1
|
Mummaleti G, Udo T, Mohan A, Kong F. Synthesis, characterization and application of microbial pigments in foods as natural colors. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39466660 DOI: 10.1080/10408398.2024.2417802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Colorants have played a crucial role in various applications, particularly in food processing, with natural sources such as mineral ores, plants, insects, and animals being commonly used. However, the nineteenth century saw the development of synthetic dyes, which replaced these natural colorants. In recent years, there has been a growing demand for natural products, driving an increased interest in natural colorants. Microbial pigments have emerged as promising sources of natural pigments due to their numerous health benefits. They can be produced in large quantities rapidly and from more affordable substrates, making them economically attractive. This review focuses on the current advancements in the low-cost synthesis of microbial pigments, exploring their biological activities and commercial applications. Microbial pigments offer a sustainable and economically viable alternative to natural and synthetic colorants, meeting the growing demand for natural products. These pigments are relatively nontoxic and exhibit significant health benefits, making them suitable for a wide range of applications. As interest in natural products continues to rise, microbial pigments hold great potential in shaping the future of colorant production across various sectors.
Collapse
Affiliation(s)
- Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Santos KFDN, Oliveira MS, Ferreira EPDB, Amaral ADG, Martin-Didonet CCG. Physicochemical characterization of the brown pigment produced by Azospirillum brasilense HM053 using tryptophan as precursor. Braz J Microbiol 2024; 55:2227-2237. [PMID: 38954221 PMCID: PMC11405611 DOI: 10.1007/s42770-024-01433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Microorganisms are known to be a promising source of biopigments because they are easy to obtain, can be produced on a commercial scale, and are environmentally friendly. Therefore, the aim of this work was to characterize a brown pigment (BP) produced by HM053 in NFbHPN-lactate medium. The BP was extracted from the pellet (BPP) or supernatant (BPS), in the presence (BPPTrp, BPSTrp) or absence (BPPw, BPSw) of tryptophan (Trp). The UV-vis results were similar among all BP samples and compared with commercial melanin used as a standard, and the maximum absorption was observed around 200-220 nm. FTIR spectra showed that BP and commercial melanin had slight differences, with a small band between 3000-2840 cm- 1, related to C-H in the CH2 and CH3 aliphatic groups, which is not observed in the commercial melanin. Between BPP and BPS showed a different structure with bands in the region 1230-1070 cm- 1 related to groups C-O. The thermogravimetric curves for BPSw and BPSTrp showed similar behavior, with 4 stages of mass loss. The similarity between BPPw and BPPTrp with 2 stages of mass loss was also observed. Scanning electron microscopy results showed morphological differences between BPP and BPS, where BPP had a physical structure more homogeneous and a regular flat surface, while the BPS physical structure did not seem homogeneous and the surface was uneven with some spherical structures as commercial melanin.
Collapse
Affiliation(s)
- Karina Freire d'Eça Nogueira Santos
- Embrapa Arroz e Feijão, Rodovia GO-462, Km12, Fazenda Capivara, Santo Antônio de Goiás,, GO, Brazil.
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo, UEG, Anápolis, GO, Brazil.
| | - Marilene Silva Oliveira
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo, UEG, Anápolis, GO, Brazil
- Simple Agro Corporation, Rua Augusta Bastos, 866, Setor Central, Rio Verde, GO, Brazil
| | | | | | | |
Collapse
|
3
|
Ashraf N, Anas A, Sukumaran V, James J, Bilutheth MN, Chekkillam AR, Jasmin C, Raj K D, Babu I. Biofilm-forming bacteria associated with corals secrete melanin with UV-absorption properties. World J Microbiol Biotechnol 2024; 40:313. [PMID: 39210155 DOI: 10.1007/s11274-024-04120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Corals are colonized by a plethora of microorganisms, and their diversity plays a significant role in the health and resilience of corals when they face oxidative stress leading to bleaching. In the current study, we examined 238 bacteria isolated from five different coral species (Acropora hyacinthus, Pocillopora damicornis, Podabacea crustacea, Porites lobata, and Pavona venosa) collected from the coral reef ecosystems of Kavaratti, Lakshadweep Islands, India. We found that bacteria such as Psychrobacter sp., Halomonas sp., Kushneria sp., Staphylococcus sp., Bacillus sp., Brachybacterium sp., Citrobacter sp., and Salinicola sp. were commonly present in the corals. On the other hand, Qipengyuania sp., Faucicola sp., Marihabitans sp., Azomonas sp., Atlantibacter sp., Cedecea sp., Krasalinikoviella sp., and Aidingimonas sp. were not previously reported from the corals. Among the bacterial isolates, a significant number showed high levels of biofilm formation (118), UV absorption (119), and melanin production (127). Considering these properties, we have identified a combination of seven bacteria from the genera Halomonas sp., Psychrobacter sp., Krasalinikoviella sp., and Micrococcus sp. as a potential probiotic consortium for protecting corals from oxidative stress. Overall, this study provides valuable insights into the coral microbiome and opens up possibilities for microbiome-based interventions to protect these crucial ecosystems in the face of global environmental challenges.
Collapse
Affiliation(s)
- Nizam Ashraf
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Abdulaziz Anas
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India.
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| | - Vrinda Sukumaran
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, 682022, India
| | - Jibin James
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
| | | | | | - C Jasmin
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
- ENFYS Lifesciences, Kochi, 683578, India
| | - Devika Raj K
- Regional Centre, CSIR - National Institute of Oceanography, Kochi, 682018, India
| | - Idrees Babu
- Department of Science and Technology, Kavaratti, 682555, India
| |
Collapse
|
4
|
Diaz Appella MN, Kolender A, Oppezzo OJ, López NI, Tribelli PM. The structural complexity of pyomelanin impacts UV shielding in Pseudomonas species with different lifestyles. FEBS Lett 2024. [PMID: 39152523 DOI: 10.1002/1873-3468.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Pyomelanin, a polymeric pigment in Pseudomonas, arises mainly from alterations in tyrosine degradation. The chemical structure of pyomelanin remains elusive due to its heterogeneous nature. Here, we report strain-specific differences in pyomelanin structural features across Pseudomonas using PAO1 and PA14 reference strains carrying mutations in hmgA (a gene involved in pyomelanin synthesis), a melanogenic P. aeruginosa clinical isolate (PAM), and a melanogenic P. extremaustralis (PexM). UV spectra showed dual peaks for PAO1 and PA14 mutants and single peaks for PAM and PexM. FTIR phenol : alcohol ratio changes and complex NMR spectra indicated non-linear polymers. UVC radiation survival increased with pyomelanin addition, correlating with pigment absorption attenuation. P. extremaustralis UVC survival varied with melanin source, with PAO1 pyomelanin being the most protective. These findings delineate structure-based pyomelanin subgroups, having distinct physiological effects.
Collapse
Affiliation(s)
- Mateo N Diaz Appella
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Adriana Kolender
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Oscar J Oppezzo
- Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Paula M Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
- IQUIBICEN-CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Irfan A, Bin Jardan YA, Rubab L, Hameed H, Zahoor AF, Supuran CT. Bacterial tyrosinases and their inhibitors. Enzymes 2024; 56:231-260. [PMID: 39304288 DOI: 10.1016/bs.enz.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Bacterial tyrosinase is a copper-containing metalloenzyme with diverse physio-chemical properties, that have been identified in various bacterial strains, including actinobacteria and proteobacteria. Tyrosinases are responsible for the rate-limiting catalytic steps in melanin biosynthesis and enzymatic browning. The physiological role of bacterial tyrosinases in melanin biosynthesis has been harnessed for the production of coloring and dyeing agents. Additionally, bacterial tyrosinases have the capability of cross-linking activity, demonstrated material functionalization applications, and applications in food processing with varying substrate specificities and stability features. These characteristics make bacterial tyrosinases a valuable alternative to well-studied mushroom tyrosinases. The key feature of substrate specificity of bacterial tyrosinase has been exploited to engineer biosensors that have the ability to detect the minimal amount of different phenolic compounds. Today, the world is facing the challenge of multi-drugs resistance in various diseases, especially antibiotic resistance, skin cancer, enzymatic browning of fruits and vegetables, and melanogenesis. To address these challenges, medicinal scientists are developing novel chemotherapeutic agents by inhibiting bacterial tyrosinases. To serve this purpose, heterocyclic compounds are of particular interest due to their vast spectrum of biological activities and their potential as effective tyrosinase inhibitors. In this chapter, a plethora of research explores applications of bacterial tyrosinases in different fields, such as the production of dyes and pigments, catalytic applications in organic synthesis, bioremediation, food and feed applications, biosensors, wool fiber coating and the rationalized synthesis, and structure-activity relationship of bacterial tyrosinase inhibitors.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Laila Rubab
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Claudiu T Supuran
- Department of NEUROFARBA-Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
6
|
Terranova ML. Physiological Roles of Eumelanin- and Melanogenesis-Associated Diseases: A Look at the Potentialities of Engineered and Microbial Eumelanin in Clinical Practice. Bioengineering (Basel) 2024; 11:756. [PMID: 39199714 PMCID: PMC11351163 DOI: 10.3390/bioengineering11080756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
This paper aims to highlight the physiological actions exerted by eumelanin present in several organs/tissues of the human body and to rationalise the often conflicting functional roles played by this biopolymer on the basis of its peculiar properties. Besides pigmentary disorders, a growing number of organ injuries and degenerative pathologies are presently ascribed to the modification of physiological eumelanin levels in terms of alterations in its chemical/structural features, and of a partial loss or uneven distribution of the pigment. The present review analyses the more recent research dedicated to the physiological and pathological actions of eumelanin and provides an insight into some melanogenesis-associated diseases of the skin, eye, ear, and brain, including the most significant neurodegenerative disorders. Also described are the potentialities of therapies based on the localised supply of exogeneous EU and the opportunities that EU produced via synthetic biology offers in order to redesign therapeutical and diagnostic applications.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dip.to di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", 00133 Roma, Italy
| |
Collapse
|
7
|
van Duijnhoven HJ, Dombrowski N, Kuperus P, Aires T, Coelho MA, Silva J, Muyzer G, Engelen AH. Draft genome of the marine bacterium Alteromonas gracilis strain J4 isolated from the green coenocytic alga Caulerpa prolifera. Microbiol Resour Announc 2024; 13:e0018424. [PMID: 38860800 PMCID: PMC11256841 DOI: 10.1128/mra.00184-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Here, we present the draft genome sequence of Alteromonas gracilis strain J4, isolated from the green macroalga Caulerpa prolifera. The draft genome is 4,492,914 bp in size and contains 4,719 coding DNA sequences, 67 tRNAs, and 16 rRNA-coding genes. Strain J4 may exhibit host growth-promoting properties.
