1
|
Zhang F, Zhang D, Lou H, Li X, Fu H, Sun X, Sun P, Wang X, Bao M. Distribution, sources and ecological risks of PAHs and n-alkanes in water and sediments of typically polluted estuaries: Insights from the Xiaoqing River. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121471. [PMID: 38878581 DOI: 10.1016/j.jenvman.2024.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Seasonal water and sediment samples were collected from the Xiaoqing River estuary and the neighboring sea to study the spatial and temporal distributions, sources and ecological risks of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. The results showed significant spatial and temporal differences in the concentrations of PAHs and n-alkanes under the influence of precipitation, temperature, and human activities. The concentrations of PAHs in water were lower in the wet season than in the dry season, and those in sediments were higher in the wet season than in the dry season. The concentrations of n-alkanes were higher in the rainy season than in the dry season for both water and sediments. The spatial distributions of PAHs and n-alkanes were estuarine > offshore. The concentration ranges of ∑PAHs in water and sediments were 230.66-599.86 ng/L and 84.51-5548.62 ng/g, respectively, in the wet season and 192.46-8649.55 ng/L and 23.39-1208.92 ng/g, respectively, in the dry season. The proportion of three-ring PAHs in water (57.03% and 78.27% in the wet and dry seasons, respectively) was high, followed by two-ring PAHs (27.31% and 13.59% in the wet and dry seasons, respectively). The proportion of four-ring PAHs was higher in sediments (24.79% and 32.20% in the wet and dry seasons, respectively). The ecological risk of PAHs assessed using the toxicity equivalent quotient and risk quotient was at moderate to moderately high risk levels. The high concentration of n-alkane fraction C16 (611.65-75594.58 ng/L) in the water is indicative of petroleum or other fossil fuel inputs. The main peaks of n-alkanes in river sediments were C27, C29 and C31, indicating higher inputs of plant sources. The sediments in the estuary showed dominance of both short-chain C16 and long-chain C25-C31, indicating a combined input of higher plants and petroleum. The diagnostic ratios of PAHs and n-alkanes indicated that their sources were mainly oil/coal/biomass combustion and petroleum spills attributed to frequent vehicular, vessel and mariculture activities. Given the potential ecological risks of PAHs and n-alkanes in water and sediments, future studies should focus on their bioaccumulation and biotoxicity.
Collapse
Affiliation(s)
- Feifei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dong Zhang
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Huawei Lou
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Xiaoyue Li
- Shouguang Marine Fishery Development Center ,Weifang, 262700, China
| | - Hongrui Fu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaojun Sun
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced, Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Ti J, Ning Z, Zhang M, Wang S, Gan S, Xu Z, Di H, Kong S, Sun W, He Z. Characterization the microbial diversity and functional genes in the multi-component contaminated groundwater in a petrochemical site. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11085. [PMID: 39051424 DOI: 10.1002/wer.11085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Microorganisms in groundwater at petroleum hydrocarbon (PHC)-contaminated sites are crucial for PHC natural attenuation. Studies mainly focused on the microbial communities and functions in groundwater contaminated by PHC only. However, due to diverse raw and auxiliary materials and the complex production processes, in some petrochemical sites, groundwater suffered multi-component contamination, but the microbial structure remains unclear. To solve the problem, in the study, a petrochemical enterprise site, where the groundwater suffered multi-component pollution by PHC and sulfates, was selected. Using hydrochemistry, 16S rRNA gene, and metagenomic sequencing analyses, the relationships among electron acceptors, microbial diversity, functional genes, and their interactions were investigated. Results showed that different production processes led to different microbial structures. Overall, pollution reduced species richness but increased the abundance of specific species. The multi-component contamination multiplied a considerable number of hydrocarbon-degrading and sulfate-reducing microorganisms, and the introduced sulfates might have promoted the biodegradation of PHC. PRACTITIONER POINTS: The compound pollution of the site changed the microbial community structure. Sulfate can promote the degradation of petroleum hydrocarbons by hydrocarbon-degrading microorganisms. The combined contamination of petroleum hydrocarbons and sulfates will decrease the species richness but increase the abundance of endemic species.
Collapse
Affiliation(s)
- Jinjin Ti
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Key Laboratory of Groundwater Contamination and Remediation, Hebei Province & China Geological Survey, Shijiazhuang, China
| | - Zhuo Ning
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Key Laboratory of Groundwater Contamination and Remediation, Hebei Province & China Geological Survey, Shijiazhuang, China
| | - Min Zhang
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Key Laboratory of Groundwater Contamination and Remediation, Hebei Province & China Geological Survey, Shijiazhuang, China
| | - Shuaiwei Wang
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Key Laboratory of Groundwater Contamination and Remediation, Hebei Province & China Geological Survey, Shijiazhuang, China
| | - Shuang Gan
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Key Laboratory of Groundwater Contamination and Remediation, Hebei Province & China Geological Survey, Shijiazhuang, China
- Hefei University of Technology, Hefei, China
| | - Zhe Xu
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Key Laboratory of Groundwater Contamination and Remediation, Hebei Province & China Geological Survey, Shijiazhuang, China
| | - He Di
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Key Laboratory of Groundwater Contamination and Remediation, Hebei Province & China Geological Survey, Shijiazhuang, China
| | - Siyu Kong
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Key Laboratory of Groundwater Contamination and Remediation, Hebei Province & China Geological Survey, Shijiazhuang, China
- Hefei University of Technology, Hefei, China
| | - Weichao Sun
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Key Laboratory of Groundwater Contamination and Remediation, Hebei Province & China Geological Survey, Shijiazhuang, China
| | - Ze He
- The Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province & China Geological Survey, Key Laboratory of Groundwater Contamination and Remediation, Hebei Province & China Geological Survey, Shijiazhuang, China
| |
Collapse
|
3
|
Muhammad R, Boothman C, Song H, Lloyd JR, van Dongen BE. Assessing the impacts of oil contamination on microbial communities in a Niger Delta soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171813. [PMID: 38513868 DOI: 10.1016/j.scitotenv.2024.171813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Oil spills are a global challenge, contaminating the environment with organics and metals known to elicit toxic effects. Ecosystems within Nigeria's Niger Delta have suffered from prolonged severe spills for many decades but the level of impact on the soil microbial community structure and the potential for contaminant bioremediation remains unclear. Here, we assessed the extent/impact of an oil spill in this area 6 months after the accident on both the soil microbial community/diversity and the distribution of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDGNα) genes, responsible for encoding enzymes involved in the degradation of PAHs, across the impacted area. Analyses confirmed the presence of oil contamination, including metals such as Cr and Ni, across the whole impacted area and at depth. The contamination impacted on the microbial community composition, resulting in a lower diversity in all contaminated soils. Gamma-, Delta-, Alpha- proteobacteria and Acidobacteriia dominated 16S rRNA gene sequences across the contaminated area, while Ktedonobacteria dominated the non-contaminated soils. The PAH-RHDαGN genes were only detected in the contaminated area, highlighting a clear relationship with the oil contamination/hydrocarbon metabolism. Correlation analysis indicated significant positive relationships between the oil contaminants (organics, Cr and Ni), PAH-RHDαGN gene, and the presence of bacteria/archaea such as Anaerolinea, Spirochaetia Bacteroidia Thermoplasmata, Methanomicrobia, and Methanobacteria indicating that the oil contamination not only impacted the microbial community/diversity present, but that the microbes across the impacted area and at depth were potentially playing an important role in degrading the oil contamination present. These findings provide new insights on the level of oil contamination remaining 6 months after an oil spill, its impacts on indigenous soil microbial communities and their potential for in situ bioremediation within a Niger Delta's ecosystem. It highlights the strength of using a cross-disciplinary approach to assess the extent of oil pollution in a single study.
Collapse
Affiliation(s)
- Rakiya Muhammad
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK
| | - Christopher Boothman
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK
| | - Hokyung Song
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK
| | - Bart E van Dongen
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK.
| |
Collapse
|
4
|
Guo W, Ren H, Jin Y, Chai Z, Liu B. The bioremediation of the typical persistent organic pollutants (POPs) by microalgae-bacteria consortia: A systematic review. CHEMOSPHERE 2024; 355:141852. [PMID: 38556179 DOI: 10.1016/j.chemosphere.2024.141852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
With industrialisation and the rapidly growing agricultural demand, many organic compounds have been leaked into the environment, causing serious damage to the biosphere. Persistent organic pollutants (POPs) are a type of toxic chemicals that are resistant to degradation through normal chemical, biological or photolytic approaches. With their stable chemical structures, POPs can be accumulated in the environment, and transported through wind and water, causing global environmental issues. Many researches have been conducted to remediate POPs contamination using various kinds of biological methods, and significant results have been seen. Microalgae-bacteria consortium is a newly developed concept for biological technology in contamination treatment, with the synergetic effects between microalgae and bacteria, their potential for pollutants degradation can be further released. In this review, two types of POPs (polychlorinated biphenyls and polycyclic aromatic hydrocarbons) are selected as the targeted pollutants to give a systematic analysis of the biodegradation through microalgae and bacteria, including the species selection, the identification of dominant enzymes, as well as the real application performance of the consortia. In the end, some outlooks and suggestions are given to further guide the development of applying microalgae-bacteria consortia in remediating POPs contamination. In general, the coculturing of microalgae and bacteria is a novel and efficient way to fulfil the advanced treatment of POPs in soil or liquid phase, and both monooxygenase and dioxygenase belonging to oxygenase play a vital role in the biodegradation of PCBs and PAHs. This review provides a general guide in the future investigation of biological treatment of POPs.
Collapse
Affiliation(s)
- Wenbo Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongyu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yinzhu Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zetang Chai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Singha NA, Neihsial R, Kipgen L, Lyngdoh WJ, Nongdhar J, Chettri B, Singh P, Singh AK. Taxonomic and Predictive Functional Profile of Hydrocarbonoclastic Bacterial Consortia Developed at Three Different Temperatures. Curr Microbiol 2023; 81:22. [PMID: 38017305 DOI: 10.1007/s00284-023-03529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023]
Abstract
Microbial community exhibit shift in composition in response to temperature variation. We report crude oil-degrading activity and high-throughput 16S rRNA gene sequencing (metagenome) profiles of four bacterial consortia enriched at three different temperatures in crude oil-amended Bushnell-Hass Medium from an oily sludge sediment. The consortia were referred to as O (4 ± 2 ℃ in 3% w/v crude oil), A (25 ± 2 ℃ in 1% w/v crude oil), H (25 ± 2 ℃ in 3% w/v crude oil), and X (45 ± 2 ℃ in 3% w/v crude oil). The hydrocarbon-degrading activity was highest for consortium A and H and lowest for consortium O. The metagenome profile revealed the predominance of Proteobacteria (62.12-1.25%) in each consortium, followed by Bacteroidota (18.94-37.77%) in the consortium O, A, and H. Contrarily, consortium X comprised 7.38% Actinomycetota, which was essentially low (< 0.09%) in other consortia, and only 0.41% Bacteroidota. The PICRUSt-based functional analysis predicted major functions associated with the metabolism and 5060 common KEGG Orthology (KOs). A total of 296 KOs were predicted exclusively in consortium X. Additionally, 247 KOs were predicted from xenobiotic biodegradation pathways. This study found that temperature had a stronger influence on the composition and function of the bacterial community than crude oil concentration.
