1
|
Lee SY, Weingarten M, Ottenheim C. Current upstream and downstream process strategies for sustainable yeast lipid production. BIORESOURCE TECHNOLOGY 2024; 414:131601. [PMID: 39389381 DOI: 10.1016/j.biortech.2024.131601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
An increasing global population demands more lipids for food and chemicals, but the unsustainable growth of plant-derived lipid production and an unreliable supply of certain lipids due to environmental changes, require new solutions. One promising solution is the use of lipids derived from microbial biomass, particularly oleaginous yeasts. This critical review begins with a description of the most promising yeast lipid replacement targets: palm oil substitute, cocoa butter equivalent, polyunsaturated fatty acid source, and animal fat analogue, emphasizing sustainability aspects. Subsequently, the review focuses on the most recent advances in upstream methodologies, particularly fermentation strategies that promote circularity, such as waste valorisation, co-cultivation and co-product biosynthesis. Downstream processing methods for minimising energy consumption and waste generation, including bioflocculation, energy-efficient and environmentally friendly cell lysis and extraction, and integrated co-product recovery methods, are discussed. Finally, the current challenges are outlined. Integrating these strategies advances sustainable yeast lipid production for high-value applications.
Collapse
Affiliation(s)
- Sze Ying Lee
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Melanie Weingarten
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Christoph Ottenheim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
| |
Collapse
|
2
|
Wu Y, Zhao N, Jiang Y, Zheng X, Yu T, Yan F. Positive effects of yeast soluble cell wall polysaccharide on fruit postharvest control through resistance response. Int J Biol Macromol 2024:136003. [PMID: 39443171 DOI: 10.1016/j.ijbiomac.2024.136003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Yeast-derived cell wall polysaccharides possess numerous biological activities, but their application in postharvest preservation is rarely reported. The aim of this research was to investigate the effects of Kluyveromyces marxianus soluble cell wall polysaccharide (SCWP) on preventing the infection of Penicillium expansum in pear fruit. The results showed that K. marxianus SCWP treatment could significantly improve the resistance of pear fruit to P. expansum, with respect to Saccharomyces cerevisiae-derived SCWP. Composition of both SCWPs was mannan with the main chains consisting of a → 6)-α-D-Manp-(1 → unit and the branch structure formed by → 2)-α-D-Manp-(1 except that K. marxianus SCWP took on a shorter side chain and a rougher surface than S. cerevisiae SCWP. In addition, mechanisms of K. marxianus SCWP on stimulating resistance response were associated with the apparent oxidative burst, increased gene expression and enzyme activity of antioxidant and defense systems in pear fruit. Our findings suggest that K. marxianus SCWP can be used as an innovative and promising candidate for preventing postharvest fungal decay and extending fruit shelf life.
Collapse
Affiliation(s)
- Yalan Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yiwei Jiang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Rassmidatta K, Theapparat Y, Chanaksorn N, Carcano P, Adeyemi KD, Ruangpanit Y. Dietary Kluyveromyces marxianus hydrolysate alters humoral immunity, jejunal morphology, cecal microbiota and metabolic pathways in broiler chickens raised under a high stocking density. Poult Sci 2024; 103:103970. [PMID: 38970846 PMCID: PMC11264189 DOI: 10.1016/j.psj.2024.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024] Open
Abstract
This study investigated the impact of dietary supplementation with hydrolyzed yeast (Kluyveromyces marxianus) on growth performance, humoral immunity, jejunal morphology, cecal microbiota and metabolic pathways in broilers raised at 45 kg/m2. A total of 1,176 mixed sex 1-day-old Ross 308 broilers were distributed into 42 pens and randomly assigned to either the control group, the control + 250 g hydrolyzed yeast (HY)/ton, 250HY group, or the control + 500 g HY/ton, 500HY group for 42 d. HY did not affect growth performance. However, HY reduced (P < 0.05) mortality at 25 to 35 d. Dietary HY lowered the heterophil/lymphocyte ratio and enhanced the villus height/crypt depth ratio and Newcastle disease titer (P < 0.05). Compared with HY250 and the control, HY500 upregulated (P < 0.05) IL-10. HY enhanced the α diversity, inferring the richness and evenness of the ceca microbiota. HY500 had greater β diversity than the control (P < 0.05). Six bacterial phyla, namely, Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Verrucomicrobia, and Cyanobacteria, were found. The relative abundance of Firmicutes was greater in the HY500 treatment group than in the HY250 and control groups. HY decreased the abundance of Actinobacteria. HY supplementation altered (P < 0.05) the abundance of 8 higher-level taxa consisting of 2 classes (Bacilli and Clostridia), 1 order (Lactobacillales), 1 family (Streptococcaceae), and five genera (Streptococcus, Lachnospiraceae_uc, Akkermansiaceae, PACO01270_g, and LLKB_g). HY500 improved (P < 0.05) the abundance of Bacilli, Clostridia, Lactobacillales, Streptococcaceae, Streptococcus, PACO01270_g, and Lachnospiraceae_uc, while HY250 enhanced (P < 0.05) the abundance of Akkermansiaceae and LLKB_g. HY improved the abundance of Lactobacillus and Akkermansia spp. Minimal set of pathway analyses revealed that compared with the control, both HY250 and HY500 regulated 20 metabolic pathways. These findings suggest that dietary K. marxianus hydrolysate, especially HY500, improved humoral immunity and jejunal morphology and beneficially altered the composition and metabolic pathways of the cecal microbiota in broilers raised at 45 kg/m2.
Collapse
Affiliation(s)
- Konkawat Rassmidatta
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Sean, Kasetsart University, Kamphang Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Yongyuth Theapparat
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | | | | | - Kazeem D Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Yuwares Ruangpanit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Sean, Kasetsart University, Kamphang Saen Campus, Nakhon Pathom, 73140 Thailand.
| |
Collapse
|
4
|
Jia L, Li T, Wang R, Ma M, Yang Z. Enhancing docosahexaenoic acid production from Schizochytrium sp. by using waste Pichia pastoris as nitrogen source based on two-stage feeding control. BIORESOURCE TECHNOLOGY 2024; 403:130891. [PMID: 38788808 DOI: 10.1016/j.biortech.2024.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
To reduce the cost of docosahexaenoic acid (DHA) production from Schizochytrium sp., the waste Pichia pastoris was successfully used as an alternative nitrogen source to achieve high-density cultivation during the cell growth phase. However, due to the high oxygen consumption feature when implementing high-density cultivation, the control of both the nitrogen source and dissolved oxygen concentration (DO) at each sufficient level was impossible; thus, two realistic control strategies, including "DO sufficiency-nitrogen limitation" and "DO limitation-nitrogen sufficiency", were proposed. When using the strategy of "DO sufficiency-nitrogen limitation", the lowest maintenance coefficient of glucose (12.3 mg/g/h vs. 17.0 mg/g/h) and the highest activities of related enzymes in DHA biosynthetic routes were simultaneously obtained; thus, a maximum DHA concentration of 12.8 ± 1.2 g/L was achieved, which was 1.58-fold greater than that of the control group. Overall, two-stage feeding control for alternative nitrogen sources is an efficient strategy to industrial DHA fermentation.
Collapse
Affiliation(s)
- Luqiang Jia
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China.
| | - Tianyi Li
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Ruoyu Wang
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Mengyao Ma
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, 225127 Yangzhou, China.
| |
Collapse
|
5
|
Pinto J, Tavakolian N, Li CB, Stelkens R. The relationship between cell density and cell count differs among Saccharomyces yeast species. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001215. [PMID: 38863984 PMCID: PMC11165304 DOI: 10.17912/micropub.biology.001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
There is a recent push to develop wild and non-domesticated Saccharomyces yeast strains into useful model systems for research in ecology and evolution. Yet, the variation between species and strains in important population parameters remains largely undescribed. Here, we investigated the relationship between two commonly used measures in microbiology to estimate growth rate - cell density and cell count - in 23 strains across all eight Saccharomyces species . We found that the slope of this relationship significantly differs among species and a given optical density (OD) does not translate into the same number of cells across species. We provide a cell number calculator based on our OD measurements for each strain used in this study. Surprisingly, we found a slightly positive relationship between cell size and the slope of the cell density-cell count relationship. Our results show that the strain- and species-specificity of the cell density and cell count relationship should be taken into account, for instance when running competition experiments requiring equal starting population sizes or when estimating the fitness of strains with different genetic backgrounds in experimental evolution studies.