Collapse
Affiliation(s)
- Hannah J. van Duijnhoven
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Nina Dombrowski
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Kuperus
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Tânia Aires
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Márcio A.G. Coelho
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - João Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Aschwin H. Engelen
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
8
|
Moustafa DA, Wu L, Ivey M, Fankhauser SC, Goldberg JB. Mutation of hmgA, encoding homogentisate 1,2-dioxygenase, is responsible for pyomelanin production but does not impact the virulence of Burkholderia cenocepacia in a chronic granulomatous disease mouse lung infection. Microbiol Spectr 2024; 12:e0041024. [PMID: 38809005 PMCID: PMC11218447 DOI: 10.1128/spectrum.00410-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis (CF) and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals; pigment production has been reported to enable Bcc strains to overcome the host cell oxidative burst. In this work, we investigated the role of pyomelanin in resistance to oxidative stress and virulence in strains J2315 and K56-2, two epidemic CF isolates belonging to the Burkholderia cenocepacia ET-12 lineage. We previously reported that a single amino acid change from glycine to arginine at residue 378 in homogentisate 1,2-dioxygenase (HmgA) affects the pigment production phenotype: pigmented J2315 has an arginine at position 378, while non-pigmented K56-2 has a glycine at this position. Herein, we performed allelic exchange to generate isogenic non-pigmented and pigmented strains of J2315 and K56-2, respectively, and tested these to determine whether pyomelanin contributes to the protection against oxidative stress in vitro as well as in a respiratory infection in CGD mice in vivo. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist oxidative stress with H2O2 and NO in vitro and did not change the virulence and infection outcome in CGD mice in vivo suggesting that other factors besides pyomelanin are contributing to the pathophysiology of these strains.IMPORTANCEThe Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria that are often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals and overcoming the host cell oxidative burst. We investigated the role of pyomelanin in Burkholderia cenocepacia strains J2315 (pigmented) and K56-2 (non-pigmented) and performed allelic exchange to generate isogenic non-pigmented and pigmented strains, respectively. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist H2O2 or NO in vitro and did not alter the outcome of a respiratory infection in CGD mice in vivo. These results suggest that pyomelanin may not always constitute a virulence factor and suggest that other features are contributing to the pathophysiology of these strains.
Collapse
Affiliation(s)
- Dina A Moustafa
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Linda Wu
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Melissa Ivey
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah C Fankhauser
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biology, Oxford College of Emory University, Oxford, Georgia, USA
| | - Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Muñoz-Torres P, Cárdenas-Ninasivincha S, Aguilar Y. Exploring the Agricultural Applications of Microbial Melanin. Microorganisms 2024; 12:1352. [PMID: 39065119 PMCID: PMC11278939 DOI: 10.3390/microorganisms12071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Microbial melanins are a group of pigments with protective effects against harsh conditions, showing fascinating photoprotective activities, mainly due to their capability to absorb UV radiation. In bacteria, they are produced by the oxidation of L-tyrosine, generating eumelanin and pheomelanin. Meanwhile, allomelanin is produced by fungi through the decarboxylative condensation of malonyl-CoA. Moreover, melanins possess antioxidant and antimicrobial activities, revealing significant properties that can be used in different industries, such as cosmetic, pharmaceutical, and agronomical. In agriculture, melanins have potential applications, including the development of new biological products based on this pigment for the biocontrol of phytopathogenic fungi and bacteria to reduce the excessive and toxic levels of agrochemicals used in fields. Furthermore, there are possibilities to develop and improve new bio-based pesticides that control pest insects through the use of melanin-producing and toxin-producing Bacillus thuringiensis or through the application of melanin to insecticidal proteins to generate a new product with improved resistance to UV radiation that can then be applied to the plants. Melanins and melanin-producing bacteria have potential applications in agriculture due to their ability to improve plant growth. Finally, the bioremediation of water and soils is possible through the application of melanins to polluted soils and water, removing synthetic dyes and toxic metals.
Collapse
Affiliation(s)
- Patricio Muñoz-Torres
- Laboratorio de Patología Vegetal y Bioproductos, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Av. General Velásquez 1775, Arica 1000000, Chile; (S.C.-N.); (Y.A.)
| | | | | |
Collapse
|
10
|
Guo Z, Feng Q, Mao X, Guo N, Yin Y, Liu T. Increased secretion of bacterial pyomelanin caused by light accelerates corrosion of low alloy steel. CHEMOSPHERE 2024; 359:142353. [PMID: 38761828 DOI: 10.1016/j.chemosphere.2024.142353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Microorganisms in the waterline zone can secrete pigments to avoid damage caused by ultraviolet radiation, some of which have corrosive effects. In this work, we found that the secretion of pyomelanin by P3 strain of Pseudoalteromonas lipolytica significantly increases under strong lighting conditions, accelerating the corrosion of the material. Molecular mechanisms indicate that strong light, as a stressful environmental factor, enhances the expression of melanin secretion-related genes to prevent bacteria from being damaged by ultraviolet radiation. Therefore, this work proposes a new corrosion mechanism in the waterline zone, pigment-producing microorganisms are also involved in the waterline corrosion process.
Collapse
Affiliation(s)
- Zhangwei Guo
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Qun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Xiaomin Mao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Na Guo
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Yansheng Yin
- Engineering Technology Research Center for Corrosion Control and Protection of Materials in Extreme Marine Environment, Guangzhou Maritime University, Guangzhou, 510725, China
| | - Tao Liu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China.
| |
Collapse
|
11
|
Li Y, Chen H, Xie X, Pang R, Huang S, Ying H, Chen M, Xue L, Zhang J, Ding Y, Wu Q. Skin microbiome profiling reveals the crucial role of microbial metabolites in anti-photoaging. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12987. [PMID: 38968385 DOI: 10.1111/phpp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Skin microbiota is essential for health maintenance. Photoaging is the primary environmental factor that affects skin homeostasis, but whether it influences the skin microbiota remains unclear. OBJECTIVE The objective of this study is to investigate the relationship between photoaging and skin microbiome. METHODS A cohort of senior bus drivers was considered as a long-term unilateral ultraviolet (UV) irradiated population. 16S rRNA amplicon sequencing was conducted to assess skin microbial composition variations on different sides of their faces. The microbiome characteristics of the photoaged population were further examined by photoaging guinea pig models, and the correlations between microbial metabolites and aging-related cytokines were analyzed by high-throughput sequencing and reverse transcription polymerase chain reaction. RESULTS Photoaging decreased the relative abundance of microorganisms including Georgenia and Thermobifida in human skin and downregulated the generation of skin microbe-derived antioxidative metabolites such as ectoin. In animal models, Lactobacillus and Streptobacillus abundance in both the epidermis and dermis dropped after UV irradiation, resulting in low levels of skin antioxidative molecules and leading to elevated expressions of the collagen degradation factors matrix metalloproteinase (MMP)-1 and MMP-2 and inflammatory factors such as interleukin (IL)-1β and IL-6. CONCLUSIONS Skin microbial characteristics have an impact in photoaging and the loss of microbe-derived antioxidative metabolites impairs skin cells and accelerates the aging process. Therefore, microbiome-based therapeutics may have potential in delaying skin aging.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhen Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shixuan Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hang Ying
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
12
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
13
|
Medina-Armijo C, Yousef I, Berná A, Puerta A, Esteve-Núñez A, Viñas M, Prenafeta-Boldú FX. Characterization of melanin from Exophiala mesophila with the prospect of potential biotechnological applications. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1390724. [PMID: 38812984 PMCID: PMC11134573 DOI: 10.3389/ffunb.2024.1390724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Introducion Fungal melanin is an underexplored natural biomaterial of great biotechnological interest in different areas. This study investigated the physical, chemical, electrochemical, and metal-binding properties of melanin extracted from the metallotolerant black fungus Exophiala mesophila strain IRTA-M2-F10. Materials and methods Specific inhibitory studies with tricyclazole and biochemical profiling of whole cells by synchrotron radiation-based Fourier-transform infrared spectral microscopy (SR-FTIRM) were performed. An optimized extraction protocol was implemented, and purified fungal melanin was characterized using an array of spectrophotometric techniques (UV-Vis, FTIR, and EPR) and by cyclic voltammetry (CV) experiments. The metal-binding capacity of melanin extracts was also assessed by using Cr(VI) as a model heavy metal. Results Inhibitory studies indicated that 1,8-dihydroxynaphthalene may be the main precursor molecule of E. mesophila melanin (DHN-melanin). The biochemical characterization of fungal melanin extracts were benchmarked against those from two melanins comprising the precursor molecule L-3,4-dihydroxiphenylalanine (DOPA-melanin): extracts from the ink of the cephalopod Sepia officinalis and DOPA-melanin synthesized in the laboratory. The CV results of melanin extracts incubated with and without cell suspensions of the electroconductive bacterium Geobacter sulfurreducens were indicative of novel semiquinone/hydroquinone redox transformations specific for each melanin type. These interactions may play an important role in cation exchange for the adsorption of metals and in microbial interspecies electron transfer processes. Discussion The obtained results provided further evidence for the DHN-nature of E. mesophila melanin. The FTIR profiling of melanin extracts exposed to Cr(VI), compared to unexposed melanin, resulted in useful information on the distinct surface-binding properties of fungal melanin. The parameters of the Langmuir and Freundlicht isotherms for the adsorption of Cr(VI) were determined and compared to bibliographic data. Altogether, the inherent properties of fungal melanin suggest its promising potential as a biomaterial for environmental applications.
Collapse
Affiliation(s)
- Cristy Medina-Armijo
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Catalonia, Spain
| | - Ibraheem Yousef
- MIRAS Beamline, ALBA Synchrotron Light Source, Cerdanyola del Vallés, Catalonia, Spain
| | | | - Anna Puerta
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| | - Abraham Esteve-Núñez
- Department of Chemical Engineering, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marc Viñas
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| | - Francesc X. Prenafeta-Boldú
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| |
Collapse
|
14
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
15
|
Maldonado-Ruiz K, Pedroza-Islas R, Pedraza-Segura L. Blue Biotechnology: Marine Bacteria Bioproducts. Microorganisms 2024; 12:697. [PMID: 38674641 PMCID: PMC11051736 DOI: 10.3390/microorganisms12040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The ocean is the habitat of a great number of organisms with different characteristics. Compared to terrestrial microorganisms, marine microorganisms also represent a vast and largely unexplored reservoir of bioactive compounds with diverse industrial applications like terrestrial microorganisms. This review examines the properties and potential applications of products derived from marine microorganisms, including bacteriocins, enzymes, exopolysaccharides, and pigments, juxtaposing them in some cases against their terrestrial counterparts. We discuss the distinct characteristics that set marine-derived products apart, including enhanced stability and unique structural features such as the amount of uronic acid and sulfate groups in exopolysaccharides. Further, we explore the uses of these marine-derived compounds across various industries, ranging from food and pharmaceuticals to cosmetics and biotechnology. This review also presents a broad description of biotechnologically important compounds produced by bacteria isolated from marine environments, some of them with different qualities compared to their terrestrial counterparts.
