1
|
Zhao S, Liu Y, Xu L, Ye J, Zhang X, Xu X, Meng H, Xie W, He H, Wang G, Zhang L. nosZ II/nosZ I ratio regulates the N 2O reduction rates in the eutrophic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175852. [PMID: 39214369 DOI: 10.1016/j.scitotenv.2024.175852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Nitrous oxide (N2O) is a more potent greenhouse gas with an atmospheric lifetime of 121 years, contributing significantly to climate change and stratospheric ozone depletion. Lakes are hotspots for N2O release due to the imbalance between N2O sources and sinks. N2O-reducing bacteria are the only biological means to mitigate N2O emission, yet their roles in lakes are not well studied. This study investigated the potential for N2O reduction, keystones of typical and atypical N2O-reducing bacterial communities, and their correlations with environmental factors in the sediments of Lake Taihu through microcosm experiments, high-throughput sequencing of the nosZ gene, and statistical modeling. The results showed that potential N2O reduction rates in sediments ranged from 13.71 to 76.95 μg N2O g-1 d-1, with lower rates in December compared to March and July. Correlation analysis indicated that the nosZ II/nosZ I ratio and the trophic lake index (TLI) were the primary factors influencing N2O reduction rates and N2O-reducing bacterial community structures. The genera Pseudogulbenkiania and Ardenticatena were identified as the most abundant typical and atypical N2O-reducing bacteria, respectively, and were also recognized as the keystone taxa. Quantitative real-time PCR (qPCR) results revealed that nosZ II was more abundant than nosZ I in the sediments. Partial least squares path modeling (PLS-PM) further demonstrated that atypical N2O-reducing bacteria had significant positive effects on N2O reduction process in the sediments (p < 0.05). Overall, this study highlights the crucial ecological roles of atypical N2O-reducing bacteria in the sediments of the eutrophic lake of Taihu, underscoring their potential in mitigating N2O emissions.
Collapse
Affiliation(s)
- Sichuan Zhao
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Yihong Liu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Lu Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinliu Ye
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaofeng Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Han Meng
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China; School of Environment, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China.
| | - Wenming Xie
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| |
Collapse
|
2
|
Bao HX, Li ZY, Chen C, Li M, Zhang XN, Song K, Sun YL, Wang AJ. Unraveling the impact of perfluorooctanoic acid on sulfur-based autotrophic denitrification process. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135617. [PMID: 39213772 DOI: 10.1016/j.jhazmat.2024.135617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
PFOA has garnered heightened scrutiny for its impact on denitrification, especially given its frequent detection in secondary effluent discharged from wastewater treatment plants. However, it is still unclear what potential risk PFOA release poses to a typical advanced treatment process, especially the sulfur-based autotrophic denitrification (SAD) process. In this study, different PFOA concentration were tested to explore their impact on denitrification kinetics and microbial dynamic responses of the SAD process. The results showed that an increase PFOA concentration from 0 to 1000 μg/L resulted in a decrease in nitrate removal rate from 9.52 to 7.73 mg-N/L·h. At the same time, it increased nitrite accumulation and N2O emission by 6.11 and 2.03 times, respectively. The inhibitory effect of PFOA on nitrate and nitrite reductase activity in the SAD process was linked to the observed fluctuations in nitrate and nitrite levels. It is noteworthy that nitrite reductase was more vulnerable to the influence of PFOA than nitrate reductase. Furthermore, PFOA showed a significant impact on gene expression and microbial community. Metabolic function prediction revealed a notable decrease in nitrogen metabolism and an increase in sulfur metabolism under PFOA exposure. This study highlights that PFOA has a considerable inhibitory effect on SAD performance.
Collapse
Affiliation(s)
- Hong-Xu Bao
- College of the Environment, Liaoning University, Shenyang 110036, China
| | - Zhou-Yang Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- College of the Environment, Liaoning University, Shenyang 110036, China
| | - Min Li
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Pan X, Lin L, Cao X, Jing Z, Dong L, Zhai W. Response of microbial communities and biogeochemical cycling functions to sediment physicochemical properties and microplastic pollution under damming and water diversion projects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173209. [PMID: 38754501 DOI: 10.1016/j.scitotenv.2024.173209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Understanding the interactions among flow-sediment, microorganisms, and biogeochemical cycles is crucial for comprehending the ecological response mechanisms of dams and water diversion. This study focused on the spatial patterns of carbon, nitrogen, phosphorus, and sulfur (CNPS) cycle functional genes in the water resource for the middle route of the South-to-North Water Diversion Project in China, specifically the Danjiangkou Reservoir (comprising the Han and Dan reservoirs). The investigation incorporated sediment physicochemical properties and microplastic pollution. Numerous microbial species were identified, revealing that microbial communities demonstrated sensitivity to changes in sedimentary mud content. The communities exhibited greater β diversity due to finer sediment particles in the Han Reservoir (HR), whereas in the Dan Reservoir (DR), despite having higher sediment nutrient content and MPs pollution, did not display this pattern. Regarding the composition and structure of microbial communities, the study highlighted that sediment N and P content had a more significant influence compared to particle size and MPs. The quantitative microbial element cycling (QMEC) results confirmed the presence of extensive chemolithotrophic microbes and strong nitrogen cycle activity stemming from long-term water storage and diversion operations. The denitrification intensity in the HR surpassed that of the DR. Notably, near the pre-dam area, biological nitrogen fixation, phosphorus removal, and sulfur reduction exhibited noticeable increases. Dam construction refined sediment, fostering the growth of different biogeochemical cycling bacteria and increasing the abundance of CNPS cycling genes. Furthermore, the presence of MPs exhibited a positive correlation with S cycling genes and a negative correlation with C and N cycling genes. These findings suggest that variations in flow-sediment dynamics and MPs pollution have significant impact the biogeochemical cycle of the reservoir.
Collapse
Affiliation(s)
- Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China.
| | - Xiaohuan Cao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| | - Zheng Jing
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Wenliang Zhai
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| |
Collapse
|
4
|
Yang Y, Liu H, Wang H, Li C, Lv J. Strategies of soil microbial N-cycling in different cadmium contaminated soil with wheat straw return. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116406. [PMID: 38728941 DOI: 10.1016/j.ecoenv.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Cadmium contamination inevitably affects the microbially mediated transformation of nitrogen in soils with wheat straw return. The responses of nitrogen functional microorganisms to cadmium in acidic and alkaline soils under wheat straw returned are still unclear. In this study, quantitative polymerase chain reaction (qPCR) and sequencing of nitrifying and denitrifying bacteria were performed to investigate the effects of wheat straw application on nitrogen conversion in different Cd-contaminated soils during an incubation experiment. Results showed that the presence of Cd decreased the abundance of hao gene catalyzing nitrification and norB gene catalyzing denitrification process, resulting the accumulation of NH4+-N and reduction of NO3--N in the acidic soils. Additionally, Cd-contamination stimulates the nitrification catalyzed by bacterial amoA gene and thus reduced the NH4+-N content in the alkaline soils. Meanwhile, Cd dominated the decrease of NO3--N content by promoting denitrification process catalyzed by nirS gene. Among all nitrifying and denitrifying microorganisms, Nitrosospira are tolerant to Cd stress under alkaline condition but sensitive to acidic condition, which dominantly harbored hao gene in the acidic soils and bacterial amoA gene in the alkaline soils. This study aimed to provide reasonable information for the rational adoption of wheat straw returning strategies to realize nitrogen regulation in Cd-contaminated farmland soil.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of soil and water conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Hexiang Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of soil and water conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hui Wang
- Xianyang Soil and Fertilizer Workstation, Xianyang, Shaanxi 712000, PR China
| | - Chengjuan Li
- Xianyang Soil and Fertilizer Workstation, Xianyang, Shaanxi 712000, PR China
| | - Jialong Lv
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of soil and water conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
5
|
Zhang D, Liu F, Al MA, Yang Y, Yu H, Li M, Wu K, Niu M, Wang C, He Z, Yan Q. Nitrogen and sulfur cycling and their coupling mechanisms in eutrophic lake sediment microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172518. [PMID: 38631637 DOI: 10.1016/j.scitotenv.2024.172518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Microorganisms play important roles in the biogeochemical cycles of lake sediment. However, the integrated metabolic mechanisms governing nitrogen (N) and sulfur (S) cycling in eutrophic lakes remain poorly understood. Here, metagenomic analysis of field and bioreactor enriched sediment samples from a typical eutrophic lake were applied to elucidate the metabolic coupling of N and S cycling. Our results showed significant diverse genes involved in the pathways of dissimilatory sulfur metabolism, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). The N and S associated functional genes and microbial groups generally showed significant correlation with the concentrations of NH4+, NO2- and SO42, while with relatively low effects from other environmental factors. The gene-based co-occurrence network indicated clear cooperative interactions between N and S cycling in the sediment. Additionally, our analysis identified key metabolic processes, including the coupled dissimilatory sulfur oxidation (DSO) and DNRA as well as the association of thiosulfate oxidation complex (SOX systems) with denitrification pathway. However, the enriched N removal microorganisms in the bioreactor ecosystem demonstrated an additional electron donor, incorporating both the SOX systems and DSO processes. Metagenome-assembled genomes-based ecological model indicated that carbohydrate metabolism is the key linking factor for the coupling of N and S cycling. Our findings uncover the coupling mechanisms of microbial N and S metabolism, involving both inorganic and organic respiration pathways in lake sediment. This study will enhance our understanding of coupled biogeochemical cycles in lake ecosystems.
Collapse
Affiliation(s)
- Dandan Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mamun Abdullah Al
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuchun Yang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Yu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; School of Resources Environment and Safety Engineering, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Kun Wu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyang Niu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Johnson FE, Lerch RN, Motavalli PP, Veum KS, Scharf PC. Comparative analysis of three next-generation sequencing techniques to measure nosZ gene abundance in Missouri claypan soils. ENVIRONMENTAL RESEARCH 2024; 249:118346. [PMID: 38311204 DOI: 10.1016/j.envres.2024.118346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Quantitative next-generation sequencing techniques have been critical in gaining a better understanding of microbial ecosystems. In soils, denitrifying microorganisms are responsible for dinitrogen (N2) production. The nosZ gene codes for nitrous oxide reductase, the enzyme facilitating the reduction of nitrous oxide (N2O) to N2. The objectives of this research were to: 1) understand how soil depth influences RNA concentration and nosZ gene abundance; 2) assess the spatial dependence of nosZ gene abundance in two claypan soil fields; and 3) compare and evaluate multiple RNA-based sequencing methods for quantifying nosZ gene abundance in soils in relation to dinitrogen (N2) production. Research sites consisted of two intensively studied claypan soil fields in Central Missouri, USA. Soil cores were collected from two landscape transects across both fields and analyzed for extractable soil RNA at two depths (0-15 cm and 15-30 cm). Measurements of nosZ gene abundance were obtained using real-time quantitative polymerase chain reaction (RT-qPCR), droplet digital polymerase chain reaction (ddPCR), and nanostring sequencing (NS). In both fields, soil RNA concentrations were significantly greater at 0-15 cm depth compared to 15-30 cm. These data indicated low overall soil microbial activity below 15 cm. Due to low quantities of extractable soil RNA in the subsoil, nosZ gene abundance was only determined in the 0-15 cm depth. Sequencing method comparisons of average nosZ gene abundance showed that NS results were constrained to a narrow range and were 10-20-fold lower than ddPCR and RT-qPCR at each landscape position within each field. Droplet digital PCR appears to be the most promising method, as it reflected changes in N2 production across landscape position.