Collapse
Affiliation(s)
- Ningombam A Singha
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Roselin Neihsial
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Lhinglamkim Kipgen
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Waniabha J Lyngdoh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Jopthiaw Nongdhar
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Bobby Chettri
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Prabhakar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| | - Arvind K Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| |
Collapse
|
6
|
Nnadi MO, Bingle L, Thomas K. Bacterial community dynamics and associated genes in hydrocarbon contaminated soil during bioremediation using brewery spent grain. Access Microbiol 2023; 5:acmi000519.v3. [PMID: 37424545 PMCID: PMC10323799 DOI: 10.1099/acmi.0.000519.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 07/11/2023] Open
Abstract
Brewery spent grain (BSG) has previously been exploited in bioremediation. However, detailed knowledge of the associated bacterial community dynamics and changes in relevant metabolites and genes over time is limited. This study investigated the bioremediation of diesel contaminated soil amended with BSG. We observed complete degradation of three total petroleum hydrocarbon (TPH C10-C28) fractions in amended treatments as compared to one fraction in the unamended, natural attenuation treatments. The biodegradation rate constant (k) was higher in amended treatments (0.1021k) than in unamended (0.059k), and bacterial colony forming units increased significantly in amended treatments. The degradation compounds observed fitted into the elucidated diesel degradation pathways and quantitative PCR results showed that the gene copy numbers of all three associated degradation genes, alkB, catA and xylE, were significantly higher in amended treatments. High-throughput sequencing of 16S rRNA gene amplicons showed that amendment with BSG enriched autochthonous hydrocarbon degraders. Also, community shifts of the genera Acinetobacter and Pseudomonas correlated with the abundance of catabolic genes and degradation compounds observed. This study showed that these two genera are present in BSG and thus may be associated with the enhanced biodegradation observed in amended treatments. The results suggest that the combined evaluation of TPH, microbiological, metabolite and genetic analysis provides a useful holistic approach to assessing bioremediation.
Collapse
Affiliation(s)
- Mabel Owupele Nnadi
- Faculty of Health Sciences & Wellbeing, University of Sunderland, Chester Road, Sunderland SR1 3SD, UK
| | - Lewis Bingle
- Faculty of Health Sciences & Wellbeing, University of Sunderland, Chester Road, Sunderland SR1 3SD, UK
| | - Keith Thomas
- Brewlab, Unit One, West Quay Court, Sunderland SR5 2TE, UK
| |
Collapse
|
7
|
Ling H, Hou J, Du M, Zhang Y, Liu W, Christie P, Luo Y. Surfactant-enhanced bioremediation of petroleum-contaminated soil and microbial community response: A field study. CHEMOSPHERE 2023; 322:138225. [PMID: 36828103 DOI: 10.1016/j.chemosphere.2023.138225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Surfactant-enhanced bioremediation (SEBR) is frequently employed to clean up soil polluted with petroleum hydrocarbons, but few studies have focused on how surfactants affect microbial communities and different fractions of petroleum hydrocarbons, particularly in the field. Here, the surfactants sodium dodecyl benzene sulfonate (SDBS), alpha olefin sulfonate (AOS), Triton X-100 (TX-100), Tween80, and rhamnolipid were combined with the oil-degrading bacterium Pseudomonas sp. SB to remediate oil-contaminated soil in the laboratory. AOS gave the highest removal efficiency (65.1%) of total petroleum hydrocarbons (TPHs). Therefore, AOS was used in a field experiment with Pseudomonas sp. SB and the removal efficiency of TPHs and long-chain hydrocarbons C21-C40 reached 57.4 and 53.0%, respectively, significantly higher than the other treatments. During bioremediation the addition of Pseudomonas sp. SB significantly stimulated the growth of bacterial genera such as Alcanivorax, Luteimonas, Parvibaculum, Stenotrophomonas, and Pseudomonas and AOS further stimulated the growth of Sphingobacterium, Pseudomonas and Alcanivorax. This study validates the feasibility of surfactant-enhanced bioremediation in the field and partly reveals the mechanism of surfactant-enhanced bioremediation from the perspective of changes in different fractions of petroleum and microbial community dynamics.
Collapse
Affiliation(s)
- Hao Ling
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Mingjun Du
- China Petroleum Engineering and Construction Corporation North Company, Renqiu, 062552, China
| | - Yun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
8
|
Liang C, Ye Q, Huang Y, Zhang Z, Wang C, Wang Y, Wang H. Distribution of the new functional marker gene (pahE) of aerobic polycyclic aromatic hydrocarbon (PAHs) degrading bacteria in different ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161233. [PMID: 36586685 DOI: 10.1016/j.scitotenv.2022.161233] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Understanding the degradation potentials in PAHs-contaminated sites is significant for formulating effective bioremediation strategies. pahE encoding PAHs hydratase-aldolase has been proven as a better new functional marker gene of aerobic PAHs-degrading bacteria to assess the biodegradation potential of indigenous PAHs-degrading bacterial population. However, the distribution of pahE and its relationship with environmental factors remain unknown. The present study observed spatial variations in the diversity and abundance of pahE across oilfield soils, mangrove sediments, and urban roadside soils. nahE from Pseudomonas, bphE from Hyphomonas oceanitis, nagE from Comamonas testosterone, and novel pahE genes were widely present in these PAHs-polluted ecosystems. The abundance of pahE in PAHs-contaminated sites was in the range of 105-106 copies·g-1 (dry weight). Redundancy analysis and Pearson's correlation analysis implied that the distribution of pahE in the PAHs-contaminated environment was mainly shaped by environmental factors such as PAHs pollution level, nutrient level, salinity, and water content. This work was the first to explore the distribution of the new functional marker gene (pahE) and its links with environmental parameters, which provided new insights into the ecophysiology and distribution of indigenous aerobic PAHs-degrading bacteria in contaminated sites.
Collapse
Affiliation(s)
- Chengyue Liang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanhui Ye
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Wang J, Zhang Y, Ding Y, Song H, Liu T, Zhang Y, Xu W, Shi Y. Comparing the indigenous microorganism system in typical petroleum-contaminated groundwater. CHEMOSPHERE 2023; 311:137173. [PMID: 36356804 DOI: 10.1016/j.chemosphere.2022.137173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The environmental conditions at a contaminated site will impact on the indigenous microbial communities, with implications for the removal of pollutants. An analysis of the characteristics of microbial communities in petroleum-contaminated groundwater can give insights into the relationships between microbial community and environmental factors, and provide guidance about how microbes can be used to remediate and regulate petroleum-contaminated groundwater. This study focuses on two petroleum-contaminated sites in northeast China, the physico-chemical-biological changes in petroleum-contaminated groundwater were analyzed, the response relationship between hydro-chemical indicators and microbial communities was characterized, and the bioindicator that can reflect the petroleum contamination status were established for environmental monitoring and management. The results showed that Proteobacteria was the dominant bacteria in petroleum-contaminated groundwater, with a relative abundance of 42.45%-91.19%. pH, TDS, DO, NO3-, NO2-, SO42-, NH4+, Al, and Mn have significant effects on microbial community. The effect of petroleum pollutants on microbial communities is not only related to the concentration and composition of the pollutants themselves, but also could indirectly affect microbial communities by changing the content of inorganic electron acceptor components such as iron, manganese, sulfate and nitrate in groundwater, and this indirect effect is significantly greater than the direct impact of pollutants on microbial communities. In petroleum-contaminated groundwater, the dominant genera (Polaromonas, Caulobacter) and microbial metabolic functions (methanol oxidation, methylotrophy, ureolysis, and reductive biosynthesis) of the indigenous microbial community can be used as bioindicators to indicate petroleum contamination status. The higher abundance of these bioindicators in petroleum-contaminated groundwater, the more serious petroleum pollution in groundwater.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Hewei Song
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Ting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yujia Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
10
|
Liu Y, Sun Y, Yu J, Xia X, Ding A, Zhang D. Impacts of groundwater level fluctuation on soil microbial community, alkane degradation efficiency and alkane-degrading gene diversity in the critical zone: Evidence from an accelerated water table fluctuation simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83060-83070. [PMID: 35759097 DOI: 10.1007/s11356-022-21246-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Petroleum hydrocarbons are hazardous to ecosystems and human health, commonly containing n-alkanes and polycyclic aromatic hydrocarbons. Previous researches have studied alkane degraders and degrading genes under aerobic or anaerobic conditions, but seldom discussed them in the intermittent saturation zone which is a connective area between the vadose zone and the groundwater aquifer with periodic alteration of oxygen and moisture. The present study investigated the difference in alkane degradation efficiency, bacterial community, and alkane degrading gene diversity in aerobic, anaerobic, and aerobic-anaerobic fluctuated treatments. All biotic treatments achieved over 90% of n-alkane removal after 120 days of incubation. The removal efficiencies of n-alkanes with a carbon chain length from 16 to 25 were much higher in anaerobic scenarios than those in aerobic scenarios, explained by different dominant microbes between aerobic and anaerobic conditions. The highest removal efficiency was found in fluctuation treatments, indicating an accelerated n-alkane biodegradation under aerobic-anaerobic alternation. In addition, the copy numbers of the 16S rRNA gene and two alkB genes (alkB-P and alkB-R) declined dramatically when switched from aerobic to anaerobic scenarios and oppositely from anaerobic to aerobic conditions. This suggested that water level fluctuation could notably change the presence of aerobic alkane degrading genes. Our results suggested that alkane degradation efficiency, soil microbial community, and alkane-degrading genes were all driven by water level fluctuation in the intermittent saturation zone, helping better understand the effects of seasonal water table fluctuation on the biodegradation of petroleum hydrocarbons in the subsurface environment.
Collapse
Affiliation(s)
- Yueqiao Liu
- Experiment and Practice Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jingshan Yu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xuefeng Xia
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, China.