Collapse
Affiliation(s)
| | - Ruth Pedroza-Islas
- Department of Chemical, Industrial and Food Engineering, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico City 01210, Mexico; (K.M.-R.); (L.P.-S.)
| | | |
Collapse
|
16
|
Abd-El-Aziz AS, Abed NN, Mahfouz AY, Fathy RM. Production and characterization of melanin pigment from black fungus Curvularia soli AS21 ON076460 assisted gamma rays for promising medical uses. Microb Cell Fact 2024; 23:68. [PMID: 38408972 PMCID: PMC10895916 DOI: 10.1186/s12934-024-02335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Owing to the growing need for natural materials in different fields, studying melanin production from biological sources is imperative. In the current study, the extracellular melanin pigment was produced by the fungus Curvularia soli AS21 ON076460. The factors that affect the production of melanin were optimized by the Plackett-Burman design (P-BD). The effect of gamma irradiation on melanin productivity was investigated. The maximum melanin yield (3.376 mg/L) was elicited by a stimulus of gamma irradiation at 1.0 kGy. The results evoked that, Curvularia soli AS21 ON076460 melanin exhibited excellent antimicrobial activity against all tested bacteria and fungi. Klebsiella pneumoniae ATCC 13883 and P. digitatum were mostly affected by melanin registering the inhibition zone diameters of 37.51 ± 0.012 and 44.25 ± 0.214 mm, respectively. Moreover, Curvularia soli AS21 ON076460 melanin indicated a significant antiviral efficacy (77% inhibition) of Herpes simplex virus (HSV1). The melanin pigment showed antioxidant activities with IC50 of 42 ± 0.021 and 17 ± 0.02 µg/mL against DPPH and NO, respectively. Melanin had cytotoxic action against human breast cancer and skin cancer cell lines (Mcf7and A431) as well as exerting a low percentage of cell death against normal skin cell lines (Hfb4). Melanin was effective in wound management of human skin cells by 63.04 ± 1.83% compared with control (68.67 ± 1.10%). The novelty in the study is attributed to the possibility of using gamma rays as a safe method in small economic doses to stimulate melanin production from the fungi that have been isolated. In summary, melanin produced from fungi has significant biological activities that encourage its usage as a supportive medical route.
Collapse
Affiliation(s)
- Amira S Abd-El-Aziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Nermine N Abed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| | - Rasha Mohammad Fathy
- Drug Radiation Research Department, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt.
| |
Collapse
|
17
|
El-Zawawy NA, Kenawy ER, Ahmed S, El-Sapagh S. Bioproduction and optimization of newly characterized melanin pigment from Streptomyces djakartensis NSS-3 with its anticancer, antimicrobial, and radioprotective properties. Microb Cell Fact 2024; 23:23. [PMID: 38229042 PMCID: PMC10792909 DOI: 10.1186/s12934-023-02276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Melanin is a natural pigment that is considered a promising biomaterial for numerous biotechnological applications across several industries. Melanin has biomedical applications as antimicrobial, anticancer, and antioxidant properties. Additionally, in the pharmaceutical and cosmetic industries, it is used in drug delivery and as a radioprotective agent. Also, melanin has environmental uses in the fields of bioremediation and the food industry. The biosynthesis of melanin pigment is an area of interest for researchers due to its multifunctionality, high compatibility, and biodegradability. Therefore, our present work is the first attempt to characterize and optimize the productivity of melanin pigment from Streptomyces djakartensis NSS-3 concerning its radioprotection and biological properties. RESULTS Forty isolates of soil actinobacteria were isolated from the Wadi Allaqui Biosphere Reserve, Egypt. Only one isolate, ACT3, produced a dark brown melanin pigment extracellularly. This isolate was identified according to phenotypic properties and molecular phylogenetic analysis as Streptomyces djakartensis NSS-3 with accession number OP912881. Plackett-Burman experimental design (PBD) and response surface methodology (RSM) using a Box-Behnken design (BBD) were performed for optimum medium and culturing conditions for maximum pigment production, resulting in a 4.19-fold improvement in melanin production (118.73 mg/10 mL). The extracted melanin pigment was purified and characterized as belonging to nitrogen-free pyomelanin based on ultraviolet-visible spectrophotometry (UV-VIS), Fourier transform infrared (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and NMR studies. Purified melanin demonstrated potent scavenging activity with IC50 values of 18.03 µg/mL and revealed high potency as sunscreens (in vitro SPF = 18.5). Moreover, it showed a nontoxic effect on a normal cell line (WI38), while it had a concentration-dependent anticancer effect on HCT116, HEPG, and MCF7 cell lines with IC50 = 108.9, 43.83, and 81.99 µg/mL, respectively. Also, purified melanin had a detrimental effect on the tested MDR bacterial strains, of which PA-09 and SA-04 were clearly more susceptible to melanin compared with other strains with MICs of 6.25 and 25 µg/mL, respectively. CONCLUSION Our results demonstrated that the newly characterized pyomelanin from Streptomyces djakartensis NSS-3 has valuable biological properties due to its potential photoprotective, antioxidant, anticancer, antimicrobial, and lack of cytotoxic activities, which open up new prospects for using this natural melanin pigment in various biotechnological applications and avoiding chemical-based drugs.
Collapse
Affiliation(s)
- Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt.
| | - El-Refaie Kenawy
- Chemistry Department, Polymer Research Unit, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Ahmed
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Shimaa El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
18
|
Terol H, Thiour-Mauprivez C, Devers M, Martin-Laurent F, Suzuki M, Calvayrac C, Barthelmebs L. "Structural responses of non-targeted bacterial and hppd communities to the herbicide tembotrione in soil". THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168198. [PMID: 37914111 DOI: 10.1016/j.scitotenv.2023.168198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Tembotrione (TBT) is a β-triketone herbicide targeting the 4-Hydroxyphenylpyruvate dioxygenase enzyme (4-HPPD) of weeds. This molecule can also affect soil microorganisms, either through both direct and indirect toxic effects for microorganisms expressing 4-HPPD, or by promoting tolerant and/or degrading microbial populations. Our study aimed to characterize the impacts of TBT on the diversity of total- and hppd (coding for 4-HPPD) -soil bacterial communities. Soil microcosms were treated with the active ingredient TBT at the recommended field dose (100 g a.i/ha; D1) or the tenfold dose (D10). Soil samples were collected from 0 to 55 days post-treatment to study: (i) total- and hppd-bacterial diversities using 16SrRNA and hppd amplicons sequencing, respectively; (ii) TBT dissipation in soil. Both total- and hppd-bacterial community composition was not affected by TBT treatments (D1 and D10). However, D10 treatment slightly increased richness and phylogenetic diversity of the total bacterial community while decreasing hppd richness. Overall, the highest dose of TBT seemed to promote TBT-tolerant or TBT-degrading bacterial populations and to deplete TBT-sensitive ones. These effects were transient as TBT was rapidly dissipated with a DT50 of 7 days and 15 days for D1 and D10, respectively. Differential abundance analysis with a Generalized Linear Model allowed the identification of Sphingomonas, Steroidobacter and Lysobacter as genus that were influenced by TBT, and which could be used as a new class of exposure biomarkers.
Collapse
Affiliation(s)
- Hugo Terol
- Université de Perpignan Via Domitia, Biocapteurs-Analyse-Environnement, 66860 Perpignan, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Clémence Thiour-Mauprivez
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Marion Devers
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Fabrice Martin-Laurent
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Marcelino Suzuki
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Christophe Calvayrac
- Université de Perpignan Via Domitia, Biocapteurs-Analyse-Environnement, 66860 Perpignan, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Lise Barthelmebs
- Université de Perpignan Via Domitia, Biocapteurs-Analyse-Environnement, 66860 Perpignan, France; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France.
| |
Collapse
|
19
|
Elattar KM, Ghoniem AA, Al-Askar AA, El-Gazzar UB, El-Hersh MS, Elsherbiny EA, Eldadamony NM, Saber WIA. Melanin Synthesized by the Endophytic Aureobasidium Pullulans AKW: A Multifaceted Biomolecule with Antioxidant, Wound Healing, and Selective Anti-Cancer Activity. Curr Top Med Chem 2024; 24:2141-2160. [PMID: 39161142 DOI: 10.2174/0115680266300091240730111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 06/05/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION This study explores the potential of the endophytic fungus Aureobasidium pullulans AKW for melanin production and its anticancer activity. METHOD We report a significant achievement: A. pullulans AKW synthesized 4.89 g/l of melanin in a simple fermentation medium devoid of tyrosine, a precursor typically required for melanin biosynthesis. This suggests a potentially novel pathway for melanin production compared to previous studies relying on complex media and tyrosine. Furthermore, the isolated and characterized melanin exhibited promising selectivity as an anti-cancer agent. It triggered apoptosis in A431 cancer cells, demonstrating some selectivity compared to normal cells. This selectivity was confirmed by IC50 values and further supported by gene expression changes in A431 cells. Melanin treatment downregulated the anti-apoptotic Bcl2 gene while upregulating pro-apoptotic Bax and p53 genes, indicating its ability to induce programmed cell death in cancer cells. RESULT Our results demonstrate that A. pullulans AKW-derived melanin exhibits cytotoxic effects against A431, HEPG2, and MCF7 cell lines. Interestingly, the present fungal strain synthesized melanin in a simple medium without requiring precursors. CONCLUSION The selective activity of the current melanin towards cancer cells, its ability to induce apoptosis, and its relatively low toxicity towards normal cells warrant further investigation for its development as a novel therapeutic option.
Collapse
Affiliation(s)
- Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza12619, Egypt
| | - Abdulaziz A Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Usama Bhgat El-Gazzar
- Department of Medical Biochemistry, Damietta Faculty of Medicine, Al-Azhar University, Egypt
| | - Mohammed S El-Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza12619, Egypt
| | - Elsherbiny A Elsherbiny
- Department of Biology, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU), 67663Kaiserslautern, Germany
| | - Noha M Eldadamony
- Seed Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Giza12619, Egypt
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza12619, Egypt
| |
Collapse
|
20
|
Barreto JVDO, Casanova LM, Junior AN, Reis-Mansur MCPP, Vermelho AB. Microbial Pigments: Major Groups and Industrial Applications. Microorganisms 2023; 11:2920. [PMID: 38138065 PMCID: PMC10745774 DOI: 10.3390/microorganisms11122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial pigments have many structures and functions with excellent characteristics, such as being biodegradable, non-toxic, and ecologically friendly, constituting an important source of pigments. Industrial production presents a bottleneck in production cost that restricts large-scale commercialization. However, microbial pigments are progressively gaining popularity because of their health advantages. The development of metabolic engineering and cost reduction of the bioprocess using industry by-products opened possibilities for cost and quality improvements in all production phases. We are thus addressing several points related to microbial pigments, including the major classes and structures found, the advantages of use, the biotechnological applications in different industrial sectors, their characteristics, and their impacts on the environment and society.