Collapse
Affiliation(s)
- Javier Pinto
- Zoology Department, Stockholm University, Stockholm, Sweden
| | - Nik Tavakolian
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Rike Stelkens
- Zoology Department, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Perpetuini G, Rossetti AP, Rapagnetta A, Arfelli G, Prete R, Tofalo R. Wine Barrel Biofilm as a Source of Yeasts with Non-Conventional Properties. Microorganisms 2024; 12:880. [PMID: 38792710 PMCID: PMC11123285 DOI: 10.3390/microorganisms12050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the main microbial groups characterizing the interior surface of oak barrels from different years (1890, 1895, 1920, 1975, 2008) used in the production of vino cotto. The yeasts were characterized for the following properties: γ-aminobutyric acid (GABA) production, antioxidant activity, air-liquid interfacial biofilm formation, and anthocyanin adsorption capacity. Community-level physiological profile analysis revealed that the microbial communities inside the barrels used the tested carbon sources in different manners. The following yeast species were identified: Millerozyma farinosa, Zygosaccharomyces bisporus, Wickerhamiella versatilis, Zygosaccharomyces bailii, Starmerella lactis-condensi, and Zygosaccharomyces rouxii. All the strains were able to produce GABA, and S. lactis-condensi, Z. bisporus and Z. rouxii were the highest producers (more than 600 mg/L). The Z. rouxii and Z. bailii strains showed the highest antioxidant activity. Only seven strains out of ten M. farinosa formed air-liquid interfacial biofilm. None of the M. farinosa strains adsorbed anthocyanins on their cell wall. The other strains adsorbed anthocyanins in a strain-dependent way, and the highest adsorption was observed for the W. versatilis strains. The yeasts isolated in this study could be used to increase the functional properties and the quality of fermented foods and beverages.
Collapse
Affiliation(s)
- Giorgia Perpetuini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (A.P.R.); (A.R.); (G.A.); (R.P.)
| | | | | | | | | | - Rosanna Tofalo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (A.P.R.); (A.R.); (G.A.); (R.P.)
| |
Collapse
|
7
|
Bakir G, Dahms TES, Martin-Yken H, Bechtel HA, Gough KM. Saccharomyces cerevisiae CellWall Remodeling in the Absence of Knr4 and Kre6 Revealed by Nano-FourierTransform Infrared Spectroscopy. APPLIED SPECTROSCOPY 2024; 78:355-364. [PMID: 38378014 PMCID: PMC10935619 DOI: 10.1177/00037028231213658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/17/2023] [Indexed: 02/22/2024]
Abstract
The cell wall integrity (CWI) signaling pathway regulates yeast cell wall biosynthesis, cell division, and responses to external stress. The cell wall, comprised of a dense network of chitin, β-1,3- and β-1,6- glucans, and mannoproteins, is very thin, <100 nm. Alterations in cell wall composition may activate the CWI pathway. Saccharomyces cerevisiae, a model yeast, was used to study the role of individual wall components in altering the structure and biophysical properties of the yeast cell wall. Near-field Fourier transform infrared spectroscopy (nano-FT-IR) was used for the first direct, spectrochemical identification of cell wall composition in a background (wild-type) strain and two deletion mutants from the yeast knock-out collection: kre6Δ and knr4Δ. Killer toxin resistant 6 (Kre6) is an integral membrane protein required for biosynthesis of β-1,6-glucan, while Knr4 is a cell signaling protein involved in the control of cell wall biosynthesis, in particular, biosynthesis and deposition of chitin. Complementary spectral data were obtained with far-field (FF)-FT-IR, in transmission, and with attenuated total reflectance (ATR) spectromicroscopy with 3-10 μm wavelength-dependent spatial resolution. The FF-FT-IR spectra of cells and spectra of isolated cell wall components showed that components of the cell body dominated transmission spectra and were still evident in ATR spectra. In contrast, the nano-FT-IR at ∼25 nm spatial resolution could be used to characterize the yeast wall chemical structure. Our results show that the β-1,6-glucan content is decreased in kre6Δ, while all glucan content is decreased in the knr4Δ cell wall. The latter may be thinner than in wild type, since not only are mannan and chitin detectable by nano-FT-IR, but also lipid membranes and protein, indicative of cell interior.
Collapse
Affiliation(s)
- Gorkem Bakir
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tanya E. S. Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Helene Martin-Yken
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- LAAS–CNRS, Université de Toulouse, Toulouse, France
| | - Hans A. Bechtel
- Advanced Light Source Division, Lawrence Berkeley National Lab, Berkeley, California, USA
| | - Kathleen M. Gough
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Yang F, Shang S, Qi M, Xiang Y, Wang L, Wang X, Lin T, Hao D, Chen J, Liu J, Wu Q. Yeast glucan particles: An express train for oral targeted drug delivery systems. Int J Biol Macromol 2023; 253:127131. [PMID: 37776921 DOI: 10.1016/j.ijbiomac.2023.127131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
As an emerging drug delivery vehicle, yeast glucan particles (YGPs) derived from yeast cells could be specifically taken up by macrophages. Therefore, these vehicles could rely on the recruitment of macrophages at the site of inflammation and tumors to enable targeted imaging and drug delivery. This review summarizes recent advances in the application of YGPs in oral targeted delivery systems, covering the basic structure of yeast cells, methods for pre-preparation, drug encapsulation and characterization. The mechanism and validation of the target recognition interaction of YGPs with macrophages are highlighted, and some inspiring cases are presented to show that yeast cells have promising applications. The future chances and difficulties that YGPs will confront are also emphasized throughout this essay. YGPs are not only the "armor" but also the "compass" of drugs in the process of targeted drug transport. This system is expected to provide a new idea about the oral targeted delivery of anti-inflammatory and anti-tumor drugs, and furthermore offer an effective delivery strategy for targeted therapy of other macrophage-related diseases.
Collapse
Affiliation(s)
- Fan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shang Shang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengfei Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajinjing Xiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lingmin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinyi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiajia Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
9
|
Calumby RFDAT, de Lima FO, Valasques Junior GL, Santos JDG, Chaves PFP, Cordeiro LMC, Villarreal CF, Soares MBP, Boffo EF, de Assis SA. Antinociceptive and anti-inflammatory properties of α-D-mannan from the yeast Kluyveromyces marxianus: evidence for a role in interleukin-6 inhibition. Arch Microbiol 2023; 205:379. [PMID: 37950820 DOI: 10.1007/s00203-023-03718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/13/2023]
Abstract
The management of inflammatory states typically involves non-steroidal anti-inflammatory drugs (NSAIDs) and opiates. Understanding the mechanisms underlying the processing of nociceptive information from potential alternatives such as some polysaccharides may enable new and meaningful therapeutic approaches. In this study, α-D-mannan isolated from the Kluyveromyces marxianus cell wall produced antinociceptive effects in models of inflammatory pain (formalin and complete Freund's adjuvant tests). Furthermore, α-D-mannan reduced paw edema and interleukin-6 (IL-6) production after carrageenan-induced inflammation. The polysaccharide α-D-mannan was characterized by gas chromatography-mass spectrometry, methylation analysis, and spectroscopic techniques. Moreover, the Doehlert experimental design was applied to find the optimal conditions for biomass production, with the best conditions being 10.8 g/L and 117 h for the glucose concentration and the fermentation time, respectively. These results indicate that α-D-mannan from K. marxianus exerts anti-inflammatory and antinociceptive effects in mice, possibly via a mechanism dependent on the inhibition of IL-6 production.
Collapse
Affiliation(s)
- Renata Freitas de A T Calumby
- Health Department, State University of Feira de Santana, Av. Transnordestina s/n, Feira de Santana, Bahia, 44036-900, Brazil
| | - Flávia Oliveira de Lima
- Health Department, State University of Feira de Santana, Av. Transnordestina s/n, Feira de Santana, Bahia, 44036-900, Brazil
| | - Gildomar Lima Valasques Junior
- Health Department, State University of Feira de Santana, Av. Transnordestina s/n, Feira de Santana, Bahia, 44036-900, Brazil
| | | | - Pedro Felipe Pereira Chaves
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CP 19.046, Curitiba, PR, CEP 81531-980, Brazil
| | - Lucimara Mach Côrtes Cordeiro
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CP 19.046, Curitiba, PR, CEP 81531-980, Brazil
| | - Cristiane Flora Villarreal
- Gonçalo Moniz Research Center (CPqGM), Fundação Oswaldo Cruz, Rua Waldemar Falcão 121, Salvador, BA, 40296-710, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Research Center (CPqGM), Fundação Oswaldo Cruz, Rua Waldemar Falcão 121, Salvador, BA, 40296-710, Brazil
| | - Elisangela Fabiana Boffo
- Chemistry Institute, Federal University of Bahia, Barão de Jeremoabo s/n, Salvador, Bahia, 40170-290, Brazil
| | - Sandra Aparecida de Assis
- Health Department, State University of Feira de Santana, Av. Transnordestina s/n, Feira de Santana, Bahia, 44036-900, Brazil.
| |
Collapse
|
10
|
Maturana M, Castillejos L, Martin-Orue SM, Minel A, Chetty O, Felix AP, Adib Lesaux A. Potential benefits of yeast Saccharomyces and their derivatives in dogs and cats: a review. Front Vet Sci 2023; 10:1279506. [PMID: 37954670 PMCID: PMC10634211 DOI: 10.3389/fvets.2023.1279506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Yeast Saccharomyces and its derivatives have been largely used in livestock and poultry nutrition for their potential positive impact on growth, performance, and general health. Originally included in animal diets as a source of protein, yeasts can also offer a wide range of by-products with interesting bioactive compounds that would confer uses beyond nutrition. Although its supplementation in livestock, poultry and even in humans is well documented, the available body of literature on the use of yeast and its derivatives in companion animals' food, mainly dogs and cats' diets, is still developing. Despite this, gut microbiota modulation, immune system enhancement or decreasing of potentially pathogenic microorganisms have been reported in pets when using these products, highlighting their possible role as probiotics, prebiotics, and postbiotics. This review attempts to provide the reader with a comprehensive on the effects of Saccharomyces and its derivatives in pets and the possible mechanisms that confer their functional properties.