Collapse
Affiliation(s)
- Frank E Johnson
- School of Natural Resources, University of Missouri, Columbia, MO, USA; Now at Water Quality and Ecology Research Unit, USDA-ARS, Oxford, MS, USA.
| | - Robert N Lerch
- Cropping Systems and Water Quality Research Unit, USDA-ARS, Columbia, MO, USA
| | - Peter P Motavalli
- School of Natural Resources, University of Missouri, Columbia, MO, USA
| | - Kristen S Veum
- Cropping Systems and Water Quality Research Unit, USDA-ARS, Columbia, MO, USA
| | - Peter C Scharf
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Geng X, Yang H, Gao W, Yue J, Mu D, Wei Z. Greenhouse gas emission characteristics during kitchen waste composting with biochar and zeolite addition. BIORESOURCE TECHNOLOGY 2024; 399:130575. [PMID: 38479629 DOI: 10.1016/j.biortech.2024.130575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Aerobic kitchen waste composting can contribute to greenhouse gas (GHGs) emissions and global warming. This study investigated the effects of biochar and zeolite on GHGs emissions during composting. The findings demonstrated that biochar could reduce N2O and CH4 cumulative releases by 47.7 %and 47.9 %, respectively, and zeolite could reduce the cumulative release of CO2 by 28.4 %. Meanwhile, the biochar and zeolite addition could reduce the abundance of potential core microorganisms associated with GHGs emissions. In addition, biochar and zeolite reduced N2O emissions by regulating the abundance of nitrogen conversion functional genes. Biochar and zeolite were shown to reduce the impact of bacterial communities on GHGs emissions. In summary, this study revealed that biochar and zeolite can effectively reduce GHG emissions during composting by altering the compost microenvironment and regulating microbial community structure. Such findings are valuable for facilitating high-quality resource recovery of organic solid waste.
Collapse
Affiliation(s)
- Xinyu Geng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jieyu Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
8
|
Chen Z, Zhang S, Li Y, Wang Y. Characteristics of denitrification activity, functional genes, and denitrifying community composition in the composting process of kitchen and garden waste. BIORESOURCE TECHNOLOGY 2023; 381:129137. [PMID: 37164228 DOI: 10.1016/j.biortech.2023.129137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
N2O can be easily produced during the co-composting of kitchen waste (KW) and garden waste (GW). This study investigated the effects of the co-composting of KW and GW at different ratios (1:2, 1:1.5, 1:1, and 1.5:1) on the denitrifying activities, functional genes, and community composition of denitrifiers. The results showed that the denitrification activity of KW and GW at a 1:2 ratio was the lowest. The gene abundances of nirS, nirK, nosZI, and nosZII were high on days 12 and 28 under the four different ratios. Network analysis demonstrated that nosZ-type denitrifiers could construct a complex and reciprocal bacterial network to promote the reduction of N2O to N2. Mantel test results revealed that nirS-, nirK-, nosZI-, and nosZII-type denitrifiers were significantly positively correlated with pH, C/N, and moisture content. These findings demonstrated that composting with appropriate proportions of KW and GW could reduce N2O emissions caused by denitrification.
Collapse
Affiliation(s)
- Zhou Chen
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, People's Republic of China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shenghua Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, People's Republic of China.
| | - Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuantao Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Zhou J, Kong Y, Wu M, Shu F, Wang H, Ma S, Li Y, Jeppesen E. Effects of Nitrogen Input on Community Structure of the Denitrifying Bacteria with Nitrous Oxide Reductase Gene (nosZ I): a Long-Term Pond Experiment. MICROBIAL ECOLOGY 2023; 85:454-464. [PMID: 35118509 DOI: 10.1007/s00248-022-01971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 05/17/2023]
Abstract
Excessive nitrogen (N) input is an important factor influencing aquatic ecosystems and has received increasing public attention in the past decades. It remains unclear how N input affects the denitrifying bacterial communities that play a key role in regulating N cycles in various ecosystems. To test our hypothesis-that the abundance and biodiversity of denitrifying bacterial communities decrease with increasing N-we compared the abundance and composition of denitrifying bacteria having nitrous oxide reductase gene (nosZ I) from sediments (0-20 cm) in five experimental ponds with different nitrogen fertilization treatment (TN10, TN20, TN30, TN40, TN50) using quantitative PCR and pyrosequencing techniques. We found that (1) N addition significantly decreased nosZ I gene abundance, (2) the Invsimpson and Shannon indices (reflecting biodiversity) first increased significantly along with the increasing N loading in TN10-TN40 followed by a decrease in TN50, (3) the beta diversity of the nosZ I denitrifier was clustered into three groups along the TN concentration levels: Cluster I (TN50), Cluster II (TN40), and Cluster III (TN10-TN30), (4) the proportions of Alphaproteobacteria and Betaproteobacteria in the high-N treatment (TN50) were significantly lower than in the lower N treatments (TN10-TN30). (5) The TN concentration was the most important factor driving the alteration of denitrifying bacteria assemblages. Our findings shed new light on the response of denitrification-related bacteria to long-term N loading at pond scale and on the response of denitrifying microorganisms to N pollution.
Collapse
Affiliation(s)
- Jing Zhou
- School of Life Sciences, Qufu Normal University, Jining, China
| | - Yong Kong
- School of Life Sciences, Qufu Normal University, Jining, China
| | - Mengmeng Wu
- Shandong Freshwater Fisheries Research Institute, Jinan, 250013, China
| | - Fengyue Shu
- School of Life Sciences, Qufu Normal University, Jining, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Shuonan Ma
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Yan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Silkeborg, Denmark
- Sino-Danish Centre for Education and Research, Beijing, China
- Limnology Laboratory, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara, Turkey
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| |
Collapse
|
10
|
Read-Daily B, Ben Maamar S, Sabba F, Green S, Nerenberg R. Effect of nitrous oxide (N 2O) on the structure and function of nitrogen-oxide reducing microbial communities. CHEMOSPHERE 2022; 307:135819. [PMID: 35977570 DOI: 10.1016/j.chemosphere.2022.135819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas that can be produced by nitrifying and denitrifying bacteria. Yet the effects of N2O on microbial communities is not well understood. We used batch tests to explore the effects of N2O on mixed denitrifying communities. Batch tests were carried out with acetate as the electron donor and with the following electron acceptors: nitrate (NO3-), nitrite (NO2-), N2O, NO3- + N2O, and NO2- + N2O. Activated sludge from a municipal wastewater treatment plant was used as the inoculum. The bacteria grew readily with N2O as the sole acceptor. When N2O was provided along with NO3- or NO2-, it was used concurrently and resulted in higher growth rates than the same acceptors without added N2O. The microbial communities resulting from N2O addition were significantly different at the genus level from those with just NO3- or NO2-. Tests with N2O as the sole added acceptor revealed a reduced diversity. Analysis of inferred gene content using PICRUSt2 indicated a greater abundance of genera with a complete denitrification pathway when growing on N2O or NO2-, relative to all other tests. This suggests that specific N2O reduction rates are high, and that N2O alone selects for a low-diversity, fully denitrifying community. When N2O is present with NO2- or NO3-, the microbial communities were more diverse and did not select exclusively for full denitrifiers. N2O alone appears to select for a "generalist" community with full denitrification pathways and lower diversity. In terms of denitrification genes, the combination of acceptors with N2O appeared to increase the number of microbes carrying nirK, while fully denitrifying bacteria appear more likely to carry nirS. Lastly, all the taxa in NO2- and N2O samples were predicted to harbor nosZ. This suggests the potential for reduced N2O emissions in denitrifying systems.
Collapse
Affiliation(s)
- B Read-Daily
- Department of Engineering and Physics, Elizabethtown College, Elizabethtown, PA, 17022, USA; Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - S Ben Maamar
- Samuel J. Wood Library, Weill Cornell Medicine, New York, NY, 10065, USA
| | - F Sabba
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA; Black & Veatch, KS, USA
| | - S Green
- Rush Medical College, Chicago, IL, 60612, USA
| | - R Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
11
|
Fudjoe SK, Li L, Jiang Y, Alhassan ARM, Xie J, Anwar S, Wang L, Xie L. Impact of soil amendments on nitrous oxide emissions and the associated denitrifying communities in a semi-arid environment. Front Microbiol 2022; 13:905157. [PMID: 36060775 PMCID: PMC9428159 DOI: 10.3389/fmicb.2022.905157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Denitrifying bacteria produce and utilize nitrous oxide (N2O), a potent greenhouse gas. However, there is little information on how organic fertilization treatments affect the denitrifying communities and N2O emissions in the semi-arid Loess Plateau. Here, we evaluated how the denitrifying communities are responsible for potential denitrification activity (PDA) and N2O emissions. A field experiment was conducted with five fertilization treatments, including no fertilization (CK), mineral fertilizer (MF), mineral fertilizer plus commercial organic fertilizer (MOF), commercial organic fertilizer (OFP), and maize straw (MSP). Our result showed that soil pH, soil organic carbon (SOC), and dissolved organic nitrogen (DON) were significantly increased under MSP treatment compared to MF treatment, while nitrate nitrogen (NO3−−N) followed the opposite trend. Organic fertilization treatments (MOF, OFP, and MSP treatments) significantly increased the abundance and diversity of nirS- and nosZ-harboring denitrifiers, and modified the community structure compared to CK treatment. The identified potential keystone taxa within the denitrifying bacterial networks belonged to the distinct genera. Denitrification potentials were significantly positively correlated with the abundance of nirS-harboring denitrifiers, rather than that of nirK- and nosZ-harboring denitrifiers. Random forest modeling and structural equation modeling consistently determined that the abundance, community composition, and network module I of nirS-harboring denitrifiers may contribute significantly to PDA and N2O emissions. Collectively, our findings highlight the ecological importance of the denitrifying communities in mediating denitrification potentials and the stimulatory impact of organic fertilization treatments on nitrogen dynamics in the semi-arid Loess Plateau.