Collapse
Affiliation(s)
| | | | | | | | - Alane Beatriz Vermelho
- Bioinovar Laboratory, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.V.d.O.B.); (L.M.C.); (A.N.J.); (M.C.P.P.R.-M.)
| |
Collapse
|
21
|
Mahmoudi N, Wilhelm RC. Can we manage microbial systems to enhance carbon storage? Environ Microbiol 2023; 25:3011-3018. [PMID: 37431673 DOI: 10.1111/1462-2920.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Climate change is an urgent environmental issue with wide-ranging impacts on ecosystems and society. Microbes are instrumental in maintaining the balance between carbon (C) accumulation and loss in the biosphere, actively regulating greenhouse gas fluxes from vast reservoirs of organic C stored in soils, sediments and oceans. Heterotrophic microbes exhibit varying capacities to access, degrade and metabolise organic C-leading to variations in remineralisation and turnover rates. The present challenge lies in effectively translating this accumulated knowledge into strategies that effectively steer the fate of organic C towards prolonged sequestration. In this article, we discuss three ecological scenarios that offer potential avenues for shaping C turnover rates in the environment. Specifically, we explore the promotion of slow-cycling microbial byproducts, the facilitation of higher carbon use efficiency, and the influence of biotic interactions. The ability to harness and control these processes relies on the integration of ecological principles and management practices, combined with advances in economically viable technologies to effectively manage microbial systems in the environment.
Collapse
Affiliation(s)
- Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, Montréal, Quebec, Canada
| | - Roland C Wilhelm
- Department of Agronomy, Lilly Hall of Life Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
22
|
Chávez-Hernández M, Ortiz-Álvarez J, Morales-Jiménez J, Villa-Tanaca L, Hernández-Rodríguez C. Phenotypic and Genomic Characterization of Streptomyces pakalii sp. nov., a Novel Species with Anti-Biofilm and Anti-Quorum Sensing Activity in ESKAPE Bacteria. Microorganisms 2023; 11:2551. [PMID: 37894209 PMCID: PMC10608816 DOI: 10.3390/microorganisms11102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing number of infections caused by antimicrobial multi-resistant microorganisms has led to the search for new microorganisms capable of producing novel antibiotics. This work proposes Streptomyces pakalii sp. nov. as a new member of the Streptomycetaceae family. The strain ENCB-J15 was isolated from the jungle soil in Palenque National Park, Chiapas, Mexico. The strain formed pale brown, dry, tough, and buried colonies in the agar with no diffusible pigment in GAE (glucose-asparagine-yeast extract) medium. Scanning electron micrographs showed typical mycelium with long chains of smooth and oval-shaped spores (3-10 m). The strain grew in all of the International Streptomyces Project (ISP)'s media at 28-37 °C with a pH of 6-9 and 0-10% NaCl. S. pakalii ENCB-J15 assimilated diverse carbon as well as organic and inorganic nitrogen sources. The strain also exhibited significant inhibitory activity against the prodigiosin synthesis of Serratia marcescens and the inhibition of the formation and destruction of biofilms of ESKAPE strains of Acinetobacter baumannii and Klebsiella pneumoniae. The draft genome sequencing of ENCB-J15 revealed a 7.6 Mb genome with a high G + C content (71.6%), 6833 total genes, and 6746 genes encoding putative proteins. A total of 26 accessory clusters of proteins associated with carbon sources and amino acid catabolism, DNA modification, and the antibiotic biosynthetic process were annotated. The 16S rRNA gene phylogeny, core-proteome phylogenomic tree, and virtual genome fingerprints support that S. pakalii ENCB-J15 is a new species related to Streptomyces badius and Streptomyces globisporus. Similarly, its average nucleotide identity (ANI) (96.4%), average amino acid identity (AAI) (96.06%), and virtual DNA-DNA hybridization (67.3%) provide evidence to recognize it as a new species. Comparative genomics revealed that S. pakalli and its closest related species maintain a well-conserved genomic synteny. This work proposes Streptomyces pakalii sp. nov. as a novel species that expresses anti-biofilm and anti-quorum sensing activities.
Collapse
Affiliation(s)
- Michelle Chávez-Hernández
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| | - Jossue Ortiz-Álvarez
- Programa “Investigadoras e Investigadores por México”. Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT). Av. de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México 03940, Mexico;
| | - Jesús Morales-Jiménez
- Departamento el Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico;
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| |
Collapse
|
23
|
Michael HSR, Subiramanian SR, Thyagarajan D, Mohammed NB, Saravanakumar VK, Govindaraj M, Maheswari KM, Karthikeyan N, Ramesh Kumar C. Melanin biopolymers from microbial world with future perspectives-a review. Arch Microbiol 2023; 205:306. [PMID: 37580645 DOI: 10.1007/s00203-023-03642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Melanin is an amorphous polymer made of heterogeneous functional groups synthesized by diverse organisms including fungi, bacteria, animals, and plants. It was widely acknowledged for its biological processes and its key role in the protection of organisms from environmental stress. Recently, melanin clutches attention in the field of nanobiotechnology, drug delivery, organic semiconductors and bioelectronics, environmental bioremediation, photoprotection, etc., Furthermore, melanin from natural sources like microbial community shows antimicrobial, fighting cancer, radical scavenging, cosmeceuticals, and many therapeutic areas as well. Though the multipotentiality nature of melanin has been put forth, real-world applications still flag fall behind, which might be anticipated to the inadequate and high price essence of natural melanin. However, current bioprocess technologies have paved for the large-scale or industrial production of microbial melanin, which could help in the replacement of synthetic melanin. Thus, this review emphasizes the various sources for melanin, i.e., types-based on its pathways and its chemical structures, functional efficiency, physical properties, and conventional and modern methods of both extraction and characterization. Moreover, an outlook on how it works in the field of medicine, bioremediation, and other related areas provides perspectives on the complete exploitation of melanin in practical applications of medicine and the environment.
Collapse
Affiliation(s)
| | - Shri Ranjani Subiramanian
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Divyavaahini Thyagarajan
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Nazneen Bobby Mohammed
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur Dist, Andhra Pradesh, India
| | | | - Mageswari Govindaraj
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | | | - Naresh Karthikeyan
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| | - Charu Ramesh Kumar
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore, India
| |
Collapse
|
24
|
Crispim AC, Crispim SMA, Rocha JR, Ursulino JS, Sobrinho RR, Porto VA, Bento ES, Santana AEG, Caetano LC. Light effects on Lasiodiplodia theobromae metabolome cultured in vitro. Metabolomics 2023; 19:75. [PMID: 37580624 DOI: 10.1007/s11306-023-02041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
INTRODUCTION The present work identified and compared intracellular metabolites and metabolic networks in mycelial cultures of Lasiodiplodia theobromae grown under 12 natural light and 24 hours' dark using a 1 H NMR-based metabolomics approach. MATERIALS AND METHODS Fungal cultures were grown in potato dextrose media, and metabolites were extracted by sonication with sodium phosphate-buffered saline (pH = 6.0, 10% D2O, 0.1 mM TSP) from mycelium samples collected every week over four weeks. RESULTS Multivariate analyses revealed that the light exposure group showed a positive correlation within beta-hydroxybutyrate, acetoacetate, acetone, betaine, choline, glycerol, and phosphocholine. On the other hand, phenyl acetate, leucine, isoleucine, valine, and tyrosine were positively correlated with dark conditions. Light favored the oxidative degradation of valine, leucine, and isoleucine, leading to the accumulation of choline, phosphocholine, betaine, and ketone bodies (ketogenesis). Ketogenesis, gluconeogenesis, and the biosynthesis of choline, phosphocholine, and betaine, were considered discriminatory routes for light conditions. The light-sensing pathways were interlinked with fungal development, as verified by the increased production of mycelia biomass without fruiting bodies and stress signaling, as demonstrated by the increased production of pigments.
Collapse
Affiliation(s)
- Alessandre C Crispim
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil.
| | - Shirley M A Crispim
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Jéssica R Rocha
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Jeferson S Ursulino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Roberto R Sobrinho
- School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Viviane A Porto
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | - Edson S Bento
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Antônio E G Santana
- Campus of Engineering and Agricultural Sciences, CECA Federal University of Alagoas, Maceió, AL, Brazil
| | - Luiz C Caetano
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| |
Collapse
|
25
|
Kang Y, Wu W, Zhang F, Chen L, Wang R, Ye J, Wu H, Zhang H. AdpA lin regulates lincomycin and melanin biosynthesis by modulating precursors flux in Streptomyces lincolnensis. J Basic Microbiol 2023; 63:622-631. [DOI: doi.org/10.1002/jobm.202200692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/21/2023] [Indexed: 10/09/2023]
Abstract
AbstractLincomycin is one of the most important antibiotics. However, transcriptional regulation network of secondary metabolism in Streptomyces lincolnensis, the lincomycin producer, remained obscure. AdpA from S. lincolnensis (namely AdpAlin) has been proved to activate lincomycin biosynthesis. Here we found that both lincomycin and melanin took l‐tyrosine as precursor, and AdpAlin activated melanin biosynthesis as well. Three tyrosinases, MelC2, MelD2, and MelE, and one tyrosine peroxygenase, LmbB2, participated in lincomycin and melanin biosynthesis in different ways. For melanin biosynthesis, MelC2 was the only key enzyme required. For lincomycin biosynthesis, MelD2 and LmbB2 were positive factors and were suggested to convert l‐tyrosine to l‐dihydroxyphenylalanine (l‐DOPA). Otherwise, MelC2 and MelE were negative factors for lincomycin biosynthesis and they were supposed to oxidize l‐DOPA to generate melanin and certain unknown metabolite, respectively. Based on in silico analysis combined with electrophoretic mobility shift assays (EMSAs), we proved that AdpAlin directly interacted with promoters of melC, melD, and melE by binding to putative AdpA‐binding sites in vitro. Moreover, in vivo experiments revealed that AdpAlin positively regulated the transcription of melC and melE, but negatively regulated melD. In conclusion, AdpAlin was the switch of secondary metabolism in S. lincolnensis, and it modulated precursor flux of lincomycin and melanin biosynthesis by directly activating melC, melE, and lmbB1/lmbB2 or repressing melD.
