1
|
Sandoval Hurtado CP, Kelly SP, Shende V, Perez M, Curtis BJ, Newmister SA, Ott K, Pereira F, Sherman DH. Engineering a Biosynthetic Pathway for the Production of (+)-Brevianamides A and B in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627567. [PMID: 39713314 PMCID: PMC11661150 DOI: 10.1101/2024.12.10.627567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The privileged fused-ring system comprising the bicyclo[2.2.2]diazaoctane (BDO) core is prevalent in diketopiperazine (DKP) natural products with potent and diverse biological activities, with some being explored as drug candidates. Typically, only low yields of these compounds can be extracted from native fungal producing strains and the available synthetic routes remain challenging due to their structural complexity. BDO-containing DKPs including (+)-brevianamides A and B are assembled via multi-component biosynthetic pathways incorporating non-ribosomal peptide synthetases, prenyltransferases, flavin monooxygenases, cytochrome P450s and semi-pinacolases. To simplify access to this class of alkaloids, we designed an engineered biosynthetic pathway in Escherichia coli , composed of six enzymes sourced from different kingdoms of life. The pathway includes a cyclodipeptide synthase (NascA), a cyclodipeptide oxidase (DmtD2/DmtE2), a prenyltransferase (NotF), a flavin-dependent monooxygenase (BvnB), and kinases (PhoN and IPK). Cultivated in glycerol supplemented with prenol, the engineered E. coli strain produces 5.3 mg/L of (-)-dehydrobrevianamide E ( 4 ), which undergoes a terminal, ex vivo lithium hydroxide catalyzed rearrangement reaction to yield (+)-brevianamides A and B with a 46% yield and a 92:8 diastereomeric ratio. Additionally, titers of 4 were increased eight-fold by enhancing NADPH pools in the engineered E. coli strain. Our study combines synthetic biology, biocatalysis and synthetic chemistry approaches to provide a five-step engineered biosynthetic pathway for producing complex indole alkaloids in E. coli . Abstract Figure
Collapse
|
2
|
Fan YY, Tang Q, Li Y, Sun H, Xu M, Yu HQ. Fabricating an advanced electrogenic chassis by activating microbial metabolism and fine-tuning extracellular electron transfer. Trends Biotechnol 2024:S0167-7799(24)00282-8. [PMID: 39490224 DOI: 10.1016/j.tibtech.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Exploiting electrogenic microorganisms as unconventional chassis hosts offers potential solutions to global energy and environmental challenges. However, their limited electrogenic efficiency and metabolic versatility, due to genetic and metabolic constraints, hinder broader applications. Herein, we developed a multifaceted approach to fabricate an enhanced electrogenic chassis, starting with streamlining the genome by removing extrachromosomal genetic material. This reduction led to faster lactate consumption, higher intracellular NADH/NAD+ and ATP/ADP levels, and increased growth and biomass accumulation, as well as promoted electrogenic activity. Transcriptome profiling showed an overall activation of cellular metabolism. We further established a molecular toolkit with a vector vehicle incorporating native replication block and refined promoter components for precise gene expression control. This enabled engineered primary metabolism for greater environmental robustness and fine-tuned extracellular electron transfer (EET) for improved efficiency. The enhanced chassis demonstrated substantially improved pollutant biodegradation and radionuclide removal, establishing a new paradigm for utilizing electrogenic organisms as novel biotechnology chassis.
Collapse
Affiliation(s)
- Yang-Yang Fan
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Qiang Tang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Yang Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Saito N, Katayama T, Minami A, Oikawa H, Maruyama JI. Versatile filamentous fungal host highly-producing heterologous natural products developed by genome editing-mediated engineering of multiple metabolic pathways. Commun Biol 2024; 7:1263. [PMID: 39367037 PMCID: PMC11452556 DOI: 10.1038/s42003-024-06958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Natural secondary metabolites are medically, agriculturally, and industrially beneficial to humans. For mass production, a heterologous production system is required, and various metabolic engineering trials have been reported in Escherichia coli and Saccharomyces cerevisiae to increase their production levels. Recently, filamentous fungi, especially Aspergillus oryzae, have been expected to be excellent hosts for the heterologous production of natural products; however, large-scale metabolic engineering has hardly been reported. Here, we elucidated candidate metabolic pathways to be modified for increased model terpene production by RNA-seq and metabolome analyses in A. oryzae and selected pathways such as ethanol fermentation, cytosolic acetyl-CoA production from citrate, and the mevalonate pathway. We performed metabolic modifications targeting these pathways using CRISPR/Cas9 genome editing and demonstrated their effectiveness in heterologous terpene production. Finally, a strain containing 13 metabolic modifications was generated, which showed enhanced heterologous production of pleuromutilin (8.5-fold), aphidicolin (65.6-fold), and ophiobolin C (28.5-fold) compared to the unmodified A. oryzae strain. Therefore, the strain generated by engineering multiple metabolic pathways can be employed as a versatile highly-producing host for a wide variety of terpenes.
Collapse
Affiliation(s)
- Naoya Saito
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Minami
- Division of Chemistry, Graduated school of Science, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Tokyo, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduated school of Science, Hokkaido University, Kita-ku, Sapporo, Japan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangdong, China
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Li X, Schönberg PY, Wucherpfennig T, Hinze C, Sulaj F, Henle T, Mascher T. Development of a Golden Gate Assembly-Based Genetic Toolbox for Lactiplantibacillus plantarum and Its Application for Engineering Monoterpenoid Biosynthesis. ACS Synth Biol 2024; 13:2764-2779. [PMID: 39254046 DOI: 10.1021/acssynbio.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Lactiplantibacillus plantarum is a food-grade lactic acid bacterium widely used in the food and beverage industry. Recently, this probiotic organism has been applied as a biofactory for the production of pharmaceutical and food-related compounds, but existing promoters and expression vectors for the genetic engineering of L. plantarum rely on inefficient cloning strategies and are usually not well-characterized. We therefore developed a modular and standardized Golden Gate Assembly-based toolbox for the de novo assembly of shuttle vectors from Escherichia coli to L. plantarum. A collection of the most relevant genetic parts, e.g., different origins of replication and promoters, was incorporated in our toolbox and thoroughly characterized by flow cytometry and the fluorescence assay. Standardized fusion sites allow combining the genetic part freely into a plasmid in one step. This approach allows for the high-throughput assembly of numerous constructs in a standardized genetic context, thus improving the efficiency and predictability of metabolic engineering in L. plantarum. Using our toolbox, we were able to produce the aroma compounds linalool and geraniol in L. plantarum by extending its native mevalonate pathway with plant-derived monoterpenoid synthases.
Collapse
Affiliation(s)
- Xiangang Li
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Pascal Y Schönberg
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Tabea Wucherpfennig
- Department of Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Christoph Hinze
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Flavia Sulaj
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Thomas Henle
- Department of Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Thorsten Mascher
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| |
Collapse
|
5
|
Zhang C, Chen C, Bian X, Zhang J, Zhang Z, Ma Y, Lu W. Construction of an orthogonal transport system for Saccharomyces cerevisiae peroxisome to efficiently produce sesquiterpenes. Metab Eng 2024; 85:84-93. [PMID: 39047895 DOI: 10.1016/j.ymben.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Subcellular compartmentalization is a crucial evolution characteristic of eukaryotic cells, providing inherent advantages for the construction of artificial biological systems to efficiently produce natural products. The establishment of an artificial protein transport system represents a pivotal initial step towards developing efficient artificial biological systems. Peroxisome has been demonstrated as a suitable subcellular compartment for the biosynthesis of terpenes in yeast. In this study, an artificial protein transporter ScPEX5* was firstly constructed by fusing the N-terminal sequence of PEX5 from S. cerevisiae and the C-terminal sequence of PEX5. Subsequently, an artificial protein transport system including the artificial signaling peptide YQSYY and its enhancing upstream 9 amino acid (9AA) residues along with ScPEX5* was demonstrated to exhibit orthogonality to the internal transport system of peroxisomes in S. cerevisiae. Furthermore, a library of 9AA residues was constructed and selected using high throughput pigment screening system to obtain an optimized signaling peptide (oPTS1*). Finally, the ScPEX5*-oPTS1* system was employed to construct yeast cell factories capable of producing the sesquiterpene α-humulene, resulting in an impressive α-humulene titer of 17.33 g/L and a productivity of 0.22 g/L/h achieved through fed-batch fermentation in a 5 L bioreactor. This research presents a valuable tool for the construction of artificial peroxisome cell factories and effective strategies for synthesizing other natural products in yeast.
Collapse
Affiliation(s)
- Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, PR China; Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, PR China
| | - Chen Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Xueke Bian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Jiale Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Zhanwei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Yuanyuan Ma
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, PR China; Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, PR China.
| |
Collapse
|
6
|
Bai X, Wang S, Zhang Q, Hu Y, Zhou J, Men L, Li D, Ma J, Wei Q, Xu M, Yin X, Hu T. Reprogramming the Metabolism of Yeast for High-Level Production of Miltiradiene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8704-8714. [PMID: 38572931 DOI: 10.1021/acs.jafc.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Miltiradiene serves as a crucial precursor in the synthesis of various high-value abietane-type diterpenes, exhibiting diverse pharmacological activities. Previous efforts to enhance miltiradiene production have primarily focused on the mevalonate acetate (MVA) pathway. However, limited emphasis has been placed on optimizing the supply of acetyl-CoA and NADPH. In this study, we constructed a platform yeast strain for miltiradiene production by reinforcing the biosynthetic pathway of geranylgeranyl diphosphate (GGPP) and acetyl-CoA, and addressing the imbalance between the supply and demand of the redox cofactor NADPH within the cytoplasm, resulting in an increase in miltiradiene yield to 1.31 g/L. Furthermore, we conducted modifications to the miltiradiene synthase fusion protein tSmKSL1-CfTPS1. Finally, the comprehensive engineering strategies and protein modification strategies culminated in 1.43 g/L miltiradiene in the engineered yeast under shake flask culture conditions. Overall, our work established efficient yeast cell factories for miltiradiene production, providing a foothold for heterologous biosynthesis of abietane-type diterpenes.