Collapse
Affiliation(s)
- Setor Kwami Fudjoe
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lingling Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Lingling Li,
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Yuji Jiang,
| | - Abdul-Rauf Malimanga Alhassan
- Department of Water Resources and Sustainable Development, The University of Environment and Sustainable Development, Somanya, Ghana
| | - Junhong Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Sumera Anwar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Linlin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lihua Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Wang N, Awasthi MK, Pan J, Jiang S, Wan F, Lin X, Yan B, Zhang J, Zhang L, Huang H, Li H. Effects of biochar and biogas residue amendments on N 2O emission, enzyme activities and functional genes related with nitrification and denitrification during rice straw composting. BIORESOURCE TECHNOLOGY 2022; 357:127359. [PMID: 35618192 DOI: 10.1016/j.biortech.2022.127359] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
This study was carried out to determine the response characteristics of N2O emission, enzyme activities, and functional gene abundances involved in nitrification/denitirification process with biochar and biogas residue amendments during rice straw composting. The results revealed that N2O release mainly occurred during the second fermentation phase. Biogas residue amendment promoted N2O emission, while biochar addition decreased its emission by 33.6%. The nirK gene was abundant through composting process. Biogas residues increased the abundance of denitrification genes, resulting in further release of N2O. Biochar enhanced nosZ gene abundance and accelerated the reduction of N2O. Nitrate reductase (NR), nitrite reductase (NiR), N2O reductase (N2OR), and ammonia monooxygenase (AMO) activities were greatly stimulated by biochar or biogas residue rather than their combined addition. Pearson regression analysis indicated that N2O emission negatively correlated with ammonium and positively correlated with nosZ, nirK, 18S rDNA, total nitrogen, and nitrate (P < 0.05).
Collapse
Affiliation(s)
- Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xu Lin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| |
Collapse
|
13
|
Cao C, Huang J, Yan CN. Unveiling changes of microbial community involved in N and P removal in constructed wetlands with exposing to silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128642. [PMID: 35286932 DOI: 10.1016/j.jhazmat.2022.128642] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands (CWs) are environmentally friendly engineered systems to purify wastewater, with low-cost and easy maintenance. However, it is not clear on responses of functional microbes for nitrogen (N) and phosphorus (P) biotransformation in CWs to silver nanoparticles (Ag NPs). The high throughput sequencings were employed to reveal microbial communities in vertical flow subsurface CWs with stable operation for 120 days. The results indicated that NH4+-N, TN and TP removal of soil layer decreased by 43.56%, 15.7% and 22.7% under stress of Ag NPs. Microbial richness index and compositions were affected, and control wetland enriched Sulfurospirillum, Desulfarculaceae and Flavobacterium whereas CWs exposed to Ag NPs enriched Desulfosporosinus and Desulfurispora from LEfSe analysis. Moreover, after dosing Ag NPs, relative abundances of functional genes amoA and hao for nitrification, nirK and norB for denitrification and ppx and phoA/phoD for phosphorus conversions in upper soil were significantly downregulated. Inhibition on functional bacteria and genes of Ag NPs explained poor removal efficiencies of nitrogen and phosphorus pollutants in CWs. Our findings give an insight into ecological toxicity of Ag NPs on CWs with N and P bioconversions and provide the understanding of response of nitrifiers, denitrifies and PAOs.
Collapse
Affiliation(s)
- Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chun-Ni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
Xiong J, Su Y, He X, Han L, Guo J, Qiao W, Huang G. Effects of functional-membrane covering technique on nitrogen succession during aerobic composting: Metabolic pathways, functional enzymes, and functional genes. BIORESOURCE TECHNOLOGY 2022; 354:127205. [PMID: 35462015 DOI: 10.1016/j.biortech.2022.127205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
This study investigated and assessed the effect of the functional-membrane covering technique (FMCT) on nitrogen succession during aerobic composting. By comparative experiments involving high-throughput sequencing and qPCR, nitrogen metabolism (including the ko00910 pathway and functional enzyme and gene abundances) was analyzed, and the nitrogen succession mechanism was identified. The FMCT created a micro-positive pressure, improved the aerobic conditions, and increased the oxygen utilization rate and temperature. This strongly affected the nitrogen metabolism pathway and down-regulated the nitrifying and denitrifying bacteria abundances. The FMCT up-regulated the relative abundance of glutamate dehydrogenase and down-regulated the absolute abundances of AOB and nxrA. This and the high temperature increased NH3 emissions by 13.78%-73.37%. The FMCT down-regulated the abundances of denitrifying gene groups (nirS + nirK)/nosZ and nitric oxide reductase associated with N2O emissions and decreased N2O emissions by 16.44%-41.15%. The results improve the understanding of the mechanism involved in nitrogen succession using the FMCT.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Wei Qiao
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
15
|
Efficacies of Nitrogen Removal and Comparisons of Microbial Communities in Full-Scale (Pre-Anoxic Systems) Municipal Water Resource Recovery Facilities at Low and High COD:TN Ratios. WATER 2022. [DOI: 10.3390/w14050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At a low COD:TN ratio (≤5) in influent, maintaining a longer HRT (≥9 h) and longer SRT (≥30 d) are suggested to improve higher N removal efficiency in case of operation at low DO (Dissolved oxygen) level (0.9 ± 0.2 mg-O2/L). However, in case of operation at high DO level (4.0 ± 0.5 mg-O2/L), short HRT (1 h) and typical SRT (17 d) make it possible to achieve nitrogen removal. On the other hand, at a high COD:TN ratio (≥8.4), a typical HRT (9–15 h), SRT (12–19 d), and DO level (1.3–2.6 mg-O2/L) would be applied. Microbial distribution analysis showed an abundance of AOA (Ammonia-oxidizing archaea) under conditions of low DO (≤0.9 mg-O2/L). Nitrosomonas sp. are mostly found in the all investigated water resource recovery facilities (WRRFs). Nitrosospira sp. are only found under operating conditions of longer SRT for WRRFs with a low COD:TN ratio. In comparison between abundances of Nitrobacter sp. and Nitrospira sp., abundances of Nitrobacter sp. are proportional to low DO concentration rather than abundance of Nitrospira sp. A predominance of nosZ-type denitrifiers were found at low DO level. Abundance of denitrifiers by using nirS genes showed an over-abundance of denitrifiers by using nirK genes at low and high COD:TN ratios.
Collapse
|
16
|
Kang J, Yin Z, Pei F, Ye Z, Sun Y, Song G, Ge J. Driving factors of nitrogen conversion during chicken manure aerobic composting under penicillin G residue: Quorum sensing and its signaling molecules. BIORESOURCE TECHNOLOGY 2022; 345:126469. [PMID: 34864180 DOI: 10.1016/j.biortech.2021.126469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
This study explored effects of different concentrations of penicillin G on nitrogen conversion, bacterial community composition, and quorum sensing during chicken manure aerobic composting. After composting, adding penicillin G down-regulated the abundance of 71 genera and up-regulated the abundance of 103 genera. These bacterial genera were mainly Firmicutes and Proteobacteria. 16S rRNA gene sequencing was employed for function prediction, and the results showed that the addition of penicillin G increased nitrification, reduced denitrification. The autoinducer-1 (AI-1), autoinducer-3 (AI-3) and Phr signal molecules further participated in the nitrogen cycle by regulating the population behavior among multiple bacterial genera. In addition, SEM analysis showed that the quorum sensing system negatively regulated the abundance of genus related to the nitrogen conversion during chicken manure aerobic composting. This is a new theoretical analysis of the research on the treatment of hazardous materials.
Collapse
Affiliation(s)
- Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ziliang Yin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zeming Ye
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
17
|
Zhang X, Ma D, Lv J, Feng Q, Liang Z, Chen H, Feng J. Food waste composting based on patented compost bins: Carbon dioxide and nitrous oxide emissions and the denitrifying community analysis. BIORESOURCE TECHNOLOGY 2022; 346:126643. [PMID: 34974104 DOI: 10.1016/j.biortech.2021.126643] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Mature compost and rice bran were used as bulking agents to perform Food Waste Rapid Composting (FWRC) in a patented composting bin. The characteristics of CO2 and N2O emission and the denitrifying community were investigated. The release of CO2 and N2O concentrated in the early composting stage and reduced greatly after 28 h, and the N2O emission peak of the treatment with mature compost was 8.5 times higher than that of rice bran. The high N2O generation resulted from massive denitrifying bacteria and NOx--N in the composting material. The relative abundances of denitrifiers, correspondingly genes of narG and nirK were much higher in the treatment with mature compost, which contributed to the N2O emission. Moreover, the correlation matrices revealed that N2O fluxes correlated well with moisture, pH, temperature, and the abundances of nirK and nosZ genes during FWRC.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Dachao Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jiahao Lv
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qingge Feng
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhengwu Liang
- Guangxi Liyuanbao Science and Technology Co., LTD, Nanning 530000, China
| | - Hongcheng Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jinghang Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
18
|
Zhou Q, Xie X, Feng F, Huang S, Sun Y. Impact of acyl-homoserine lactones on the response of nitrogen cycling in sediment to florfenicol stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147294. [PMID: 33932672 DOI: 10.1016/j.scitotenv.2021.147294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/17/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic residuals disrupt environmental microbial metabolism and can alter the nitrogen cycle. Quorum sensing has both inter- and intra-species effects that are directly related to the population densities necessary for microbial nitrogen cycling. Here, we explored how acyl-homoserine lactones (AHLs) can change the response of nitrogen cycling to florfenicol in sediments. AHLs might promote microbial reproduction in sediment under florfenicol stress. The relative abundances of Proteobacteria and Euryarchaeota in the antibiotic and AHL treatment groups were higher than those in the control group. AHLs reduced the effects of antibiotics on the abundance of Nitrospira at sampling times of 3d, 10d, and 20d. In the annotation results, nitrate reductase showed the highest abundance, followed by nitrite reductase, nitrogenase, nitric oxide (NO) reductase, nitrous oxide reductase, and ammonia monooxygenase. The abundances of these genes have changed in response to pressure by florfenicol and the addition of AHLs. We also found significant associations between the nitrogen cycle-related functional genes and dominant genera. In particular, glutamate metabolic enzymes and nitrate/nitrite transporters were the primary participants in correlation. Florfenicol can rapidly alter microbial community structures in sediments, affect the functional diversity of microorganisms, and hinder the nitrogen cycle. The response of microorganisms to florfenicol was regulated by the addition of AHLs. This process might alter the use and production of nitrogenous substances in the environment by functional communities in sediments.