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
11
|
Sun Y, Ding A, Zhao X, Chang W, Ren L, Zhao Y, Song Z, Hao D, Liu Y, Jin N, Zhang D. Response of soil microbial communities to petroleum hydrocarbons at a multi-contaminated industrial site in Lanzhou, China. CHEMOSPHERE 2022; 306:135559. [PMID: 35787883 DOI: 10.1016/j.chemosphere.2022.135559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Total petroleum hydrocarbon (TPH) contamination poses threats to ecological systems and human health. Many studies have reported its negative impacts on soil microbes, but limited information is known about microbial change and response to multiple TPH contamination events. In this study, we investigated TPH contamination level, microbial community structure and functional genes at a multi-contaminated industrial site in Lanzhou, where a benzene spill accident caused the drinking water crisis in 2014. TPHs distribution in soils and groundwater indicated multiple TPH contamination events in history, and identified the spill location where high TPH level (6549 mg kg-1) and high ratio of low-molecular-weight TPHs (>80%) were observed. In contrast, TPH level was moderate (349 mg kg-1) and the proportion of low-molecular-weight TPHs was 44% in soils with a long TPH contamination history. After the spill accident, soil bacterial communities became significant diverse (p = 0.047), but the dominant microbes remained the same as Pseudomonadaceae and Comamonadaceae. The abundance of hydrocarbon-degradation related genes increased by 10-1000 folds at the site where the spill accident occurred in multi-contaminated areas and was significantly related to 2-ring PAHs. Such changes of microbial community and hydrocarbon-degradation related genes together indicated the resilience of soil indigenous microbes toward multiple contamination events. Our results proved the significant change of bacterial community and huge shift of hydrocarbon-degradation related genes after the spill accident (multiple contamination events), and provided a deep insight into microbial response at industrial sites with a long period of contamination history.
Collapse
Affiliation(s)
- Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaohui Zhao
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Wonjae Chang
- Department of Civil, Geological, and Environmental Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Liangsuo Ren
- Institute of Geography and Oceangraphy, Nanning Normal University, Nanning, 530100, China
| | - Yinjun Zhao
- Institute of Geography and Oceangraphy, Nanning Normal University, Nanning, 530100, China
| | - Ziyu Song
- BCEG Environmental Remediation LTD, Beijing, 100015, China.
| | - Di Hao
- BCEG Environmental Remediation LTD, Beijing, 100015, China.
| | - Yueqiao Liu
- Experiment and Practice Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Liu J, Wang P, Wang Y, Zhang Y, Xu T, Zhang Y, Xi J, Hou L, Li L, Zhang Z, Lin Y. Negative effects of poly(butylene adipate-co-terephthalate) microplastics on Arabidopsis and its root-associated microbiome. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129294. [PMID: 35728316 DOI: 10.1016/j.jhazmat.2022.129294] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The degradable plastic poly(butylene adipate-co-terephthalate) (PBAT) is considered a potential replacement for low-density polyethylene (LDPE) as the main component of mulch film. However, it is not clear whether PBAT is harmful to the plant-soil system. Thus, we determined the effects of LDPE microplastics (LDPE-MPs) and PBAT microplastics (PBAT-MPs) on the growth of Arabidopsis. The inhibitory effect of PBAT-MPs was greater than that of LDPE-MPs on the growth of Arabidopsis. Transcriptome analysis showed that PBAT-MPs severely disrupted the photosynthetic system of Arabidopsis and increased the expression levels of genes in drug transport-related pathways. PBAT-MPs increased the relative abundances of Bradyrhizobium, Hydrogenophaga, and Arthrobacter in the bulk soil and rhizosphere soil. The abundances of Variovorax, Flavobacterium, and Microbacterium increased in the plant root zone only under PBAT-MPs. Functional prediction analysis suggested that microorganisms in the soil and plant root zone could degrade xenobiotics. Furthermore, the degradation products from PBAT comprising adipic acid, terephthalic acid, and butanediol were more toxic than PBAT-MPs. Our findings demonstrate that PBAT-MPs may be degraded by microorganisms to produce chemicals that are highly toxic to plants. Thus, biodegradable plastics may pose a great risk to the environment.
Collapse
Affiliation(s)
- Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiyuan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujia Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiqiong Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun Hou
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Zhu N, Wang J, Wang Y, Li S, Chen J. Differences in geological conditions have reshaped the structure and diversity of microbial communities in oily soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119404. [PMID: 35523380 DOI: 10.1016/j.envpol.2022.119404] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/27/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
High-throughput sequencing was used to study the microbial community structure diversity changes in oil-contaminated soils under different spatial distances and environmental conditions. 239 Phyla, 508 Classes, 810 Orders, 1417 Families, 2048 Genera, 511 Species of microbial communities were obtained from 16 samples in three regions. The physicochemical properties of the soil, microorganisms' community structure has been changed by Petroleum hydrocarbon (PHA). Alpha diversity results showed that the soil contained high bacterial diversity, especially in Qingyang's loess soil. The bacterial abundance was in the order of loess soil > black soil > sandy soil. Beta diversity revealed that spatial distance limitation and random variation of repeated samples may be the main factors leading to soil heterogeneity and microbial community structure differences. The dominant bacteria phyla with broad petroleum hydrocarbon degradation ability such as Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were identified. Pseudomonas, Bacillus, Nocardioides, Oceanobacillus, Sphingomonas, Alkanindiges and Streptomyces were identified as functional microbial for the PHA degradation. The microbial communities manifested the co-exclusion under different geological conditions, and played the key role in the soil PHA degradation through amino acid metabolism, energy metabolism and carbohydrate metabolism. The correlation results of amos structural equation showed that the diversity and abundance of soil microorganisms in different regions were controlled by soil PHA content and environmental factors. Altitude, annual average temperature and annual rainfall were positively correlated with microbial diversity. Annual rainfall and soil physical and chemical factors exhibited the most significant influence on it. Microbial diversity indirectly affected the PHA content in different type soil. We believe that reshape the structure and diversity of microbial communities in soil could be changed and reshaped by different geological conditions, pollutants and soil type. This study can provide helps for understanding the ecological effect of geomicrobiology formation under the driving force of geographic environment and other factors.
Collapse
Affiliation(s)
- Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jiangqin Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Shaowei Li
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
14
|
Alami NH, Hamzah A, Tangahu BV, Warmadewanti I, Bachtiar Krishna Putra A, Purnomo AS, Danilyan E, Putri HM, Aqila CN, Dewi AAN, Pratiwi A, Putri SK, Luqman A. Microbiome profile of soil and rhizosphere plants growing in traditional oil mining land in Wonocolo, Bojonegoro, Indonesia. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:697-705. [PMID: 35867913 DOI: 10.1080/15226514.2022.2103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional oil mining poses negative effects on the environment through pollution with crude oil. One of the traditional mining sites in Wonocolo, Bojonegoro, Indonesia was reported to contaminate the surrounding area with a high level of crude oil. Therefore, this study aims to examine the microbiome profiles of contaminated soil and the rhizosphere of naturalized plants growing at the sites. It was conducted in Wonocolo, Bojonegoro to obtain an insight into the possible remediation efforts of using indigenous hydrocarbon-degrading bacteria and naturalized plants as in situ remediation agents. The results showed that the soil located close to the oil well-contained a high level of crude oil at 24.8%, and exhibited a distinct microbiome profile compared to those located further which had lower crude oil contamination of 14.15, 10.89, and 4.9%. Soil with the highest level of crude oil contamination had a comparatively higher relative abundance of assA, an anaerobic alkene-degrading gene. Meanwhile, the rhizosphere of the two naturalized plants, Muntingia calabura, and Pennisetum purpureum, exhibited indifferent microbiome profiles compared to the soil. They were found to contain less abundant hydrocarbon-degrading genes, such as C230, PAH-RHD-GP, nahAc, assA, and alkB suggesting that these naturalized plants might not be a suitable tool for in-situ remediation.
Collapse
Affiliation(s)
- Nur Hidayatul Alami
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Afan Hamzah
- Industrial Chemical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Bieby Voijant Tangahu
- Environmental Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Idaa Warmadewanti
- Environmental Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | | | - Adi Setyo Purnomo
- Chemistry Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Edo Danilyan
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Hellen Melati Putri
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Citra Nesa Aqila
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Aulia An Nisaa Dewi
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Ayudia Pratiwi
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | | | - Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| |
Collapse
|
15
|
Ssenku JE, Walusansa A, Oryem-Origa H, Ssemanda P, Ntambi S, Omujal F, Mustafa AS. Bacterial community and chemical profiles of oil-polluted sites in selected cities of Uganda: potential for developing a bacterial-based product for remediation of oil-polluted sites. BMC Microbiol 2022; 22:120. [PMID: 35505298 PMCID: PMC9063239 DOI: 10.1186/s12866-022-02541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Oil spills are ranked among the greatest global challenges to humanity. In Uganda, owing to the forthcoming full-scale production of multi-billion barrels of oil, the country’s oil pollution burden is anticipated to escalate, necessitating remediation. Due to the unsuitability of several oil clean-up technologies, the search for cost-effective and environmentally friendly remediation technologies is paramount. We thus carried out this study to examine the occurrence of metabolically active indigenous bacterial species and chemical characteristics of soils with a long history of oil pollution in Uganda that can be used in the development of a bacterial-based product for remediation of oil-polluted sites. Results Total hydrocarbon analysis of the soil samples revealed that the three most abundant hydrocarbons were pyrene, anthracene and phenanthrene that were significantly higher in oil-polluted sites than in the control sites. Using the BIOLOG EcoPlate™, the study revealed that bacterial species richness, bacterial diversity and bacterial activity (ANOVA, p < 0.05) significantly varied among the sites. Only bacterial activity showed significant variation across the three cities (ANOVA, p < 0.05). Additionally, the study revealed significant moderate positive correlation between the bacterial community profiles with Zn and organic contents while correlations between the bacterial community profiles and the hydrocarbons were largely moderate and positively correlated. Conclusions This study revealed largely similar bacterial community profiles between the oil-polluted and control sites suggestive of the occurrence of metabolically active bacterial populations in both sites. The oil-polluted sites had higher petroleum hydrocarbon, heavy metal, nitrogen and phosphorus contents. Even though we observed similar bacterial community profiles between the oil polluted and control sites, the actual bacterial community composition may be different, owing to a higher exposure to petroleum hydrocarbons. However, the existence of oil degrading bacteria in unpolluted soils should not be overlooked. Thus, there is a need to ascertain the actual indigenous bacterial populations with potential to degrade hydrocarbons from both oil-polluted and unpolluted sites in Uganda to inform the design and development of a bacterial-based oil remediation product that could be used to manage the imminent pollution from oil exploration and increased utilization of petroleum products in Uganda. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02541-x.