Collapse
Affiliation(s)
- Xue Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qin Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhan Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiawei Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianhui Men
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Dengyu Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Ma
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiuhui Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengdie Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaopu Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianyuan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Wang Y, Zhang N, Yan J, Li C, Zeng N, Wang D, Li Z, Li B, An Y. The Property of a Key Amino Acid Determines the Function of Farnesyl Pyrophosphate Synthase in Sporobolomyces pararoseus NGR. Curr Issues Mol Biol 2024; 46:3108-3121. [PMID: 38666925 PMCID: PMC11048977 DOI: 10.3390/cimb46040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Farnesyl pyrophosphate synthase (FPPS) catalyzes the synthesis of C15 farnesyl diphosphate (FPP) from C5 dimethylallyl diphosphate (DMAPP) and two or three C5 isopentenyl diphosphates (IPPs). FPP is an important precursor for the synthesis of isoprenoids and is involved in multiple metabolic pathways. Here, farnesyl pyrophosphate synthase from Sporobolomyces pararoseus NGR (SpFPPS) was isolated and expressed by the prokaryotic expression system. The SpFPPS full-length genomic DNA and cDNA are 1566 bp and 1053 bp, respectively. This gene encodes a 350-amino acid protein with a predicted molecular mass of 40.33 kDa and a molecular weight of 58.03 kDa (40.33 kDa + 17.7 kDa), as detected by SDS-PAGE. The function of SpFPPS was identified by induction, purification, protein concentration and in vitro enzymatic activity experiments. Structural analysis showed that Y90 was essential for chain termination and changing the substrate scope. Site-directed mutation of Y90 to the smaller side-chain amino acids alanine (A) and lysine (K) showed in vitro that wt-SpFPPS catalyzed the condensation of the substrate DMAPP or geranyl diphosphate (GPP) with IPP at apparent saturation to synthesize FPP as the sole product and that the mutant protein SpFPPS-Y90A synthesized FPP and C20 geranylgeranyl diphosphate (GGPP), while SpFPPS-Y90K hydrolyzed the substrate GGPP. Our results showed that FPPS in S. pararoseus encodes the SpFPPS protein and that the amino acid substitution at Y90 changed the distribution of SpFPPS-catalyzed products. This provides a baseline for potentially regulating SpFPPS downstream products and improving the carotenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Yunjiao Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Jianyu Yan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Chunwang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China;
| | - Dandan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Zijing Li
- Food Science College, Shenyang Agricultural University, Shenyang 110866, China;
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China;
| | - Yingfeng An
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| |
Collapse
|
8
|
Long Y, Han X, Meng X, Xu P, Tao F. A robust yeast chassis: comprehensive characterization of a fast-growing Saccharomyces cerevisiae. mBio 2024; 15:e0319623. [PMID: 38214535 PMCID: PMC10865977 DOI: 10.1128/mbio.03196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Robust chassis are critical to facilitate advances in synthetic biology. This study describes a comprehensive characterization of a new yeast isolate Saccharomyces cerevisiae XP that grows faster than commonly used research and industrial S. cerevisiae strains. The genomic, transcriptomic, and metabolomic analyses suggest that the fast growth rate is, in part, due to the efficient electron transport chain and key growth factor synthesis. A toolbox for genetic manipulation of the yeast was developed; we used it to construct l-lactic acid producers for high lactate production. The development of genetically malleable yeast strains that grow faster than currently used strains may significantly enhance the uses of S. cerevisiae in biotechnology.IMPORTANCEYeast is known as an outstanding starting strain for constructing microbial cell factories. However, its growth rate restricts its application. A yeast strain XP, which grows fast in high concentrations of sugar and acidic environments, is revealed to demonstrate the potential in industrial applications. A toolbox was also built for its genetic manipulation including gene insertion, deletion, and ploidy transformation. The knowledge of its metabolism, which could guide the designing of genetic experiments, was generated with multi-omics analyses. This novel strain along with its toolbox was then tested by constructing an l-lactic acid efficient producer, which is conducive to the development of degradable plastics. This study highlights the remarkable competence of nonconventional yeast for applications in biotechnology.
Collapse
Affiliation(s)
- Yangdanyu Long
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Han
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuanlin Meng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Li R, Yao B, Zeng H. Identification and Characterization of a Nerol Synthase in Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:416-423. [PMID: 38156892 DOI: 10.1021/acs.jafc.3c07573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nerol, a linear monoterpenoid, is naturally found in essential oils of various plants and is widely used in the fragrance, food, and cosmetic industries. Nerol synthase, essential for nerol biosynthesis, has previously been identified only in plants that use NPP as the precursor. In this study, a novel fungal nerol synthase, named PgfB, was cloned and characterized from Penicillium griseofulvum. In vitro enzymatic assays showed that PgfB could directly convert the substrate GPP into nerol. Furthermore, the successful expression of PgfB and its homologous protein in Saccharomyces cerevisiae resulted in the heterologous production of nerol. Finally, crucial amino acid residues for PgfB's catalytic activity were identified through site-directed mutagenesis. This research broadens our understanding of fungal monoterpene synthases and presents precious gene resources for the industrial production of nerol.
Collapse
Affiliation(s)
- Rumeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Bo Yao
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Haichun Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
10
|
Wefelmeier K, Schmitz S, Kösters BJ, Liebal UW, Blank LM. Methanol bioconversion into C3, C4, and C5 platform chemicals by the yeast Ogataea polymorpha. Microb Cell Fact 2024; 23:8. [PMID: 38172830 PMCID: PMC10763331 DOI: 10.1186/s12934-023-02283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND One carbon (C1) molecules such as methanol have the potential to become sustainable feedstocks for biotechnological processes, as they can be derived from CO2 and green hydrogen, without the need for arable land. Therefore, we investigated the suitability of the methylotrophic yeast Ogataea polymorpha as a potential production organism for platform chemicals derived from methanol. We selected acetone, malate, and isoprene as industrially relevant products to demonstrate the production of compounds with 3, 4, or 5 carbon atoms, respectively. RESULTS We successfully engineered O. polymorpha for the production of all three molecules and demonstrated their production using methanol as carbon source. We showed that the metabolism of O. polymorpha is well suited to produce malate as a product and demonstrated that the introduction of an efficient malate transporter is essential for malate production from methanol. Through optimization of the cultivation conditions in shake flasks, which included pH regulation and constant substrate feeding, we were able to achieve a maximum titer of 13 g/L malate with a production rate of 3.3 g/L/d using methanol as carbon source. We further demonstrated the production of acetone and isoprene as additional heterologous products in O. polymorpha, with maximum titers of 13.6 mg/L and 4.4 mg/L, respectively. CONCLUSION These findings highlight how O. polymorpha has the potential to be applied as a versatile cell factory and contribute to the limited knowledge on how methylotrophic yeasts can be used for the production of low molecular weight biochemicals from methanol. Thus, this study can serve as a point of reference for future metabolic engineering in O. polymorpha and process optimization efforts to boost the production of platform chemicals from renewable C1 carbon sources.
Collapse
Affiliation(s)
- Katrin Wefelmeier
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Simone Schmitz
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Benjamin Jonas Kösters
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Ulf Winfried Liebal
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.
| |
Collapse
|
11
|
Yanagibashi S, Bamba T, Kirisako T, Kondo A, Hasunuma T. Beneficial effect of optimizing the expression balance of the mevalonate pathway introduced into the mitochondria on terpenoid production in Saccharomyces cerevisiae. J Biosci Bioeng 2024; 137:16-23. [PMID: 38042754 DOI: 10.1016/j.jbiosc.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/04/2023]
Abstract
Terpenoids are used in various industries, and Saccharomyces cerevisiae is a promising microorganism for terpenoid production. Introducing the mevalonate (MVA) pathway into the mitochondria of a strain with an augmented inherent cytosolic MVA pathway increased terpenoid production but also led to the accumulation of toxic pyrophosphate intermediates that negatively affected terpenoid production. We first engineered the inherent MVA pathway in the cytosol and then introduced the MVA pathway into the mitochondria using several promoter combinations, considering the toxicity of pyrophosphate intermediates. However, the highest titer, 183 mg/L, tends to be only 5% higher than that of the strain that only augmented the inherent MVA pathway (SYCM1; 174 mg/L). Next, we hypothesized that, in addition to the toxicity of pyrophosphate, other compounds in the MVA pathway could affect the squalene titer. Thus, we constructed a combinatorial strain library expressing MVA pathway enzymes in the mitochondria with various promoter combinations. The highest squalene titer (230 mg/L) was 32% higher than that of SYCM1. The promoter set revealed that mitigation of mono- and pyrophosphate compound accumulation was important for mitochondrial usage. This study demonstrated that a combinatorial strain library is useful for discovering the optimal gene expression balance in engineering yeast.