Collapse
Affiliation(s)
- Qin Zhou
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Xiying Xie
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Fengling Feng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Shujian Huang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
19
|
Rahaman MA, Zhang Q, Shi Y, Zhan X, Li G. Biogas slurry application could potentially reduce N 2O emissions and increase crop yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146269. [PMID: 33714807 DOI: 10.1016/j.scitotenv.2021.146269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The huge excrement quantity from the increasing large-scale livestock stressed the ecological, environmental deterioration. As a major benefit for handling livestock manure, the slurry of biogas (BS) is developed during the production of biogas that might increase plant productivity. However, nitrous oxide (N2O) emissions from BS are considered a significant danger to the environment due to global warming potential. Furthermore, applying different proportions of BS combined with chemical fertilizer (CF) on N2O productions in the North China Plain (NCP) remains unclear. Herein, two sequential field trials were performed by maize-wheat rotations to substitute the CF by BS and reduce N2O emissions while keeping the crop yield stable. Four treatments were conducted, including T1, T3, T6, and CK. A total of 226.5 kg N ha-1 used in the maize-wheat rotation system. Additionally, different ratios of BS (100%, 80%, and 50%) combined with CF were used in wheat season in the tillering stage. Results showed integrated applications of BS with CF have potential for reducing N2O emission. Our findings showed that the maximum grain yield of CF was 6250 kg ha-1, which might be achieved by applying 38% BS and 62% of CF. This ratio yielded 1.03 kg ha-1 N2O emissions, which was 15% lesser than the N2O emission of CK, 1.21 kg ha-1. Considering whole growing period of wheat biogas treatments significantly reduced the cumulative N2O emissions from 17% to 26% compared to CF. To achieve maximum yield and minimum N2O emissions, an optimum 38% BS ratio has been suggested. The integrated use of BS and CF provided the greatest grain yield because of necessary nutrients provided by both slurry and CF. Consequently, N2O emissions reduced based on frequency and type of fertilizer. In conclusion, 38% ratio of BS combined with 62% CF would be a suitable approach to mitigate N2O emission and simultaneously increase crop yield in NCP.
Collapse
Affiliation(s)
- Md Arifur Rahaman
- Institute of Environment and Sustainable Development in Agriculture, Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture, Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yulong Shi
- Institute of Environment and Sustainable Development in Agriculture, Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoying Zhan
- Institute of Environment and Sustainable Development in Agriculture, Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Guichun Li
- Institute of Environment and Sustainable Development in Agriculture, Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
20
|
Liu X, Tang Z, Zhang Q, Kong W. The contrasting effects of biochar and straw on N 2O emissions in the maize season in intensively farmed soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29806-29819. [PMID: 33566298 DOI: 10.1007/s11356-021-12722-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the combined effects of biochar and straw on N2O flux and the community compositions of nitrifiers and denitrifiers in the maize season in an intensively farmed area in northern China. The experiment consisted of four treatments: (1) CK (only chemical fertilizer application); (2) C (biochar application); (3) SR (straw application to the field); and (4) C+SR (the application of both biochar and straw). The results indicated that during the maize growing season, N2O flux decreased by 30.3% in the C treatment and increased by 13.2% and 37.0% in the SR and C+SR treatments compared with CK, respectively. NO3--N, NH4+-N, and microbial biomass carbon (MBC) were the main soil factors affecting N2O flux, and they were positively correlated with NO3--N and negatively correlated with MBC in the C treatment and positively correlated with NH4+-N in the SR and C+SR treatments. Both biochar addition and straw return shifted the community compositions of nitrifiers and denitrifiers. N2O production was mainly reduced by promoting the ammonia-oxidizing bacteria (AOB) gene abundance and inhibiting the nirK gene abundance in the C treatment but promoted by inhibiting the AOB and nosZ gene abundances in the SR and C+SR treatments. Nitrosospira (AOB) and Rhizobium (nirK) were the main contributors among the treatments. NO3--N, NH4+-N, and MBC were the main soil factors affecting the denitrifier communities. The predominant species associated with the nirK, nirS, and nosZ genes were positively correlated with NO3--N and MBC and negatively correlated with NH4+-N. These results provide valuable information on the mechanism of N2O production and reduction in biochar- and straw-amended soil under field conditions.
Collapse
Affiliation(s)
- Xingren Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhanming Tang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Li Z, Cupples AM. Diversity of nitrogen cycling genes at a Midwest long-term ecological research site with different management practices. Appl Microbiol Biotechnol 2021; 105:4309-4327. [PMID: 33944983 DOI: 10.1007/s00253-021-11303-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022]
Abstract
Nitrogen fertilizer results in the release of nitrous oxide (N2O), a concern because N2O is an ozone-depleting substance and a greenhouse gas. Although the reduction of N2O to nitrogen gas can control emissions, the factors impacting the enzymes involved have not been fully explored. The current study investigated the abundance and diversity of genes involved in nitrogen cycling (primarily denitrification) under four agricultural management practices (no tillage [NT], conventional tillage [CT], reduced input, biologically-based). The work involved examining soil shotgun sequencing data for nine genes (napA, narG, nirK, nirS, norB, nosZ, nirA, nirB, nifH). For each gene, relative abundance values, diversity and richness indices, and taxonomic classification were determined. Additionally, the genes associated with nitrogen metabolism (defined by the KEGG hierarchy) were examined. The data generated were statistically compared between the four management practices. The relative abundance of four genes (nifH, nirK, nirS, and norB) were significantly lower in the NT treatment compared to one or more of the other soils. The abundance values of napA, narG, nifH, nirA, and nirB were not significantly different between NT and CT. The relative abundance of nirS was significantly higher in the CT treatment compared to the others. Diversity and richness values were higher for four of the nine genes (napA, narG, nirA, nirB). Based on nirS/nirK ratios, CT represents the highest N2O consumption potential in four soils. In conclusion, the microbial communities involved in nitrogen metabolism were sensitive to different agricultural practices, which in turn, likely has implications for N2O emissions. KEY POINTS: • Four genes were less abundant in NT compared to one or more of the others soils (nifH, nirK, nirS, norB). • The most abundant sequences for many of the genes classified within the Proteobacteria. • Higher diversity and richness indices were observed for four genes (napA, narG, nirA, nirB). • Based on nirS/nirK ratios, CT represents the highest N2O consumption potential.
Collapse
Affiliation(s)
- Zheng Li
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| |
Collapse
|
22
|
Guo H, Gu J, Wang X, Song Z, Nasir M, Tuo X. Elucidating the microbiological characteristics of cyromazine affecting the nitrogen cycle during aerobic composting of pig manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142812. [PMID: 33071140 DOI: 10.1016/j.scitotenv.2020.142812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Cyromazine as insect growth inhibitor have been frequently detected in the environment, which show a potential threat to environment and soil health. Nitrogen is an essential component of all living organisms and the main nutrient limiting life on our planet. In this study, quantitative polymerase chain reaction (qPCR) and sequencing of nitrifying and denitrifying bacteria were conducted to investigate the dynamic effects of cyromazine on nitrogen conversion during laboratory-based composting. Results showed that the presence of cyromazine significantly reduced the abundance of amoA gene during the thermophilic phase of composting (p < 0.01), resulting in lower oxidation of NH4+-N. The archaea amoA gene was more resistant to cyromazine. The nirK gene was more abundant than the nirS gene during composting and was significantly reduced only under high concentrations of cyromazine (p < 0.01). The high dose of cyromazine (15 mg/kg) severely damaged the nitrogen fixation capacity of compost products. Cyromazine exhibited an inhibition effect on richness (ACE, Chao) of nitrifying and denitrifying microorganisms during the thermophilic period, while increased the diversity (shannon) at all stages of composting. Pseudomonas_formosensis was the core denitrifiers that harbored nosZ gene, Nitrosomonas_eutropha and Nitrosospira_sp_Nl5 were the dominant nitrifier that harbored amoA gene, and these species have a negative response to cyromazine. Network analysis indicated that the dominant bacteria harboring amoA and nosZ genes were hubs of nitrogen oxidation and reduction processes. Structural equation modeling revealed that NO2--N conversion played a crucial role in driving denitrification, and increase of NH4+-N content was attributed to the inhibition of nitrification and denitrification during composting caused by cyromazine.
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaxia Tuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
Pei F, Ding H, Yin Z, Ye Z, Ping W, Ge J. Evaluation of nitrogen conversion pathway during composting under amoxicillin stress: Mainly driven by core microbial community. BIORESOURCE TECHNOLOGY 2021; 325:124701. [PMID: 33493751 DOI: 10.1016/j.biortech.2021.124701] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to explore the effects of different concentrations of amoxicillin (AMX) on nitrogen (N) conversion and bacterial community structure during aerobic composting. The results revealed that AMX led to a lower temperature and increased pH during the thermophilic phase of composting. AMX inhibited the relative abundance (RA) of Firmicutes at the initial phase but increased the RA of Actinobacteria and Bacteroidetes compared with the control treatment. The core bacterial community linked to N conversion was determined by network analysis. AMX decreased the RA of amoA, a gene related to nitrification, and increased the RAs of nirK and nosZ, which are related to denitrification. Meanwhile, AMX inhibited the activity of ammonia-oxidizing bacteria but promoted the activity of denitrifying bacteria. Therefore, the main adverse effect of AMX on compost quality is to change the microbial community structure and affect the physical and chemical properties of composting.
Collapse
Affiliation(s)
- Fangyi Pei
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hao Ding
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ziliang Yin
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zeming Ye
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wenxiang Ping
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Jingping Ge
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
| |
Collapse
|
24
|
Cao C, Huang J, Yan CN, Ma YX, Xiao J, Zhang XX. Comparative analysis of upward and downward vertical flow constructed wetlands on the nitrogen removal and functional microbes treating wastewater containing Ag nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111573. [PMID: 33137687 DOI: 10.1016/j.jenvman.2020.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
This study investigated impacts of silver nanoparticles (AgNPs) on nitrogen removal within constructed wetlands (CWs) with different flow directions. The obtained results showed that addition of AgNPs at 0.5 and 2 mg/L significantly inhibited NH4+-N removal, resulting from lower abundances of functional genes (amoA and nxrA) within CWs. And higher abundances of amoA and nxrA genes at 0.5 mg/L were observed in downward flow CW, leading to better NH4+-N removal, compared to upward flow CW. Besides, nitrifying genes amoA and nxrA in upward flow CW at 2.0 mg/L exhibited higher than downward flow CW, explaining better NH4+-N removal in upward flow CW. 0.5 mg/L AgNPs significantly declined NO3--N and TN removal, resulted from decreasing abundances of nirK, nirS and nosZ. In contrast, abundances of nirK, nirS and nosZ genes had slightly lower or higher than before adding AgNPs in upward flow CW, leading to lower NO3--N and TN effluent concentrations. High throughput sequencing also indicated the changes of functional bacterial community after exposing to AgNPs.