Collapse
Affiliation(s)
- Yajing Kang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Wei Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Department of Applied Biology East China University of Science and Technology Shanghai China
| |
Collapse
|
26
|
Shah FH, Eom YS, Kim SJ. Evaluation of phytochemicals of Poria cocos against tyrosinase protein: a virtual screening, pharmacoinformatics and molecular dynamics study. 3 Biotech 2023; 13:199. [PMID: 37215373 PMCID: PMC10195939 DOI: 10.1007/s13205-023-03626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Tyrosinase inhibitors are commonly used in the pharmaceutical and cosmetic industries for skin lightening and hypopigmentation. The current inhibitors of tyrosinase induce strong safety concerns which necessitate the discovery of new inhibitors. Natural compounds are a promising solution to discover potential candidate for anti-melanogenic activity as they possess less safety concerns and high therapeutic effect. The current study aimed to screen and identify potential phytochemicals from Poria cocos for tyrosinase inhibition. The phytochemicals were obtained from the Traditional Chinese Medicine System Pharmacology Database and screened for druglikeness score and toxicity class and then subjected to in-silico virtual screening and molecular dynamics. 7,9-(11)-Dehydropachymic acid established hydrogen interaction with the tyrosinase protein and was found to be highly stable as validated with MD simulations. The pharmacokinetic results showed that this compound has adequate toxicity and ADME profile that can be exploited for anti-melanogenic effects. Our study identified 7,9-(11)-dehydropachymic acid as an efficient candidate for tyrosinase inhibition. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03626-8.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588 Republic of Korea
| | - Young Seok Eom
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588 Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588 Republic of Korea
| |
Collapse
|
27
|
Henao L, Zade RSH, Restrepo S, Husserl J, Abeel T. Genomes of four Streptomyces strains reveal insights into putative new species and pathogenicity of scab-causing organisms. BMC Genomics 2023; 24:143. [PMID: 36959546 PMCID: PMC10037901 DOI: 10.1186/s12864-023-09190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/15/2023] [Indexed: 03/25/2023] Open
Abstract
Genomes of four Streptomyces isolates, two putative new species (Streptomyces sp. JH14 and Streptomyces sp. JH34) and two non thaxtomin-producing pathogens (Streptomyces sp. JH002 and Streptomyces sp. JH010) isolated from potato fields in Colombia were selected to investigate their taxonomic classification, their pathogenicity, and the production of unique secondary metabolites of Streptomycetes inhabiting potato crops in this region. The average nucleotide identity (ANI) value calculated between Streptomyces sp. JH34 and its closest relatives (92.23%) classified this isolate as a new species. However, Streptomyces sp. JH14 could not be classified as a new species due to the lack of genomic data of closely related strains. Phylogenetic analysis based on 231 single-copy core genes, confirmed that the two pathogenic isolates (Streptomyces sp. JH010 and JH002) belong to Streptomyces pratensis and Streptomyces xiamenensis, respectively, are distant from the most well-known pathogenic species, and belong to two different lineages. We did not find orthogroups of protein-coding genes characteristic of scab-causing Streptomycetes shared by all known pathogenic species. Most genes involved in biosynthesis of known virulence factors are not present in the scab-causing isolates (Streptomyces sp. JH002 and Streptomyces sp. JH010). However, Tat-system substrates likely involved in pathogenicity in Streptomyces sp. JH002 and Streptomyces sp. JH010 were identified. Lastly, the presence of a putative mono-ADP-ribosyl transferase, homologous to the virulence factor scabin, was confirmed in Streptomyces sp. JH002. The described pathogenic isolates likely produce virulence factors uncommon in Streptomyces species, including a histidine phosphatase and a metalloprotease potentially produced by Streptomyces sp. JH002, and a pectinesterase, potentially produced by Streptomyces sp. JH010. Biosynthetic gene clusters (BGCs) showed the presence of clusters associated with the synthesis of medicinal compounds and BGCs potentially linked to pathogenicity in Streptomyces sp. JH010 and JH002. Interestingly, BGCs that have not been previously reported were also found. Our findings suggest that the four isolates produce novel secondary metabolites and metabolites with medicinal properties.
Collapse
Affiliation(s)
- Laura Henao
- Department of Civil and Environmental Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | | | - Silvia Restrepo
- Laboratory of Mycology and Phytopathology - (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Johana Husserl
- Department of Civil and Environmental Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, 2628 XE, Delft, Netherlands.
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
28
|
Fan X, Zhang P, Batool W, Liu C, Hu Y, Wei Y, He Z, Zhang SH. Contribution of the Tyrosinase (MoTyr) to Melanin Synthesis, Conidiogenesis, Appressorium Development, and Pathogenicity in Magnaporthe oryzae. J Fungi (Basel) 2023; 9:jof9030311. [PMID: 36983479 PMCID: PMC10059870 DOI: 10.3390/jof9030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Dihydroxynapthalene-(DHN) and L-dihydroxyphenylalanine (L-DOPA) are two types of dominant melanin in fungi. Fungal melanins with versatile functions are frequently associated with pathogenicity and stress tolerance. In rice blast fungus, Magnaporthe oryzae, DHN melanin is essential to maintain the integrity of the infectious structure, appressoria; but the role of the tyrosinase-derived L-DOPA melanin is still unknown. Here, we have genetically and biologically characterized a tyrosinase gene (MoTyr) in M. oryzae. MoTyr encodes a protein of 719 amino acids that contains the typical CuA and CuB domains of tyrosinase. The deletion mutant of MoTyr (ΔMoTyr) was obtained by using a homologous recombination approach. Phenotypic analysis showed that conidiophore stalks and conidia formation was significantly reduced in ΔMoTyr. Under different concentrations of glycerol and PEG, more appressoria collapsed in the mutant strains than in the wild type, suggesting MoTyr is associated with the integrity of the appressorium wall. Melanin measurement confirmed that MoTyr loss resulted in a significant decrease in melanin synthesis. Accordingly, the loss of MoTyr stunted the conidia germination under stress conditions. Importantly, the MoTyr deletion affected both infection and pathogenesis stages. These results suggest that MoTyr, like DHN pigment synthase, plays a key role in conidiophore stalks formation, appressorium integrity, and pathogenesis of M. oryzae, revealing a potential drug target for blast disease control.
Collapse
Affiliation(s)
- Xiaoning Fan
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Penghui Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Wajjiha Batool
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chang Liu
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yan Hu
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yi Wei
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, China
| | - Shi-Hong Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence:
| |
Collapse
|
29
|
Guo L, Li W, Gu Z, Wang L, Guo L, Ma S, Li C, Sun J, Han B, Chang J. Recent Advances and Progress on Melanin: From Source to Application. Int J Mol Sci 2023; 24:4360. [PMID: 36901791 PMCID: PMC10002160 DOI: 10.3390/ijms24054360] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Melanin is a biological pigment formed by indoles and phenolic compounds. It is widely found in living organisms and has a variety of unique properties. Due to its diverse characteristics and good biocompatibility, melanin has become the focus in the fields of biomedicine, agriculture, the food industry, etc. However, due to the wide range of melanin sources, complex polymerization properties, and low solubility of specific solvents, the specific macromolecular structure and polymerization mechanism of melanin remain unclear, which significantly limits the further study and application of melanin. Its synthesis and degradation pathways are also controversial. In addition, new properties and applications of melanin are constantly being discovered. In this review, we focus on the recent advances in the research of melanin in all aspects. Firstly, the classification, source, and degradation of melanin are summarized. Secondly, a detailed description of the structure, characterization, and properties of melanin is followed. The novel biological activity of melanin and its application is described at the end.
Collapse
Affiliation(s)
- Lili Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Wenya Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Zhiyang Gu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Litong Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Lan Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Saibo Ma
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
30
|
Kang Y, Wu W, Zhang F, Chen L, Wang R, Ye J, Wu H, Zhang H. AdpA lin regulates lincomycin and melanin biosynthesis by modulating precursors flux in Streptomyces lincolnensis. J Basic Microbiol 2023. [PMID: 36734183 DOI: 10.1002/jobm.202200692] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023]
Abstract
Lincomycin is one of the most important antibiotics. However, transcriptional regulation network of secondary metabolism in Streptomyces lincolnensis, the lincomycin producer, remained obscure. AdpA from S. lincolnensis (namely AdpAlin ) has been proved to activate lincomycin biosynthesis. Here we found that both lincomycin and melanin took l-tyrosine as precursor, and AdpAlin activated melanin biosynthesis as well. Three tyrosinases, MelC2, MelD2, and MelE, and one tyrosine peroxygenase, LmbB2, participated in lincomycin and melanin biosynthesis in different ways. For melanin biosynthesis, MelC2 was the only key enzyme required. For lincomycin biosynthesis, MelD2 and LmbB2 were positive factors and were suggested to convert l-tyrosine to l-dihydroxyphenylalanine (l-DOPA). Otherwise, MelC2 and MelE were negative factors for lincomycin biosynthesis and they were supposed to oxidize l-DOPA to generate melanin and certain unknown metabolite, respectively. Based on in silico analysis combined with electrophoretic mobility shift assays (EMSAs), we proved that AdpAlin directly interacted with promoters of melC, melD, and melE by binding to putative AdpA-binding sites in vitro. Moreover, in vivo experiments revealed that AdpAlin positively regulated the transcription of melC and melE, but negatively regulated melD. In conclusion, AdpAlin was the switch of secondary metabolism in S. lincolnensis, and it modulated precursor flux of lincomycin and melanin biosynthesis by directly activating melC, melE, and lmbB1/lmbB2 or repressing melD.
Collapse
Affiliation(s)
- Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Feixue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
31
|
Pyomelanin production via heterologous expression of 4-hydroxyphenylpyruvate dioxygenase (HPPD) and construction of HPPD inhibitor screening model. J Biosci Bioeng 2023; 135:93-101. [PMID: 36470730 DOI: 10.1016/j.jbiosc.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022]
Abstract
Melanin has an increasing market demand in cosmetics, food, medicine as well as aerospace due to its unique properties. Heterologous expression of 4-hydroxyphenylpyruvate dioxygenase (HPPD) from the melanin-producing strain Streptomyces fungicidicus NW-EN1 in Escherichia coli shortened the fermentation cycle of melanin. HPPD catalyzed 4-hydrophenylpyruvate (HPP) to form homologous acid (HGA) and finally form melanin. The purified melanin had the highest absorption peak at 460 nm. Fourier transform infrared spectroscopy and scanning electron microscope scanning showed that the pigment had universal characteristic peaks. The presence of HGA, a predictor of pyomelanin, was identified by high-performance liquid chromatography analysis. The recombinant E. coli produced 804.4 ± 5.9 mg/L pyomelanin within 48 h. Metal ions had a great influence on the production of pyomelanin. Pyomelanin was stable in response to light intensity and had a protective effect against bacteria under UV irradiation. Meanwhile, we utilized the chromogenic effect after whole-cell catalysis to reflect the inhibition of the HPPD inhibitors (mesotrione and isoxaflutole) on HPPD by observing the color change. As a rapid method to test the action of inhibitors, this method is expected to be useful for the development of HPPD-inhibiting herbicides.