Collapse
Affiliation(s)
- Marta Maturana
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Lorena Castillejos
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Susana M. Martin-Orue
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anaelle Minel
- Department of Research & Development, Phileo by Lesaffre, Marcq-en-Baroeul, France
| | - Olivia Chetty
- Department of Research & Development, Phileo by Lesaffre, Marcq-en-Baroeul, France
| | - Ananda P. Felix
- Department of Animal Science, Federal University of Paraná, Curitiba, Brazil
| | - Achraf Adib Lesaux
- Department of Research & Development, Phileo by Lesaffre, Marcq-en-Baroeul, France
| |
Collapse
|
11
|
Schiavone M, François JM, Zerbib D, Capp JP. Emerging relevance of cell wall components from non-conventional yeasts as functional ingredients for the food and feed industry. Curr Res Food Sci 2023; 7:100603. [PMID: 37840697 PMCID: PMC10568300 DOI: 10.1016/j.crfs.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Non-conventional yeast species, or non-Saccharomyces yeasts, are increasingly recognized for their involvement in fermented foods. Many of them exhibit probiotic characteristics that are mainly due to direct contacts with other cell types through various molecular components of their cell wall. The biochemical composition and/or the molecular structure of the cell wall components are currently considered the primary determinant of their probiotic properties. Here we first present the techniques that are used to extract and analyze the cell wall components of food industry-related non-Saccharomyces yeasts. We then review the current understanding of the cell wall composition and structure of each polysaccharide from these yeasts. Finally, the data exploring the potential beneficial role of their cell wall components, which could be a source of innovative functional ingredients, are discussed. Such research would allow the development of high value-added products and provide the food industry with novel inputs beyond the well-established S. cerevisiae.
Collapse
Affiliation(s)
- Marion Schiavone
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Lallemand SAS, Blagnac, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), UMS INRAE/INSA/CNRS, Toulouse, France
| | - Didier Zerbib
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
12
|
Utama GL, Oktaviani L, Balia RL, Rialita T. Potential Application of Yeast Cell Wall Biopolymers as Probiotic Encapsulants. Polymers (Basel) 2023; 15:3481. [PMID: 37631538 PMCID: PMC10459707 DOI: 10.3390/polym15163481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Biopolymers of yeast cell walls, such as β-glucan, mannoprotein, and chitin, may serve as viable encapsulants for probiotics. Due to its thermal stability, β-glucan is a suitable cryoprotectant for probiotic microorganisms during freeze-drying. Mannoprotein has been shown to increase the adhesion of probiotic microorganisms to intestinal epithelial cells. Typically, chitin is utilized in the form of its derivatives, particularly chitosan, which is derived via deacetylation. Brewery waste has shown potential as a source of β-glucan that can be optimally extracted through thermolysis and sonication to yield up to 14% β-glucan, which can then be processed with protease and spray drying to achieve utmost purity. While laminarinase and sodium deodecyle sulfate were used to isolate and extract mannoproteins and glucanase was used to purify them, hexadecyltrimethylammonium bromide precipitation was used to improve the amount of purified mannoproteins to 7.25 percent. The maximum chitin yield of 2.4% was attained by continuing the acid-alkali reaction procedure, which was then followed by dialysis and lyophilization. Separation and purification of yeast cell wall biopolymers via diethylaminoethyl (DEAE) anion exchange chromatography can be used to increase the purity of β-glucan, whose purity in turn can also be increased using concanavalin-A chromatography based on the glucan/mannan ratio. In the meantime, mannoproteins can be purified via affinity chromatography that can be combined with zymolase treatment. Then, dialysis can be continued to obtain chitin with high purity. β-glucans, mannoproteins, and chitosan-derived yeast cell walls have been shown to promote the survival of probiotic microorganisms in the digestive tract. In addition, the prebiotic activity of β-glucans and mannoproteins can combine with microorganisms to form synbiotics.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Jalan Sekeloa Selatan 1 No 1, Bandung 40134, Indonesia
| | - Lidya Oktaviani
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
| | - Roostita Lobo Balia
- Veterinary Study Program, Faculty of Medicine, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia;
| | - Tita Rialita
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, Indonesia; (L.O.); (T.R.)
| |
Collapse
|
13
|
Valdez Castillo M, Brar SK, Arriaga S, Blais JF, Heitz M, Avalos Ramirez A. Co-Fermentation of Agri-Food Residues Using a Co-Culture of Yeasts as a New Bioprocess to Produce 2-Phenylethanol. Molecules 2023; 28:5536. [PMID: 37513409 PMCID: PMC10385721 DOI: 10.3390/molecules28145536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Whey is a dairy residue generated during the production of cheese and yogurt. Whey contains mainly lactose and proteins, contributing to its high chemical oxygen demand (COD). Current environmental regulations request proper whey disposal to avoid environmental pollution. Whey components can be transformed by yeast into ethanol and biomolecules with aroma and flavor properties, for example, 2-phenyethanol (2PE), highly appreciated in the industry due to its organoleptic and biocidal properties. The present study aimed to valorize agri-food residues in 2PE by developing suitable bioprocess. Cheese whey was used as substrate source, whereas crab headshells, residual soy cake, and brewer's spent yeast (BSY) were used as renewable nitrogen sources for the yeasts Kluyveromyces marxianus and Debaryomyces hansenii. The BSYs promoted the growth of both yeasts and the production of 2PE in flask fermentation. The bioprocess scale-up to 2 L bioreactor allowed for obtaining a 2PE productivity of 0.04 g2PE/L·h, twofold better productivity results compared to the literature. The bioprocess can save a treatment unit because the whey COD decreased under the detection limit of the analytical method, which is lower than environmental requirements. In this way, the bioprocess prevents environmental contamination and contributes to the circular economy of the dairy industry.
Collapse
Affiliation(s)
- Mariana Valdez Castillo
- Institut National de la Recherche Scientifique, Centre-Eau Terre Environnement, 490, Rue de la Couronne, Québec City, QC G1K 9A9, Canada
- Département de Génie Chimique et de Génie Biotechnologique, Faculté de Génie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
- Centre National en Électrochimie et en Technologies Environnementales, 2263, Avenue du Collège, Shawinigan, QC G9N 6V8, Canada
| | - Satinder Kaur Brar
- Institut National de la Recherche Scientifique, Centre-Eau Terre Environnement, 490, Rue de la Couronne, Québec City, QC G1K 9A9, Canada
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - Sonia Arriaga
- Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, San Luis Potosi CP 78216, Mexico
| | - Jean-François Blais
- Institut National de la Recherche Scientifique, Centre-Eau Terre Environnement, 490, Rue de la Couronne, Québec City, QC G1K 9A9, Canada
| | - Michèle Heitz
- Département de Génie Chimique et de Génie Biotechnologique, Faculté de Génie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologies Environnementales, 2263, Avenue du Collège, Shawinigan, QC G9N 6V8, Canada
| |
Collapse
|
14
|
Tang N, Zhang C, Ma K, Wang X, Xiao L, Zhang X, Rui X, Li W. Advanced structural characterization and in vitro fermentation prebiotic properties of cell wall polysaccharide from Kluyveromyces marxianus. Int J Biol Macromol 2023; 241:124420. [PMID: 37085078 DOI: 10.1016/j.ijbiomac.2023.124420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Through previous study, the three yeast α-mannans (MPS) from various sources of Kluyveromyces marxianus (LZ-MPS, MC-MPS, and G-MPS) were preliminarily characterized. In this study, the advanced structural characterization and the in vitro human fecal fermentation behavior of the three MPS were investigated. According to the results of this study, the polysaccharide molecules of the three MPS were aggregated in solution, supporting their branched chain structure. After in vitro fermentation, the molecular weight and pH of fermentation broth decreased significantly, indicating that the three MPS could be utilized by human gut microbiota. Meanwhile, the production of total short-chain fatty acids (SCFAs) of the three MPS was promoted, especially the production of propionic acid was 45.55, 38.23, and 38.87 mM, respectively. In particular, the three MPS have the ability to alter the composition of human gut microbiota, especially to promote the proliferation of Bacteroidetes, suggesting that the bioactivities of the three MPS can be significantly influenced by intestine Bacteroidetes. In terms of metabolism, all MPS can promote cofactors, vitamins, amino acid metabolism, and glycan biosynthesis and metabolism of bacteria. In consequence, the three MPS were confirmed to regulate the human gut microbiota, increase the level of SCFAs, promote the metabolisms of bacteria on amino acid and glycan, and improve the intestinal health.