Collapse
Affiliation(s)
- Chong Cao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Juan Huang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China.
| | - Chun-Ni Yan
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Yi-Xuan Ma
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Jun Xiao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| | - Xin-Xin Zhang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, No. 2 Southeast University Road, Nanjing, Jiangsu Province, 211189, China
| |
Collapse
|
25
|
Yuvaraj A, Thangaraj R, Ravindran B, Chang SW, Karmegam N. Centrality of cattle solid wastes in vermicomposting technology - A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115688. [PMID: 33039975 DOI: 10.1016/j.envpol.2020.115688] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 05/09/2023]
Abstract
The current review reports the importance and significance of cattle solid waste in vermicomposting technology concerning biowaste pollution in the environment. Needy increasing population evokes livestock production resulting in the massive generation of livestock wastes, especially cattle dung. Improper disposal and handling of biowastes originating from agriculture, industries, forests, rural and urban areas lead to nutrient loss, environmental pollution and health risks. Among the organic waste disposal methods available, vermicomposting is regarded as an environmentally friendly technology for bioconversion of agricultural, industrial, rural and urban generated organic solid wastes which are serving as reservoirs of environmental pollution. In vermicomposting of organic wastes, cattle dung plays a central role in mineralization, nutrient recovery, earthworm and microbial activity leading to vermifertilizer production. Even though the vermicomposting studies use cattle dung invariably as an amendment material, its importance has not been reviewed to highlight its central role. Hence, the present review mainly emphasizes the key role played by cattle dung in vermicomposting. Vermiconversion of cattle dung alone and in combination with other biowaste materials of environmental concern, mechanisms involved and benefits of vermicompost in sustainable agriculture are the major objectives addressed in the present review. The analysis reveals that cattle dung is indispensable amendment material for vermicomposting technology to ensure agricultural and environmental sustainability by reducing pollution risks associated with biowastes on one hand, and nutrient-rich benign vermifertilizer production on the other hand.
Collapse
Affiliation(s)
- Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Gyeonggi - Do, 16227, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Gyeonggi - Do, 16227, South Korea
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
26
|
Zhou S, Wen X, Cao Z, Cheng R, Qian Y, Mi J, Wang Y, Liao X, Ma B, Zou Y, Wu Y. Modified cornstalk biochar can reduce ammonia emissions from compost by increasing the number of ammonia-oxidizing bacteria and decreasing urease activity. BIORESOURCE TECHNOLOGY 2021; 319:124120. [PMID: 32957049 DOI: 10.1016/j.biortech.2020.124120] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
This study examined how the addition of modified cornstalk biochar (CB) affected ammonia (NH3) emissions during composting. Four treatments were established, including a control (CK) with layer manure and sawdust only, and the CK mixtures adding 10% HNO3 CB (NA), 10% H2O2 CB (HP) and 10% HNO3- H2O2 CB (MI). As the results showed, NH3 emissions was reduced by 47.83% (NA), 61.69% (HP) and 45.69% (MI) when the modified CB used as a compost additive (P < 0.05). According to the data analysis, the addition of modified CB significantly increased the number of ammonia-oxidizing bacteria (AOB), inhibited urease activity and decreased the abundance of narG and nirS at rising temperatures and high temperatures (P < 0.05). Redundancy analysis demonstrated a negative correlation between NH3 emissions and AOB and a positive correlation with urease activity, narG and nirS. Thus, the modified CB helped reduce NH3 emissions by regulating nitrification processes.
Collapse
Affiliation(s)
- Shizheng Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Zhen Cao
- WENS Foodstuff Group Co., Ltd., Yunfu, Xinxing 527400, China
| | - Ran Cheng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Yuliang Qian
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China; WENS Foodstuff Group Co., Ltd., Yunfu, Xinxing 527400, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Guangzhou 528000, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Guangzhou 528000, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China.
| |
Collapse
|
27
|
Jin Y, Miao Y, Geng Y, Huang M, Zhang Y, Song X, Li S, Zou J. Calcium Superphosphate-Mediated Reshaping of Denitrifying Bacteria Community Contributed to N 2O Mitigation in Pig Manure Windrow Composting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E171. [PMID: 33383657 PMCID: PMC7795020 DOI: 10.3390/ijerph18010171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022]
Abstract
Composting is recognized as an effective strategy for the sustainable use of organic wastes, but also as an important emission source of nitrous oxide (N2O) contributing to global warming. The effects of calcium superphosphate (CaSSP) on N2O production during composting are reported to be controversial, and the intrinsic microbial mechanism remains unclear. Here, a pig manure windrow composting experiment lasting for ~60 days was performed to evaluate the effects of CaSSP amendment (5%, w/w) on N2O fluxes in situ, and to determine the denitrifiers' response, and their driving factors. Results indicated that CaSSP amendment significantly reduced N2O emissions as compared to the control pile (maximum N2O emission rate reduced by 64.5% and total emission decreased by 49.8%). CaSSP amendment reduced the abundance of nirK gene encoding for nitrite reductase, while the abundance of nosZ gene (N2O reductase) was enriched. Finally, we built a schematic model and indicated that the abundance of nirK gene was likely to play a key role in mediating N2O production, which were correlated with NH4+-N and NO3--N changing responsive to CaSSP. Our finding implicates that CaSSP application could be a potential strategy for N2O mitigation in manure windrow composting, and the revealed microbial mechanism is helpful for deepening the understanding of the interaction among N-cycle functional genes, physicochemical factors, and greenhouse gases (GHG) emissions.
Collapse
Affiliation(s)
- Yaguo Jin
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Yingcheng Miao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Yajun Geng
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Mengyuan Huang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Yihe Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
| | - Xiuchao Song
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Shuqing Li
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (Y.M.); (Y.G.); (M.H.); (Y.Z.); (J.Z.)
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
28
|
Yang Y, Kumar Awasthi M, Wu L, Yan Y, Lv J. Microbial driving mechanism of biochar and bean dregs on NH 3 and N 2O emissions during composting. BIORESOURCE TECHNOLOGY 2020; 315:123829. [PMID: 32682258 DOI: 10.1016/j.biortech.2020.123829] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, the effect of biochar (BC) and bean dregs (BD) on nitrifiers and denitrifiers as well as the contributions to the NH3 and N2O emissions were investigated. Compared with the BD treatment, the maximum value of NH3 and N2O emission was decreased by 32.92% and 46.61% in the BD + BC treatment, respectively. The production of NH3 and N2O was closely associated with the abundance and structure of nitrogen functional genes. BD + BC increased the abundance of AOB amoA gene to decrease the NH3 emission. The abundance of nirS was more closely associated with N2O. The abundance of nirS in the BD + BC was lowered by 18.93% compared with the BD treatment, thereby decreasing the N2O emission after composting. Besides, the nosZ-type gene was the more functional denitrification bacterial communities to effect the N2O emissions.
Collapse
Affiliation(s)
- Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Lulu Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Ying Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China.
| |
Collapse
|
29
|
Yu J, Gu J, Wang X, Guo H, Wang J, Lei L, Dai X, Zhao W. Effects of inoculation with lignocellulose-degrading microorganisms on nitrogen conversion and denitrifying bacterial community during aerobic composting. BIORESOURCE TECHNOLOGY 2020; 313:123664. [PMID: 32590303 DOI: 10.1016/j.biortech.2020.123664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The present study compared the effects of inoculation (WSD treatment) and non-inoculation (CK treatment) with lignocellulose-degrading microorganisms on nitrogen conversion, nitrogen functional genes, and the denitrifying bacterial community during aerobic composting, and their potential relations to NH3 and N2O emissions were also explored. Results showed that, WSD reduced the NH3 and N2O emissions by 25.9% and 34.98%, respectively, compared with CK. WSD also reduced the abundances of nitrifying (bacteria amoA) and denitrifying (nirS, nirK, and nosZ) genes during composting, which were significantly positively correlated with N2O emissions (P < 0.01). The most important nosZ denitrifying microorganisms belonged to Proteobacteria. Redundancy analysis showed that environmental factors could affect the succession of the denitrifying bacterial community during composting. Based on these results, structural equation modeling demonstrated that the reduction in N2O emissions under WSD was related to the lower accumulation of NO3--N utilized by denitrifying microorganisms during the compost maturation period.
Collapse
Affiliation(s)
- Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Liu RR, Tian Y, Zhou EM, Xiong MJ, Xiao M, Li WJ. Distinct Expression of the Two NO-Forming Nitrite Reductases in Thermus antranikianii DSM 12462 T Improved Environmental Adaptability. MICROBIAL ECOLOGY 2020; 80:614-626. [PMID: 32474659 DOI: 10.1007/s00248-020-01528-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/14/2020] [Indexed: 05/21/2023]
Abstract
Hot spring ecosystems are analogous to some thermal environments on the early Earth and represent ideal models to understand life forms and element cycling on the early Earth. Denitrification, an important component of biogeochemical nitrogen cycle, is highly active in hot springs. Nitrite (NO2-) reduction to nitric oxide (NO) is the significant and rate-limiting pathway in denitrification and is catalyzed by two types of nitrite reductases, encoded by nirS and nirK genes. NirS and NirK were originally considered incompatible in most denitrifying organisms, although a few strains have been reported to possess both genes. Herein, we report the functional division of nirS and nirK in Thermus, a thermophilic genus widespread in thermal ecosystems. Transcriptional levels of nirS and nirK coexisting in Thermus antranikianii DSM 12462T were measured to assess the effects of nitrite, oxygen, and stimulation time. Thirty-nine Thermus strains were used to analyze the phylogeny and distribution of nirS and nirK; six representative strains were used to assess the denitrification phenotype. The results showed that both genes were actively transcribed and expressed independently in T. antranikianii DSM 12462T. Strains with both nirS and nirK had a wider range of nitrite adaptation and revealed nir-related physiological adaptations in Thermus: nirK facilitated adaptation to rapid changes and extended the adaptation range of nitrite under oxygen-limited conditions, while nirS expression was higher under oxic and relatively stable conditions.
Collapse
Affiliation(s)
- Rui-Rui Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ye Tian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - En-Min Zhou
- School of Resource Environment and Earth Science, Yunnan Institute of Geography, Yunnan University, Kunming, 650091, People's Republic of China
| | - Meng-Jie Xiong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
31
|
Yu L, Wang Y, Li R, Zhang R, Zhang X, Hua S, Peng D. The differential proliferation of AOB and NOB during natural nitrifier cultivation and acclimation with raw sewage as seed sludge. RSC Adv 2020; 10:28277-28286. [PMID: 35519145 PMCID: PMC9055716 DOI: 10.1039/d0ra05252c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 11/21/2022] Open
Abstract
Nitrifier immigration from sewers to wastewater treatment systems is attracting increasing attention for understanding nitrifier community assembly mechanisms, and improving process modeling and operation. In this study, nitrifiers in raw sewage were cultivated and acclimated in a sequencing batch reactor (SBR) for 90 days to investigate the characteristics of the influent nitrifiers after immigration. During the experiment, specific nitrite utilization rate (SNUR) exceeded specific ammonia utilization rate (SAUR) when floc size reached 224 ± 46 μm, and nitrogen loss occurred at the same time. The ratio of nitrite oxidizing bacteria (NOB) to ammonia oxidizing bacteria (AOB) increased from 0.84 to 2.14 after cultivation. The Illumina MiSeq sequencing showed that the dominant AOB was Nitrosomonas sp. Nm84 and unidentified species, and the three most abundant Nitrospira were Nitrospira defluvii, Nitrospira calida, and unidentified Nitrospira spp. in both raw sewage and cultivated activated sludge. The shared reads of raw sewage and activated sludge were 48.76% for AOB and 89.35% for Nitrospira. These indicated that nitrifiers, especially NOB, immigrated from influent can survive and propagate in wastewater systems, which may be a significant hinder to suppress NOB in the application of advanced nitrogen remove process based on partial nitrification in the mainstream.