Collapse
|
32
|
Surface-facilitated formation of polydopamine and its implications in melanogenesis. Colloids Surf B Biointerfaces 2023; 222:113068. [PMID: 36481509 DOI: 10.1016/j.colsurfb.2022.113068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
This manuscript examines influences of differently functionalized surfaces on the formation of solution-dispersed polydopamine (pDA). Glass vials functionalized with different functional groups provided a set of conditions with which the relationship between the area of active surface and the rate of pDA formation could be systematically studied. The results suggest that charged and polar surfaces accelerate pDA formation in solution, with the effect of -NH2 surfaces being exceptionally strong. In the vials, pDA formed as both forms of dispersions in solution and films at solid-liquid interface. Further analyses confirmed that both forms of pDA formed with -NH2 surfaces were chemically similar to conventional pDA synthesized without help of functional surfaces. Among short peptide-based amyloid fibers with defined surface functional groups, and those displaying lysines (-NH2) greatly accelerated the formation of pDA, consistent with the results of -NH2-functionalized vials. The results suggest that pDA formation may be facilitated by surface functional groups of solid-liquid interfaces, and have implications for the overlooked roles of amyloid fibers in biological melanogenesis.
Collapse
|
33
|
Kuttan SP, Abdulaziz A, Chekidhenkuzhiyil J, Raj D, Mohan M, Athiyanathil S. Characterization of pyomelanin secreted by Shewanella sp. and their application in metal recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6705-6715. [PMID: 36006536 DOI: 10.1007/s11356-022-22686-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Melanin is a biopolymer with versatile structural and functional properties and diverse applications in recovering toxic chemicals from water and wastewater, biomedical imaging, and as theragnostic agent. We report the structural characterization and biosynthetic pathway of an extracellular pyomelanin secreted by a sponge-associated bacterium, Shewanella sp. (Shewanella-melanin), and their potential application in metal recovery from liquid. Pyomelanin particles of > 50 µm size were found in the culture medium within 48 h of growth, which were formed through the self-polymerization of benzoquinone molecule produced through homogentisic acid pathway. The aspC and hppD genes involved in the biosynthetic pathway of pyomelanin were detected in the whole genome sequence of Shewanella sp. The FT-IR spectra of Shewanella-melanin, at ~ 3300-3420 cm-1 corresponding to the stretching vibration of -NH and -OH, was in good agreement with that of Sepia melanin, while its elemental composition (C/N/H/S of 29.2:8.23:6.41:1.58) was unique. Shewanella-melanin showed ~ 300 and ~ 950 times increased chelation of manganese and iron from a liquid medium supplemented with 2 mM of MnSO4 and FeSO4, respectively, compared to a control. The FT-IR spectrum showed the binding of metal ions to the carboxylic acid, hydroxyl, and amine groups of Shewanella-melanin. The Shewanella-melanin, with its excellent metal biosorption, could be a potential candidate for removing toxic compounds from water, in turn contributing to the fulfillment of sustainable development goal (SDG) 6.
Collapse
Affiliation(s)
| | - Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr. Salim Ali Road, Kochi, Kerala, 682 018, India.
| | - Jasmin Chekidhenkuzhiyil
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr. Salim Ali Road, Kochi, Kerala, 682 018, India
| | - Devika Raj
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr. Salim Ali Road, Kochi, Kerala, 682 018, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala, 686 560, India
| | - Sujith Athiyanathil
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673 601, India
| |
Collapse
|
34
|
Muñoz-Miranda LA, Iñiguez-Moreno M. An extensive review of marine pigments: sources, biotechnological applications, and sustainability. AQUATIC SCIENCES 2023; 85:68. [PMID: 37096011 PMCID: PMC10112328 DOI: 10.1007/s00027-023-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The global demand for food and healthcare products based on natural compounds means that the industrial and scientific sectors are on a continuous search for natural colored compounds that can contribute to the replacement of synthetic colors. Natural pigments are a heterogeneous group of chemical molecules, widely distributed in nature. Recently, the interest in marine organisms has increased as they represent the most varied environment in the world and provide a wide range of colored compounds with bioactive properties and biotechnological applications in areas such as the food, pharmaceutical, cosmetic, and textile industries. The use of marine-derived pigments has increased during the last two decades because they are environmentally safe and healthy compounds. This article provides a comprehensive review of the current knowledge of sources, applications, and sustainability of the most important marine pigments. In addition, alternatives to protect these compounds from environmental conditions and their applications in the industrial sector are reviewed.
Collapse
Affiliation(s)
- Luis Alfonso Muñoz-Miranda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 Jalisco Mexico
| | - Maricarmen Iñiguez-Moreno
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey, 64849 Mexico
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849 Mexico
- Universidad Politécnica del Estado de Nayarit, Tepic, 63506 Nayarit Mexico
| |
Collapse
|
35
|
Styczynski M, Rogowska A, Nyabayo C, Decewicz P, Romaniuk F, Pączkowski C, Szakiel A, Suessmuth R, Dziewit L. Heterologous production and characterization of a pyomelanin of Antarctic Pseudomonas sp. ANT_H4: a metabolite protecting against UV and free radicals, interacting with iron from minerals and exhibiting priming properties toward plant hairy roots. Microb Cell Fact 2022; 21:261. [PMID: 36527127 PMCID: PMC9756463 DOI: 10.1186/s12934-022-01990-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Antarctica has one of the most extreme environments in the world. This region is inhabited by specifically adapted microorganisms that produce various unique secondary metabolites (e.g. pigments) enabling their survival under the harsh environmental conditions. It was already shown that these natural, biologically active molecules may find application in various fields of biotechnology. RESULTS In this study, a cold-active brown-pigment-producing Pseudomonas sp. ANT_H4 strain was characterized. In-depth genomic analysis combined with the application of a fosmid expression system revealed two different pathways of melanin-like compounds biosynthesis by the ANT_H4 strain. The chromatographic behavior and Fourier-transform infrared spectroscopic analyses allowed for the identification of the extracted melanin-like compound as a pyomelanin. Furthermore, optimization of the production and thorough functional analyses of the pyomelanin were performed to test its usability in biotechnology. It was confirmed that ANT_H4-derived pyomelanin increases the sun protection factor, enables scavenging of free radicals, and interacts with the iron from minerals. Moreover, it was shown for the first time that pyomelanin exhibits priming properties toward Calendula officinalis hairy roots in in vitro cultures. CONCLUSIONS Results of the study indicate the significant biotechnological potential of ANT_H4-derived pyomelanin and open opportunities for future applications. Taking into account protective features of analyzed pyomelanin it may be potentially used in medical biotechnology and cosmetology. Especially interesting was showing that pyomelanin exhibits priming properties toward hairy roots, which creates a perspective for its usage for the development of novel and sustainable agrotechnical solutions.
Collapse
Affiliation(s)
- Michal Styczynski
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agata Rogowska
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Christine Nyabayo
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Przemyslaw Decewicz
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Filip Romaniuk
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cezary Pączkowski
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Szakiel
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Roderich Suessmuth
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Lukasz Dziewit
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Elucidating the Role of Santalol as a Potent Inhibitor of Tyrosinase: In Vitro and In Silico Approaches. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248915. [PMID: 36558055 PMCID: PMC9786741 DOI: 10.3390/molecules27248915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
This research work focuses on the potential application of an organic compound, santalol, obtained from santalum album, in the inhibition of the enzyme tyrosinase, which is actively involved in the biosynthesis of melanin pigment. Over-production of melanin causes undesirable pigmentation in humans as well as other organisms and significantly downgrades their aesthetic value. The study is designed to explain the purification of tyrosinase from the mushroom Agaricus bisporus, followed by activity assays and enzyme kinetics to give insight into the santalol-modulated tyrosinase inhibition in a dose-dependent manner. The multi-spectroscopic techniques such as UV-vis, fluorescence, and isothermal calorimetry are employed to deduce the efficiency of santalol as a potential candidate against tyrosinase enzyme activity. Experimental results are further verified by molecular docking. Santalol, derived from the essential oils of santalum album, has been widely used as a remedy for skin disorders and a potion for a fair complexion since ancient times. Based on enzyme kinetics and biophysical characterization, this is the first scientific evidence where santalol inhibits tyrosinase, and santalol may be employed in the agriculture, food, and cosmetic industries to prevent excess melanin formation or browning.
Collapse
|
37
|
Villa F, Wu YL, Zerboni A, Cappitelli F. In Living Color: Pigment-Based Microbial Ecology At the Mineral-Air Interface. Bioscience 2022; 72:1156-1175. [PMID: 36451971 PMCID: PMC9699719 DOI: 10.1093/biosci/biac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pigment-based color is one of the most important phenotypic traits of biofilms at the mineral-air interface (subaerial biofilms, SABs), because it reflects the physiology of the microbial community. Because color is the hallmark of all SABs, we argue that pigment-based color could convey the mechanisms that drive microbial adaptation and coexistence across different terrestrial environments and link phenotypic traits to community fitness and ecological dynamics. Within this framework, we present the most relevant microbial pigments at the mineral-air interface and discuss some of the evolutionary landscapes that necessitate pigments as adaptive strategies for resource allocation and survivability. We report several pigment features that reflect SAB communities' structure and function, as well as pigment ecology in the context of microbial life-history strategies and coexistence theory. Finally, we conclude the study of pigment-based ecology by presenting its potential application and some of the key challenges in the research.