Collapse
Affiliation(s)
- Nanyu Tang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Changliang Zhang
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Kai Ma
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Xiaomeng Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xueliang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
15
|
Takhaveev V, Özsezen S, Smith EN, Zylstra A, Chaillet ML, Chen H, Papagiannakis A, Milias-Argeitis A, Heinemann M. Temporal segregation of biosynthetic processes is responsible for metabolic oscillations during the budding yeast cell cycle. Nat Metab 2023; 5:294-313. [PMID: 36849832 PMCID: PMC9970877 DOI: 10.1038/s42255-023-00741-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 01/10/2023] [Indexed: 03/01/2023]
Abstract
Many cell biological and biochemical mechanisms controlling the fundamental process of eukaryotic cell division have been identified; however, the temporal dynamics of biosynthetic processes during the cell division cycle are still elusive. Here, we show that key biosynthetic processes are temporally segregated along the cell cycle. Using budding yeast as a model and single-cell methods to dynamically measure metabolic activity, we observe two peaks in protein synthesis, in the G1 and S/G2/M phase, whereas lipid and polysaccharide synthesis peaks only once, during the S/G2/M phase. Integrating the inferred biosynthetic rates into a thermodynamic-stoichiometric metabolic model, we find that this temporal segregation in biosynthetic processes causes flux changes in primary metabolism, with an acceleration of glucose-uptake flux in G1 and phase-shifted oscillations of oxygen and carbon dioxide exchanges. Through experimental validation of the model predictions, we demonstrate that primary metabolism oscillates with cell-cycle periodicity to satisfy the changing demands of biosynthetic processes exhibiting unexpected dynamics during the cell cycle.
Collapse
Affiliation(s)
- Vakil Takhaveev
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Serdar Özsezen
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Edward N Smith
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Andre Zylstra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Marten L Chaillet
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Haoqi Chen
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Alexandros Papagiannakis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Biology and Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
16
|
Patterson R, Rogiewicz A, Kiarie EG, Slominski BA. Yeast derivatives as a source of bioactive components in animal nutrition: A brief review. Front Vet Sci 2023; 9:1067383. [PMID: 36686164 PMCID: PMC9853299 DOI: 10.3389/fvets.2022.1067383] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023] Open
Abstract
With a long history of inclusion within livestock feeding programs, yeast and their respective derivatives are well-understood from a nutritional perspective. Originally used as sources of highly digestible protein in young animal rations in order to offset the use of conventional protein sources such as soybean and fish meal, application strategies have expanded in recent years into non-nutritional uses for all animal categories. For the case of yeast derivatives, product streams coming from the downstream processing of nutritional yeast, the expansion in use cases across species groups has been driven by a greater understanding of the composition of each derivative along with deeper knowledge of mechanistic action of key functional components. From improving feed efficiency, to serving as alternatives to antibiotic growth promoters and supporting intestinal health and immunity while mitigating pathogen shedding, new use cases are driven by a recognition that yeast derivatives contain specific bioactive compounds that possess functional properties. This review will attempt to highlight key bioactive categories within industrially applicable yeast derivatives and provide context regarding identification and characterization and mechanisms of action related to efficacy within a range of experimental models.
Collapse
Affiliation(s)
- Rob Patterson
- CBS BioPlatforms Inc., Calgary, AB, Canada,*Correspondence: Rob Patterson
| | - Anna Rogiewicz
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Elijah G. Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
17
|
Calloni RD, Muchut RJ, Garay AS, Arias DG, Iglesias AA, Guerrero SA. Functional and structural characterization of an endo-β-1,3-glucanase from Euglena gracilis. Biochimie 2022; 208:117-128. [PMID: 36586565 DOI: 10.1016/j.biochi.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Endo-β-1,3-glucanases from several organisms have attracted much attention in recent years because of their capability for in vitro degrading β-1,3-glucan as a critical step for both biofuels production and short-chain oligosaccharides synthesis. In this study, we biochemically characterized a putative endo-β-1,3-glucanase (EgrGH64) belonging to the family GH64 from the single-cell protist Euglena gracilis. The gene coding for the enzyme was heterologously expressed in a prokaryotic expression system supplemented with 3% (v/v) ethanol to optimize the recombinant protein right folding. Thus, the produced enzyme was highly purified by immobilized-metal affinity and gel filtration chromatography. The enzymatic study demonstrated that EgrGH64 could hydrolyze laminarin (KM 23.5 mg ml-1,kcat 1.20 s-1) and also, but with less enzymatic efficiency, paramylon (KM 20.2 mg ml-1,kcat 0.23 ml mg-1 s-1). The major product of the hydrolysis of both substrates was laminaripentaose. The enzyme could also use ramified β-glucan from the baker's yeast cell wall as a substrate (KM 2.10 mg ml-1, kcat 0.88 ml mg-1 s-1). This latter result, combined with interfacial kinetic analysis evidenced a protein's greater efficiency for the yeast polysaccharide, and a higher number of hydrolysis sites in the β-1,3/β-1,6-glucan. Concurrently, the enzyme efficiently inhibited the fungal growth when used at 1.0 mg/mL (15.4 μM). This study contributes to assigning a correct function and determining the enzymatic specificity of EgrGH64, which emerges as a relevant biotechnological tool for processing β-glucans.
Collapse
Affiliation(s)
- Rodrigo D Calloni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Robertino J Muchut
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina
| | - Alberto S Garay
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
18
|
Thayer MT, Garcia RM, Duttlinger AW, Mahoney JA, Schinckel AP, Asmus MD, Jones DB, Dunn JL, Richert BT. Feeding a whole-cell inactivated Pichia guilliermondii yeast to gestating and lactating sows in a commercial production system. Transl Anim Sci 2022; 7:txac160. [PMID: 36726809 PMCID: PMC9885940 DOI: 10.1093/tas/txac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
A total of 606 sows (PIC 1050) and their progeny (PIC 1050 × 280) were used to determine if feeding gestating and lactating sows a proprietary strain of Pichia guilliermondii as a whole-cell inactivated yeast product (WCY; CitriStim, ADM Animal Nutrition, Quincy, IL) improves sow and litter performance in a commercial production system. Once confirmed pregnant at d 35 post-breeding pregnancy check, sows were fed a basal gestation control (CON) diet (0.55% SID lysine) or the control diet fortified with 0.15% of the WCY replacing corn in the CON diet. Dietary treatments were also fed in lactation (1.05% SID lysine) once sows were moved into farrowing crates on approximately d 112 of gestation until weaning. Sows supplemented with WCY in gestation and lactation had increased total born piglets by 0.45 pigs (P < 0.04), piglets born alive (14.27 vs. 13.85; P < 0.04), and, therefore, heavier born alive litter weights (P < 0.001) compared to CON fed sows. A greater post cross-foster litter size (P < 0.001) meant that litter size at weaning was increased by 0.54 pigs when sows were fed WCY compared to CON (P < 0.001). However, litter weaning weights and 21-d adjusted litter weaning weights were similar (P > 0.158), although numerically greater, for WCY fed sows. Pigs from CON fed sows were 0.35 kg heavier at weaning compared to pigs from WCY fed sows (P < 0.001). This increase in weaning weight of pigs from CON fed sows is partially explained by their 0.93 d longer lactation (P < 0.001) and may also be due to the smaller litter size throughout lactation. The percent of litters treated for scours decreased from 38.3 to 14.2% when sows were fed WCY (P < 0.001). The distribution of birth and weaning weights was not impacted (P > 0.2461) by treatment. In conclusion, feeding gestating and lactating sows a proprietary strain of Pichia guilliermondii as a whole-cell inactivated yeast product increased the number of pigs born and weaned, and decreased the prevalence of scours during lactation.
Collapse
Affiliation(s)
| | - Ricardo M Garcia
- Department of Animal Sciences, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Alan W Duttlinger
- Department of Animal Sciences, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Julie A Mahoney
- Department of Animal Sciences, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Allan P Schinckel
- Department of Animal Sciences, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | | | | | | | - Brian T Richert
- Department of Animal Sciences, College of Agriculture, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
19
|
Review: The effects of dietary yeast and yeast-derived extracts on rumen microbiota and their function. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Faustino M, Durão J, Pereira CF, Oliveira AS, Pereira JO, Pereira AM, Ferreira C, Pintado ME, Carvalho AP. Comparative Analysis of Mannans Extraction Processes from Spent Yeast Saccharomyces cerevisiae. Foods 2022; 11:foods11233753. [PMID: 36496561 PMCID: PMC9739389 DOI: 10.3390/foods11233753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Mannans are outstanding polysaccharides that have gained exponential interest over the years. These polysaccharides may be extracted from the cell wall of Saccharomyces cerevisiae, and recovered from the brewing or synthetic biology industries, among others. In this work, several extraction processes-physical, chemical and enzymatic-were studied, all aiming to obtain mannans from spent yeast S. cerevisiae. Their performance was evaluated in terms of yield, mannose content and cost. The resultant extracts were characterized in terms of their structure (FT-IR, PXRD and SEM), physicochemical properties (color, molecular weight distribution, sugars, protein, ash and water content) and thermal stability (DSC). The biological properties were assessed through the screening of prebiotic activity in Lactobacillus plantarum and Bifidobacterium animalis. The highest yield (58.82%) was achieved by using an alkaline thermal process, though the correspondent mannose content was low. The extract obtained by autolysis followed by a hydrothermal step resulted in the highest mannose content (59.19%). On the other hand, the extract obtained through the enzymatic hydrolysis displayed the highest prebiotic activity. This comparative study is expected to lay the scientific foundation for the obtention of well-characterized mannans from yeast, which will pave the way for their application in various fields.