Collapse
Affiliation(s)
- Lifang Yu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Yu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Ren Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Ru Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| | - Xingxiu Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| | - Sisi Hua
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| | - Dangcong Peng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| |
Collapse
|
32
|
Hu J, Yang Z, Huang Z, Li H, Wu Z, Zhang X, Qin X, Li C, Ruan M, Zhou K, Wu X, Zhang Y, Xiang Y, Huang J. Co-composting of sewage sludge and Phragmites australis using different insulating strategies. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 108:1-12. [PMID: 32334329 DOI: 10.1016/j.wasman.2020.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/16/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Insulating strategies are indispensable for laboratory-scale composting reactors, however, current insulation methods interfere with the aerobic fermentation behaviors related to composting. To address this issue, a centre-oriented real-time temperature compensation strategy was designed in this study. Five 9 L reactors (R1-R5) with different insulation strategies were used for the co-composting of dewatered sludge and Phragmites australis and compared. The process performance was assessed by monitoring the temperature, O2 and CO2 emissions, the physical-chemical properties of the composting materials were evaluated by measuring the organic matter (OM), carbon nitrogen ratio (C/N), pH, electrical conductivity (EC), and fluorescence excitation-emission matrix (EEM) spectra. And a 16S rDNA analysis was used to quantify the evolution of bacterial community. The main findings are as follows. Compared with R1 as a control, the insulating strategies can increase the maximum temperature and prolong the thermophilic phase of composting. Comparing R1 and R3 showed that real-time temperature compensation can better restore the real fermentation of the compost. The results showed that R5 had the best composting effect, reaching 69.8 °C, which was 25.1%, 29.7%, 19.3%, and 17.3% higher than R1, R2, R3, and R4, respectively, and remaining in the thermophilic phase for 4.24 d, which is 1.4, 1.5, 1.3, and 0.2 times longer than R1, R2, R3, and R4, respectively. Furthermore, it can significantly reduce the temperature difference between the centre and edge of the reactor, which improved the composting material allocation efficiency and composting process control accuracy, further providing a basis for the actual full-scale composting operation.
Collapse
Affiliation(s)
- Jiahui Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Zhongliang Huang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| | - Hui Li
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| | - Zijian Wu
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| | - Xuan Zhang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| | - Xiaoli Qin
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| | - Changzhu Li
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China
| | - Min Ruan
- School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410076, PR China
| | - Kang Zhou
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China; School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410076, PR China
| | - Xikai Wu
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China; School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410076, PR China
| | - Yanru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Jing Huang
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha 410004, PR China.
| |
Collapse
|
33
|
Bornø ML, Rønn R, Ekelund F. Is wood ash amendment a suitable mitigation strategy for N 2O emissions from soil? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136581. [PMID: 31951843 DOI: 10.1016/j.scitotenv.2020.136581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Wood ash, the by-product of biomass combustion to energy, can return important nutrients back to the soil and counteract acidification. However, the application of wood ash may affect the emission of greenhouse gases. Here, the effect of wood ash application on nitrous oxide (N2O) emissions from different soil environments were investigated in a 40 days incubation experiment comprising ten different soil types amended with five different wood ash concentrations (0, 3, 9, 20, and 54 t ash ha-1). The emitted N2O was measured continuously, and initial soil properties without ash application (carbon (C), nitrogen (N), ammonium (NH4+), nitrate (NO3-), and pH) and resulting soil properties (pH, NH4+, and NO3-) were measured prior and after the incubation period, respectively. The Random Forests (RF) model was used to identify which factors (initial and resulting soil properties, vegetation, management, wood ash doze, and respiration rate) were the most important to predict the development of emitted N2O after ash application. Wood ash either increased, decreased, or had no effect on the amount of emitted N2O depending on soil type and ash dose. The RF model identified the final resulting pH as the most important factor for the prediction of emitted N2O. The results suggest that wood ash can mitigate N2O emissions from soil, however, this effect depends on soil type where a mitigating effect of wood ash application was observed mainly in low pH soils with high soil organic matter whereas an increase in N2O emissions was observed in mineral soils that had previously received N fertilization. This study emphasises the importance of pH manipulation in regards to N2O emissions from soil.
Collapse
Affiliation(s)
- Marie Louise Bornø
- University of Copenhagen, Department of Plant & Environmental Sciences, Højbakkegård allé 13, DK-2630 Tåstrup, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou district, Beijing, China.
| | - Regin Rønn
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark.
| | - Flemming Ekelund
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
34
|
Zubair M, Wang S, Zhang P, Ye J, Liang J, Nabi M, Zhou Z, Tao X, Chen N, Sun K, Xiao J, Cai Y. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective. BIORESOURCE TECHNOLOGY 2020; 301:122823. [PMID: 31987489 DOI: 10.1016/j.biortech.2020.122823] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 05/27/2023]
Abstract
Rapid development of livestock industry produces large amount of livestock manure rich in nutrients, organic matters, antibiotics, and heavy metals, thus imposes great harms to human and environment, if the manure is not suitably treated. Biological removal and recovery of nutrients from manure as agriculture fertilizer is attractive due to low cost and simple operation. This review offers an overview of recent development in biological nutrient removal and recovery from livestock manure. Livestock manure is divided into solid manure and liquid manure. Composting and anaerobic digestion of solid manure are fully discussed and important parameters are investigated. Then various processes of nutrient removal and recovery from liquid manure are summarized. Brief economic sustainability and eco-environmental effects are carried out. Finally, current challenges and future prospects in this field are analyzed.
Collapse
Affiliation(s)
- Muhammad Zubair
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Siqi Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Junpei Ye
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Mohammad Nabi
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Zeyan Zhou
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Xue Tao
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Na Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Kai Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Junhong Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yajing Cai
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
35
|
Zhong XZ, Zeng Y, Wang SP, Sun ZY, Tang YQ, Kida K. Insight into the microbiology of nitrogen cycle in the dairy manure composting process revealed by combining high-throughput sequencing and quantitative PCR. BIORESOURCE TECHNOLOGY 2020; 301:122760. [PMID: 31972401 DOI: 10.1016/j.biortech.2020.122760] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Nitrogen cycling during composting process is not yet fully understood. This study explored the key genes involved in nitrogen cycling during dairy manure composting process using high-throughput sequencing and quantitative PCR technologies. Results showed that nitrogen fixation occurred mainly during the thermophilic and cooling phases, and significantly enhanced the nitrogen content of compost. Thermoclostridium stercorarium was the main diazotroph. Ammonia oxidation occurred during the maturation phase and Nitrosomonas sp. was the most abundant ammonia oxidizing bacteria. Denitrification contributed to the greatest nitrogen loss during the composting process. The nirK community was dominated by Luteimonas sp. and Achromobacter sp., while the nirS community was dominated by Alcaligenes faecalis and Pseudomonas stutzeri. The nosZ community varied in a succession of Halomonas ilicicola, Pseudomonas flexibili and Labrenzia alba dominated communities according to different composting phases. Based on these results, nitrogen cycling models for different phases of the dairy manure composting process were established.
Collapse
Affiliation(s)
- Xiao-Zhong Zhong
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Meng Q, Han Y, Zhu H, Yang W, Bello A, Deng L, Jiang X, Wu X, Sheng S, Xu Y, Xu X. Differences in distribution of functional microorganism at DNA and cDNA levels in cow manure composting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110161. [PMID: 31954219 DOI: 10.1016/j.ecoenv.2019.110161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Denitrification and nitrification processes are the two prominent pathways of nitrogen (N) transformation in composting matrix. This study explored the dynamics of denitrifying and nitrifying bacteria at different composting stages of cow manure and corn straw using functional gene sequencing at DNA and cDNA levels. Corresponding agreement among OTUs, NMDS, mental test and network analyses revealed that functional bacteria community compositions and responses to physicochemical factors were different at DNA and cDNA levels. Specifically, some OTUs were detected at the DNA level but were not observed at cDNA level, differences were also found in the distribution patterns of nitrifying and denitrifying bacteria communities at both levels. Furthermore, co-occurrence network analysis indicated that Pseudomonas, Paracoccus and Nitrosomonas were identified as the keystone OTUs at the DNA level, while Paracoccus, Agrobacterium and Nitrosospira were keystone OTUs at the cDNA level. Mantel test revealed that TN, C/N and moisture content significantly influenced both the denitrifying bacteria and ammonia-oxidizing bacteria (AOB) communities at the DNA level. NO3--N, NH4+-N, TN, C/N, and moisture content only registered significant correlation with the nosZ-type denitrifiers and ammonia-oxidizing bacteria (AOB) communities at the cDNA level. Structural equation model (SEM) showed that TN, NH4+-N, and pH were direct and significantly influenced the gene abundance of denitrifying bacteria. Howbeit, TN, NH4+-N, and NO3--N had significant direct effects on amoA gene abundance.
Collapse
Affiliation(s)
- Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Haifeng Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaotong Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Siyuan Sheng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yingying Xu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
37
|
Zhao S, Schmidt S, Qin W, Li J, Li G, Zhang W. Towards the circular nitrogen economy - A global meta-analysis of composting technologies reveals much potential for mitigating nitrogen losses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135401. [PMID: 31812408 DOI: 10.1016/j.scitotenv.2019.135401] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Composting is an important technology to treat biowastes and recycle nutrients, but incurs nitrogen (N) losses that lower the value of the final products and cause pollution. Technologies aimed at reducing N losses during composting have inconsistent outcomes. To deepen insight into mitigation options, we conducted a global meta-analysis based on 932 observations from 121 peer-reviewed published studies. Overall, N losses averaged 31.4% total N (TN), 17.2% NH3-N, and 1.4% N2O-N, with NH3-N accounting for 55% of TN losses. The primary drivers affecting N losses were composting method, type of biowaste, and duration of composting. N losses were significantly impacted by the carbon-to-nitrogen (C/N) ratio of the input materials (feedstock of nutrient dense biowastes and C-rich bulking agents), moisture content and pH. Our analysis revealed N-conserving optima with C/N ratios of 25-30, 60-65% moisture content and pH 6.5-7.0. In situ mitigation technologies that control feedstock and processing conditions reduced average N losses by 31.4% (TN), 35.4% (NH3-N) and 35.8% (N2O-N). Biochar and magnesium-phosphate salts emerged as the most effective N-conserving strategies, curbing losses of TN by 30.2 and 60.6%, NH3 by 52.6 and 69.4%, and N2O by 66.2 and 35.4% respectively. We conclude that existing technologies could preserve ~0.6 Tg of biowaste-N globally, which equates to 16% of the chemical N-fertilizer used in African croplands, or 39% of the annual global increases of 1.58 Tg fertilizer-N. However, the adoption of N-conserving technologies is constrained by a lack of knowledge of best practice, suitable infrastructure, policies and receptive markets. To realize an N-conserving composting industry that supports sustainable practices and the circular nitrogen economy, stakeholders have to act collectively. Benefits will include lowering direct and indirect greenhouse gas emissions associated with agriculture, and facilitating the recarbonization of soils.