Collapse
Affiliation(s)
- So Yanagibashi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1-12-12 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takayoshi Kirisako
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1-12-12 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
12
|
Su B, Deng MR, Zhu H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules 2023; 13:1747. [PMID: 38136618 PMCID: PMC10742120 DOI: 10.3390/biom13121747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are naturally occurring pigments that are abundant in the natural world. Due to their excellent antioxidant attributes, carotenoids are widely utilized in various industries, including the food, pharmaceutical, cosmetic industries, and others. Plants, algae, and microorganisms are presently the main sources for acquiring natural carotenoids. However, due to the swift progress in metabolic engineering and synthetic biology, along with the continuous and thorough investigation of carotenoid biosynthetic pathways, recombinant strains have emerged as promising candidates to produce carotenoids. The identification and manipulation of gene targets that influence the accumulation of the desired products is a crucial challenge in the construction and metabolic regulation of recombinant strains. In this review, we provide an overview of the carotenoid biosynthetic pathway, followed by a summary of the methodologies employed in the discovery of gene targets associated with carotenoid production. Furthermore, we focus on discussing the gene targets that have shown potential to enhance carotenoid production. To facilitate future research, we categorize these gene targets based on their capacity to attain elevated levels of carotenoid production.
Collapse
Affiliation(s)
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| |
Collapse
|
13
|
Zeng W, Jiang Y, Shan X, Zhou J. Engineering Saccharomyces cerevisiae for synthesis of β-myrcene and (E)-β-ocimene. 3 Biotech 2023; 13:384. [PMID: 37928439 PMCID: PMC10620350 DOI: 10.1007/s13205-023-03818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023] Open
Abstract
Monoterpenes are among the important natural plant terpenes. Monoterpenes usually have the characteristics of volatility and strong aroma. β-Myrcene and its isomer (E)-β-ocimene are typical acyclic monoterpenes. They are high-value monoterpenes that have been widely applied in foods, cosmetics, and medicines. However, large-scale commercial production of β-myrcene and (E)-β-ocimene is restricted by their production method that mainly involves extraction from plant essential oils. Currently, an alternative synthetic route utilizing an engineered microbial platform was proposed for effective production. This study used a Saccharomyces cerevisiae strain previously constructed for squalene production as the starting strain. Farnesyl diphosphate synthase (Erg20) expression was weakened by promoter replacement and screened for optimal myrcene synthase (MS) and ocimene synthase (OS) activities. In the resulting S. cerevisiae engineered for β-myrcene and (E)-β-ocimene synthesis, titers of β-myrcene and (E)-β-ocimene were enhanced by a fusion expressing a mutant Erg20* with the obtained monoterpene synthase and optimizing the added solvent in a two-phase fermentation system. Finally, by scaling up in a 5-L fermenter, 8.12 mg/L of β-myrcene was obtained, which was first reported in yeast, and 34.56 mg/L of (E)-β-ocimene was obtained, which is the highest reported to date. This study provides a new synthesis route for β-myrcene and (E)-β-ocimene. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03818-2.
Collapse
Affiliation(s)
- Weizhu Zeng
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Yinkun Jiang
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
14
|
Li W, Mai J, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Combination of microbial and chemical synthesis for the sustainable production of β-elemene, a promising plant-extracted anticancer compound. Biotechnol Bioeng 2023; 120:3612-3621. [PMID: 37661795 DOI: 10.1002/bit.28544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Beta-elemene, a class of sesquiterpene derived from the Chinese medicinal herb Curcuma wenyujin, is widely used in clinical medicine due to its broad-spectrum antitumor activity. However, the unsustainable plant extraction prompted the search for environmentally friendly strategies for β-elemene production. In this study, we designed a Yarrowia lipolytica cell factory that can continuously produce germacrene A, which is further converted into β-elemene with 100% yield through a Cope rearrangement reaction by shifting the temperature to 250°C. First, the productivity of four plant-derived germacrene A synthases was evaluated. After that, the metabolic flux of the precursor to germacrene A was maximized by optimizing the endogenous mevalonate pathway, inhibiting the competing squalene pathway, and expressing germacrene A synthase gene in multiple copies. Finally, the most promising strain achieved the highest β-elemene titer reported to date with 5.08 g/L. This sustainable and green method has the potential for industrial β-elemene production.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jie Mai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Zhi-Gang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
15
|
Marshall B, Amritkar K, Wolfe M, Kaçar B, Landick R. Evolutionary flexibility and rigidity in the bacterial methylerythritol phosphate (MEP) pathway. Front Microbiol 2023; 14:1286626. [PMID: 38029103 PMCID: PMC10663253 DOI: 10.3389/fmicb.2023.1286626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Terpenoids are a diverse class of compounds with wide-ranging uses including as industrial solvents, pharmaceuticals, and fragrances. Efforts to produce terpenoids sustainably by engineering microbes for fermentation are ongoing, but industrial production still largely relies on nonrenewable sources. The methylerythritol phosphate (MEP) pathway generates terpenoid precursor molecules and includes the enzyme Dxs and two iron-sulfur cluster enzymes: IspG and IspH. IspG and IspH are rate limiting-enzymes of the MEP pathway but are challenging for metabolic engineering because they require iron-sulfur cluster biogenesis and an ongoing supply of reducing equivalents to function. Therefore, identifying novel alternatives to IspG and IspH has been an on-going effort to aid in metabolic engineering of terpenoid biosynthesis. We report here an analysis of the evolutionary diversity of terpenoid biosynthesis strategies as a resource for exploration of alternative terpenoid biosynthesis pathways. Using comparative genomics, we surveyed a database of 4,400 diverse bacterial species and found that some may have evolved alternatives to the first enzyme in the pathway, Dxs making it evolutionarily flexible. In contrast, we found that IspG and IspH are evolutionarily rigid because we could not identify any species that appear to have enzymatic routes that circumvent these enzymes. The ever-growing repository of sequenced bacterial genomes has great potential to provide metabolic engineers with alternative metabolic pathway solutions. With the current state of knowledge, we found that enzymes IspG and IspH are evolutionarily indispensable which informs both metabolic engineering efforts and our understanding of the evolution of terpenoid biosynthesis pathways.
Collapse
Affiliation(s)
- Bailey Marshall
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Kaustubh Amritkar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Michael Wolfe
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
16
|
Navale GR, Chauhan R, Saini S, Roy P, Ghosh K. Effect of cycloastragenol and punicalagin on Prp(106-126) and Aβ(25-35) oligomerization and fibrillizaton. Biophys Chem 2023; 302:107108. [PMID: 37734278 DOI: 10.1016/j.bpc.2023.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Numerous neurological disorders, including prion, Parkinson's, and Alzheimer's disease (AD), are identified as being caused by alterations in protein conformation, aggregation, and metal ion dyshomeostasis. Recent years have seen a significant increase in the exploration and study of natural products (NPs) from plant and microbial sources for their therapeutic potential against several diseases, including cancer, diabetes, cardiovascular disease, and neurodegenerative diseases. In this study, we have examined the effect of two NPs, cycloastragenol (CAG) and punicalagin (PCG), on the metal-induced oligomerization and aggregation of Aβ25-35 and PrP106-126 peptides. The peptide aggregation and inhibitory properties of both NPs were examined by the thioflavin-T (ThT) assay, MALDI-TOF, circular dichroism (CD) spectroscopy, and transmission electron microscopy (TEM). Among the two NPs, PCG significantly binds to the peptides, chelates metal ions (Cu2+ and Zn2+), inhibits peptide aggregation, substantially reduces oxidative stress, and controls the production of reactive oxygen species (ROS). Both NPs exhibited low cytotoxicity and prominently mitigated peptide-mediated cell cytotoxicity in hippocampal neuronal HT-22 cells by covalent bonding and hydrophobic interactions.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
17
|
Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 2023; 68:108214. [PMID: 37478981 DOI: 10.1016/j.biotechadv.2023.108214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.
Collapse
Affiliation(s)
- Sandeep Dinday
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
18
|
Yu S, Zhang G, Liu Q, Zhuang Y, Dai Z, Xia J. Construction and testing of Yarrowia lipolytica recombinant protein expression chassis cells based on the high-throughput screening and secretome. Microb Cell Fact 2023; 22:185. [PMID: 37715289 PMCID: PMC10503192 DOI: 10.1186/s12934-023-02196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND In the recombinant protein market with broad economic value, the rapid development of synthetic biology has made it necessary to construct an efficient exocrine expression system for the different heterologous proteins. Yarrowia lipolytica possesses unique advantages in nascent protein transport and glycosylation modification, so it can serve as a potential protein expression platform. Although the Po1 series derived from W29 is often used for the expression of the various heterologous proteins, the ability of W29 to secrete proteins has not been verified and the Po1 series has been found to be not convenient for further gene editing. RESULTS A total of 246 Y. lipolytica strains were evaluated for their secretory capacity through performing high-throughput screening in 48-well plate. Thereafter, following two rounds of shake flask re-screening, a high-secreting protein starting strain DBVPG 5851 was obtained. Subsequently, combined with the extracellular protein types and relative abundance information provided by the secretome of the starting strain, available chassis cell for heterologous protein expression were preliminarily constructed, and it was observed that the most potential signal peptide was derived from YALI0D20680g. CONCLUSIONS This study offers a novel perspective on the diversification of Y. lipolytica host cells for the heterologous protein expression and provides significant basis for expanding the selection space of signal peptide tools in the future research.