Collapse
Affiliation(s)
- Jamilu E Ssenku
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda
| | - Abdul Walusansa
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda.,Department of Microbiology, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda.,Department of Medical Microbiology and Immunology, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Hannington Oryem-Origa
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda
| | - Paul Ssemanda
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda.,Department of Biology and Chemistry, Universität Bremen, Bremen, Germany
| | - Saidi Ntambi
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda
| | - Francis Omujal
- Department of Chemistry, Natural Chemotherapeutics Research Institute (NCRI), Kampala, Uganda
| | - Abubakar Sadik Mustafa
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda.
| |
Collapse
|
16
|
Gao Y, Yuan L, Du J, Wang H, Yang X, Duan L, Zheng L, Bahar MM, Zhao Q, Zhang W, Liu Y, Fu Z, Wang W, Naidu R. Bacterial community profile of the crude oil-contaminated saline soil in the Yellow River Delta Natural Reserve, China. CHEMOSPHERE 2022; 289:133207. [PMID: 34890619 DOI: 10.1016/j.chemosphere.2021.133207] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Crude oil contamination greatly influence soil bacterial community. Proliferative microbes in the crude oil-contaminated soil are closely related to the living conditions. Oil wells in the Yellow River Delta Natural Reserve (YRDNR) region is an ideal site for investigating the bacterial community of crude oil-contaminated saline soil. In the present study, 18 soil samples were collected from the depths of 0-20 cm and 20-40 cm around the oil wells in the YRDNR. The bacterial community profile was analyzed through high-throughput sequencing to trace the oil-degrading aerobic and anaerobic bacteria. The results indicated that C15-C28 and C29-C38 were the main fractions of total petroleum hydrocarbon (TPH) in the sampled soil. These TPH fractions had a significant negative effect on bacterial biodiversity (Shannon, Simpson, and Chao1 indices), which led to the proliferation of hydrocarbon-degrading bacteria. A comprehensive analysis between the environmental factors and soil microbial community structure showed that Streptococcus, Bacillus, Sphingomonas, and Arthrobacter were the aerobic hydrocarbon-degrading bacteria; unidentified Rhodobacteraceae and Porticoccus were considered to be the possible facultative anaerobic bacteria with hydrocarbon biodegradation ability; Acidithiobacillus, SAR324 clade, and Nitrosarchaeum were predicted to be the anaerobic hydrocarbon-degrading bacteria in the sub-surface soil. Furthermore, large amount of carbon sources derived from TPH was found to cause depletion of bioavailable nitrogen in the soil. The bacteria associated with nitrogen transformation, such as Solirubrobacter, Candidatus Udaeobacter, Lysinibacillus, Bradyrhizobium, Sphingomonas, Mycobacterium, and Acidithiobacillus, were highly abundant; these bacteria may possess the ability to increase nitrogen availability in the crude oil-contaminated soil. The bacterial community functions were significantly different between the surface and the sub-surface soil, and the dissolved oxygen concentration in soil was considered to be potential influencing factor. Our results could provide useful information for the bioremediation of crude oil-contaminated saline soil.
Collapse
Affiliation(s)
- Yongchao Gao
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute, Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China.
| | - Liyuan Yuan
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute, Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Jianhua Du
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hui Wang
- School of Resources and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaodong Yang
- Department of Geography & Spatial Information Technology, Ningbo University, Ningbo, 315211, China.
| | - Luchun Duan
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Liwen Zheng
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute, Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Md Mezbaul Bahar
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Qingqing Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute, Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Wen Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute, Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Yanju Liu
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhaoyang Fu
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute, Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Wei Wang
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute, Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Callaghan, NSW, 2308, Australia
| |
Collapse
|
17
|
Li Y, Li W, Ji L, Song F, Li T, Fu X, Li Q, Xing Y, Zhang Q, Wang J. Effects of Salinity on the Biodegradation of Polycyclic Aromatic Hydrocarbons in Oilfield Soils Emphasizing Degradation Genes and Soil Enzymes. Front Microbiol 2022; 12:824319. [PMID: 35087508 PMCID: PMC8787140 DOI: 10.3389/fmicb.2021.824319] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
The biodegradation of organic pollutants is the main pathway for the natural dissipation and anthropogenic remediation of polycyclic aromatic hydrocarbons (PAHs) in the environment. However, in the saline soils, the PAH biodegradation could be influenced by soil salts through altering the structures of microbial communities and physiological metabolism of degradation bacteria. In the worldwide, soils from oilfields are commonly threated by both soil salinity and PAH contamination, while the influence mechanism of soil salinity on PAH biodegradation were still unclear, especially the shifts of degradation genes and soil enzyme activities. In order to explain the responses of soils and bacterial communities, analysis was conducted including soil properties, structures of bacterial community, PAH degradation genes and soil enzyme activities during a biodegradation process of PAHs in oilfield soils. The results showed that, though low soil salinity (1% NaCl, w/w) could slightly increase PAH degradation rate, the biodegradation in high salt condition (3% NaCl, w/w) were restrained significantly. The higher the soil salinity, the lower the bacterial community diversity, copy number of degradation gene and soil enzyme activity, which could be the reason for reductions of degradation rates in saline soils. Analysis of bacterial community structure showed that, the additions of NaCl increase the abundance of salt-tolerant and halophilic genera, especially in high salt treatments where the halophilic genera dominant, such as Acinetobacter and Halomonas. Picrust2 and redundancy analysis (RDA) both revealed suppression of PAH degradation genes by soil salts, which meant the decrease of degradation microbes and should be the primary cause of reduction of PAH removal. The soil enzyme activities could be indicators for microorganisms when they are facing adverse environmental conditions.
Collapse
Affiliation(s)
- Yang Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenjing Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fanyong Song
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
18
|
Ding Z, Chen W, Hou J, Wang Q, Liu W, Christie P, Luo Y. Hydrogen peroxide combined with surfactant leaching and microbial community recovery from oil sludge. CHEMOSPHERE 2022; 286:131750. [PMID: 34352537 DOI: 10.1016/j.chemosphere.2021.131750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The remediation effects of hydrogen peroxide (H2O2) oxidation and surfactant-leaching alone or in combination on three typical oilfield sludges were studied. The removal efficiency of total petroleum hydrocarbons (TPHs) of Jidong, Liaohe and Jiangsu oil sludges by hydrogen peroxide oxidation alone was very poor (6.5, 6.8, and 3.4 %, respectively) but increased significantly (p < 0.05), especially of long-chain hydrocarbons, by combining the use of H2O2 with surfactants (80.0, 79.8 and 82.2 %, respectively). Oxidation combined with leaching may impair microbial activity and organic manure was therefore added to the treated sludges for biostimulation and the composition and function of the microbial community were studied. The addition of manure rapidly restored sludge microbial activity and significantly increased the relative abundance of some salt-tolerant and alkali-tolerant petroleum-degrading bacteria such as Corynebacterium, Pseudomonas, Dietzia and Jeotgalicoccus. Moreover, the relative abundance of two classic petroleum-degrading enzyme genes, alkane 1-monooxygenase and catechol 1, 2-dioxygenase, increased significantly.
Collapse
Affiliation(s)
- Zhixian Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyan Chen
- Jiangsu East China New Energy Exploration Co., Ltd., Nanjing, 210005, China
| | - Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingling Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
19
|
Hou J, Wang Q, Liu W, Zhong D, Ge Y, Christie P, Luo Y. Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148411. [PMID: 34465037 DOI: 10.1016/j.scitotenv.2021.148411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Biodegradation of soil contaminants may be promoted near plant roots due to the "rhizosphere effect" which may enhance microbial growth and activity. However, the effects of different plant cultivars within a single species on degradation remains unclear. Here, we evaluated the removal of soil total petroleum hydrocarbons (TPHs) by ten different cultivars of tall fescue grass (Festuca arundinacea L.) and their associated rhizosphere microbiomes. TPH removal efficiency across the ten different cultivars was not significantly correlated with plant biomass. Rhizing Star and Greenbrooks cultivars showed the maximum (76.6%) and minimum (62.2%) TPH removal efficiencies, respectively, after 120 days. Significant differences were observed between these two cultivars in the composition of rhizosphere bacterial and fungal communities, especially during the early stages (day 30) of remediation but the differences decreased later (day 90). Putative petroleum-degrading bacterial and fungal guilds were enriched in the presence of tall fescue. Moreover, the complexity of microbial networks declined in treatments with higher TPH removal efficiency. The relative abundances of saprotrophic fungi and putative genes alkB and C12O in bacetria involved in petroleum degradation increased, especially in the presence of Rhizing Star cultivar, and this was consistent with the TPH removal efficiency results. These results indicate the potential of tall fescue grass cultivars and their associated rhizosphere microbiomes to phytoremediate petroleum hydrocarbon-contaminated soils.
Collapse
Affiliation(s)
- Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingling Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Daoxu Zhong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Provincial Academy of Environmental Science, Nanjing, Jiangsu 210036, China
| | - Yanyan Ge
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
20
|
Microalgae–Bacteria Consortia: A Review on the Degradation of Polycyclic Aromatic Hydrocarbons (PAHs). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Kalami R, Pourbabaee AA. Investigating the potential of bioremediation in aged oil-polluted hypersaline soils in the south oilfields of Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:517. [PMID: 34309727 DOI: 10.1007/s10661-021-09304-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
To date, studies for bioremediation of oil-polluted hypersaline soils have been neglected or limited to specific spots. Hence, in this study, ten samples of oil field soils in the Khuzestan province of Iran were collected to evaluate bioremediation's feasibility. These samples were analyzed for their physicochemical properties as well as the most probable number of total and hydrocarbon-degrading bacteria. Thirty-nine hydrocarbon-degrading bacteria were isolated from these soils over a 1-month incubation in an MSM medium enriched with diesel oil as the sole source of carbon. As revealed by 16S-rRNA analysis, the identified strains belonged to the genera Ochrobactrum, Microbacterium, and Bacillus with a high frequency of Ochrobactrum species. Additionally, by using degenerate primers, the third group of alkB gene was detected in Ochrobactrum and Microbacterium isolates through the touchdown nested PCR method for the first time. Ochrobactrum species possessing the alkB gene showed the highest population, and therefore, the highest adaptation to harsh environmental conditions. Most isolates showed outstanding results in the ability to grow with crude and diesel oil and tolerate high salt percentages, biosurfactant production, and emulsification activity, which are considered the most effective factors in bioremediation of such environments. Considering the soil analysis, limiting factors in bioremediation like available phosphorous, and the abundance of bacteria with remediation traits in these soils, these extremely polluted environments can be refined.