Collapse
Affiliation(s)
- Shuaixiang Zhao
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agricultural Green Development, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Wei Qin
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agricultural Green Development, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ji Li
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agricultural Green Development, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agricultural Green Development, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Weifeng Zhang
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agricultural Green Development, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
38
|
Yin Y, Yang C, Gu J, Wang X, Zheng W, Wang R, Wang X, Chen R. Roles of nxrA-like oxidizers and nirS-like reducers in nitrite conversion during swine manure composting. BIORESOURCE TECHNOLOGY 2020; 297:122426. [PMID: 31776106 DOI: 10.1016/j.biortech.2019.122426] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 05/22/2023]
Abstract
Nitrite has a key role in nitrogen conversion during composting. In this study, the dynamic changes in the NO2- contents, abundances of nirS and nxrA, and the bacteria that harbored these genes were determined during composting. NO2- accumulated during the initial composting stage. The nirS gene was abundant throughout composting, whereas the nxrA gene was only abundant in the late composting phases. Ralstonia sp. and Thauera sp. were the dominant denitrifiers that harbored nirS, and Nitrobacter winogradskyi Nb-255 was the dominant nitrifier that harbored nxrA. Structural equation modeling showed that NO2- was mainly reduced by nirS in the early phases, and oxidized by nxrA in the late phases, but especially in the maturity phase. Network analysis showed that the dominant bacteria harboring nirS and nxrA were hubs in the modules related to the reduction and oxidation of NO2-, and they had competitive relationships during the cooling and maturity phases.
Collapse
Affiliation(s)
- Yanan Yin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chao Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xiaojuan Wang
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Wei Zheng
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Ru Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
39
|
Guo H, Gu J, Wang X, Nasir M, Yu J, Lei L, Wang J, Zhao W, Dai X. Beneficial effects of bacterial agent/bentonite on nitrogen transformation and microbial community dynamics during aerobic composting of pig manure. BIORESOURCE TECHNOLOGY 2020; 298:122384. [PMID: 31839495 DOI: 10.1016/j.biortech.2019.122384] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the effects of adding a bacterial agent (B) and bentonite (BT) on nitrogen transformation, nitrogen functional genes, and the microbial community dynamics during the aerobic composting of pig manure, as well as their contributions to NH3 and N2O emissions. Treatments B, BT, and BT + B reduced the NH3 emissions by 31.34%, 18.82%, and 23.67%, respectively, and the N2O emissions by 53.16%, 72.56%, and 63.41%. N2O and NH3 emissions were strongly related to the functional genes. Adding bacterial agent promoted the ammonia oxidation process to reduce NH3 emissions, whereas the influence of bentonite on nitrogen conversion was mostly related to nirS and nirK in denitrification processes. Nitrification and denitrification were dominated by different functional microorganisms in various stages of composting, where Proteobacteria comprised the most important denitrifying microorganisms. Thus, the additives reduced NH3 and N2O emissions by regulating nitrification and denitrification processes, and adding both was highly advantageous.
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
40
|
Tang J, Li X, Cui P, Lin J, Jianxiong Zeng R, Lin H, Zhou S. Nitrification plays a key role in N 2O emission in electric-field assisted aerobic composting. BIORESOURCE TECHNOLOGY 2020; 297:122470. [PMID: 31791916 DOI: 10.1016/j.biortech.2019.122470] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Nitrous oxide (N2O) emission is a serious environmental problem in composting. Previous studies have indicated that electric field assistance results in lower N2O emissions in aerobic composting; however, the exact mechanisms involved in electric-field assisted aerobic composting (EAAC) are not clear. In this study, the biological N transformation processes and the N-associated genes were investigated. The results demonstrated that electric field application inhibited nitrification, weakened the nitrifying functional genes (the hao and nxrA genes declined maximally by 86% and 86.8%, respectively), and increased the N2O consumption-related gene (nosZ) by a maximum factor of 2.76 compared with that in CAC. The correlation analysis demonstrated that nitrification was the main source of N2O emission in EAAC. The findings imply that EAAC is a promising process for mitigating N2O emission at the source during aerobic composting.
Collapse
Affiliation(s)
- Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayang Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hao Lin
- School of Ecology and Resource Engineering, Wuyi University, Wuyishan City, Fujian 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
41
|
Yu H, Xie B, Khan R, Yan H, Shen G. The changes in functional marker genes associated with nitrogen biological transformation during organic-inorganic co-composting. BIORESOURCE TECHNOLOGY 2020; 295:122197. [PMID: 31630888 DOI: 10.1016/j.biortech.2019.122197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
In this article, the changes in the functional marker genes associated with nitrogen biological transformation during the organic-inorganic co-composting process with adding biochar or not were studied. Results showed that the addition of biochar increased the abundance of ureC, AOA amoA and AOB amoA gene while decreased the abundance of nirK gene. The addition of 10% biochar by weight ratio was better for the optimization of nitrogen biological transformation process. The correlation analysis showed that the ureC gene was highly correlated with NH4+-N concentration while the AOA amoA and AOB amoA genes were moderately correlated with NH4+-N concentration. Similarly, the nirK gene was moderately correlated with NO3--N concentration. This work would contribute to understanding the mechanisms underlying in the nitrogen bio-transformation further at the molecular level during organic-inorganic co-composting.
Collapse
Affiliation(s)
- Huiyong Yu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China.
| | - Beitao Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No. 202 Gongyebei Road, Jinan 250100, China
| | - Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China
| | - Huifeng Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China
| | - Guoming Shen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China
| |
Collapse
|
42
|
Sun Y, Sheng S, Jiang X, Bello A, Wu X, Meng Q, Deng L, Xu X, Li H. Genetic associations as indices for assessing nitrogen transformation processes in co-composting of cattle manure and rice straw. BIORESOURCE TECHNOLOGY 2019; 291:121815. [PMID: 31344636 DOI: 10.1016/j.biortech.2019.121815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
In this study, mechanism of nitrogen transformation was investigated in terms of genetic associations (nitrogen-related gene groups) in co-composting of cattle manure and rice straw. Mutual validation among KEGG, Pearson correlation, stepwise regression, and Path analyses indicated that the functional genes synergistically affected on nitrogen transformation in composting process. NxrA/qnorB (0.9419 ± 0.0334) and (amoA + anammox)/Bacteria (0.7187 ± 0.0334) were the key functional gene groups mediating NH4+-N transformation. AmoA/(narG + napA) (-0.8400 ± 0.0129), amoA/bacteria (0.8692 ± 0.0273), and (nirK + nirS)/nosZ (1.1652 ± 0.0089) determined NO3--N, NO2--N and N2O transformation, respectively. AmoA/(napA + narG) mediated both NO3--N and NO2--N transformation. AmoA/anammox (-0.7172 ± 0.0591) and (nirK + nirS)/nosZ (-0.6626 ± 0.0825) served as predominant factors for total nitrogen removal. These results provided a molecular-level insight that nitrification, anaerobic ammonia oxidation and denitrification (SNAD) might simultaneously contribute to nitrogen transformation during composting, rather than sequentially.
Collapse
Affiliation(s)
- Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siyuan Sheng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xin Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaotong Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Hongtao Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
43
|
Chen Y, Chen Y, Li Y, Wu Y, Zeng Z, Xu R, Wang S, Li H, Zhang J. Changes of heavy metal fractions during co-composting of agricultural waste and river sediment with inoculation of Phanerochaete chrysosporium. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120757. [PMID: 31207488 DOI: 10.1016/j.jhazmat.2019.120757] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
The effects of Phanerochaete chrysosporium on the bioavailability of multiple heavy metals (Pb, Cd, Cu, and Zn) in river sediments were investigated by co-composting with the agricultural waste. The results showed that the Phanerochaete chrysosporium inoculation can greatly enhance the passivation on Cu, Pb and Cd during 60 days co-composting. The effects in the three metals followed the order: Cu > Cd > Pb. There were no differences for Zn whether inoculation with P. chrysosporium or not. Redundancy analysis (RDA) implied that more than 4/5 of the variation of all fractions data for all heavy metals was explained by all significant canonical axes. P. chrysosporium can change the significant parameters for each metal and enhance the explanatory power of RDA model. The inoculation can strengthen the effect of OM (organic matter) on the bioavailability of heavy metals, but weaken the contribution of pH.
Collapse
Affiliation(s)
- Yanrong Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ziping Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ran Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Sha Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
44
|
Shi Y, Liu X, Zhang Q. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:199-211. [PMID: 31176819 DOI: 10.1016/j.scitotenv.2019.05.394] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/19/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
This study intended to evaluate the combined effects of both biochar and organic fertilizer on nitrous oxide (N2O) fluxes and composition of nitrifier and denitrifier of saline-alkali soil. Therefore, four different treatments such as CK (only chemical fertilizer), B (only biochar), M (only organic fertilizer), BM (B:M = 1:1) were used in this experiment. The results showed that N2O emissions were decreased in B and BM treatments compare to the control. In contrast, N2O emissions were highest before day 12 but lowest after day 19 in M treatment compare to the control. Application of biochar, organic fertilizer and biochar plus organic fertilizer decreased the nirS and nirK genes copies and enhanced the nosZ gene copies which resulting in the lower N2O fluxes. The ammonia-oxidizing bacteria (AOB) amoA and nirK genes copies were significantly increased by organic fertilizer before day 12, leading to high N2O emissions. The genera Nitrosospira (AOB) and Nitrososphaera (ammonia-oxidizing archaea, AOA) assumed absolute superiority. Additionally, Nitrosospira (AOB) was also appeared in nirK-type denitrifiers, illustrating denitrification was carried out by nitrifiers. The genera Azospirillum (nirS), Burkholderia (nosZ) and Polymorphum (nosZ) were dominant in CK. There was only one dominant genus, Mesorhizobium (nosZ) in the B treatment. The genera Mesorhizobium (nirK), Azoarcus (nirS), Kocuria (nirS) and Pseudomonas (nosZ) occupied the main status in the M treatment. The relative abundance of Rhodanobacter (nirS) and Azospirillum (nosZ) were higher in the BM treatment compared with other treatments. Soil water content (SWC), pH, NH4+-N and NO3--N were the main factors affecting AOB and denitrifiers, which influencing N2O emissions. Overall, combined application of biochar and organic fertilizer can reduce the N2O emission where AOB and nirK-type denitrifier were the main contributors to the N2O emission.