Collapse
Affiliation(s)
- Siqian Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ge Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qi Liu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
19
|
Du B, Sun M, Hui W, Xie C, Xu X. Recent Advances on Key Enzymes of Microbial Origin in the Lycopene Biosynthesis Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12927-12942. [PMID: 37609695 DOI: 10.1021/acs.jafc.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Lycopene is a common carotenoid found mainly in ripe red fruits and vegetables that is widely used in the food industry due to its characteristic color and health benefits. Microbial synthesis of lycopene is gradually replacing the traditional methods of plant extraction and chemical synthesis as a more economical and productive manufacturing strategy. The biosynthesis of lycopene is a typical multienzyme cascade reaction, and it is important to understand the characteristics of each key enzyme involved and how they are regulated. In this paper, the catalytic characteristics of the key enzymes involved in the lycopene biosynthesis pathway and related studies are first discussed in detail. Then, the strategies applied to the key enzymes of lycopene synthesis, including fusion proteins, enzyme screening, combinatorial engineering, CRISPR/Cas9-based gene editing, DNA assembly, and scaffolding technologies are purposefully illustrated and compared in terms of both traditional and emerging multienzyme regulatory strategies. Finally, future developments and regulatory options for multienzyme synthesis of lycopene and similar secondary metabolites are also discussed.
Collapse
Affiliation(s)
- Bangmian Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Mengjuan Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Wenyang Hui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, Jiangsu Province, China
| |
Collapse
|
20
|
Liang B, Yang Q, Zhang X, Zhao Y, Liu Y, Yang J, Wang Z. Switching carbon metabolic flux for enhancing the production of sesquiterpene-based high-density biofuel precursor in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:124. [PMID: 37542329 PMCID: PMC10403917 DOI: 10.1186/s13068-023-02370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Sesquiterpenes are designated as a large class of plant-derived natural active compounds, which have wide applications in industries of energy, food, cosmetics, medicine and agriculture. Neither plant extraction nor chemical synthesis can meet the massive market demands and sustainable development goals. Biosynthesis in microbial cell factories represents an eco-friendly and high-efficient way. Among several microorganisms, Saccharomyces cerevisiae exhibited the potential as a chassis for bioproduction of various sesquiterpenes due to its native mevalonate pathway. However, its inefficient nature limits biosynthesis of diverse sesquiterpenes at industrial grade. RESULTS Herein, we exploited an artificial synthetic malonic acid-acetoacetyl-CoA (MAAC) metabolic pathway to switch central carbon metabolic flux for stable and efficient biosynthesis of sesquiterpene-based high-density biofuel precursor in S. cerevisiae. Through investigations at transcription and metabolism levels, we revealed that strains with rewired central metabolism can devote more sugars to β-caryophyllene production. By optimizing the MVA pathway, the yield of β-caryophyllene from YQ-4 was 25.8 mg/L, which was 3 times higher than that of the initial strain YQ-1. Strain YQ-7 was obtained by introducing malonic acid metabolic pathway. Combing the optimized flask fermentation process, the target production boosted by about 13-fold, to 328 mg/L compared to that in the strain YQ-4 without malonic acid metabolic pathway. CONCLUSION This designed MAAC pathway for sesquiterpene-based high-density biofuel precursor synthesis can provide an impressive cornerstone for achieving a sustainable production of renewable fuels.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qun Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Yunhui Liu
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
21
|
Basallo O, Perez L, Lucido A, Sorribas A, Marin-Saguino A, Vilaprinyo E, Perez-Fons L, Albacete A, Martínez-Andújar C, Fraser PD, Christou P, Capell T, Alves R. Changing biosynthesis of terpenoid percursors in rice through synthetic biology. FRONTIERS IN PLANT SCIENCE 2023; 14:1133299. [PMID: 37465386 PMCID: PMC10350630 DOI: 10.3389/fpls.2023.1133299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
Many highly valued chemicals in the pharmaceutical, biotechnological, cosmetic, and biomedical industries belong to the terpenoid family. Biosynthesis of these chemicals relies on polymerization of Isopentenyl di-phosphate (IPP) and/or dimethylallyl diphosphate (DMAPP) monomers, which plants synthesize using two alternative pathways: a cytosolic mevalonic acid (MVA) pathway and a plastidic methyleritritol-4-phosphate (MEP) pathway. As such, developing plants for use as a platform to use IPP/DMAPP and produce high value terpenoids is an important biotechnological goal. Still, IPP/DMAPP are the precursors to many plant developmental hormones. This creates severe challenges in redirecting IPP/DMAPP towards production of non-cognate plant metabolites. A potential solution to this problem is increasing the IPP/DMAPP production flux in planta. Here, we aimed at discovering, understanding, and predicting the effects of increasing IPP/DMAPP production in plants through modelling. We used synthetic biology to create rice lines containing an additional ectopic MVA biosynthetic pathway for producing IPP/DMAPP. The rice lines express three alternative versions of the additional MVA pathway in the plastid, in addition to the normal endogenous pathways. We collected data for changes in macroscopic and molecular phenotypes, gene expression, isoprenoid content, and hormone abundance in those lines. To integrate the molecular and macroscopic data and develop a more in depth understanding of the effects of engineering the exogenous pathway in the mutant rice lines, we developed and analyzed data-centric, line-specific, multilevel mathematical models. These models connect the effects of variations in hormones and gene expression to changes in macroscopic plant phenotype and metabolite concentrations within the MVA and MEP pathways of WT and mutant rice lines. Our models allow us to predict how an exogenous IPP/DMAPP biosynthetic pathway affects the flux of terpenoid precursors. We also quantify the long-term effect of plant hormones on the dynamic behavior of IPP/DMAPP biosynthetic pathways in seeds, and predict plant characteristics, such as plant height, leaf size, and chlorophyll content from molecular data. In addition, our models are a tool that can be used in the future to help in prioritizing re-engineering strategies for the exogenous pathway in order to achieve specific metabolic goals.
Collapse
Affiliation(s)
- Orio Basallo
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Lucia Perez
- Applied Plant Biotechnology Group, Department de Producció Vegetal I Ciència Florestal, Escola Tècnica Superior d'Enginyeria Agroalimentària i Forestal i de Veterinària (ETSEAFiV), Universitat de Lleida, Lleida, Spain
- Agrotecnio Centres de Recerca de Catalunya (CERCA) Center, Lleida, Spain
| | - Abel Lucido
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Albert Sorribas
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Alberto Marin-Saguino
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Ester Vilaprinyo
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Laura Perez-Fons
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, United Kingdom
| | - Alfonso Albacete
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Murcia, Murcia, Spain
- Department of Plant Production and Agrotechnology, Institute for Agri-Food Research and Development of Murcia, Murcia, Spain
| | - Cristina Martínez-Andújar
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Murcia, Murcia, Spain
| | - Paul D. Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, United Kingdom
| | - Paul Christou
- Applied Plant Biotechnology Group, Department de Producció Vegetal I Ciència Florestal, Escola Tècnica Superior d'Enginyeria Agroalimentària i Forestal i de Veterinària (ETSEAFiV), Universitat de Lleida, Lleida, Spain
- Agrotecnio Centres de Recerca de Catalunya (CERCA) Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Teresa Capell
- Applied Plant Biotechnology Group, Department de Producció Vegetal I Ciència Florestal, Escola Tècnica Superior d'Enginyeria Agroalimentària i Forestal i de Veterinària (ETSEAFiV), Universitat de Lleida, Lleida, Spain
- Agrotecnio Centres de Recerca de Catalunya (CERCA) Center, Lleida, Spain
| | - Rui Alves
- Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
22
|
Tong CY, Honda K, Derek CJC. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. ENVIRONMENTAL RESEARCH 2023; 228:115872. [PMID: 37054838 DOI: 10.1016/j.envres.2023.115872] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023]
Abstract
Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
23
|
Alves LDF, Bortolucci J, Reginato V, Guazzaroni ME, Mussatto SI. Improving Saccharomyces cerevisiae acid and oxidative stress resistance using a prokaryotic gene identified by functional metagenomics. Heliyon 2023; 9:e14838. [PMID: 37077683 PMCID: PMC10106912 DOI: 10.1016/j.heliyon.2023.e14838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/21/2023] Open
Abstract
Innovations in obtaining products from lignocellulosic biomass have been largely based on the improvement of microorganisms and enzymes capable of degrading these materials. To complete the whole process, microorganisms must be able to ferment the resulting sugars and tolerate high concentrations of product, osmotic pressure, ion toxicity, temperature, toxic compounds from lignocellulose pretreatment, low pH, and oxidative stress. In this work, we engineered laboratory and industrial Saccharomyces cerevisiae strains by combining a gene (hu) recovered from a metagenomic approach with different native and synthetic promoters to obtain improved acid and oxidative stress resistance. Laboratorial strains harboring hu gene under the control of the synthetic stress responsive PCCW14v5 showed increased survival rates after 2 h exposure to pH 1.5. The hu gene was also able to significantly enhance the tolerance of the industrial strain to high concentrations of H2O2 when combined with PTEF1, PYGP1 or PYGP1v7 after 3 h exposure.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- Department of Biology, Faculdade de Filosofia, University of São Paulo, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, 14040-901, São Paulo, Brazil
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-900, São Paulo, Brazil
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark
| | - Jonatã Bortolucci
- Department of Biology, Faculdade de Filosofia, University of São Paulo, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Valeria Reginato
- Department of Biology, Faculdade de Filosofia, University of São Paulo, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, University of São Paulo, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Solange I. Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
- Corresponding author.
| |
Collapse
|
24
|
Liu Y, Chen X, Zhang C. Sustainable biosynthesis of valuable diterpenes in microbes. ENGINEERING MICROBIOLOGY 2023; 3:100058. [PMID: 39628524 PMCID: PMC11611012 DOI: 10.1016/j.engmic.2022.100058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/06/2024]
Abstract
Diterpenes, or diterpenoids, are the most abundant and diverse subgroup of terpenoids, the largest family of secondary metabolites. Most diterpenes possess broad biological activities including anti-inflammatory, antiviral, anti-tumoral, antimicrobial, anticancer, antifungal, antidiabetic, cardiovascular protective, and phytohormone activities. As such, diterpenes have wide applications in medicine (e.g., the anticancer drug Taxol and the antibiotic pleuromutilin), agriculture (especially as phytohormones such as gibberellins), personal care (e.g., the fragrance sclareol) and food (e.g., steviol glucosides as low-calorie sweeteners) industries. Diterpenes are biosynthesized in a common route with various diterpene synthases and decoration enzymes like cytochrome P450 oxidases, glycosidases, and acyltransferases. Recent advances in DNA sequencing and synthesis, omics analysis, synthetic biology, and metabolic engineering have enabled efficient production of diterpenes in several chassis hosts like Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, Rhodosporidium toruloides, and Fusarium fujikuroi. This review summarizes the recently discovered diterpenes, their related enzymes and biosynthetic pathways, particularly highlighting the microbial synthesis of high-value diterpenes directly from inexpensive carbon sources (e.g., sugars). The high titers (>4 g/L) achieved mean that some of these endeavors are reaching or close to commercialization. As such, we envisage a bright future in translating microbial synthesis of diterpenes into commercialization.