Collapse
|
38
|
Wu CC, Li H, Yin ZW, Zhang HT, Gao MJ, Zhu L, Zhan XB. Isolation, purification, and characterization of novel melanin from the submerged fermentation of Rhizobium radiobacter. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Pleiotropic Effects of Hfq on the Cytochrome c Content and Pyomelanin Production in Shewanella oneidensis. Appl Environ Microbiol 2022; 88:e0128922. [PMID: 36073941 PMCID: PMC9499022 DOI: 10.1128/aem.01289-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis is the best understood model microorganism for the study of diverse cytochromes (cytos) c that support its unparallel respiratory versatility. Although RNA chaperone Hfq has been implicated in regulation of cyto c production, little is known about the biological pathways that it affects in this bacterium. In this study, from a spontaneous mutant that secretes pyomelanin and has a lowered cyto c content, we identified Hfq to be the regulator that critically associates with both phenotypes in S. oneidensis. We found that expression of the key genes in biosynthesis and degradation of heme is differentially affected by Hfq at under- and overproduced levels, and through modulating heme levels, Hfq influences the cyto c content. Although Hfq in excess results in overproduction of the enzymes responsible for both generation and removal of homogentisic acid (HGA), the precursor of pyomelanin, it is compromised activity of HmgA that leads to excretion and polymerization of HGA to form pyomelanin. We further show that Hfq mediates HmgA activity by lowering intracellular iron content because HmgA is an iron-dependent enzyme. Overall, our work highlights the significance of Hfq-mediated posttranscriptional regulation in the physiology of S. oneidensis, unraveling unexpected mechanisms by which Hfq affects cyto c biosynthesis and pyomelanin production. IMPORTANCE In bacteria, Hfq has been implicated in regulation of diverse biological processes posttranslationally. In S. oneidensis, Hfq affects the content of cytos c that serve as the basis of its respiratory versatility and potential application in bioenergy and bioremediation. In this study, we found that Hfq differentially regulates heme biosynthesis and degradation, leading to altered cyto c contents. Hfq in excess causes a synthetic effect on HmgA, an enzyme responsible for pyomelanin formation. Overall, the data presented manifest that the biological processes in a given bacterium regulated by Hfq are highly complex, amounting to required coordination among multiple physiological aspects to allow cells to respond to environmental changes promptly.
Collapse
|
40
|
Handl J, Nyvltova P, Capek J, Cesla P, Hovsepyan A, Avetisyan S, Micankova P, Bruckova L, Stankova P, Knotkova K, Petrosyan T, Rousar T. The comparison of biological effects of bacterial and synthetic melanins in neuroblastoma cells. Food Chem Toxicol 2022; 168:113355. [PMID: 35952821 DOI: 10.1016/j.fct.2022.113355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Melanins belong to a group of pigments of different structure and origin. They can be produced synthetically or isolated from living organisms. A number of studies have reported testing of various melanins in neurological studies providing different outcomes. Because the structure of melanins can have an effect on obtained results in cell toxicity studies, we present here our original study which aimed to compare the biological effects of bacterial melanin (biotechnologically obtained from B. thuringiensis) with that of synthetic melanin in neuroblastoma cells. Both melanins were structurally characterized in detail. After melanin treatment (0-200 μg/mL), cell viability, glutathione levels, cell morphology and respiration were assessed in SH-SY5Y cells. The structural analysis showed that bacterial melanin is more hydrophilic according to the presence of larger number of -OH moieties. After melanin treatment, we found that synthetic melanin at similar dosage caused always larger cell impairment compared to bacterial melanin. In addition, more severe toxic effect of synthetic melanin was found in mitochondria. In general, we conclude that more hydrophilic, bacterial melanin induced lower toxicity in neuroblastoma cells in comparison to synthetic melanin. Our findings can be useable for neuroscientific studies estimating the potential use for study of neuroprotection, neuromodulation or neurotoxicity.
Collapse
Affiliation(s)
- Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Pavlina Nyvltova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Petr Cesla
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Anichka Hovsepyan
- Scientific and Production Center "Armbiotechnology" SNPO NAS RA, 14 Gyurjyan St., Yerevan, Armenia
| | - Sona Avetisyan
- Scientific and Production Center "Armbiotechnology" SNPO NAS RA, 14 Gyurjyan St., Yerevan, Armenia
| | - Petra Micankova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Lenka Bruckova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Pavla Stankova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Katerina Knotkova
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Tigran Petrosyan
- Department of Physiology and Pathophysiology, Medical Institute, Yerevan Haybusak University, 6 Abelyan St., Yerevan, Armenia
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
41
|
Palladino G, Caroselli E, Tavella T, D'Amico F, Prada F, Mancuso A, Franzellitti S, Rampelli S, Candela M, Goffredo S, Biagi E. Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea living along a natural CO 2 gradient. ISME COMMUNICATIONS 2022; 2:65. [PMID: 37938252 PMCID: PMC9723718 DOI: 10.1038/s43705-022-00152-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 05/13/2023]
Abstract
Using the Mediterranean coral Balanophyllia europaea naturally growing along a pH gradient close to Panarea island (Italy) as a model, we explored the role of host-associated microbiomes in coral acclimatization to ocean acidification (OA). Coral samples were collected at three sites along the gradient, mimicking seawater conditions projected for 2100 under different IPCC (The Intergovernmental Panel on Climate Change) scenarios, and mucus, soft tissue and skeleton associated microbiomes were characterized by shotgun metagenomics. According to our findings, OA induced functional changes in the microbiomes genetic potential that could mitigate the sub-optimal environmental conditions at three levels: i. selection of bacteria genetically equipped with functions related to stress resistance; ii. shifts in microbial carbohydrate metabolism from energy production to maintenance of cell membranes and walls integrity; iii. gain of functions able to respond to variations in nitrogen needs at the holobiont level, such as genes devoted to organic nitrogen mobilization. We hence provided hypotheses about the functional role of the coral associated microbiome in favoring host acclimatation to OA, remarking on the importance of considering the crosstalk among all the components of the holobiont to unveil how and to what extent corals will maintain their functionality under forthcoming ocean conditions.
Collapse
Affiliation(s)
- Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Erik Caroselli
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Teresa Tavella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
| | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
| | - Fiorella Prada
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Arianna Mancuso
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Silvia Franzellitti
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy.
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy.
| | - Stefano Goffredo
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy.
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| | - Elena Biagi
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| |
Collapse
|
42
|
Bezerra JN, Spadeto JPM, Daré JK, Almeida WP, Freitas MP, Cormanich RA. In Silico Interactions of the Components from the Schinus terebinthifolius Extract with Human Tyrosinase. Chempluschem 2022; 87:e202200109. [PMID: 35922385 DOI: 10.1002/cplu.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/12/2022] [Indexed: 11/08/2022]
Abstract
The anti-tyrosinase activity of the leaf extract of Schinus terebinthifolius, also known as Brazilian peppertree, was evaluated using multiple in silico approaches, such as molecular homology, molecular docking, MM-GBSA, molecular dynamics, MM-PBSA, QSAR, and skin permeability predictions. With these computational tools, the compounds that downregulate tyrosinase enzyme activity could be evaluated, and more potent molecules could be identified. The results indicated that various compounds, especially luteolin, are accountable for the anti-tyrosinase activity of S. terebinthifolius. For cosmetic application, further studies with luteolin are especially recommended, for having presented a good performance both in theoretical inhibition (30.92 kJ mol-1 ) and skin permeability (LogKp=-6.62 cm-1 ).
Collapse
Affiliation(s)
- Julia N Bezerra
- University of Campinas, Institute of Chemistry, Department of Organic Chemistry, Laboratory of Experimental and Theoretical Organic Chemistry, PO Box 6154, 270 Monteiro Lobato street, 13083-970, Campinas, São Paulo, Brazil
| | - João Paulo M Spadeto
- University of Campinas, Institute of Chemistry, Department of Organic Chemistry, Laboratory of Experimental and Theoretical Organic Chemistry, PO Box 6154, 270 Monteiro Lobato street, 13083-970, Campinas, São Paulo, Brazil
| | - Joyce K Daré
- Department of Chemistry, Federal University of Lavras, Campus da UFLA, Caixa-postal: 3037, 37200000, Lavras, MG, Brasil.,UFLA - Campus Universitario, Department of Chemistry, PO Box 3037, 37200-000, Lavras, Minas Gerais
| | - Wanda Pereira Almeida
- University of Campinas, Faculty of Pharmaceutical Sciences, 200 Cândido Portinari Street, 13083871, Campinas, São Paulo, Brazil
| | - Matheus P Freitas
- Department of Chemistry, Federal University of Lavras, Campus da UFLA, Caixa-postal: 3037, 37200000, Lavras, MG, Brasil.,UFLA - Campus Universitario, Department of Chemistry, PO Box 3037, 37200-000, Lavras, Minas Gerais
| | - Rodrigo A Cormanich
- University of Campinas, Institute of Chemistry, Department of Organic Chemistry, Laboratory of Experimental and Theoretical Organic Chemistry, PO Box 6154, 270 Monteiro Lobato street, 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
43
|
Daminova AG, Rogov AM, Rassabina AE, Beckett RP, Minibayeva FV. Effect of Melanization on Thallus Microstructure in the Lichen Lobaria pulmonaria. J Fungi (Basel) 2022; 8:791. [PMID: 36012780 PMCID: PMC9409904 DOI: 10.3390/jof8080791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Lichens often grow in microhabitats where they experience severe abiotic stresses. Some species respond to high UV radiation by synthesizing dark brown melanic pigments in the upper cortex. However, unlike the melanized structures of non-lichenized fungi, the morphology of the melanic layer in lichens remains unstudied. Here, we analyzed the morphology, ultrastructure, and elemental composition of the melanized layer in UV-exposed thalli of the lichen Lobaria pulmonaria (L.) Hoffm. Using light microscopy, we detected a pigmented layer sensitive to staining with 3,4-L-dihydroxyphenylalanine, a precursor of eumelanin, in the upper cortex of melanized thalli. Analysis of cross-sections of melanized thalli using scanning electron microscopy revealed that melanin-like granules are deposited into the hyphal lumens. Melanized thalli also possessed thicker hyphal cell walls compared to pale thalli. Energy-dispersive X-ray spectroscopy analysis of the elemental composition of the hyphal walls and extracted melanin indicated that the type of melanin synthesized by L. pulmonaria is eumelanin. Transmission electron microscopy was used to show that during melanization melanosome-like dark vesicles are transported to the cell surface and secreted into the cell walls of the fungal hyphae. Results from this study provide new insights into the effects of melanin synthesis on the microstructure of lichen thalli.