Collapse
Affiliation(s)
- Reyhaneh Kalami
- Department of Soil Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad-Ali Pourbabaee
- Department of Soil Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
22
|
Characterization of Dietzia maris AURCCBT01 from oil-contaminated soil for biodegradation of crude oil. 3 Biotech 2021; 11:291. [PMID: 34109094 DOI: 10.1007/s13205-021-02807-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/22/2021] [Indexed: 10/21/2022] Open
Abstract
A bacterial strain was isolated from an oil-contaminated site and on its' further characterization, exhibited the potential of synthesising metabolites and the ability to degrade crude oil. Its' morphological, biochemical and 16S rRNA analysis suggested that the bacterium belongs to Dietzia maris AURCCBT01. This strain rapidly grew in the medium supplemented with n-alkanes C14, C18, C20, C28 and C32 utilizing them as a sole carbon source and produced a maximum canthaxanthin pigment of 971.37 µg/L in the n-C14 supplemented medium and produced the lowest pigment yield of 389.48 µg/L in the n-C-32 supplemented medium. Moreover, the strain effectively degraded 91.87% of crude oil in 7 days. The emulsification activity of the strain was 25% with the highest cell surface hydrophobicity (70.26%) and it showed a decrease in surface tension, indicating that the biosurfactant production lowers the surface tension. This is the first report on the characterization of the strain, Dietzia maris AURCCBT01 and its' novelty of alkane degradation and simultaneous production of canthaxanthin pigment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02807-7.
Collapse
|
23
|
Liao Q, Liu H, Lu C, Liu J, Waigi MG, Ling W. Root exudates enhance the PAH degradation and degrading gene abundance in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144436. [PMID: 33401039 DOI: 10.1016/j.scitotenv.2020.144436] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Root exudates could influence the bioavailability of polycyclic aromatic hydrocarbons (PAHs), provide nutrients for soil microorganisms, and affect PAH biodegradation. However, it remains unclear how a bacterial community and its PAH-degrading genes play crucial roles in PAH biodegradation and respond to root exudates. In this study, a 32-day soil microcosm study was conducted to explore the impacts of artificial and actual root exudates on PAH degradation, degrading genes, and bacterial community structure. The results showed that 10-100 mg DOC/kg artificial and actual root exudates promoted the degradation of naphthalene, phenanthrene, and pyrene in soils, and their percent removal increased initially and then decreased with the increasing root exudates. Quantitative polymerase chain reaction analysis and 16S rRNA gene high-throughput sequencing suggested that the artificial root exudates significantly promoted the Nocardioides and Arthrobacter genera, which may harbor the nidA gene (the representative PAH-degrading gene from Gram-positive bacteria). In contrast, actual root exudates significantly stimulated the Pseudomonas genus that may harbor the nahAc gene (the representative PAH-degrading gene from Gram-negative bacteria). The correlation analysis further indicated that the absolute abundance of PAH degraders and degrading genes had strong correlations with PAH degradation efficiency. Therefore, these findings suggest that root exudates enhanced PAH biodegradation probably due to increases in abundance of both PAH-degraders and their degrading genes.
Collapse
Affiliation(s)
- Qihang Liao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Liu
- College of Economics and Management, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Galitskaya P, Biktasheva L, Kuryntseva P, Selivanovskaya S. Response of soil bacterial communities to high petroleum content in the absence of remediation procedures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9610-9627. [PMID: 33155112 DOI: 10.1007/s11356-020-11290-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Oil spills are events that frequently lead to petroleum pollution. This pollution may cause stress to microbial communities, which require long adaption periods. Soil petroleum pollution is currently considered one of the most serious environmental problems. In the present work, processes occurring in the bacterial communities of three soil samples with different physicochemical characteristics, artificially polluted with 12% of crude oil, were investigated in 120-day laboratory experiment. It was found that the total petroleum hydrocarbon content did not decrease during this time; however, the proportion of petroleum fractions was altered. Petroleum pollution led to a short-term decrease in the bacterial 16S rRNA gene copy number. On the basis of amplicon sequencing analysis, it was concluded that bacterial community successions were similar in the three soils investigated. Thus, the phyla Actinobacteria and Proteobacteria and candidate TM7 phylum (Saccaribacteria) were predominant with relative abundances ranging from 35 to 58%, 25 to 30%, and 15 to 35% in different samples, respectively. The predominant operational taxonomic units (OTUs) after pollution belonged to the genera Rhodococcus and Mycobacterium, families Nocardioidaceae and Sinobacteraceae, and candidate class ТМ7-3. Genes from the alkIII group encoding monoxygenases were the most abundant compared with other catabolic genes from the alkI, alkII, GN-PAH, and GP-PAH groups, and their copy number significantly increased after pollution. The copy numbers of expressed genes involved in the horizontal transfer of catabolic genes, FlgC, TraG, and OmpF, also increased after pollution by 11-33, 16-63, and 11-71 times, respectively. The bacterial community structure after a high level of petroleum pollution changed because of proliferation of the cells that initially were able to decompose hydrocarbons, and in the second place, because proliferation of the cells that received these catabolic genes through horizontal transfer.
Collapse
Affiliation(s)
- Polina Galitskaya
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | - Liliya Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008.
| | - Polina Kuryntseva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | | |
Collapse
|
25
|
Wang M, Sha C, Wu J, Su J, Wu J, Wang Q, Tan J, Huang S. Bacterial community response to petroleum contamination in brackish tidal marsh sediments in the Yangtze River Estuary, China. J Environ Sci (China) 2021; 99:160-167. [PMID: 33183693 DOI: 10.1016/j.jes.2020.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The brackish tidal marsh in the Baimaosha area of the Yangtze River Estuary was severely contaminated by 400 tons of heavy crude petroleum from a tanker that sank in December 2012. The spill accident led to severe environmental damage owing to its high toxicity, persistence and wide distribution. Microbial communities play vital roles in petroleum degradation in marsh sediments. Therefore, taxonomic analysis, high-throughput sequencing and 16S rRNA functional prediction were used to analyze the structure and function of microbial communities among uncontaminated (CK), lightly polluted (LP), heavily polluted (HP), and treated (TD) sediments. The bacterial communities responded with increased richness and decreased diversity when exposed to petroleum contamination. The dominant class changed from Deltaproteobacteria to Gammaproteobacteria after petroleum contamination. The phylum Firmicutes increased dramatically in oil-enriched sediment by 75.78%, 346.19% and 267.26% in LP, HP and TD, respectively. One of the suspected oil-degrading genera, Dechloromonas, increased the most in oil-contaminated sediment, by 540.54%, 711.27% and 656.78% in LP, HP and TD, respectively. Spore protease, quinate dehydrogenase (quinone) and glutathione-independent formaldehyde dehydrogenase, three types of identified enzymes, increased enormously with the increasing petroleum concentration. In conclusion, petroleum contamination altered the community composition and microorganism structure, and promoted some bacteria to produce the corresponding degrading enzymes. Additionally, the suspected petroleum-degrading genera should be considered when restoring oil-contaminated sediment.
Collapse
Affiliation(s)
- Min Wang
- Research Institute of Natural Ecology Conservation, Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233, China
| | - Chenyan Sha
- Research Institute of Natural Ecology Conservation, Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233, China
| | - Jian Wu
- Research Institute of Natural Ecology Conservation, Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233, China
| | - Jinghua Su
- Research Institute of Natural Ecology Conservation, Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233, China
| | - Jianqiang Wu
- Research Institute of Natural Ecology Conservation, Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233, China
| | - Qing Wang
- Research Institute of Natural Ecology Conservation, Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233, China
| | - Juan Tan
- Research Institute of Natural Ecology Conservation, Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233, China
| | - Shenfa Huang
- Research Institute of Natural Ecology Conservation, Shanghai Academy of Environmental Sciences, 508 Qinzhou Road, Shanghai 200233, China.
| |
Collapse
|
26
|
Taha H, Shivanand P, Khoo DH, Mohammad YH, Matussin NBA, Metali F. Identification of culturable petroleum-degrading bacteria and fungi from petroleum-contaminated sites in Brunei Darussalam. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1542-1547. [PMID: 32997595 DOI: 10.1080/10934529.2020.1826238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Microbes that can be cultured and degrade petroleum are of particular interest for biotechnology such as bioremediation. This study aims to isolate and identify culturable petroleum-degrading bacteria and fungi from Brunei Darussalam, which has not previously been explored. A total of eight bacterial and nine fungal isolates that could degrade petroleum were obtained from petroleum-contaminated water or soil samples. DNA barcoding using 16S rRNA gene sequence identified five different bacterial genera which were Bacillus, Enterobacter, Micrococcus, Pseudoaltermonas and Pseudomonas. DNA barcoding using rRNA-ITS gene sequence identified nine different fungal taxa which were Aspergillus, Cladosporium, Exophiala, Flavodon, Hypocreales, Nectriaceae, Penicillium, Peniophora and Trichoderma. Biolog provided additional support to the identification of some isolates. This study is the first to report these unique microbes from Brunei Darussalam, which are of ecological and biotechnological value.