Collapse
Affiliation(s)
- Yanbin Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| |
Collapse
|
25
|
Hu M, Dinh HV, Shen Y, Suthers PF, Foster CJ, Call CM, Ye X, Pratas J, Fatma Z, Zhao H, Rabinowitz JD, Maranas CD. Comparative study of two Saccharomyces cerevisiae strains with kinetic models at genome-scale. Metab Eng 2023; 76:1-17. [PMID: 36603705 DOI: 10.1016/j.ymben.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
The parameterization of kinetic models requires measurement of fluxes and/or metabolite levels for a base strain and a few genetic perturbations thereof. Unlike stoichiometric models that are mostly invariant to the specific strain, it remains unclear whether kinetic models constructed for different strains of the same species have similar or significantly different kinetic parameters. This important question underpins the applicability range and prediction limits of kinetic reconstructions. To this end, herein we parameterize two separate large-scale kinetic models using K-FIT with genome-wide coverage corresponding to two distinct strains of Saccharomyces cerevisiae: CEN.PK 113-7D strain (model k-sacce306-CENPK), and growth-deficient BY4741 (isogenic to S288c; model k-sacce306-BY4741). The metabolic network for each model contains 306 reactions, 230 metabolites, and 119 substrate-level regulatory interactions. The two models (for CEN.PK and BY4741) recapitulate, within one standard deviation, 77% and 75% of the fitted dataset fluxes, respectively, determined by 13C metabolic flux analysis for wild-type and eight single-gene knockout mutants of each strain. Strain-specific kinetic parameterization results indicate that key enzymes in the TCA cycle, glycolysis, and arginine and proline metabolism drive the metabolic differences between these two strains of S. cerevisiae. Our results suggest that although kinetic models cannot be readily used across strains as stoichiometric models, they can capture species-specific information through the kinetic parameterization process.
Collapse
Affiliation(s)
- Mengqi Hu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Hoang V Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Yihui Shen
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Patrick F Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Charles J Foster
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Catherine M Call
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Xuanjia Ye
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jimmy Pratas
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Zia Fatma
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA.
| |
Collapse
|
26
|
Gou Z, Song X, Wang G, Xia Y, Ai L, Xiong Z. Heterologous expression of C 30 carotenoid biosynthetic gene crtNM from Lactiplantibacillus plantarum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:506-513. [PMID: 36468615 DOI: 10.1002/jsfa.12160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Probiotic lactic acid bacterium Lactiplantibacillus plantarum is widely used in the dairy and other fermented food industries. L. plantarum AR113 harbors a C30 carotenoid operon crtNM based on genomic analysis, but the yield of C30 carotenoid is only 8.1 μg g-1 DCW. RESULTS To improve the productivity of C30 carotenoid, crtNM from L. plantarum AR113 was cloned and reconstructed in Escherichia coli BL21(DE3). The proteins crtN and crtM were successfully expressed based on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and the carotenoid was detected using high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). In comparison with the constitutive promoter P44 , the use of the inducible T7 promoter significantly increased the carotenoid content in E. coli. The fermentation conditions were also optimized with induction by 0.5 mmol/L IPTG at 20 °C for 7 h. The yield of C30 carotenoid reached 154.5 μg g-1 DCW, which was 18-fold higher than that of L. plantarum AR113. The 2,2-diphenyl-1-picryl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6sulfonic acid (ABTS) radical scavenging capacity of C30 carotenoids synthesized by heterologous expression in E. coli was also higher than that of the antioxidant food additive butylated hydroxytoluene. CONCLUSIONS Our findings suggest that E. coli has strong potential as a basic chassis for the production of C30 carotenoids from Lactiplantibacillus with high antioxidant activity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zongqin Gou
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
27
|
Collins L, Ponnazhagan S, Curiel DT. Synthetic Biology Design as a Paradigm Shift toward Manufacturing Affordable Adeno-Associated Virus Gene Therapies. ACS Synth Biol 2023; 12:17-26. [PMID: 36627108 PMCID: PMC9872172 DOI: 10.1021/acssynbio.2c00589] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 01/12/2023]
Abstract
Gene therapy has demonstrated enormous potential for changing how we combat disease. By directly engineering the genetic composition of cells, it provides a broad range of options for improving human health. Adeno-associated viruses (AAVs) represent a leading gene therapy vector and are expected to address a wide range of conditions in the coming decade. Three AAV therapies have already been approved by the FDA to treat Leber's congenital amaurosis, spinal muscular atrophy, and hemophilia B. Yet these therapies cost around $850,000, $2,100,000, and $3,500,000, respectively. Such prices limit the broad applicability of AAV gene therapy and make it inaccessible to most patients. Much of this problem arises from the high manufacturing costs of AAVs. At the same time, the field of synthetic biology has grown rapidly and has displayed a special aptitude for addressing biomanufacturing problems. Here, we discuss emerging efforts to apply synthetic biology design to decrease the price of AAV production, and we propose that such efforts could play a major role in making gene therapy much more widely accessible.
Collapse
Affiliation(s)
- Logan
Thrasher Collins
- Department
of Biomedical Engineering, Washington University
in St. Louis, 4950 Childrens Place, St. Louis, Missouri 63110, United
States
| | - Selvarangan Ponnazhagan
- Department
of Pathology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, Alabama 35233, United States
| | - David T. Curiel
- Department
of Biomedical Engineering, Washington University
in St. Louis, 4950 Childrens Place, St. Louis, Missouri 63110, United
States
- Department
of Radiation Oncology, Washington University
in St. Louis, 4950 Childrens
Place, St. Louis, Missouri 63110, United States
| |
Collapse
|
28
|
Nair P, Navale GR, Dharne MS. Poly-gamma-glutamic acid biopolymer: a sleeping giant with diverse applications and unique opportunities for commercialization. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:4555-4573. [PMID: 33824848 PMCID: PMC8016157 DOI: 10.1007/s13399-021-01467-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/06/2023]
Abstract
Poly-gamma-glutamic acid (γ-PGA) is a biodegradable, non-toxic, ecofriendly, and non-immunogenic biopolymer. Its phenomenal properties have gained immense attention in the field of regenerative medicine, the food industry, wastewater treatment, and even in 3D printing bio-ink. The γ-PGA has the potential to replace synthetic non-degradable counterparts, but the main obstacle is the high production cost and lower productivity. Extensive research has been carried out to reduce the production cost by using different waste; however, it is unable to match the commercialization needs. This review focuses on the biosynthetic mechanism of γ-PGA, its production using the synthetic medium as well as different wastes by L-glutamic acid-dependent and independent microbial strains. Furthermore, various metabolic engineering strategies and the recovery processes for γ-PGA and their possible applications are discussed. Finally, highlights on the challenges and unique approaches to reduce the production cost and to increase the productivity for commercialization of γ-PGA are also summarized.
Collapse
Affiliation(s)
- Pranav Nair
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Govinda R. Navale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Mahesh S. Dharne
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| |
Collapse
|
29
|
Zhang C, Chen W, Dong T, Wang Y, Yao M, Xiao W, Li B. Elimination of enzymes catalysis compartmentalization enhancing taxadiene production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2023; 11:1141272. [PMID: 36890913 PMCID: PMC9986319 DOI: 10.3389/fbioe.2023.1141272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Taxadiene is an important precursor in taxol biosynthesis pathway, but its biosynthesis in eukaryotic cell factories is limited, which seriously hinders the biosynthesis of taxol. In this study, it is found that there was the catalysis compartmentalization between two key exogenous enzymes of geranylgeranyl pyrophosphate synthase and taxadiene synthase (TS) for taxadiene synthesis progress, due to their different subcellular localization. Firstly, the enzyme-catalysis compartmentalization was overcome by means of the intracellular relocation strategies of taxadiene synthase, including N-terminal truncation of taxadiene synthase and enzyme fusion of GGPPS-TS. With the help of two strategies for enzyme relocation, the taxadiene yield was increased by 21% and 54% respectively, among them the GGPPS-TS fusion enzyme is more effective. Further, the expression of GGPPS-TS fusion enzyme was improved via the multi-copy plasmid, resulting that the taxadiene titer was increased by 38% to 21.8 mg/L at shake-flask level. Finally, the maximum taxadiene titer of 184.2 mg/L was achieved by optimization of the fed-batch fermentation conditions in 3 L bioreactor, which is the highest reported titer of taxadiene biosynthesis accomplished in eukaryotic microbes. This study provides a successful example for improving biosynthesis of complex natural products by solving the critical problem of multistep enzymes catalysis compartmentalization.
