Open
Abstract
Background Phasin (PhaP), a kind of polyhydroxyalkanoate (PHA) granule-associated proteins, has a role in controlling the properties of PHA granules surface, and is thought to have influence on PHA biosynthesis in PHA-producing bacteria. This study focused on the phaP1Re locus in Ralstonia eutropha as a site of chromosomal modification for production of flexible poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] from soybean oil. Results Considering the high expression level of phaP1Re, phaJAc [encoding (R)-specific enoyl-CoA hydratase from Aeromonas caviae] was inserted into the downstream of phaP1Re on chromosome 1 of R. eutropha strain NSDG harboring phaCNSDG (encoding PHA synthase with broad substrate specificity). The constructed strain efficiently accumulated P(3HB-co-3HHx) on soybean oil with higher 3HHx composition when compared to the previous strain having phaJAc within pha operon. Insertion of the second phaCNSDG along with phaJAc at the phaP1Re locus led to incorporation of much larger 3HHx fraction into PHA chains, although the molecular weight was markedly reduced. The R. eutropha strains were further engineered by replacing phaP1Re with phaPAc (encoding phasin from A. caviae) on the chromosome. Interestingly, the phasin replacement increased 3HHx composition in the soybean oil-based PHA with keeping high cellular contents, nevertheless no modification was conducted in the metabolic pathways. Kinetic and Western blot analyses of PHA synthase using cellular insoluble fractions strongly suggested that the phasin replacement not only enhanced activity of PHA synthase from A. caviae but also increased affinity especially to longer (R)-3HHx-CoA. It was supposed that the increased affinity of PHA synthase to (R)-3HHx-CoA was responsible for the higher 3HHx composition in the copolyester. Conclusions The downstream of phaP1Re was a useful site for integration of genes to be overexpressed during PHA accumulation in R. eutropha. The results also clarified that polymerization properties of PHA synthase was affected by the kind of phasin co-existed on the surface of PHA granules, leading to altered composition of the resulting P(3HB-co-3HHx). The phasin replacement is a novel engineering strategy for regulation of composition of PHA copolyesters. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0380-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yui Kawashima
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| | - Izumi Orita
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| | - Satoshi Nakamura
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| | - Toshiaki Fukui
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
28
|
Volodina E, Raberg M, Steinbüchel A. Engineering the heterotrophic carbon sources utilization range of Ralstonia eutropha H16 for applications in biotechnology. Crit Rev Biotechnol 2015; 36:978-991. [PMID: 26329669 DOI: 10.3109/07388551.2015.1079698] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ralstonia eutropha H16 is an interesting candidate for the biotechnological production of polyesters consisting of hydroxy- and mercaptoalkanoates, and other compounds. It provides all the necessary characteristics, which are required for a biotechnological production strain. Due to its metabolic versatility, it can convert a broad range of renewable heterotrophic resources into diverse valuable compounds. High cell density fermentations of the non-pathogenic R. eutropha can be easily performed. Furthermore, this bacterium is accessible to engineering of its metabolism by genetic approaches having available a large repertoire of genetic tools. Since the complete genome sequence of R. eutropha H16 has become available, a variety of transcriptome, proteome and metabolome studies provided valuable data elucidating its complex metabolism and allowing a systematic biology approach. However, high production costs for bacterial large-scale production of biomass and biotechnologically valuable products are still an economic challenge. The application of inexpensive raw materials could significantly reduce the expenses. Therefore, the conversion of diverse substrates to polyhydroxyalkanoates by R. eutropha was steadily improved by optimization of cultivation conditions, mutagenesis and metabolic engineering. Industrial by-products and residual compounds like glycerol, and substrates containing high carbon content per weight like palm, soybean, corn oils as well as raw sugar-rich materials like molasses, starch and lignocellulose, are the most promising renewable substrates and were intensively studied.