Collapse
Affiliation(s)
- Amina G. Daminova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.G.D.); (A.E.R.)
| | - Alexey M. Rogov
- Interdisciplinary Center for Analytical Microscopy, Kazan (Volga Region) Federal University, 420018 Kazan, Russia;
| | - Anna E. Rassabina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.G.D.); (A.E.R.)
| | - Richard P. Beckett
- School of Life Sciences, University of KwaZulu-Natal, PBag X01, Scottsville 3209, South Africa;
| | - Farida V. Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.G.D.); (A.E.R.)
| |
Collapse
|
44
|
Orlandi VT, Martegani E, Giaroni C, Baj A, Bolognese F. Bacterial pigments: A colorful palette reservoir for biotechnological applications. Biotechnol Appl Biochem 2022; 69:981-1001. [PMID: 33870552 PMCID: PMC9544673 DOI: 10.1002/bab.2170] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
Synthetic derivatives are currently used instead of pigments in many applicative fields, from food to feed, from pharmaceutical to diagnostic, from agronomy to industry. Progress in organic chemistry allowed to obtain rather cheap compounds covering the whole color spectrum. However, several concerns arise from this chemical approach, as it is mainly based on nonrenewable resources such as fossil oil, and the toxicity or carcinogenic properties of products and/or precursors may be harmful for personnel involved in the productive processes. In this scenario, microorganisms and their pigments represent a colorful world to discover and reconsider. Each living bacterial strain may be a source of secondary metabolites with peculiar functions. The aim of this review is to link the physiological role of bacterial pigments with their potential use in different biotechnological fields. This enormous potential supports the big challenge for the development of strategies useful to identify, produce, and purify the right pigment for the desired application. At the end of this ideal journey through the world of bacterial pigments, the attention will be focused on melanin compounds, whose production relies upon different techniques ranging from natural producers, heterologous hosts, or isolated enzymes. In a green workflow, the microorganisms represent the starting and final point of pigment production.
Collapse
Affiliation(s)
| | - Eleonora Martegani
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| | - Cristina Giaroni
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Andreina Baj
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Fabrizio Bolognese
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| |
Collapse
|
45
|
Kalaj BN, Ni QZ, La Clair JJ, Deheyn DD, Burkart MD. Chemoenzymatic Isolation and Characterization of High Purity Mammalian Melanin. Chembiochem 2022; 23:e202200021. [PMID: 35318787 DOI: 10.1002/cbic.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Indexed: 11/10/2022]
Abstract
Although melanin is one of the most ubiquitous polymers in living systems, our understanding of its molecular structure, biosynthesis and biophysical properties has been limited to only a small number of organisms other than humans. This is in part due to the difficulty associated with isolating pure melanin. While purification methods exist, they typically involve harsh treatments with strong acid/base conditions combined with elevated temperatures that can lead to the polymer backbone degradation. To be successful, a viable isolation method must deliver a selective, yet complete degradation of non-melanin biopolymers as well as remove small molecule metabolites that are not integrative to the melanin backbone. Here, we demonstrate the use of chemoenzymatic processing guided by fluorescent probes for the purification and isolation of native mammalian melanin without significant induction of chemical degradation. This multi-step purification-tracking methodology enables quantitative isolation of pure melanin from mammalian tissue for spectroscopic characterization.
Collapse
Affiliation(s)
- Brianna N Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Qing Zhe Ni
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive La Jolla, California, 92093-0202, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| |
Collapse
|
46
|
Lee HS, Choi JY, Kwon SJ, Park ES, Oh BM, Kim JH, Lee PC. Melanin biopolymer synthesis using a new melanogenic strain of Flavobacterium kingsejongi and a recombinant strain of Escherichia coli expressing 4-hydroxyphenylpyruvate dioxygenase from F. kingsejongi. Microb Cell Fact 2022; 21:75. [PMID: 35501871 PMCID: PMC9063278 DOI: 10.1186/s12934-022-01800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Melanins are a heterologous group of biopolymeric pigments synthesized by diverse prokaryotes and eukaryotes and are widely utilized as bioactive materials and functional polymers in the biotechnology industry. Here, we report the high-level melanin production using a new melanogenic Flavobacterium kingsejongi strain and a recombinant Escherichia coli overexpressing F. kingsejongi 4-hydroxyphenylpyruvate dioxygenase (HPPD). RESULTS Melanin synthesis of F. kingsejongi strain was confirmed via melanin synthesis inhibition test, melanin solubility test, genome analysis, and structural analysis of purified melanin from both wild-type F. kingsejongi and recombinant E. coli expressing F. kingsejongi HPPD. The activity of F. kingsejongi HPPD was demonstrated via in vitro assays with 6 × His-tagged and native forms of HPPD. The specific activity of F. kingsejongi HPPD was 1.2 ± 0.03 μmol homogentisate/min/mg-protein. Bioreactor fermentation of F. kingsejongi produced a large amount of melanin with a titer of 6.07 ± 0.32 g/L, a conversion yield of 60% (0.6 ± 0.03 g melanin per gram tyrosine), and a productivity of 0.03 g/L·h, indicating its potential for industrial melanin production. Additionally, bioreactor fermentation of recombinant E. coli expressing F. kingsejongi HPPD produced melanin at a titer of 3.76 ± 0.30 g/L, a conversion yield of 38% (0.38 ± 0.03 g melanin per gram tyrosine), and a productivity of 0.04 g/L·h. CONCLUSIONS Both strains showed sufficiently high fermentation capability to indicate their potential as platform strains for large-scale bacterial melanin production. Furthermore, F. kingsejongi strain could serve as a model to elucidate the regulation of melanin biosynthesis pathway and its networks with other cellular pathways, and to understand the cellular responses of melanin-producing bacteria to environmental changes, including nutrient starvation and other stresses.
Collapse
Affiliation(s)
- Han Sae Lee
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jun Young Choi
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea
| | - Soon Jae Kwon
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea
| | - Eun Seo Park
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea
| | - Byeong M Oh
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea
| | - Jong H Kim
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology and Department of Applied Chemistry and Biological Engineering, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
47
|
Natural Melanin: Current Trends, and Future Approaches, with Especial Reference to Microbial Source. Polymers (Basel) 2022; 14:polym14071339. [PMID: 35406213 PMCID: PMC9002885 DOI: 10.3390/polym14071339] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Melanin is a universal natural dark polymeric pigment, arising in microorganisms, animals, and plants. There is a couple of pieces of literature on melanin, each focusing on a different issue, the goal of the present review is to focus on microbial melanin. It has numerous benefits with very few drawbacks. The current situation and expected trends are discussed. Intriguing, numerous studies have provoked a serious necessity for a comprehensive assessment of microbial melanin pigments. So that, such review would help scholars from diverse backgrounds to realize the importance of melanin pigments isolated from microorganisms, with this aim in mind, information, and hypothesis from this review could be the paradigm for studies on melanin in the next era.
Collapse
|
48
|
Srinivasan J, Khadka J, Novoplansky N, Gillor O, Grafi G. Endophytic Bacteria Colonizing the Petiole of the Desert Plant Zygophyllum dumosum Boiss: Possible Role in Mitigating Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040484. [PMID: 35214818 PMCID: PMC8924888 DOI: 10.3390/plants11040484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 05/13/2023]
Abstract
Zygophyllum dumosum is a dominant shrub in the Negev Desert whose survival is accomplished by multiple mechanisms including abscission of leaflets to reduce whole plant transpiration while leaving the fleshy, wax-covered petioles alive but dormant during the dry season. Petioles that can survive for two full growing seasons maintain cell component integrity and resume metabolic activity at the beginning of the winter. This remarkable survival prompted us to investigate endophytic bacteria colonizing the internal tissues of the petiole and assess their role in stress tolerance. Twenty-one distinct endophytes were isolated by culturing from surface-sterile petioles and identified by sequencing of the 16S rDNA. Sequence alignments and the phylogenetic tree clustered the isolated endophytes into two phyla, Firmicutes and Actinobacteria. Most isolated endophytes displayed a relatively slow growth on nutrient agar, which was accelerated by adding petiole extracts. Metabolic analysis of selected endophytes showed several common metabolites whose level is affected by petiole extract in a species-dependent manner including phosphoric acid, pyroglutamic acid, and glutamic acid. Other metabolites appear to be endophyte-specific metabolites, such as proline and trehalose, which were implicated in stress tolerance. These results demonstrate the existence of multiple endophytic bacteria colonizing Z. dumosum petioles with the potential role in maintaining cell integrity and functionality via synthesis of multiple beneficial metabolites that mitigate stress and contribute to stress tolerance.
Collapse
Affiliation(s)
- Jansirani Srinivasan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel;
| | - Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel;
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
- Correspondence:
| |
Collapse
|
49
|
Santos ALDC, Ferreira ACA, Figueiredo JRD. Potential use of bacterial pigments as anticancer drugs and female reproductive toxicity: a review. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72911e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract Natural bioactive compounds obtained from microorganisms, have awakened particular interest in the industry nowadays. This attention comes when natural resources depletion is pronounced, and the acquisition of both new plant origin resources and bioactive products, represents a challenge for the next generations. In this sense, prospecting for large-scale production and use of bacterial pigments is a necessary strategy for the development of novel products. A wide variety of properties have been attributed to these substances and, among them, their therapeutic potential against important diseases, such as cancer. There is consensus that available chemotherapy protocols are known to detrimentally affect cancer patients fertility. Hence, considerable part of the deleterious effects of chemotherapy is related to the drugs cytotoxicity, which, in addition to cancer cells, also affect normal cells. Therefore, the intrinsic properties of bacterial pigments associated with low cytotoxicity and relevant cell selectivity, certified them as potential anticancer drugs. However, little information is available about reproductive toxicity of these new and promising compounds. Thus, the present review aims to address the main bacterial pigments, their potential uses as anticancer drugs and their possible toxic effects, especially on the female gonad.
Collapse
|
50
|
Santos ALDC, Ferreira ACA, Figueiredo JRD. Uso potencial de pigmentos bacterianos como drogas anticâncer e toxicidade reprodutiva feminina: uma revisão. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72911p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Resumo Os compostos bioativos naturais obtidos de microrganismos têm despertado especial interesse da indústria nos últimos anos. Esta atenção ocorre em um momento em que o esgotamento de recursos naturais é pronunciado, e a aquisição de novos insumos e produtos bioativos de origem vegetal representa um desafio para as próximas gerações. Neste sentido, a prospecção para a produção e uso em larga escala dos pigmentos bacterianos tem representado uma importante estratégia para o desenvolvimento de novos produtos. Uma grande variedade de propriedades foi atribuída a estas substâncias, entre elas, o potencial terapêutico contra doenças importantes, como o câncer. Existe um consenso de que os protocolos quimioterápicos disponíveis são conhecidos por afetarem negativamente a fertilidade de pacientes com câncer. Grande parte dos efeitos deletérios da quimioterapia está relacionado à citotoxicidade das drogas usadas para este fim, que além das células cancerosas, afetam as células normais. Nesse sentido, as propriedades naturais atribuídas aos pigmentos bacterianos associadas à baixa citotoxicidade e relevante seletividade, os qualificaram como potenciais drogas anticâncer. No entanto, pouco se tem de informação a respeito da toxicidade reprodutiva destes novos e promissores compostos. Dessa forma, a presente revisão tem o objetivo de abordar os principais pigmentos bacterianos, suas utilizações potenciais como drogas anticâncer, bem como os seus possíveis efeitos tóxicos, sobretudo, sobre a gônada feminina.
Collapse
|