Collapse
Affiliation(s)
- Chenglong Zhang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wang Chen
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tianyu Dong
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, China
| | - Bingzhi Li
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
30
|
Singh HB, Kang MK, Kwon M, Kim SW. Developing methylotrophic microbial platforms for a methanol-based bioindustry. Front Bioeng Biotechnol 2022; 10:1050740. [PMID: 36507257 PMCID: PMC9727194 DOI: 10.3389/fbioe.2022.1050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Methanol, a relatively cheap and renewable single-carbon feedstock, has gained considerable attention as a substrate for the bio-production of commodity chemicals. Conventionally produced from syngas, along with emerging possibilities of generation from methane and CO2, this C1 substrate can serve as a pool for sequestering greenhouse gases while supporting a sustainable bio-economy. Methylotrophic organisms, with the inherent ability to use methanol as the sole carbon and energy source, are competent candidates as platform organisms. Accordingly, methanol bioconversion pathways have been an attractive target for biotechnological and bioengineering interventions in developing microbial cell factories. This review summarizes the recent advances in methanol-based production of various bulk and value-added chemicals exploiting the native and synthetic methylotrophic organisms. Finally, the current challenges and prospects of streamlining these methylotrophic platforms are discussed.
Collapse
Affiliation(s)
- Hawaibam Birla Singh
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Kang
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| |
Collapse
|
31
|
Mukherjee M, Blair RH, Wang ZQ. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production. Metab Eng 2022; 74:139-149. [DOI: 10.1016/j.ymben.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
32
|
Zhang Y, Cao X, Wang J, Tang F. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway. Microb Cell Fact 2022; 21:212. [PMID: 36243714 PMCID: PMC9571491 DOI: 10.1186/s12934-022-01934-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linalool is a monoterpenoid, also a vital silvichemical with commercial applications in cosmetics, flavoring ingredients, and medicines. Regulation of mevalonate (MVA) pathway metabolic flux is a common strategy to engineer Saccharomyces cerevisiae for efficient linalool production. However, metabolic regulation of the MVA pathway is complex and involves competition for central carbon metabolism, resulting in limited contents of target metabolites. RESULTS In this study, first, a truncated linalool synthase (t26AaLS1) from Actinidia arguta was selected for the production of linalool in S. cerevisiae. To simplify the complexity of the metabolic regulation of the MVA pathway and increase the flux of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), we introduced the two-step isopentenyl utilization pathway (IUP) into S. cerevisiae, which could produce large amounts of IPP/DMAPP. Further, the S. cerevisiae IDI1 (ecoding isopentenyl diphosphate delta-isomerase) and ERG20F96W-N127W (encoding farnesyl diphosphate synthase) genes were integrated into the yeast genome, combined with the strategies of copy number variation of the t26AaLS1 and ERG20F96W-N127W genes to increase the metabolic flux of the downstream IPP, as well as optimization of isoprenol and prenol concentrations, resulting in a 4.8-fold increase in the linalool titer. Eventually, under the optimization of carbon sources and Mg2+ addition, a maximum linalool titer of 142.88 mg/L was obtained in the two-phase extractive shake flask fermentation. CONCLUSIONS The results show that the efficient synthesis of linalool in S. cerevisiae could be achieved through a two-step pathway, gene expression adjustment, and optimization of culture conditions. The study may provide a valuable reference for the other monoterpenoid production in S. cerevisiae.
Collapse
Affiliation(s)
- Yaoyao Zhang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Xianshuang Cao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Jin Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Feng Tang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China.
| |
Collapse
|
33
|
Cui Y, Pei TT, Liang X, Li H, Zheng HY, Dong T. Heterologous Assembly of the Type VI Secretion System Empowers Laboratory Escherichia coli with Antimicrobial and Cell Penetration Capabilities. Appl Environ Microbiol 2022; 88:e0130522. [PMID: 36154120 PMCID: PMC9552605 DOI: 10.1128/aem.01305-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
The synthetic biology toolbox has amassed a vast number of diverse functional modules, but protein translocation modules for cell penetration and cytosol-to-cytosol delivery remain relatively scarce. The type VI secretion system (T6SS), commonly found in many Gram-negative pathogens, functions as a contractile device to translocate protein toxins to prokaryotic and eukaryotic cells. Here, we have assembled the T6SS of Aeromonas dhakensis, an opportunistic waterborne pathogen, in the common laboratory strain Escherichia coli BL21(DE3). We constructed a series of plasmids (pT6S) carrying the T6SS structural and effector genes under native or tetracycline-inducible promoters, the latter for controlled expression. Using fluorescence microscopy and biochemical analyses, we demonstrate a functional T6SS in E. coli capable of secreting proteins directly into the cytosol of neighboring bacteria and outcompeting a number of drug-resistant pathogens. The heterologous assembly of T6SS not only confers the lab workhorse E. coli with the cytosol-to-cytosol protein delivery capability but also demonstrates the potential for harnessing the T6SS of various pathogens for general protein delivery and antibacterial applications. IMPORTANCE The T6SS is a powerful and versatile protein delivery system. However, the complexity of its macromolecular structure and gene regulation makes it not a trivial task to reconstitute the T6SSs of pathogens in a nonpathogenic host. In this study, we have assembled an inducible T6SS in E. coli BL21(DE3) and demonstrated its functions in protein delivery and antimicrobial activities. The engineered T6SS empowers E. coli to deliver protein cargos into a wide range of prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
34
|
Rautela A, Kumar S. Engineering plant family TPS into cyanobacterial host for terpenoids production. PLANT CELL REPORTS 2022; 41:1791-1803. [PMID: 35789422 PMCID: PMC9253243 DOI: 10.1007/s00299-022-02892-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/05/2022] [Indexed: 05/03/2023]
Abstract
Terpenoids are synthesized naturally by plants as secondary metabolites, and are diverse and complex in structure with multiple applications in bioenergy, food, cosmetics, and medicine. This makes the production of terpenoids such as isoprene, β-phellandrene, farnesene, amorphadiene, and squalene valuable, owing to which their industrial demand cannot be fulfilled exclusively by plant sources. They are synthesized via the Methylerythritol phosphate pathway (MEP) and the Mevalonate pathway (MVA), both existing in plants. The advent of genetic engineering and the latest accomplishments in synthetic biology and metabolic engineering allow microbial synthesis of terpenoids. Cyanobacteria manifest to be the promising hosts for this, utilizing sunlight and CO2. Cyanobacteria possess MEP pathway to generate precursors for terpenoid synthesis. The terpenoid synthesis can be amplified by overexpressing the MEP pathway and engineering MVA pathway genes. According to the desired terpenoid, terpene synthases unique to the plant kingdom must be incorporated in cyanobacteria. Engineering an organism to be used as a cell factory comes with drawbacks such as hampered cell growth and disturbance in metabolic flux. This review set forth a comparison between MEP and MVA pathways, strategies to overexpress these pathways with their challenges.
Collapse
Affiliation(s)
- Akhil Rautela
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
35
|
Metabolic Engineering of Saccharomyces cerevisiae for Production of Fragrant Terpenoids from Agarwood and Sandalwood. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sandalwood and agarwood essential oils are rare natural oils comprising fragrant terpenoids that have been used in perfumes and incense for millennia. Increasing demand for these terpenoids, coupled with difficulties in isolating them from natural sources, have led to an interest in finding alternative production platforms. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fragrant terpenoids from sandalwood and agarwood. Specifically, we constructed strain FPPY005_39850, which overexpresses all eight genes in the mevalonate pathway. Using this engineered strain as the background strain, we screened seven distinct terpene synthases from agarwood, sandalwood, and related plant species for their activities in the context of yeast. Five terpene synthases led to the production of fragrant terpenoids, including α-santalene, α-humulene, δ-guaiene, α-guaiene, and β-eudesmol. To our knowledge, this is the first demonstration of β-eudesmol production in yeast. We further improved the production titers by downregulating ERG9, a key enzyme from a competing pathway, as well as employing enzyme fusions. Our final engineered strains produced fragrant terpenoids at up to 101.7 ± 6.9 mg/L. We envision our work will pave the way for a scalable route to these fragrant terpenoids and further establish S. cerevisiae as a versatile production platform for high-value chemicals.
Collapse
|
36
|
Wu QY, Huang ZY, Wang JY, Yu HL, Xu JH. Construction of an Escherichia coli cell factory to synthesize taxadien-5α-ol, the key precursor of anti-cancer drug paclitaxel. BIORESOUR BIOPROCESS 2022; 9:82. [PMID: 38647602 PMCID: PMC10992617 DOI: 10.1186/s40643-022-00569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
Paclitaxel (Taxol™), an alkaloid of diterpenoid family, is one of the most widely used anti-cancer drugs due to its effectiveness against a variety of tumors. Rather than directly extraction and chemical synthesis of paclitaxel or its intermediates from yew plants, construction of a microbial cell factory for paclitaxel biosynthesis will be more efficient and sustainable. The challenge for biosynthesis of paclitaxel lies on the insufficient precursor, such as taxadien-5α-ol. In this study, we report a recombinant Escherichia coli strain constructed with a heterologous mevalonate pathway, a taxadiene synthase from yew, and a cytochrome P450-mediated oxygenation system for the de novo production of taxadien-5α-ol, the first product of the multi-step taxadiene oxygenation metabolism. The key enzymes including taxadiene synthases and cytochrome P450 reductases were screened, and the linker for fusing taxadiene-5α-hydroxylase with its reductase partner cytochrome P450 reductase was optimized. By reducing the metabolic burden and optimizing the fermentation conditions, the final production of total oxygenated taxanes was raised up to 27 mg L-1 in a 50-mL flask cultivation, of which the yield of taxadien-5α-ol was 7.0 mg L-1, representing approximately a 12-fold and 23-fold improvements, respectively, as compared with the initial titers. The engineered MVA pathway for the overproduction of terpenoid precursors can serve as an efficient platform for the production of other valuable terpenoids.