Collapse
Affiliation(s)
- Yulong Shi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingren Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qingwen Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
45
|
Zhang L, Dong H, Zhu Y, Zhang J, Zeng G, Yuan Y, Cheng Y, Li L, Fang W. Evolutions of different microbial populations and the relationships with matrix properties during agricultural waste composting with amendment of iron (hydr)oxide nanoparticles. BIORESOURCE TECHNOLOGY 2019; 289:121697. [PMID: 31255963 DOI: 10.1016/j.biortech.2019.121697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the evolutions of different microbial populations and multivariate relationships between their abundances and environmental variables during composting with amendment of Fe (hydr)oxide nanoparticles. Piles treated with nanohematite and nanomagnetite were denoted as T-nanohematite and T-nanomagnetite, and another one was T-control. It was found that nanohematite more effectively increased bacteria and fungi abundances with 1.24∼1.58 times average value of T-control, while nanomagnetite was more useful to actinomycetes. As the most significant variable, the total effect of temperature in T-control and T-nanomagnetite was increased to 0.87 and 0.92, respectively, because both the direct and indirect effects were positive, while it in T-nanohematite was reduced to 0.18 by the negative indirect effect. Partial redundancy analysis suggested that each microbial abundance shared different relationships with composting parameters. Overall, actinomycetes was more sensitive to changes of composting parameters than bacteria and fungi.
Collapse
Affiliation(s)
- Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yujie Yuan
- Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, PR China
| | - Yujun Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
46
|
Lv B, Zhang D, Chen Q, Cui Y. Effects of earthworms on nitrogen transformation and the correspond genes (amoA and nirS) in vermicomposting of sewage sludge and rice straw. BIORESOURCE TECHNOLOGY 2019; 287:121428. [PMID: 31096104 DOI: 10.1016/j.biortech.2019.121428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
The effects of earthworms on nitrogen transformation and the responsible functional genes during disposal of sewage sludge and rice straw were investigated in this study. Vermicomposting resulted in the lower pH and total organic carbon (TOC) compared to the control treatment without earthworms. Moreover, the presence of earthworms could promote the nitrogen mineralization and nitrification process in vermicomposting. Earthworms increased the activity of ammonia monooxygenase and abundance of amoA-nitrifier and reduced its diversity, whereas they reduced the density of nirS-denitrifying bacteria but enhanced its diversity. Nitrosospira was the dominant amoA-nitrifier and earthworms stimulated its growth in the vermicomposting. The presence of earthworms could also affect the community composition of nirS-denitrifying bacteria despite most of the nirS-denitrifier was not be classified at the genus level. In conclusion, the presence of earthworms had significant influence on the diversity and abundances of amoA and nirS genes and affect the nitrogen bio-transformation in vermicomposting.
Collapse
Affiliation(s)
- Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| | - Di Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Qihao Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yuxue Cui
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| |
Collapse
|
47
|
Denitrification characterization of dissolved oxygen microprofiles in lake surface sediment through analyzing abundance, expression, community composition and enzymatic activities of denitrifier functional genes. AMB Express 2019; 9:129. [PMID: 31428884 PMCID: PMC6702497 DOI: 10.1186/s13568-019-0855-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
The responses of denitrifiers and denitrification ability to dissolved oxygen (DO) concent in different layers of surface lake sediments are still poorly understood. Here, the optimal denitrification condition was constructed based on response surface methodology (RSM) to analyze the denitrification characteristics of surface sediments. The aerobic zone (AEZ), hypoxic zone (HYZ), up-anoxic zone (ANZ-1) and sub-anoxic zone (ANZ-2) were partitioned based on the oxygen contents, and sediments were collected using a customized-designed sub-millimeter scale sampling device. Integrated real-time quantitative PCR, Illumina Miseq-based sequencing and denitrifying enzyme activities analysis revealed that denitrification characteristics varied among different DO layers. Among the four layers, the DNA abundance and RNA expression levels of norB, nirS and nosZ were the highest at the aerobic layer, hypoxic layer and up-axoic layer, respectively. The hypoxia and up-anaerobic layer were the active nitrogen removal layers, since these two layers displayed the highest DNA abundance, RNA expression level and enzyme activities of denitrification functional genes. The abundance of major denitrifying bacteria showed significant differences among layers, with Azoarcus, Pseudogulbenkiania and Rhizobium identified as the main nirS, nirK and nosZ-based denitrifiers. Pearson’s correlation revealed that the response of denitrifiers to environmental factors differed greatly among DO layers. Furthermore, napA showed higher DNA abundance and RNA expression level in the aerobic and hypoxic layers than anaerobic layers, indicating that aerobic denitrifiers might play important roles at these layers.
Collapse
|
48
|
Song Y, Mao G, Gao G, Bartlam M, Wang Y. Structural and Functional Changes of Groundwater Bacterial Community During Temperature and pH Disturbances. MICROBIAL ECOLOGY 2019; 78:428-445. [PMID: 30706112 DOI: 10.1007/s00248-019-01333-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
In this study, we report the characteristics of a microbial community in sampled groundwater and elucidate the effects of temperature and pH disturbances on bacterial structure and nitrogen-cycling functions. The predominant phyla of candidate OD1, candidate OP3, and Proteobacteria represented more than half of the total bacteria, which clearly manifested as a "low nucleic acid content (LNA) bacteria majority" type via flow cytometric fingerprint. The results showed that LNA bacteria were more tolerant to rapid changes in temperature and pH, compared to high nucleic acid content (HNA) bacteria. A continuous temperature increase test demonstrated that the LNA bacterial group was less competitive than the HNA bacterial group in terms of maintaining their cell intactness and growth potential. In contrast, the percentage of intact LNA bacteria was maintained at nearly 70% with pH decrease, despite a 50% decrease in total intact cells. Next-generation sequencing results revealed strong resistance and growth potential of phylum Proteobacteria when the temperature increased or the pH decreased in groundwater, especially for subclasses α-, β-, and γ-Proteobacteria. In addition, relative abundance of nitrogen-related functional genes by qPCR showed no difference in nitrifiers or denitrifiers within 0.45 μm-captured and 0.45 μm-filterable bacteria due to phylogenetic diversity. One exception was the monophyletic anammox bacteria that belong to the phylum Planctomycetes, which were mostly captured on a 0.45-μm filter. Furthermore, we showed that both temperature increase and pH decrease could enhance the denitrification potential, whereas the nitrification and anammox potentials were weakened.
Collapse
Affiliation(s)
- Yuhao Song
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Guannan Mao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Guanghai Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mark Bartlam
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
49
|
Zhang L, Zhu Y, Zhang J, Zeng G, Dong H, Cao W, Fang W, Cheng Y, Wang Y, Ning Q. Impacts of iron oxide nanoparticles on organic matter degradation and microbial enzyme activities during agricultural waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:289-297. [PMID: 31351614 DOI: 10.1016/j.wasman.2019.06.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
The effects of iron oxide nanoparticles (IONPs, including Fe2O3 NPs and Fe3O4 NPs) on composting were investigated through evaluating their influences on organic matter (OM) degradation, dehydrogenase (DHA) and urease (UA) activities, and quality of the final compost product. Results showed that composting amended with Fe2O3 NPs was more effective to facilitate OM degradation. At the end of composting, the total OM loss in T-C, T-Fe2O3 NPs and T-Fe3O4 NPs was 66.19%, 75.53% and 61.31%, respectively. DHA and UA were also improved on the whole by the amendment of IONPs, especially Fe2O3 NPs. Although relationships between enzyme activities and environmental variables were changed by different treatments, temperature was the most influential to variations of both DHA and UA in all treatments, which independently explained 75.1%, 34.7% and 38.4% of variations in the two enzyme activities in T-C, T-Fe2O3 NPs and T-Fe3O4 NPs, respectively. Compared with DHA, UA was more closely related to the environmental parameters. The germination index in T-C, T-Fe2O3 NPs and T-Fe3O4 NPs was 134.49%, 153.64% and 146.76%, and the average shoot length was 3.16, 3.87 and 3.45 cm, respectively, indicating that amendment of IONPs, especially Fe2O3 NPs, could promote seed germination and seedling growth. Therefore, composting amended with IONPs was a feasible and promising method to improve composting performance, enzyme activities as well as quality of the final compost product.
Collapse
Affiliation(s)
- Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yujun Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yaoyao Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Qin Ning
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
50
|
Chen M, Wang C, Wang B, Bai X, Gao H, Huang Y. Enzymatic mechanism of organic nitrogen conversion and ammonia formation during vegetable waste composting using two amendments. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:306-315. [PMID: 31351616 DOI: 10.1016/j.wasman.2019.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Elucidating the mechanism of nitrogen conversion during composting is crucial for controlling nutrient loss and improving the quality of compost. To explore the enzymatic mechanism of organic conversion during composting, composting experiments using vegetable waste and chicken manure mixed with wheat straw and corn stalk as two separate treatments: WS and CS, respectively, were conducted in 63 L aerated static pile reactors for 33 d. The changes in the nitrogen fractions and related-enzymes activities were analyzed during different periods. The total nitrogen content increased by 34.3% during WS and decreased by 6.22% during CS after 33d of composting. The ammounium nitrogen content decreased by 79.6% and 51.4% during WS and CS. The nitrate, nitrite, organic, acid-insoluble organic nitrogen contents increased by approximately 52.6-123.9%, 590.9-5875%, 59.1-213.8%, and 764.4-7834.1%, respectively. The amount of total hydrolysable organic nitrogen increased by 18.8% during WS and decreased by 26.7% in CS. Structural equation modeling revealed that the contributions of different types of nitrogen to the formation of NH4+ during WS composting decreased as follows: amine nitrogen (AN) > amino acid nitrogen (AAN) > amino sugar nitrogen (ASN) > hydrolysable unknown nitrogen (HUN), while the corresponding nitrogen contributions during CS decreased as follows: AAN > AN > HUN > ASN. The AN and AAN were most easily converted into NH4+ during WS and CS, respectively, while ASN was synthesized from NH4+ during vegetable waste composting. Using redundancy analysis it was revealed that nitrate reductase (50.1%), nitrite reductase (23.2%) and urease (7.1%) played leading roles in nitrogen transformation. Furthermore, total organic carbon (59.6%) was the main factor that affected enzymes activities.
Collapse
Affiliation(s)
- Mengli Chen
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Cong Wang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Baorong Wang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Xuejuan Bai
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100 Shaanxi, China
| | - Han Gao
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China.
| |
Collapse
|