Collapse
Affiliation(s)
- Margarida Faustino
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Durão
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
- Correspondence: (J.D.); (C.F.P.)
| | - Carla F. Pereira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Correspondence: (J.D.); (C.F.P.)
| | - Ana Sofia Oliveira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Odila Pereira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Ana M. Pereira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Carlos Ferreira
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela E. Pintado
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P. Carvalho
- Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
21
|
Effect of mannoproteins from different oenological yeast on pigment composition and color stability of red wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Holt DA, Aldrich CG. Evaluation of Torula yeast as a protein source in extruded feline diets. J Anim Sci 2022; 100:6754364. [PMID: 36209420 PMCID: PMC9733508 DOI: 10.1093/jas/skac327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
The objective of this work was to evaluate the use of a Torula yeast (TY) on diet processing, palatability, and total tract nutrient digestibility in extruded feline diets. Four dietary treatments were compared, differing by protein source: TY, pea protein concentrate (PP), soybean meal (SM), and chicken meal (CM). Diets were produced using a single-screw extruder under similar processing conditions. Palatability assessment was conducted as a split plate design where both first choice and intake ratio (IR) were determined. Apparent total tract digestibility (ATTD) of nutrients was estimated using Titanium dioxide as an indigestible marker. During diet production, specific mechanical energy of TY and SM (average of 187 kJ/kg) was greater (P < 0.05) than for PP (138 kJ/kg); however, CM was similar to all treatments (167 kJ/kg). Kibble diameter, piece volume, and sectional expansion ratio were greatest for TY (P < 0.05). Additionally, both bulk and piece density were lowest (P < 0.05) for TY. Kibble hardness was lower for TY and SM (P < 0.05; average of 2.10 Newtons) compared to CM and PP (average of 2.90 Newtons). During the palatability trial, TY was chosen first a greater number of times than CM (P < 0.05; 36 vs. 4, respectively), but differences were not found between TY and PP (25 vs. 15, respectively) or TY and SM (24 vs. 16, respectively). Cats had a greater IR (P < 0.05) of TY compared to CM and PP (0.88 and 0.73, respectively). However, there was no difference in preference between TY and SM. ATTD of dry matter (DM) and organic matter (OM) was greater (P < 0.05) for CM (87.43% and 91.34%, respectively) than other treatments. Both DM and OM ATTD of TY were similar (P < 0.05) to PP and SM (average of 86.20% and average of 89.76%, respectively). Ash ATTD was greater (P < 0.05) for cats fed TY and SM (average of 37.42%), intermediate for PP (32.79%), and lowest for CM (23.97%). Crude protein (CP) ATTD of TY was similar to all other treatments (average of 89.97%), but fat ATTD was lower (P < 0.05; 92.52%) than other treatments (93.76% to 94.82%). Gross energy ATTD was greater (P < 0.05) for CM than TY (90.97% vs. 90.18%, respectively); however, TY was similar to PP and SM (average of 90.22%). Total dietary fiber ATTD was similar between TY and CM (average of 66.20%) and greater (P < 0.05) than PP and SM (average of 58.70%). The TY used in this study facilitated diet formation, increased diet preference, and was highly digestible when fed to cats.
Collapse
Affiliation(s)
- Dalton A Holt
- Present address: Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
23
|
Machuca C, Méndez-Martínez Y, Reyes-Becerril M, Angulo C. Yeast β-Glucans as Fish Immunomodulators: A Review. Animals (Basel) 2022; 12:ani12162154. [PMID: 36009745 PMCID: PMC9405025 DOI: 10.3390/ani12162154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The β-glucan obtained from yeast—a very important molecule for fish production—activates the immune system of fish by different mechanisms and induces protection against pathogens. However, most previous related studies have focused on the use of commercial β-glucan from the yeast Saccharomyces cerevisiae to understand the activation pathways. Experimental β-glucans extracted from other yeasts show other interesting biological activities even at lower doses. This review article analyzes the current information and suggests perspectives on yeast β-glucans. Abstract Administration of immunostimulants in fish is a preventive method to combat infections. A wide variety of these biological molecules exist, among which one of the yeast wall compounds stands out for its different biological activities. The β-glucan that forms the structural part of yeast is capable of generating immune activity in fish by cell receptor recognition. The most frequently used β-glucans for the study of mechanisms of action are those of commercial origin, with doses recommended by the manufacturer. Nevertheless, their immune activity is inefficient in some fish species, and increasing the dose may show adverse effects, including immunosuppression. Conversely, experimental β-glucans from other yeast species show different activities, such as antibacterial, antioxidant, healing, and stress tolerance properties. Therefore, this review analyses the most recent scientific reports on the use of yeast β-glucans in freshwater and marine fish.
Collapse
Affiliation(s)
- Cristian Machuca
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
| | - Yuniel Méndez-Martínez
- Facultad de Ciencias Pecuarias, Universidad Técnica Estatal de Quevedo (UTEQ), Quevedo 120301, Ecuador
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
- Correspondence: ; Tel.: +52-612-123-8484; Fax: +52-612-125-3625
| |
Collapse
|
24
|
Extraction, isolation, structural characterization and prebiotic activity of cell wall polysaccharide from Kluyveromyces marxianus. Carbohydr Polym 2022; 289:119457. [DOI: 10.1016/j.carbpol.2022.119457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022]
|
25
|
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022; 13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
In industrial settings and processes, yeasts may face multiple adverse environmental conditions. These include exposure to non-optimal temperatures or pH, osmotic stress, and deleterious concentrations of diverse inhibitory compounds. These toxic chemicals may result from the desired accumulation of added-value bio-products, yeast metabolism, or be present or derive from the pre-treatment of feedstocks, as in lignocellulosic biomass hydrolysates. Adaptation and tolerance to industrially relevant stress factors involve highly complex and coordinated molecular mechanisms occurring in the yeast cell with repercussions on the performance and economy of bioprocesses, or on the microbiological stability and conservation of foods, beverages, and other goods. To sense, survive, and adapt to different stresses, yeasts rely on a network of signaling pathways to modulate the global transcriptional response and elicit coordinated changes in the cell. These pathways cooperate and tightly regulate the composition, organization and biophysical properties of the cell wall. The intricacy of the underlying regulatory networks reflects the major role of the cell wall as the first line of defense against a wide range of environmental stresses. However, the involvement of cell wall in the adaptation and tolerance of yeasts to multiple stresses of biotechnological relevance has not received the deserved attention. This article provides an overview of the molecular mechanisms involved in fine-tuning cell wall physicochemical properties during the stress response of Saccharomyces cerevisiae and their implication in stress tolerance. The available information for non-conventional yeast species is also included. These non-Saccharomyces species have recently been on the focus of very active research to better explore or control their biotechnological potential envisaging the transition to a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Ricardo A. Ribeiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Yeast-Derived Products: The Role of Hydrolyzed Yeast and Yeast Culture in Poultry Nutrition—A Review. Animals (Basel) 2022; 12:ani12111426. [PMID: 35681890 PMCID: PMC9179594 DOI: 10.3390/ani12111426] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Yeast and yeast-derived products are largely employed in animal nutrition to support animals’ health and to improve their performance. Thanks to their components, including mannans, β-glucans, nucleotides, vitamins, and other compounds, yeasts have numerous beneficial effects. Among yeast-derived products, hydrolyzed yeasts and yeast cultures have received less attention, but, although the results are somewhat conflicting, in most of the cases, the available literature shows improved performance and health in poultry. Thus, the aim of this review is to provide an overview of hydrolyzed-yeast and yeast-culture employment in poultry nutrition, exploring their effects on the production performance, immune response, oxidative status, gut health, and nutrient digestibility. A brief description of the main yeast bioactive compounds is also provided. Abstract Yeasts are single-cell eukaryotic microorganisms that are largely employed in animal nutrition for their beneficial effects, which are owed to their cellular components and bioactive compounds, among which are mannans, β-glucans, nucleotides, mannan oligosaccharides, and others. While the employment of live yeast cells as probiotics in poultry nutrition has already been largely reviewed, less information is available on yeast-derived products, such as hydrolyzed yeast (HY) and yeast culture (YC). The aim of this review is to provide the reader with an overview of the available body of literature on HY and YC and their effects on poultry. A brief description of the main components of the yeast cell that is considered to be responsible for the beneficial effects on animals’ health is also provided. HY and YC appear to have beneficial effects on the poultry growth and production performance, as well as on the immune response and gut health. Most of the beneficial effects of HY and YC have been attributed to their ability to modulate the gut microbiota, stimulating the growth of beneficial bacteria and reducing pathogen colonization. However, there are still many areas to be investigated to better understand and disentangle the effects and mechanisms of action of HY and YC.
Collapse
|
27
|
Li B, Zhang H, Shi L, Li R, Luo Y, Deng Y, Li S, Li R, Liu Z. Saccharomyces boulardii alleviates DSS-induced intestinal barrier dysfunction and inflammation in humanized mice. Food Funct 2022; 13:102-112. [PMID: 34878454 DOI: 10.1039/d1fo02752b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent clinical studies have demonstrated a beneficial effect of Saccharomyces boulardii (S. boulardii) in inflammatory bowel disease (IBD). However, the underlying mechanisms remain poorly defined. In this study, we investigated the modulating effect of S. boulardii on the intestinal microbiota in humanized mice with dextran sulfate sodium (DSS)-induced colitis. The mice were fed an S. boulardii-supplement diet for 16 days before DSS treatment. The results showed that feeding S. boulardii significantly ameliorated the colon damage and regulated inflammatory responses by modulating the cytokine profile. These changes were found to be associated with an altered microbiome composition and short-chain fatty acid (SCFA) metabolism. Further analysis demonstrated that S. boulardii-derived polysaccharides and polypeptides promoted the growth of certain probiotics and increased the microbial metabolite SCFAs levels. Overall, these findings demonstrated the role of S. boulardii as a potential gut microbiota modulator to prevent and treat IBD.