Collapse
Affiliation(s)
- Hussein Taha
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - De Hwa Khoo
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Yumni Haziqah Mohammad
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Nur Bazilah Afifah Matussin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Faizah Metali
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
27
|
Screening of Bacteria Isolated from Refinery Sludge of Assam for Hydrocarbonoclastic Activities. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Li SW, Huang YX, Liu MY. Transcriptome profiling reveals the molecular processes for survival of Lysinibacillus fusiformis strain 15-4 in petroleum environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110250. [PMID: 32028154 DOI: 10.1016/j.ecoenv.2020.110250] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
A bacterial strain designated Lysinibacillus fusiformis 15-4 was isolated from oil-free soil on the Qinghai-Tibet Plateau, which can grow well utilizing petroleum hydrocarbons as a carbon source at a lower temperature. To deeply characterize the molecular adaptations and metabolic processes of this strain when grown in a petroleum-containing environment, transcriptome analysis was performed. A total of 4664 genes and the expression of 3969 genes were observed in strain 15-4. When the strain was grown in petroleum-containing medium, 2192 genes were significantly regulated, of which 1312 (60%) were upregulated and 880 (40%) were downregulated. This strain degraded and adapted to petroleum via modulation of diverse molecular processes, including improvements in transporter activity, oxidoreductase/dehydrogenase activity, two-component system/signal transduction, transcriptional regulation, fatty acid catabolism, amino acid metabolism, and environmental stress responses. Many strain-specific genes were involved in the oxidation of hydrocarbon compounds, such as several luciferase family alkane monooxygenase genes, flavin-utilizing monooxygenase family genes, and flavoprotein-like family alkanesulfonate monooxygenase genes. Several cold shock protein genes were also induced suggesting adaptation to cold environments and the potential for petroleum degradation at low temperatures. The results obtained in this study may broaden our understanding of molecular adaptation of bacteria to hydrocarbon-containing environments and may provide valuable data for further study of L. fusiformis.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, PR China.
| | - Yi-Xuan Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, PR China
| | - Meng-Yuan Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 730070, PR China
| |
Collapse
|
29
|
Rhizosphere assisted biodegradation of benzo(a)pyrene by cadmium resistant plant-probiotic Serratia marcescens S2I7, and its genomic traits. Sci Rep 2020; 10:5279. [PMID: 32210346 PMCID: PMC7093395 DOI: 10.1038/s41598-020-62285-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/12/2020] [Indexed: 12/02/2022] Open
Abstract
Melia azedarach-rhizosphere mediated degradation of benzo(a)pyrene (BaP), in the presence of cadmium (Cd) was studied, using efficient rhizobacterial isolate. Serratia marcescens S2I7, isolated from the petroleum-contaminated site, was able to tolerate up to 3.25 mM Cd. In the presence of Cd, the isolate S2I7 exhibited an increase in the activity of stress-responsive enzyme, glutathione-S-transferase. Gas Chromatography-Mass spectroscopy analysis revealed up to 59% in -vitro degradation of BaP after 21 days, while in the presence of Cd, the degradation was decreased by 14%. The bacterial isolate showed excellent plant growth-promoting attributes and could enhance the growth of host plant in Cd contaminated soil. The 52,41,555 bp genome of isolate S. marcescens S2I7 was sequenced, assembled and annotated into 4694 genes. Among these, 89 genes were identified for the metabolism of aromatic compounds and 172 genes for metal resistance, including the efflux pump system. A 2 MB segment of the genome was identified to contain operons for protocatechuate degradation, catechol degradation, benzoate degradation, and an IclR type regulatory protein pcaR, reported to be involved in the regulation of protocatechuate degradation. A pot trial was performed to validate the ability of S2I7 for rhizodegradation of BaP when applied through Melia azedarach rhizosphere. The rhizodegradation of BaP was significantly higher when augmented with S2I7 (85%) than degradation in bulk soil (68%), but decreased in the presence of Cd (71%).
Collapse
|
30
|
Comparative Study on Different Remediation Strategies Applied in Petroleum-Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051606. [PMID: 32131529 PMCID: PMC7084466 DOI: 10.3390/ijerph17051606] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 01/23/2023]
Abstract
Due to the increasing pollution by petroleum hydrocarbons (PHs), it is an important task to develop eco-friendly and highly efficient methods for remediating petroleum-contaminated soils. In this study, bioremediation technology was applied to remediate PHs contaminated soils, and the bacterial community structure and physicochemical characteristics of the soil treated using different bioremediation regimens were analyzed. Compared with the control condition (S0), the PHs removal efficiency of biostimulation (S2) and bioaugmentation (S3) was increased significantly. Combined biostimulation with bioaugmentation (S4) had the highest PHs removal efficiency, up to 60.14 ± 4.12%. Among all the selected remediation strategies (S1-S4, S1: soil moisture content: 25-30%), the bacterial alpha-diversity was higher than in S0. The genera Acinetobacter, Escherichia-Shigella, Bacteroides, Microbacterium, and Parabacteroides were found to greatly contribute to PHs' degradation. In the group S4, the PH-degraders and soil enzyme activity were higher than in the other remediation regimens, and these indices gradually decreased in the mid-to-later periods of all remediation tests. Additionally, the abundance of alkB and nah genes was increased by improving the environmental condition of the microorganism communities. Redundancy analysis (RDA) revealed that the total nitrogen (TN) and total phosphorus (TP) had a positive correlation with total PHs degradation. This study offers insights into the microbial community response to environmental factors during bioremediation, which shows a promoting effect in enhancing the efficiency of PHs remediation.
Collapse
|
31
|
Ming J, Wang Q, Yoza BA, Liang J, Guo H, Li J, Guo S, Chen C. Bioreactor performance using biochar and its effect on aerobic granulation. BIORESOURCE TECHNOLOGY 2020; 300:122620. [PMID: 31911314 DOI: 10.1016/j.biortech.2019.122620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The effects that rice husk (biochar-rh), rice bran (biochar-rb) and walnut shell (biochar-ws) biochar had on aerobic granulation and reactor performance during the treatment of petroleum wastewater have been investigated. The different biochars reduced aerobic granulation time by 15 days compared with the control and also increased resistance to shock loading. The average COD and TN removal increased by 3.2%-5.1% and 10%-13%, respectively. Bacteria having functional metabolisms associated with the treatment of petroleum wastewaters were enriched in granular sludge that contained biochars. The reactor containing biochar-rb was the most stable and removed the most nutrients. The reactor containing biochar-rh had the largest initial granule size. This study provides insights into how the physicochemical properties of different biochars influence aerobic granular sludge systems.
Collapse
Affiliation(s)
- Jie Ming
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Brandon A Yoza
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Jiahao Liang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hongqiao Guo
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jin Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
32
|
Remediation of Crude Oil-Polluted Soil by the Bacterial Rhizosphere Community of Suaeda salsa Revealed by 16S rRNA Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051471. [PMID: 32106510 PMCID: PMC7084840 DOI: 10.3390/ijerph17051471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
Crude oil pollution of soil is a serious environmental issue, and bioremediation using plants and microorganisms is a natural and sustainable method for its restoration. Pot incubation of a two-factor randomized block (plants with two levels, and crude oil with three levels) was designed to investigate the rhizosphere bacterial community of Suaeda salsa (L.) Pall. Crude oil contamination of soil was studied at different levels: 2 g/kg (low), 4 g/kg (medium), and 6 g/kg (high) levels. In this study, the physicochemical properties of the collected rhizosphere soil were analyzed. Moreover, the soil bacteria were further identified using the 16S rRNA gene. The effects of S. salsa and crude oil and their interaction on the physiochemical properties of the soil and crude oil degradation were found to be significant. Crude oil significantly influenced the diversity and evenness of bacteria, while the effects of S. salsa and interaction with crude oil were not significant. Proteobacteria were found to be dominant at the phylum level. Meanwhile, at the genera level, Saccharibacteria and Alcanivorax increased significantly in the low and medium contamination treatment groups with S. salsa, whereas Saccharibacteria and Desulfuromonas were prevalent in the high contamination treatment group. High crude oil contamination led to a significant decrease in the bacterial diversity in soil, while the effects of S. salsa and its interaction were not significant. Despite the highest abundance of crude oil degradation bacteria, S. salsa reduced crude oil degradation bacteria and increased bacteria related to sulfur, phosphorus, and nitrogen cycling in the low and high contamination group, whereas the opposite effect was observed for the medium contamination treatment group. The abundance of most crude oil degradation bacteria is negatively correlated with crude oil content. Nitrogen cycling bacteria are sensitive to the total nitrogen, total phosphorus, ammonia nitrogen, and nitrate nitrogen, and pH of the soil. Sulfur cycling bacteria are sensitive to aromatic hydrocarbons, saturated hydrocarbons, and asphaltene in soil. This research is helpful for further studying the mechanism of synergistic degradation by S. salsa and bacteria.
Collapse
|
33
|
Mitter EK, de Freitas JR, Germida JJ. Hydrocarbon-degrading genes in root endophytic communities on oil sands reclamation covers. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:703-712. [PMID: 31905300 DOI: 10.1080/15226514.2019.1707480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In response to environmental regulations, the Canadian oil sands industry aims to reclaim all disturbed areas to equivalent land capability prior to mining operations. However, tailing sands used in reclamation contain residual hydrocarbons and plants growing in these areas may rely on hydrocarbon-degrading endophytic bacteria to survive. This study assessed the hydrocarbon-degrading potential (genes: CYP153, alkB and nah) of culturable and unculturable endophytic bacteria associated with annual barley (Hordeum vulgare) and sweet clover (Melilotus albus) plants in an oil sands reclamation area. Our results suggest higher CYP153 gene copy numbers in sweet clover when compared to barley. Yet, no significant differences were detected in 16S rRNA, alkB and nah genes. In addition, total hydrocarbons, pH, total soil carbon, organic carbon and total nitrogen play an important role in determining hydrocarbon-degrading potential in these communities. The assessment of culturable hydrocarbon-degrading bacteria revealed 42 isolates (total of 316) that were positive for at least one hydrocarbon-degrading gene. Most of these isolates were positive for alkB, and closely match the database for Pantoea, Pseudomonas and Enterobacter spp. Thus, to improve oil sands reclamation strategies, plant inoculation with select hydrocarbon-degrading endophytes could be used to increase plant tolerance and hydrocarbon degradation in these areas.
Collapse
Affiliation(s)
- Eduardo K Mitter
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | - James J Germida
- Department of Soil Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
34
|
Othoum G, Prigent S, Derouiche A, Shi L, Bokhari A, Alamoudi S, Bougouffa S, Gao X, Hoehndorf R, Arold ST, Gojobori T, Hirt H, Lafi FF, Nielsen J, Bajic VB, Mijakovic I, Essack M. Comparative genomics study reveals Red Sea Bacillus with characteristics associated with potential microbial cell factories (MCFs). Sci Rep 2019; 9:19254. [PMID: 31848398 PMCID: PMC6917714 DOI: 10.1038/s41598-019-55726-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in the use of microbial cells for scalable production of industrial enzymes encourage exploring new environments for efficient microbial cell factories (MCFs). Here, through a comparison study, ten newly sequenced Bacillus species, isolated from the Rabigh Harbor Lagoon on the Red Sea shoreline, were evaluated for their potential use as MCFs. Phylogenetic analysis of 40 representative genomes with phylogenetic relevance, including the ten Red Sea species, showed that the Red Sea species come from several colonization events and are not the result of a single colonization followed by speciation. Moreover, clustering reactions in reconstruct metabolic networks of these Bacillus species revealed that three metabolic clades do not fit the phylogenetic tree, a sign of convergent evolution of the metabolism of these species in response to special environmental adaptation. We further showed Red Sea strains Bacillus paralicheniformis (Bac48) and B. halosaccharovorans (Bac94) had twice as much secreted proteins than the model strain B. subtilis 168. Also, Bac94 was enriched with genes associated with the Tat and Sec protein secretion system and Bac48 has a hybrid PKS/NRPS cluster that is part of a horizontally transferred genomic region. These properties collectively hint towards the potential use of Red Sea Bacillus as efficient protein secreting microbial hosts, and that this characteristic of these strains may be a consequence of the unique ecological features of the isolation environment.