Collapse
Affiliation(s)
- Qing-Yang Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jin-Yi Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
37
|
Li W, Cui L, Mai J, Shi TQ, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9246-9261. [PMID: 35854404 DOI: 10.1021/acs.jafc.2c03917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Terpenes are a large class of secondary metabolites with diverse structures and functions that are commonly used as valuable raw materials in food, cosmetics, and medicine. With the development of metabolic engineering and emerging synthetic biology tools, these important terpene compounds can be sustainably produced using different microbial chassis. Currently, yeasts such as Saccharomyces cerevisiae and Yarrowia lipolytica have received extensive attention as potential hosts for the production of terpenes due to their clear genetic background and endogenous mevalonate pathway. In this review, we summarize the natural terpene biosynthesis pathways and various engineering strategies, including enzyme engineering, pathway engineering, and cellular engineering, to further improve the terpene productivity and strain stability in these two widely used yeasts. In addition, the future prospects of yeast-based terpene production are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future studies are also emphasized.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Liuwei Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jie Mai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhi-Gang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
38
|
Shin J, South EJ, Dunlop MJ. Transcriptional Tuning of Mevalonate Pathway Enzymes to Identify the Impact on Limonene Production in Escherichia coli. ACS OMEGA 2022; 7:18331-18338. [PMID: 35694509 PMCID: PMC9178717 DOI: 10.1021/acsomega.2c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Heterologous production of limonene in microorganisms through the mevalonate (MVA) pathway has traditionally imposed metabolic burden and reduced cell fitness, where imbalanced stoichiometries among sequential enzymes result in the accumulation of toxic intermediates. Although prior studies have shown that changes to mRNA stability, RBS strength, and protein homology can be effective strategies for balancing enzyme levels in the MVA pathway, testing different variations of these parameters often requires distinct genetic constructs, which can exponentially increase assembly costs as pathways increase in size. Here, we developed a multi-input transcriptional circuit to regulate the MVA pathway, where four chemical inducers, l-arabinose (Ara), choline chloride (Cho), cuminic acid (Cuma), and isopropyl β-d-1-thiogalactopyranoside (IPTG), each regulate one of four orthogonal promoters. We tested modular transcriptional regulation of the MVA pathway by placing this circuit in an engineered Escherichia coli "marionette" strain, which enabled systematic and independent tuning of the first three enzymes (AtoB, HMGS, and HMGR) in the MVA pathway. By systematically testing combinations of chemical inducers as inputs, we investigated relationships between the expressions of different MVA pathway submodules, finding that limonene yields are sensitive to the coordinated transcriptional regulation of HMGS and HMGR.
Collapse
Affiliation(s)
- Jonghyeon Shin
- Biomedical
Engineering Department, Boston University, Boston, Massachusetts 02215, United States
| | - Eric J. South
- Molecular
Biology, Cell Biology & Biochemistry Program, Boston University, Boston, Massachusetts 02215, United States
| | - Mary J. Dunlop
- Biomedical
Engineering Department, Boston University, Boston, Massachusetts 02215, United States
- Molecular
Biology, Cell Biology & Biochemistry Program, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
39
|
Overmans S, Lauersen KJ. Biocompatible fluorocarbon liquid underlays for in situ extraction of isoprenoids from microbial cultures. RSC Adv 2022; 12:16632-16639. [PMID: 35754885 PMCID: PMC9169902 DOI: 10.1039/d2ra01112c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/29/2022] [Indexed: 01/19/2023] Open
Abstract
Microbial production of heterologous metabolites is now a mature technology in many host organisms, opening new avenues for green production processes of specialty chemicals. At lab scale, petroleum-based hydrophobic bio-compatible solvents like dodecane can be used as a second phase on top of microbial cultures to act as a physical sink for heterologous hydrocarbon products like isoprenoids. However, this approach has significant drawbacks at scale due to the difficulty of handling solvents and their potential contamination with unwanted byproducts of their manufacture. We discovered that synthetic perfluorocarbon liquids (FCs), commonly used for heat transfer, can also act as physical sinks for microbially produced isoprenoid compounds. FCs are stable, inert, and are amenable to direct liquid-liquid extraction with alcohols for rapid product isolation. These liquids are more dense than water and form a lower phase to microbial cultures rather than an upper phase as with other solvents. Their ability to form an under-layer or 'underlay' also enables the cultivation of microbes directly at the FC-culture medium interface via gravity settling, which could open their application for filamentous or mat-forming organisms. We present comparisons of the isoprenoid extraction potential of three commercial FCs: FC-3283, FC-40, and FC-770 with engineered green microalga cultures producing patchoulol, taxadiene, casbene, or 13R(+) manoyl oxide. We demonstrate that FCs are promising alternatives to traditional solvents and open new avenues in bio-process design for microbial heterologous metabolite milking.
Collapse
Affiliation(s)
- Sebastian Overmans
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Huang ZY, Wu QY, Li CX, Yu HL, Xu JH. Facile Production of (+)-Aristolochene and (+)-Bicyclogermacrene in Escherichia coli Using Newly Discovered Sesquiterpene Synthases from Penicillium expansum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5860-5868. [PMID: 35506591 DOI: 10.1021/acs.jafc.2c01885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Penicillium expansum, producer of a wide array of secondary metabolites, has the potential to be a source of new terpene synthases. In this work, a platform was constructed with Escherichia coli BL21(DE3) by enhancing its endogenous 2-methyl-d-erythritol-4-phosphate pathway to supply sufficient terpenoid precursors. Using this precursor-supplying platform, we discovered two sesquiterpene synthases from P. expansum: PeTS1, a new (+)-aristolochene synthase, and PeTS4, the first microbial (+)-bicyclogermacrene synthase. To enhance the sesquiterpene production by PeTS1, we employed a MBP fusion tag to improve the heterologous protein expression, resulting in the increase of aristolochene production up to 50 mg/L in a 72 h flask culture, which is the highest production reported to date. We also realized the first biosynthesis of (+)-bicyclogermacrene, achieving 188 mg/L in 72 h. This work highlights the great potential of this microbial platform for the discovery of new terpene synthases and opens new ways for the bioproduction of other valuable terpenoids.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qing-Yang Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
41
|
Maithani D, Sharma A, Gangola S, Choudhary P, Bhatt P. Insights into applications and strategies for discovery of microbial bioactive metabolites. Microbiol Res 2022; 261:127053. [DOI: 10.1016/j.micres.2022.127053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 10/25/2022]
|
42
|
Guan C, Yuan Y, Ma Y, Wang X, Zhang C, Lu M, Gu R, Chen D. Development of a novel expression system in lactic acid bacteria controlled by a broad-host-range promoter P srfA. Microb Cell Fact 2022; 21:23. [PMID: 35168614 PMCID: PMC8845276 DOI: 10.1186/s12934-022-01754-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/02/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Latic acid bacteria (LAB) are exploited for development of gene expression system owing to its health promoting properties and a high degree of safety status. Most of the expression systems were constructed in Lactobacillus lactis with inducible promoters. It is necessary to exploit novel promoters to develop LAB host platforms which are indispensable in dairy and health application to satisfy the production demand of increased number of target-genes. Previously, promoter PsrfA had been displayed broad host range and used to construct auto-inducible expression system in B. subtilis and E. coli. In this work, the feasibility of PsrfA in LAB was estimated. RESULTS Plasmid with the green fluorescent protein (GFP) inserting downstream of PsrfA was transformed into L. casei 5257, L. plantarum 97, L. fermentum 087 and Weissella confusa 10, respectively. The recombinant strains grew well and displayed different fluorescence which could be detected by spectrophotometer and laser scanning confocal microscope. Moreover, the promoter activity was strain- specifically influenced by particular carbon and nitrogen sources. Heterologous laccase CotA could be expressed by PsrfA in L. casei 5257-05 and L. plantarum 97-06. By adjusting the pH value from 4.5 to 6.5 during incubation, the CotA activity detected from L. plantarum 97-05 and L. casei 5257-05 was increased by 137.7% and 61.5%, respectively. Finally, the fermentation pH was variably up-regulated along with the production of NADH oxidase which was controlled by the PsrfA and its derivative mutated with core regions. CONCLUSIONS These data suggested that PsrfA was valid for gene expression in different species of LAB. Moreover, PsrfA could be used as an attractive candidate for fine-tuning gene expression in a broad range of prokaryotic expression plants.