Collapse
Affiliation(s)
- Bei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Haibo Zhang
- Hubei Provincial Key Laboratory of Yeast Function, Yichang, P. R. China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, P. R. China
| | - Rong Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Yanan Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Yun Deng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Shihan Li
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Ruizhen Li
- Department of Children Healthcare, Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
28
|
Zhang Y, Zheng DW, Li CX, Pan P, Zeng SM, Pan T, Zhang XZ. Temulence Therapy to Orthotopic Colorectal Tumor via Oral Administration of Fungi-Based Acetaldehyde Generator. SMALL METHODS 2022; 6:e2100951. [PMID: 35041291 DOI: 10.1002/smtd.202100951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Taking inspiration from percutaneous ethanol injection (PEI) for tumor ablation, an acetaldehyde generator (SC@ZIF@ADH) is constructed for tumor treatment by modifying a metal-organic framework nanocarrier (ZIF), which is loaded with alcohol dehydrogenase (ADH), onto the surface of Saccharomyces cerevisiae (SC). Oral administration of SC@ZIF@ADH can target tumor via mannose-mediated targeting to tumor associated macrophages (TAMs) and generate ethanol at the hypoxic tumor areas. Ethanol is subsequently catalyzed to toxic acetaldehyde by ADH, inducing tumor cells apoptosis and polarizing TAMs toward the anti-tumor phenotype. In vivo animal results show that this acetaldehyde generator can cause a temulence-like reaction in the tumor, significantly inhibiting tumor progression, and might provide an intelligent and nonsurgical substitute for PEI therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Si-Min Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ting Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
29
|
Tofalo R, Suzzi G, Perpetuini G. Discovering the Influence of Microorganisms on Wine Color. Front Microbiol 2021; 12:790935. [PMID: 34925298 PMCID: PMC8678073 DOI: 10.3389/fmicb.2021.790935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Flavor, composition and quality of wine are influenced by microorganisms present on the grapevine surface which are transferred to the must during vinification. The microbiota is highly variable with a prevalence of non-Saccharomyces yeasts, whereas Saccharomyces cerevisiae is present at low number. For wine production an essential step is the fermentation carried out by different starter cultures of S. cerevisiae alone or in mixed fermentation with non-Saccharomyces species that produce wines with significant differences in chemical composition. During vinification wine color can be influenced by yeasts interacting with anthocyanin. Yeasts can influence wine phenolic composition in different manners: direct interactions—cell wall adsorption or enzyme activities—and/or indirectly—production of primary and secondary metabolites and fermentation products. Some of these characteristics are heritable trait in yeast and/or can be strain dependent. For this reason, the stability, aroma, and color of wines depend on strain/strains used during must fermentation. Saccharomyces cerevisiae or non-Saccharomyces can produce metabolites reacting with anthocyanins and favor the formation of vitisin A and B type pyranoanthocyanins, contributing to color stability. In addition, yeasts affect the intensity and tonality of wine color by the action of β-glycosidase on anthocyanins or anthocyanidase enzymes or by the pigments adsorption on the yeast cell wall. These activities are strain dependent and are characterized by a great inter-species variability. Therefore, they should be considered a target for yeast strain selection and considered during the development of tailored mixed fermentations to improve wine production. In addition, some lactic acid bacteria seem to influence the color of red wines affecting anthocyanins’ profile. In fact, the increase of the pH or the ability to degrade pyruvic acid and acetaldehyde, as well as anthocyanin adsorption by bacterial cells are responsible for color loss during malolactic fermentation. Lactic acid bacteria show different adsorption capacity probably because of the variable composition of the cell walls. The aim of this review is to offer a critical overview of the roles played by wine microorganisms in the definition of intensity and tonality of wines’ color.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
30
|
Lee JJ, Kyoung H, Cho JH, Choe J, Kim Y, Liu Y, Kang J, Lee H, Kim HB, Song M. Dietary Yeast Cell Wall Improves Growth Performance and Prevents of Diarrhea of Weaned Pigs by Enhancing Gut Health and Anti-Inflammatory Immune Responses. Animals (Basel) 2021; 11:ani11082269. [PMID: 34438727 PMCID: PMC8388398 DOI: 10.3390/ani11082269] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Post-weaning stress can substantially affect performance of weaned pigs as well as overall pig production, and thus, a practical approach is needed to improve their performance by alleviating the stress that can cause intestinal barrier dysfunction of weaned pigs. There are potential ways to solve the concern in swine production, but dietary yeast cell wall in weaner diets may be one possible solution. The results of the present study suggest that dietary yeast cell wall improves growth performance of weaned pigs by enhancing gut health and provide its potential mechanism. Abstract Dietary yeast cell wall products (YCW) are recognized as a feed additive due to multifunctional benefits by the biological response modulators. Thus, this study was conducted to verify a potential advantage of YCW for improving growth performance, nutrient digestibility, immune responses, and intestinal health and microbiota of weaned pigs. A total of 112 weaned pigs (7.99 ± 1.10 kg of body weight; 28 days old) were arbitrarily allocated to two experimental treatments with eight pigs (four barrows and four gilts) per pen and seven replicate pens per treatment in a completely randomized block design (block = BW and sex): (1) a basal diet based on corn and soybean meal (CON) and (2) CON + 0.05% YCW. The experimental period was for 4 weeks. There were no differences in final body weight, average daily feed intake, and gain-to-feed ratio between dietary treatments. In contrast, pigs fed YCW had higher average daily gain (p = 0.088) and apparent ileal digestibility of DM (p < 0.05) and energy (p = 0.052) and lower diarrhea frequency (p = 0.083) than those fed control diet (CON). Pigs fed YCW also had a higher (p < 0.05) ratio between villus height and crypt depth, villus width and area, and goblet cell counts in the duodenum and/or jejunum than those fed CON. Dietary YCW decreased (p < 0.05) serum TNF-α and IL–1β of weaned pigs on day 7 and 14, respectively, compared with CON. Furthermore, pigs fed YCW had higher (p < 0.05) ileal gene expression of claudin family, occludin, MUC1, INF-γ, and IL-6 and lower (p < 0.05) that of TNF-α than those fed CON. Lastly, there were no differences in the relative abundance of bacteria at the phylum level between CON and YCW. However, dietary YCW increased (p < 0.05) the relative abundance of genera Prevotella and Roseburia compared with CON. This study provided that dietary YCW improved growth rate, nutritional digestibility, and intestinal health and modified immune responses and intestinal microbiota of weaned pigs.
Collapse
Affiliation(s)
- Jeong Jae Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (J.J.L.); (H.K.); (J.K.)
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (J.J.L.); (H.K.); (J.K.)
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea;
| | - Jeehwan Choe
- Department of Beef Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea;
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA;
| | - Joowon Kang
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (J.J.L.); (H.K.); (J.K.)
| | - Hanbae Lee
- Pathway Intermediates, Seoul 06253, Korea;
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
- Correspondence: (H.B.K.); (M.S.)
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; (J.J.L.); (H.K.); (J.K.)
- Correspondence: (H.B.K.); (M.S.)
| |
Collapse
|
31
|
Pulsed Electric Field (PEF) Enhances Iron Uptake by the Yeast Saccharomyces cerevisiae. Biomolecules 2021; 11:biom11060850. [PMID: 34200319 PMCID: PMC8227778 DOI: 10.3390/biom11060850] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
The aim of the study was to investigate the influence of a pulsed electric field (PEF) on the level of iron ion accumulation in Saccharomyces cerevisiae cells and to select PEF conditions optimal for the highest uptake of this element. Iron ions were accumulated most efficiently when their source was iron (III) nitrate. When the following conditions of PEF treatment were used: voltage 1500 V, pulse width 10 μs, treatment time 20 min, and a number of pulses 1200, accumulation of iron ions in the cells from a 20 h-culture reached a maximum value of 48.01 mg/g dry mass. Application of the optimal PEF conditions thus increased iron accumulation in cells by 157% as compared to the sample enriched with iron without PEF. The second derivative of the FTIR spectra of iron-loaded and -unloaded yeast cells allowed us to determine the functional groups which may be involved in metal ion binding. The exposure of cells to PEF treatment only slightly influenced the biomass and cell viability. However, iron-enriched yeast (both with or without PEF) showed lower fermentative activity than a control sample. Thus obtained yeast biomass containing a high amount of incorporated iron may serve as an alternative to pharmacological supplementation in the state of iron deficiency.