Collapse
Affiliation(s)
- G Othoum
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - S Prigent
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - A Derouiche
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - L Shi
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - A Bokhari
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - S Alamoudi
- Department of Biology, Science and Arts College, King Abdulaziz University, Rabigh, 21589, Kingdom of Saudi Arabia
| | - S Bougouffa
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - X Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - R Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - S T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - T Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - H Hirt
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - F F Lafi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,College of Natural and Health Sciences, Zayed University, 144534, Abu-Dhabi, United Arab Emirates
| | - J Nielsen
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.,Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden
| | - V B Bajic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - I Mijakovic
- Department of Biology and Biological Engineering, Division of Systems & Synthetic Biology, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| | - M Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
35
|
Krolicka A, Boccadoro C, Nilsen MM, Demir-Hilton E, Birch J, Preston C, Scholin C, Baussant T. Identification of microbial key-indicators of oil contamination at sea through tracking of oil biotransformation: An Arctic field and laboratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133715. [PMID: 31470316 DOI: 10.1016/j.scitotenv.2019.133715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a molecular analytical approach for detecting hydrocarbonoclastic bacteria in water is suggested as a proxy measurement for tracking petroleum discharges in industrialized or pristine aquatic environments. This approach is tested for general application in cold marine regions (freezing to 5 °C). We used amplicon sequencing and qPCR to quantify 16S rRNA and GyrB genes from oleophilic bacteria in seawater samples from two different crude oil enrichments. The first experiment was conducted in a controlled environment using laboratory conditions and natural North Sea fjord seawater (NSC) at a constant temperature of 5 °C. The second was performed in the field with natural Arctic seawater (ARC) and outdoor temperature conditions from -7 °C to around 4 °C. Although the experimental conditions for NSC and ARC differed, the temporal changes in bacterial communities were comparable and reflected oil biotransformation processes. The common bacterial OTUs for NSC and ARC had the highest identity to Colwellia rossensis and Oleispira antarctica rRNA sequences and were enriched within a few days in both conditions. Other typical oil degrading bacteria such as Alcanivorax (n-alkane degrader) and Cycloclasticus (polycyclic aromatic hydrocarbons degrader) were rapidly enriched only in NSC conditions. Both the strong correlation between Oleispira SSU gene copies and oil concentration, and the specificity of the Oleispira assay suggest that this organism is a robust bioindicator for seawater contaminated by petroleum in cold water environments. Further optimization for automation of the Oleispira assay for in situ analysis with a genosensing device is underway. The assay for Colwellia quantification requires more specificity to fewer Colwellia OTUs and a well-established dose-response relationship before those taxa are used for oil tracking purposes.
Collapse
Affiliation(s)
- Adriana Krolicka
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway.
| | - Catherine Boccadoro
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Mari Mæland Nilsen
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| | - Elif Demir-Hilton
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Jim Birch
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Christina Preston
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Chris Scholin
- Monterey Bay Aquarium Research Institute, Sandholdt Road, Moss Landing, CA, USA
| | - Thierry Baussant
- NORCE - Norwegian Research Centre - Environment, Mekjarvik 12, 4070 Randaberg, Norway
| |
Collapse
|
36
|
Othoum G, Bougouffa S, Bokhari A, Lafi FF, Gojobori T, Hirt H, Mijakovic I, Bajic VB, Essack M. Mining biosynthetic gene clusters in Virgibacillus genomes. BMC Genomics 2019; 20:696. [PMID: 31481022 PMCID: PMC6724285 DOI: 10.1186/s12864-019-6065-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
Background Biosynthetic gene clusters produce a wide range of metabolites with activities that are of interest to the pharmaceutical industry. Specific interest is shown towards those metabolites that exhibit antimicrobial activities against multidrug-resistant bacteria that have become a global health threat. Genera of the phylum Firmicutes are frequently identified as sources of such metabolites, but the biosynthetic potential of its Virgibacillus genus is not known. Here, we used comparative genomic analysis to determine whether Virgibacillus strains isolated from the Red Sea mangrove mud in Rabigh Harbor Lagoon, Saudi Arabia, may be an attractive source of such novel antimicrobial agents. Results A comparative genomics analysis based on Virgibacillus dokdonensis Bac330, Virgibacillus sp. Bac332 and Virgibacillus halodenitrificans Bac324 (isolated from the Red Sea) and six other previously reported Virgibacillus strains was performed. Orthology analysis was used to determine the core genomes as well as the accessory genome of the nine Virgibacillus strains. The analysis shows that the Red Sea strain Virgibacillus sp. Bac332 has the highest number of unique genes and genomic islands compared to other genomes included in this study. Focusing on biosynthetic gene clusters, we show how marine isolates, including those from the Red Sea, are more enriched with nonribosomal peptides compared to the other Virgibacillus species. We also found that most nonribosomal peptide synthases identified in the Virgibacillus strains are part of genomic regions that are potentially horizontally transferred. Conclusions The Red Sea Virgibacillus strains have a large number of biosynthetic genes in clusters that are not assigned to known products, indicating significant potential for the discovery of novel bioactive compounds. Also, having more modular synthetase units suggests that these strains are good candidates for experimental characterization of previously identified bioactive compounds as well. Future efforts will be directed towards establishing the properties of the potentially novel compounds encoded by the Red Sea specific trans-AT PKS/NRPS cluster and the type III PKS/NRPS cluster. Electronic supplementary material The online version of this article (10.1186/s12864-019-6065-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ghofran Othoum
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Salim Bougouffa
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ameerah Bokhari
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Feras F Lafi
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,College of Natural and Health Sciences, Zayed University, Abu-Dhabi, 144534, United Arab Emirates
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Heribert Hirt
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ivan Mijakovic
- Division of Systems & Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
37
|
Comparative Genome Characterization of a Petroleum-Degrading Bacillus subtilis Strain DM2. Int J Genomics 2019; 2019:7410823. [PMID: 31205931 PMCID: PMC6530121 DOI: 10.1155/2019/7410823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/19/2019] [Accepted: 03/24/2019] [Indexed: 12/12/2022] Open
Abstract
The complete genome sequence of Bacillus subtilis strain DM2 isolated from petroleum-contaminated soil on the Tibetan Plateau was determined. The genome of strain DM2 consists of a circular chromosome of 4,238,631 bp for 4458 protein-coding genes and a plasmid of 84,240 bp coding for 103 genes. Thirty-four genomic islands coding for 330 proteins and 5 prophages are found in the genome. The DDH value shows that strain DM2 belongs to B. subtilis subsp. subtilis subspecies, but significant variations of the genome are also present. Comparative analysis showed that the genome of strain DM2 encodes some strain-specific proteins in comparison with B. subtilis subsp. subtilis str. 168, such as carboxymuconolactone decarboxylase family protein, gfo/Idh/MocA family oxidoreductases, GlsB/YeaQ/YmgE family stress response membrane protein, HlyC/CorC family transporters, LLM class flavin-dependent oxidoreductase, and LPXTG cell wall anchor domain-containing protein. Most of the common strain-specific proteins in DM2 and MJ01 strains, or proteins unique to DM2 strain, are involved in the pathways related to stress response, signaling, and hydrocarbon degradation. Furthermore, the strain DM2 genome contains 122 genes coding for developed two-component systems and 138 genes coding for ABC transporter systems. The prominent features of the strain DM2 genome reflect the evolutionary fitness of this strain to harsh conditions and hydrocarbon utilization.
Collapse
|
38
|
Camacho-Montealegre CM, Rodrigues EM, Tótola MR. Microbial diversity and bioremediation of rhizospheric soils from Trindade Island - Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 236:358-364. [PMID: 30739041 DOI: 10.1016/j.jenvman.2019.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/17/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Pristine environments may harbor complex microbial communities with metabolic potential for use in bioremediation of organic pollutants. This study aimed to evaluate crude oil biodegradation by microbial communities present in rhizospheric soils of Bulbostylis nesiotis and Cyperus atlanticus on Trindade Island and the compositional structure of these communities. After 60 days under aerobic conditions, Total Petroleum Hydrocarbon biodegradation ranged from 66 to 75%, depending on the plant species and the origin of the soil samples. There was no response of petroleum biodegradation to fertilization with N:P:K (80:160:80 mg dm-3). Soil contamination with crude oil did not necessarily reduce microbial diversity. The richness and diversity increased in contaminated soils in some specific situations. We conclude that microbial communities from pristine soils have the ability to remove hydrocarbons through biodegradation and that Bulbostylis nesiotis and Cyperus atlanticus inhabiting Trindade Island harbor rhizospheric microbial communities with potential for application in rhizoremediation.
Collapse
Affiliation(s)
- Celia Marcela Camacho-Montealegre
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Edmo Montes Rodrigues
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Marcos Rogério Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
39
|
Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Arch Microbiol 2019; 201:699-704. [DOI: 10.1007/s00203-019-01637-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
|
40
|
Distribution of bacterial polycyclic aromatic hydrocarbon (PAH) ring-hydroxylating dioxygenases genes in oilfield soils and mangrove sediments explored by gene-targeted metagenomics. Appl Microbiol Biotechnol 2019; 103:2427-2440. [PMID: 30661109 DOI: 10.1007/s00253-018-09613-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
PAH ring-hydroxylating dioxygenases (PAH-RHDα) gene, a useful biomarker for PAH-degrading bacteria, has been widely used to examine PAH-degrading bacterial community in different contaminated sites. However, the distribution of PAH-RHDα genes in oilfield soils and mangrove sediments and their relationship with environmental factors still remain largely unclear. In this study, gene-targeted metagenomics was first used to investigate the diversity of PAH-degrading bacterial communities in oilfield soils and mangrove sediments. The results showed that higher diversity of PAH-degrading bacteria in the studied samples was revealed by gene-targeted metagenomics than traditional clone library analysis. Pseudomonas, Burkholderia, Ralstonia, Polymorphum gilvum, Mycobacterium, Sciscionella marina, Rhodococcus, and potential new degraders were prevailed in the oilfield area. For mangrove sediments, novel PAH degraders and Mycobacterium were predominated. The spatial distribution of PAH-RHDα gene was dependent on geographical location and regulated by local environmental variables. PAH content played a key role in shaping PAH-degrading bacterial communities in the studied samples, which would enrich PAH-degrading bacterial population and decrease PAH-degrading bacterial diversity. This work brings a more comprehensive and some new insights into the distribution and biodegradation potential of PAH-degrading bacteria in soil and sediments ecosystems.