Collapse
Affiliation(s)
- Elena Volodina
- a Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster , Germany and
| | - Matthias Raberg
- a Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster , Germany and
| | - Alexander Steinbüchel
- a Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster , Germany and.,b Environmental Science Department, King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
29
|
The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor. mBio 2015; 6:mBio.00340-15. [PMID: 25827416 PMCID: PMC4453509 DOI: 10.1128/mbio.00340-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth of the soil bacterium Pseudomonas putida KT2440 on glycerol as the sole carbon source is characterized by a prolonged lag phase, not observed with other carbon substrates. We examined the bacterial growth in glycerol cultures while monitoring the metabolic activity of individual cells. Fluorescence microscopy and flow cytometry, as well as the analysis of the temporal start of growth in single-cell cultures, revealed that adoption of a glycerol-metabolizing regime was not the result of a gradual change in the whole population but rather reflected a time-dependent bimodal switch between metabolically inactive (i.e., nongrowing) and fully active (i.e., growing) bacteria. A transcriptional Φ(glpD-gfp) fusion (a proxy of the glycerol-3-phosphate [G3P] dehydrogenase activity) linked the macroscopic phenotype to the expression of the glp genes. Either deleting glpR (encoding the G3P-responsive transcriptional repressor that controls the expression of the glpFKRD gene cluster) or altering G3P formation (by overexpressing glpK, encoding glycerol kinase) abolished the bimodal glpD expression. These manipulations eliminated the stochastic growth start by shortening the otherwise long lag phase. Provision of glpR in trans restored the phenotypes lost in the ΔglpR mutant. The prolonged nongrowth regime of P. putida on glycerol could thus be traced to the regulatory device controlling the transcription of the glp genes. Since the physiological agonist of GlpR is G3P, the arrangement of metabolic and regulatory components at this checkpoint merges a positive feedback loop with a nonlinear transcriptional response, a layout fostering the observed time-dependent shift between two alternative physiological states. Phenotypic variation is a widespread attribute of prokaryotes that leads, inter alia, to the emergence of persistent bacteria, i.e., live but nongrowing members within a genetically clonal population. Persistence allows a fraction of cells to avoid the killing caused by conditions or agents that destroy most growing bacteria (e.g., some antibiotics). Known molecular mechanisms underlying the phenomenon include genetic changes, epigenetic variations, and feedback-based multistability. We show that a prolonged nongrowing state of the bacterial population can be brought about by a distinct regulatory architecture of metabolic genes when cells face specific nutrients (e.g., glycerol). Pseudomonas putida may have adopted the resulting carbon source-dependent metabolic bet hedging as an advantageous trait for exploring new chemical and nutritional landscapes. Defeating such naturally occurring adaptive features of environmental bacteria is instrumental in improving the performance of these microorganisms as whole-cell catalysts in a bioreactor setup.
Collapse
|
30
|
Insomphun C, Xie H, Mifune J, Kawashima Y, Orita I, Nakamura S, Fukui T. Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha. Metab Eng 2014; 27:38-45. [PMID: 25446974 DOI: 10.1016/j.ymben.2014.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/25/2014] [Accepted: 10/06/2014] [Indexed: 02/06/2023]
Abstract
Poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)], a flexible and practical kind of polyhydroxyalkanoates, is generally produced from plant oils and fatty acids by several wild and recombinant bacteria. This study established an improved artificial pathway for the biosynthesis of P(3HB-co-3HHx) with high 3HHx composition from structurally unrelated fructose in Ralstonia eutropha. Depression of (R)-specific reduction of acetoacetyl-CoA by the deletion of phaB1 was an effective modification for formation of the C6-monomer unit from fructose driven by crotonyl-CoA carboxylase/reductase (Ccr). Co-overexpression of phaJ4a, which encodes medium-chain-length (R)-enoyl-CoA hydratase, with ccr promoted the incorporation of both 3HB and 3HHx units. Further introduction of emdMm, a synthetic gene encoding ethylmalonyl-CoA decarboxylase derived from mouse, was remarkably effective for P(3HB-co-3HHx) biosynthesis, probably by converting ethylmalonyl-CoA generated by the reductive carboxylase activity of Ccr back into butyryl-CoA. A high cellular content of P(3HB-co-3HHx) composed of 22mol% 3HHx could be produced from fructose by the engineered strain of R. eutropha with ΔphaB1 genotype expressing ccr, phaJ4a, and emd.
Collapse
Affiliation(s)
- Chayatip Insomphun
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Huan Xie
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Jun Mifune
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yui Kawashima
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Izumi Orita
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Nakamura
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiaki Fukui
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|