Collapse
|
32
|
Wu J, Yang R, Gao M, Zhang H, Zhan X. Synthesis of functional oligosaccharides and their derivatives through cocultivation and cellular NTP regeneration. ADVANCES IN APPLIED MICROBIOLOGY 2021; 115:35-63. [PMID: 34140133 DOI: 10.1016/bs.aambs.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrates play an important role in the life cycle. Among them, functional oligosaccharides show a complex and diverse structures with unique physiological activities and biological functions. However, different preparation methods directly affect the structure, molecular weight, and other functions of oligosaccharides, as well as their application fields and manufacturing costs. In the preparation of β-1,3-glucan oligosaccharides (OBGs), water insolubility of β-1,3-glucans hampers the hydrolysis efficiency. The synthesis of some functional oligosaccharides requires the consumption of energy substrates, such as ATP, CTP, and uridine triphosphate, for sugar nucleotide synthesis, leading to increased capital costs. A more economical solution to solve energy supply is to adopt microbial cocultivation or cellular nucleoside triphosphate regeneration. This review focused on the sources, preparation methods, biological activities of OBG, and the cultivation methods and applications of microbial cocultivation and fermentation. We also reviewed the preparation methods of other functional oligosaccharides, such as sialylated oligosaccharides, β-nicotinamide mononucleotide, and α-galacto-oligosaccharides.
Collapse
Affiliation(s)
- Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Ruoyu Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
33
|
Heymich ML, Nißl L, Hahn D, Noll M, Pischetsrieder M. Antioxidative, Antifungal and Additive Activity of the Antimicrobial Peptides Leg1 and Leg2 from Chickpea. Foods 2021; 10:foods10030585. [PMID: 33799496 PMCID: PMC7998185 DOI: 10.3390/foods10030585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/29/2023] Open
Abstract
The fight against food waste benefits from novel agents inhibiting spoilage. The present study investigated the preservative potential of the antimicrobial peptides Leg1 (RIKTVTSFDLPALRFLKL) and Leg2 (RIKTVTSFDLPALRWLKL) recently identified in chickpea legumin hydrolysates. Checkerboard assays revealed strong additive antimicrobial effects of Leg1/Leg2 with sodium benzoate against Escherichia coli and Bacillus subtilis with fractional inhibitory concentrations of 0.625 and 0.75. Additionally, Leg1/Leg2 displayed antifungal activity with minimum inhibitory concentrations of 500/250 µM against Saccharomyces cerevisiae and 250/125 µM against Zygosaccharomyces bailii. In contrast, no cytotoxic effects were observed against human Caco-2 cells at concentrations below 2000 µM (Leg1) and 1000 µM (Leg2). Particularly Leg2 showed antioxidative activity by radical scavenging and reducing mechanisms (maximally 91.5/86.3% compared to 91.2/94.7% for the control ascorbic acid). The present results demonstrate that Leg1/Leg2 have the potential to be applied as preservatives protecting food and other products against bacterial, fungal and oxidative spoilage.
Collapse
Affiliation(s)
- Marie-Louise Heymich
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (M.-L.H.); (D.H.)
| | - Laura Nißl
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany; (L.N.); (M.N.)
| | - Dominik Hahn
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (M.-L.H.); (D.H.)
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany; (L.N.); (M.N.)
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (M.-L.H.); (D.H.)
- Correspondence:
| |
Collapse
|
34
|
Spent Brewer's Yeast as a Source of Insoluble β-Glucans. Int J Mol Sci 2021; 22:ijms22020825. [PMID: 33467670 PMCID: PMC7829969 DOI: 10.3390/ijms22020825] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
In the brewing process, the consumption of resources and the amount of waste generated are high and due to a lot of organic compounds in waste-water, the capacity of natural regeneration of the environment is exceeded. Residual yeast, the second by-product of brewing is considered to have an important chemical composition. An approach with nutritional potential refers to the extraction of bioactive compounds from the yeast cell wall, such as β-glucans. Concerning the potential food applications with better textural characteristics, spent brewer’s yeast glucan has high emulsion stability and water-holding capacity fitting best as a fat replacer in different food matrices. Few studies demonstrate the importance and nutritional role of β-glucans from brewer’s yeast, and even less for spent brewer’s yeast, due to additional steps in the extraction process. This review focuses on describing the process of obtaining insoluble β-glucans (particulate) from spent brewer’s yeast and provides an insight into how a by-product from brewing can be converted to potential food applications.
Collapse
|
35
|
Incorporating natural anti-inflammatory compounds into yeast glucan particles increases their bioactivity in vitro. Int J Biol Macromol 2020; 169:443-451. [PMID: 33340625 DOI: 10.1016/j.ijbiomac.2020.12.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022]
Abstract
Yeast glucan particles (GPs) are promising agents for the delivery of biologically active compounds as drugs. GPs possess their own biological activities and can act synergistically with their cargo. This study aimed to determine how incorporating artemisinin, ellagic acid, (-)-epigallocatechin gallate, morusin, or trans-resveratrol into GPs affects their anti-inflammatory and antioxidant potential in vitro. Two different methods - slurry evaporation and spray drying - were used to prepare composites (GPs + bioactive compound) and the anti-inflammatory and antioxidative properties of the resultant products were compared. Several of the natural compounds showed the beneficial effects of being combined with GPs. The materials prepared by spray drying showed greater activity than those made using a rotary evaporator. Natural compounds incorporated into yeast GPs showed greater anti-inflammatory potential in vitro than simple suspensions of these compounds as demonstrated by their inhibition of the activity of transcription factors NF-κB/AP-1 and the secretion of the pro-inflammatory cytokine TNF-α.
Collapse
|
36
|
Saccharomyces cerevisiae and Candida albicans Yeast Cells Labeled with Fe(III) Complexes as MRI Probes. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of MRI probes is of interest for labeling antibiotic-resistant fungal infections based on yeast. Our work showed that yeast cells can be labeled with high-spin Fe(III) complexes to produce enhanced T2 water proton relaxation. These Fe(III)-based macrocyclic complexes contained a 1,4,7-triazacyclononane framework, two pendant alcohol groups, and either a non-coordinating ancillary group and a bound water molecule or a third coordinating pendant. The Fe(III) complexes that had an open coordination site associated strongly with Saccharomyces cerevisiae upon incubation, as shown by screening using Z-spectra analysis. The incubation of one Fe(III) complex with either Saccharomyces cerevisiae or Candida albicans yeast led to an interaction with the β-glucan-based cell wall, as shown by the ready retrieval of the complex by the bidentate chelator called maltol. Other conditions, such as a heat shock treatment of the complexes, produced Fe(III) complex uptake that could not be reversed by the addition of maltol. Appending a fluorescence dye to Fe(TOB) led to uptake through secretory pathways, as shown by confocal fluorescence microscopy and by the incomplete retrieval of the Fe(III) complex by the maltol treatment. Yeast cells that were labeled with these Fe(III) complexes displayed enhanced water proton T2 relaxation, both for S. cerevisiae and for yeast and hyphal forms of C. albicans.
Collapse
|
37
|
Schiavone M, Sieczkowski N, Castex M, Trevisiol E, Dague E, François JM. AFM dendritips functionalized with molecular probes specific to cell wall polysaccharides as a tool to investigate cell surface structure and organization. Cell Surf 2020; 5:100027. [PMID: 32743143 PMCID: PMC7389267 DOI: 10.1016/j.tcsw.2019.100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Functionalisation of AFM dendritips with conA, WGA and anti-β-1,3/β-1, 6-glucan antibodies. Cell wall polysaccharides were immobilized on epoxy-activated glass slides. Specific binding of immobilized polysaccharides to functionalized dendritips. Functionalized dendritips used as a new tool to probe yeast cell surface.
The yeast cell wall is composed of mannoproteins, β-1,3/β-1, 6-glucans and chitin. Each of these components has technological properties that are relevant for industrial and medical applications. To address issues related to cell wall structure and alteration in response to stress or conditioning processes, AFM dendritips were functionalized with biomolecules that are specific for each of the wall components, which was wheat germ agglutinin (WGA) for chitin, concanavalin A (ConA) for mannans and anti-β-1,3/anti-β-1,6-glucan antibodies for β-1,3/β-1,6-glucans. Binding specificity of these biomolecules were validated using penta-N-acetylchitopentaose, α-mannans, laminarin (short β-1,3-glucan chain) and gentiobiose (2 glucose units linked in β 1→6) immobilized on epoxy glass slides. Dynamic force spectroscopy was employed to obtain kinetic and thermodynamic information on the intermolecular interaction of the binary complexes using the model of Friddle-Noy-de Yoreo. Using this model, transition state distance xt, dissociate rate koff and the lowest force (feq) required to break the intermolecular bond of the complexes were approximated. These functionalized dendritips were then used to probe the yeast cell surface treated with a bacterial protease. As expected, this treatment, which removed the outer layer of the cell wall, gave accessibility to the inner layer composed of β-glucans. Likewise, bud scars were nicely localized using AFM dendritip bearing the WGA probe. To conclude, these functionalized AFM dendritips constitute a new toolbox that can be used to investigate cell surface structure and organization in response to a wide arrays of cultures and process conditions.