Collapse
Affiliation(s)
- Chengran Guan
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Yuan Yuan
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Yan Ma
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Xin Wang
- Shandong Yinfeng Life Science Research Institute, Jinan, 250000, Shandong, China
| | - Chenchen Zhang
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Maolin Lu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Ruixia Gu
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Dawei Chen
- Key Lab of Dairy Biotechnology and Safety Control, College of Food Science and Technology, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| |
Collapse
|
43
|
Wang Q, Chen T, Cui Y, Li S, Jiang X, Zhao G, Li Y, Zou D. The applicability of pH-zone-refining counter-current chromatography for preparative separation of biosynthesis products: Glycosylation products as example. J Chromatogr A 2021; 1657:462582. [PMID: 34614468 DOI: 10.1016/j.chroma.2021.462582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/27/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Biosynthesis is a research hot-spot in recent years, however, the purification of its final products is a tough work. Liquid stationary phase and large-scale separation ability of PZRCCC could easily avoid the commonly disadvantages occurred in traditional column chromatography. These characteristics makes PZRCCC particularly applicable for final products separation in biosynthesis. In this study, the glycosylation products of ellagic acid by one-pot glycosylation were successfully purified by PZRCCC to show the applicability of PZRCCC for preparative separation of biosynthesis products. An optimized ethyl acetate/n-buthanol/water (3:3:5, v/v/v) system was applied in this study, where 5 mM trifluoroacetic acid (TFA) as the retainer and 30 mM triethylamine (TEA) as the eluter were added. As a result, four ellagic acid glycosylation products, including 51 mg of ellagic acid-4, 3'-O-β-D-diglucoside (EG-1), 24 mg of ellagic acid-4, 4'-O-β-D-diglucoside (EG-2), 11 mg of ellagic acid-4-O-β-D-glucosyl (1→2)-β-D-glucoside (EG-3) and 64 mg of ellagic acid-4-O-β-D-glucoside (EG-4) were simultaneously separated from 500 mg of glycosylation crude products, with the purity of 93.3%, 91.2%, 89.4% and 95.5%, respectively. Their structures were identified by spectroscopic analysis.
Collapse
Affiliation(s)
- Qiqi Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| | - Yunbin Cui
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining 810000, PR China
| | - Si Li
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining 810000, PR China
| | - Xinhao Jiang
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining 810000, PR China
| | - Guodong Zhao
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining 810000, PR China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.
| | - Denglang Zou
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining 810000, PR China.
| |
Collapse
|
44
|
Zou D, Cui Y, Li S, Sang D, Liu W, Zhao T, Gu X, Chen T, Li Y. The applicability of high-speed counter-current chromatography for preparative separation of biosynthesis products: Glycosylation products as example. J Sep Sci 2021; 44:4368-4375. [PMID: 34687498 DOI: 10.1002/jssc.202100544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022]
Abstract
Biosynthesis is a promising way to manufacture desired products, however, the purification of its final products is a tough work due to the huge amount of reaction matrix. Liquid stationary phase of high-speed counter-current chromatography could easily avoid the commonly disadvantages that occurred in traditional column chromatography in the field of biosynthesized products purification. This characteristic makes high-speed counter-current chromatography particularly applicable for final products separation in biosynthesis. In this study, the glycosylation products of Silybin B by one-pot glycosylation were successfully purified by high-speed counter-current chromatography to show the applicability of high-speed counter-current chromatography for preparative separation of biosynthesis products. An optimized n-hexane/ethyl acetate/methanol/water (2:5:2:3, v/v/v/v) system was applied in this study. As a result, four Silybin B glycosylation products, including 7 mg of Silybin B-5-O-β-D-glucoside (SG-1), 12 mg of Silybin B-3-O-β-D-glucoside (SG-2), 10 mg of Silybin B-7-O-β-D-glucoside (SG-3), and 24 mg of Silybin B-20-O-β-D-glucoside (SG-4), were simultaneously separated from 200 mg of glycosylation crude products, with the purity of 89.3, 95.2, 96.4, and 97.5%, respectively. Their structures were identified by spectroscopic analysis.
Collapse
Affiliation(s)
- Denglang Zou
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Yunbin Cui
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Si Li
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Duocheng Sang
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Weimeng Liu
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Tianshu Zhao
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Xueli Gu
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, P. R. China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
| |
Collapse
|
45
|
Ma K, Zhang Y, Guo C, Yang Y, Han J, Yu B, Yin W, Liu H. Reconstitution of biosynthetic pathway for mushroom-derived cyathane diterpenes in yeast and generation of new "non-natural" analogues. Acta Pharm Sin B 2021; 11:2945-2956. [PMID: 34589407 PMCID: PMC8463280 DOI: 10.1016/j.apsb.2021.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Mushroom-derived cyathane-type diterpenes possess unusual chemical skeleton and diverse bioactivities. To efficiently supply bioactive cyathanes for deep studies and explore their structural diversity, de novo synthesis of cyathane diterpenes in a geranylgeranyl pyrophosphate engineered Saccharomyces cerevisiae is investigated. Aided by homologous analyses, one new unclustered FAD-dependent oxidase EriM accounting for the formation of allyl aldehyde and three new NADP(H)-dependent reductases in the biosynthesis of cyathanes are identified and elucidated. By combinatorial biosynthetic strategy, S. cerevisiae strains generating twenty-two cyathane-type diterpenes, including seven "unnatural" cyathane xylosides (12, 13, 14a, 14b, 19, 20, and 22) are established. Compounds 12-14, 19, and 20 show significant neurotrophic effects on PC12 cells in the dose of 6.3-25.0 μmol/L. These studies provide new insights into the divergent biosynthesis of mushroom-originated cyathanes and a straightforward approach to produce bioactive cyathane-type diterpenes.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlong Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Mai J, Li W, Ledesma-Amaro R, Ji XJ. Engineering Plant Sesquiterpene Synthesis into Yeasts: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9498-9510. [PMID: 34376044 DOI: 10.1021/acs.jafc.1c03864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sesquiterpenes are natural compounds composed of three isoprene units. They represent the largest class of terpene compounds found in plants, and many have remarkable biological activities. Furthermore, sesquiterpenes have broad applications in the flavor, pharmaceutical and biofuel industries due to their complex structures. With the development of metabolic engineering and synthetic biology, the production of different sesquiterpenes has been realized in various chassis microbes. The microbial production of sesquiterpenes provides a promising alternative to plant extraction and chemical synthesis, enabling us to meet the increasing market demand. In this review, we summarized the heterologous production of different plant sesquiterpenes using the eukaryotic yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, followed by a discussion of common metabolic engineering strategies used in this field.
Collapse
Affiliation(s)
- Jie Mai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wenjuan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
47
|
Harada H, Senda D, Shima T, Nakane C. Carboxylesterases for the hydrolysis of acetoacetate esters and their applications in terpenoid production using Escherichia coli. Appl Microbiol Biotechnol 2021; 105:5821-5832. [PMID: 34324009 DOI: 10.1007/s00253-021-11447-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
Pathway engineering is a useful technology for producing desired compounds on a large scale by modifying the biosynthetic pathways of host organisms using genetic engineering. We focused on acetoacetate esters as novel low-cost substrates and established an efficient terpenoid production system using pathway-engineered recombinant Escherichia coli. Functional analysis using recombinant E. coli proteins of 18 carboxylesterases identified from the microbial esterases and lipases database showed that the p-nitrobenzyl esterase (PnbA) from Bacillus subtilis specifically hydrolyzed two acetoacetate esters: methyl acetoacetate (MAA) and ethyl acetoacetate (EAA). We generated a plasmid (pAC-Mev/Scidi/Aacl/PnbA) co-expressing PnbA and six enzymes of the mevalonate pathway gene cluster from Streptomyces, isopentenyl diphosphate isomerase type I from Saccharomyces cerevisiae, and acetoacetyl-coenzyme A ligase from Rattus norvegicus. The plasmid pAC-Mev/Scidi/Aacl/PnbA was introduced into E. coli along with plasmid expressing carotenoid (lycopene) or sesquiterpene (β-bisabolene) biosynthesis genes, and the terpenoid production was evaluated following the addition of acetoacetate esters as substrates. These recombinant E. coli strains used MAA and EAA as substrates for the biosynthesis of terpenoids and produced almost equivalent concentrations of target compounds compared with the previous production system that used mevalonolactone and lithium acetoacetate. The findings of this study will enable the production of useful terpenoids from low-cost substrates, which may facilitate their commercial production on an industrial scale in the future. KEY POINTS: • PnbA from Bacillus subtilis exhibits acetoacetate hydrolysis activity. • A plasmid enabling terpenoid synthesis from acetoacetate esters was constructed. • Acetoacetate esters as substrates enable a low-cost production of terpenoids.
Collapse
Affiliation(s)
- Hisashi Harada
- Department of Chemistry & Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori, 680-8552, Japan.
| | - Daiki Senda
- Department of Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori, 680-8552, Japan
| | - Takanori Shima
- Department of Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori, 680-8552, Japan
| | - Chika Nakane
- Department of Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-Minami, Tottori, 680-8552, Japan
| |
Collapse
|
48
|
Wang J, Zhu L, Li Y, Xu S, Jiang W, Liang C, Fang Y, Chu A, Zhang L, Ding Z, Shi G. Enhancing Geranylgeraniol Production by Metabolic Engineering and Utilization of Isoprenol as a Substrate in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4480-4489. [PMID: 33823596 DOI: 10.1021/acs.jafc.1c00508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The amount of geranylgeranyl diphosphate (GGPP) is vital for microbial production of geranylgeraniol (GGOH) in Saccharomyces cerevisiae. In this study, a GGPP synthase with stronger catalytic ability was used to increase the supply of GGPP, and an engineered strain producing 374.02 mg/L GGOH at the shake flask level was constructed. Then, by increasing the metabolic flux of the mevalonate (MVA) pathway and the supply of isopentenyl pyrophosphate (IPP), the titer was further increased to 772.98 mg/L at the shake flask level, and we achieved the highest GGOH titer to date of 5.07 g/L in a 5 L bioreactor. This is the first report on the utilization of isoprenol for increasing the amount of IPP and enhancing GGOH production in S. cerevisiae. In the future, these strategies and engineered strains can be used to enhance the production of other terpenoids in S. cerevisiae.
Collapse
Affiliation(s)
- Junhua Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Linghuan Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Wei Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, People's Republic of China
| | - Chaojuan Liang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yakun Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Alex Chu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|