Collapse
|
41
|
Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H. Petroleum Hydrocarbon-Degrading Bacteria for the Remediation of Oil Pollution Under Aerobic Conditions: A Perspective Analysis. Front Microbiol 2018; 9:2885. [PMID: 30559725 PMCID: PMC6287552 DOI: 10.3389/fmicb.2018.02885] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
With the sharp increase in population and modernization of society, environmental pollution resulting from petroleum hydrocarbons has increased, resulting in an urgent need for remediation. Petroleum hydrocarbon-degrading bacteria are ubiquitous in nature and can utilize these compounds as sources of carbon and energy. Bacteria displaying such capabilities are often exploited for the bioremediation of petroleum oil-contaminated environments. Recently, microbial remediation technology has developed rapidly and achieved major gains. However, this technology is not omnipotent. It is affected by many environmental factors that hinder its practical application, limiting the large-scale application of the technology. This paper provides an overview of the recent literature referring to the usage of bacteria as biodegraders, discusses barriers regarding the implementation of this microbial technology, and provides suggestions for further developments.
Collapse
Affiliation(s)
- Xingjian Xu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Wenming Liu
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Shuhua Tian
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Wei Wang
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Qige Qi
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Pan Jiang
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Xinmei Gao
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Fengjiao Li
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Haiyan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Hongwen Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
42
|
Chikere CB, Fenibo EO. Distribution of PAH-ring hydroxylating dioxygenase genes in bacteria isolated from two illegal oil refining sites in the Niger Delta, Nigeria. SCIENTIFIC AFRICAN 2018. [DOI: 10.1016/j.sciaf.2018.e00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
43
|
Storey S, Ashaari MM, Clipson N, Doyle E, de Menezes AB. Opportunistic Bacteria Dominate the Soil Microbiome Response to Phenanthrene in a Microcosm-Based Study. Front Microbiol 2018; 9:2815. [PMID: 30519226 PMCID: PMC6258822 DOI: 10.3389/fmicb.2018.02815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 11/02/2018] [Indexed: 11/17/2022] Open
Abstract
Bioremediation offers a sustainable approach for removal of polycyclic aromatic hydrocarbons (PAHs) from the environment; however, information regarding the microbial communities involved remains limited. In this study, microbial community dynamics and the abundance of the key gene (PAH-RHDα) encoding a ring hydroxylating dioxygenase involved in PAH degradation were examined during degradation of phenanthrene in a podzolic soil from the site of a former timber treatment facility. The 10,000-fold greater abundance of this gene associated with Gram-positive bacteria found in phenanthrene-amended soil compared to unamended soil indicated the likely role of Gram-positive bacteria in PAH degradation. In contrast, the abundance of the Gram-negative PAHs-RHDα gene was very low throughout the experiment. While phenanthrene induced increases in the abundance of a small number of OTUs from the Actinomycetales and Sphingomonadale, most of the remainder of the community remained stable. A single unclassified OTU from the Micrococcaceae family increased ~20-fold in relative abundance, reaching 32% of the total sequences in amended microcosms on day 7 of the experiment. The relative abundance of this same OTU increased 4.5-fold in unamended soils, and a similar pattern was observed for the second most abundant PAH-responsive OTU, classified into the Sphingomonas genus. Furthermore, the relative abundance of both of these OTUs decreased substantially between days 7 and 17 in the phenanthrene-amended and control microcosms. This suggests that their opportunistic phenotype, in addition to likely PAH-degrading ability, was determinant in the vigorous growth of dominant PAH-responsive OTUs following phenanthrene amendment. This study provides new information on the temporal response of soil microbial communities to the presence and degradation of a significant environmental pollutant, and as such has the potential to inform the design of PAH bioremediation protocols.
Collapse
Affiliation(s)
- Sean Storey
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.,Earth Institute, University College Dublin, Dublin, Ireland
| | - Mardiana Mohd Ashaari
- Department of Biotechnology, Kulliyah of Science, International Islamic University Malaysia, Malaysia, Malaysia
| | - Nicholas Clipson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.,Earth Institute, University College Dublin, Dublin, Ireland
| | - Evelyn Doyle
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.,Earth Institute, University College Dublin, Dublin, Ireland
| | - Alexandre B de Menezes
- Microbiology, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
44
|
Izmalkova TY, Gafarov AB, Sazonova OI, Sokolov SL, Kosheleva IA, Boronin AM. Diversity of Oil-Degrading Microorganisms in the Gulf of Finland (Baltic Sea) in Spring and in Summer. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Omrani R, Spini G, Puglisi E, Saidane D. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation. Biodegradation 2018; 29:187-209. [DOI: 10.1007/s10532-018-9823-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/23/2018] [Indexed: 02/06/2023]
|
46
|
Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium. World J Microbiol Biotechnol 2018; 34:34. [DOI: 10.1007/s11274-018-2417-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
47
|
Chen J, Wang PF, Wang C, Liu JJ, Gao H, Wang X. Spatial distribution and diversity of organohalide-respiring bacteria and their relationships with polybrominated diphenyl ether concentration in Taihu Lake sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:200-211. [PMID: 28943350 DOI: 10.1016/j.envpol.2017.08.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/31/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
It is acknowledged that organohalide-respiring bacteria (OHRB) can degrade polybrominated diphenyl ethers (PBDEs); however, very little is known about the distribution of OHRB or their response to PBDE contamination in natural sediments. We collected sediments from 28 sampling sites in Taihu Lake, China, and investigated the spatial distribution and diversity of OHRB, and the relationships between the PBDE contamination levels and the PBDE removal potential. The abundances of five typical OHRB genera, namely Dehalobacter, Dehalococcoides, Dehalogenimonas, Desulfitobacterium, and Geobacter, ranged from 0.34 × 104 to 19.4 × 107 gene copies g-1 dry sediment, and varied significantly among different areas of Taihu Lake. OHRB were more abundant in sediments from Meiliang and Zhushan Bay, where the PBDE concentrations were higher, and the phylotype diversity of the OHRB belonging to the family Dehalococcoidaceae was lower, than reported for other areas. While the sulfate concentrations explained much of the spatial distribution of OHRB, PBDE concentrations were also a strong influence on the abundance and diversity of OHRB in the sediments. For Dehalococcoides, Dehalogenimonas and Geobacter, the abundance of each genus was positively related to its own potential to remove PBDEs. The dominant OHRB genus, Dehalogenimonas, may contribute most to in situ bioremediation of PBDEs in Taihu Lake.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; The State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Pei-Fang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jia-Jia Liu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
48
|
Okere UV, Schuster JK, Ogbonnaya UO, Jones KC, Semple KT. Indigenous 14C-phenanthrene biodegradation in "pristine" woodland and grassland soils from Norway and the United Kingdom. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1437-1444. [PMID: 29083422 DOI: 10.1039/c7em00242d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, the indigenous microbial mineralisation of 14C-phenanthrene in seven background soils (four from Norwegian woodland and three from the UK (two grasslands and one woodland)) was investigated. ∑PAHs ranged from 16.39 to 285.54 ng g-1 dw soil. Lag phases (time before 14C-phenanthrene mineralisation reached 5%) were longer in all of the Norwegian soils and correlated positively with TOC, but negatively with ∑PAHs and phenanthrene degraders for all soils. 14C-phenanthrene mineralisation in the soils varied due to physicochemical properties. The results show that indigenous microorganisms can adapt to 14C-phenanthrene mineralisation following diffuse PAH contamination. Considering the potential of soil as a secondary PAH source, these findings highlight the important role of indigenous microflora in the processing of PAHs in the environment.
Collapse
|
49
|
Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Sci Rep 2017; 7:14856. [PMID: 29093536 PMCID: PMC5665864 DOI: 10.1038/s41598-017-14032-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/05/2017] [Indexed: 11/13/2022] Open
Abstract
A microcosm experiment was conducted for 112 d by spiking petroleum hydrocarbons into soils from four regions of China. Molecular analyses of soils from microcosms revealed changes in taxonomic diversity and oil catabolic genes of microbial communities. Degradation of total petroleum hydrocarbons (TPHs) in Sand from the Bohai Sea (SS) and Northeast China (NE) exhibited greater microbial mineralization than those of the Dagang Oilfield (DG) and Xiamen (XM). High-throughput sequencing and denaturing gradient gel electrophoresis (DGGE) profiles demonstrated an obvious reconstruction of the bacterial community in all soils. The dominant phylum of the XM with clay soil texture was Firmicutes instead of Proteobacteria in others (DG, SS, and NE) with silty or sandy soil texture. Abundances of alkane monooxygenase gene AlkB increased by 10- to 1000-fold, relative to initial values, and were positively correlated with rates of degradation of TPHs and n-alkanes C13-C30. Abundances of naphthalene dioxygenase gene Nah were positively correlated with degradation of naphthalene and total tricyclic PAHs. Redundancy analysis (RDA) showed that abiotic process derived from geographical heterogeneity was the primary effect on bioremediation of soils contaminated with oil. The optimization of abiotic and biotic factors should be the focus of future bioremediation of oil contaminated soil.
Collapse
|
50
|
Zeng J, Zhu Q, Wu Y, Chen H, Lin X. Characterization of a polycyclic aromatic ring-hydroxylation dioxygenase from Mycobacterium sp. NJS-P. CHEMOSPHERE 2017; 185:67-74. [PMID: 28686888 DOI: 10.1016/j.chemosphere.2017.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/01/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Ring-hydroxylating dioxygenases (RHDs) play a critical role in the biodegradation of polycyclic aromatic hydrocarbons (PAHs). In this study, genes pdoAB encoding a dioxygenase capable of oxidizing various PAHs with up to five-ring benzo[a]pyrene were cloned from Mycobacterium sp. NJS-P. The α-subunit of the PdoAB showed 99% and 93% identity to that from Mycobacterium sp. S65 and Mycobacterium sp. py136, respectively. An Escherichia coli expression experiment revealed that the enzyme is able to oxidize anthracene, phenanthrene, pyrene and benzo[a]pyrene, but not to fluoranthene and benzo[a]anthracene. Furthermore, the results of in silico analysis showed that PdoAB has a large substrate-binding pocket satisfying for accommodation of HMW PAHs, and suggested that the binding energy of intermolecular interaction may predict the substrate conversion of RHDs towards HMW PAHs, especially those may have steric constraints on the substrate-binding pocket, such as benzo[a]pyrene and benzo[a]anthracene.
Collapse
Affiliation(s)
- Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qinghe Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Hong Chen
- Soil and Environment Analysis Center, Institute of Soil Science, Chinese Academy of Science, PR China
| | - Xiangui Lin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|