Collapse
Affiliation(s)
- Marion Schiavone
- LISBP, UMR INSA-CNRS 5504 & INRA 792, F-31077 Toulouse, France.,Lallemand SAS, 19, rue des briquetiers, 31702 Blagnac, France
| | | | - Mathieu Castex
- Lallemand SAS, 19, rue des briquetiers, 31702 Blagnac, France
| | | | - Etienne Dague
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | |
Collapse
|
38
|
Patterns of Lignocellulosic Sugar Assimilation and Lipid Production by Newly Isolated Yeast Strains From Chilean Valdivian Forest. Appl Biochem Biotechnol 2020; 192:1124-1146. [PMID: 32700200 DOI: 10.1007/s12010-020-03398-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
Three yeast strains were isolated from decaying wood of Chilean Valdivian forest and identified as Meyerozyma guilliermondii, Scheffersomyces coipomensis, and Sugiyamaella paludigena. These strains were able to efficiently grow on the major monomers contained in Pinus spp. and Eucalyptus spp. wood that includes glucose (Glc), xylose (Xyl), and mannose (Man), showing at 28 °C higher uptake rates for Man, and in some cases for Glc, than for Xyl, used as single carbon sources. Nevertheless, in cultures performed on sugar mixtures, the strains displayed a notable preference for Glc. Additionally, in sugar mixtures, the absence of regulatory mechanisms in sugar assimilation (e.g., catabolic repression) was observed and documented when the activities of several enzymes involved in sugar assimilation (i.e., phosphoglucose isomerase, phosphomannose isomerase, and xylulokinase) were determined. The activity of the key enzymes involved in the onset of lipid accumulation (i.e., NAD+-ICDH) and in fatty acid (FA) biosynthesis (i.e., ATP:CL) indicated a significant accumulation of storage lipids (i.e., up to 24%, w/w) containing oleic and palmitic acids as the major components. The present paper is the first report on the potential of M. guilliermondii, S. coipomensis, and S. paludigena as oleaginous yeasts. We conclude that the new isolates, being able to simultaneously assimilate the major lignocellulosic sugars and efficiently convert them into oily biomass, present a biotechnological potential which deserve further investigation.
Collapse
|
39
|
Borovsky D, Nauwelaers S, Shatters R. Biochemical and Molecular Characterization of Pichia pastoris Cells Expressing Multiple TMOF Genes ( tmfA) for Mosquito Larval Control. Front Physiol 2020; 11:527. [PMID: 32528316 PMCID: PMC7265970 DOI: 10.3389/fphys.2020.00527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/29/2020] [Indexed: 11/21/2022] Open
Abstract
Trypsin modulating oostatic factor (TMOF), a decapeptide hormone synthesized by female mosquito ovaries, ganglia and the central nervous system of Aedes aegypti, terminates trypsin biosynthesis in larvae, and blood-fed female mosquitoes. Earlier, TMOF was cloned and expressed as a single copy in Chlorella dessicata and in Saccharomyces cerevisiae cells as a potential larvicide. Here we report the use of a methylotrophic yeast cells, Pichia pastoris, that efficiently express multi copies of heterologous proteins, that are readily ingested by mosquito larvae. P. pastoris was engineered using pPICZB (Invitrogen, CA, United States), and 2 genes: gfp-tmfA and tmfA inserted between KpnI and XbaI in the multiple cloning site. The plasmid carries a strong AOXI promoter and P. pastoris KM71 and KM71H cells were transformed by homologous recombination. The synthesis of GFP-TMOF was followed using UV and clones were analyzed using southern and Northern blot analyses. Cloning tmfA into KM71H and selection on high Zeocin concentration (2.0 mg/mL) identified a clone that carried 10 copies of tmfA. A comparison between a single and high copy (10 genes) insertions using Northern blot analyses showed that a tmfA transcript was highly expressed even after 120 h. SDS-PAGE analysis of KM71 cells transformed with gfp-tmfA identified a protein band that ran at the expected Mr of 31 kDa. Enzyme Linked Immunoadsorbant Assay (ELISA) analysis of the recombinant cells showed that 1.65 × 108 and 8.27 × 107 cells produce 229 and 114 μM of TMOF, respectively, and caused 100% larval mortality when fed to groups of 5 larvae in 25 mL water. These results indicate that the recombinant P. pastoris cells could be used in the future in the marsh to control mosquito populations.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, CO, United States
| | | | - Robert Shatters
- USDA ARS, Subtropical Horticultural Laboratory, Fort Pierce, FL, United States
| |
Collapse
|
40
|
Effect of high pressure homogenization on the production of yeast extract via autolysis and beta-glucan recovery. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Cruz A, Sterten H, Steinhoff FS, Mydland LT, Øverland M. Cyberlindnera jadinii yeast as a protein source for broiler chickens: effects on growth performance and digestive function from hatching to 30 days of age. Poult Sci 2020; 99:3168-3178. [PMID: 32475453 PMCID: PMC7597667 DOI: 10.1016/j.psj.2020.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 11/23/2022] Open
Abstract
Europe is heavily dependent on imported feed protein sources such as soybean meal (SBM); thus, investigating local sustainable alternatives is crucial to increase self-sufficiency. This study evaluated the effects of the inactivated yeast Cyberlindnera jadinii grown on local lignocellulosic sugars on the growth performance and digestive function of Ross 308 broiler chickens. A total of 1,000 male chicks were allocated to 20 pens. There were 5 replicate pens with 50 birds each, from 1 to 30 D after hatch. The birds were offered one conventional wheat–oat–SBM–based control diet and 3 diets with increasing levels of C. jadinii replacing 10, 20, and 30% of dietary crude protein (CP), whereas SBM levels were gradually decreased. The feed intake and weight gain of the birds decreased linearly, and feed conversion ratio increased linearly (P < 0.01) with increasing dietary levels of C. jadinii. Nevertheless, growth performance and feed intake were similar between the birds fed with control diets and diets containing 10% CP from C. jadinii in the starter and grower periods. The apparent ileal digestibility (AID) of dry matter, crude fat, organic matter, and carbohydrates was higher in control diets than in diets with 30% C. jadinii CP (P < 0.05) and decreased (P < 0.01) with incremental levels of dietary C. jadinii. Regardless, the AID of CP, starch, ash, and phosphorus was unaffected. Ileal villus height on day 10 was maintained in birds fed with diets containing 30% C. jadinii CP compared with the birds fed with control diets but was lower for birds fed with diets containing 10 and 20% C. jadinii protein (P < 0.05). To conclude, up to 10% C. jadinii CP can replace SBM CP in broiler chicken diets, maintaining growth performance and digestive function, whereas higher levels of C. jadinii may decrease bird performance. Altogether, this suggests the potential of C. jadinii as a local-based protein source in broiler chicken diets, contributing to a more sustainable feed.
Collapse
Affiliation(s)
- Ana Cruz
- Felleskjøpet Fôrutvikling A.S., Trondheim NO-7018, Norway; Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO 1432 Ås, Norway
| | | | | | - Liv T Mydland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO 1432 Ås, Norway
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO 1432 Ås, Norway.
| |
Collapse
|
42
|
Mo WY, Choi WM, Man KY, Wong MH. Food waste-based pellets for feeding grass carp (Ctenopharyngodon idellus): Adding baker's yeast and enzymes to enhance growth and immunity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:134954. [PMID: 31869610 DOI: 10.1016/j.scitotenv.2019.134954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Protein rich food waste could be used as raw materials for making fish feed pellets, which would diminish the volume of dumped waste into landfills. This study investigated the use of food waste (FW) based pellets composing of 75% food wastes derived from plant materials (cereals, fruit and vegetables) supplemented with yeast and the mixture of bromelain and papain to feed grass carp (Ctenopharyngodon idellus). Generally, improved growth performance (in terms of feed conversion ratio, protein efficiency ratio and relative weight gain) was observed in the diet groups supplemented with yeast (Saccharomyces cerevisiae). The most optimal dose was 25 g/kg yeast with enzymes (bromelain and papain, at the ratio of 1:1) and protein utilization was enhanced. Fish immunity was also stimulated, which indicated by the higher nitroblue tetrazolium and bactericidal activities. Moreover, resistance against Aeromonas hydrophilia was enhanced. It is envisaged that food waste could be widely used as feeds for culturing herbivorous fish and adding supplements such as baker's yeast and enzymes will further enhance the feed conversion ratio and fish immunity.
Collapse
Affiliation(s)
- W Y Mo
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China; Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong, China
| | - W M Choi
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - K Y Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - M H Wong
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
43
|
Novačić A, Vučenović I, Primig M, Stuparević I. Non-coding RNAs as cell wall regulators in Saccharomyces cerevisiae. Crit Rev Microbiol 2020; 46:15-25. [PMID: 31994960 DOI: 10.1080/1040841x.2020.1715340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cell wall of Saccharomyces cerevisiae is an extracellular organelle crucial for preserving its cellular integrity and detecting environmental cues. The cell wall is composed of mannoproteins attached to a polysaccharide network and is continuously remodelled as cells undergo cell division, mating, gametogenesis or adapt to stressors. This makes yeast an excellent model to study the regulation of genes important for cell wall formation and maintenance. Given that certain yeast strains are pathogenic, a better understanding of their life cycle is of clinical relevance. This is why transcriptional regulatory mechanisms governing genes involved in cell wall biogenesis or maintenance have been the focus of numerous studies. However, little is known about the roles of long non-coding RNAs (lncRNAs), a class of transcripts that are thought to possess little or no protein coding potential, in controlling the expression of cell wall-related genes. This review outlines currently known mechanisms of lncRNA-mediated regulation of gene expression in S. cerevisiae and describes examples of lncRNA-regulated genes encoding cell wall proteins. We suggest that the association of currently annotated lncRNAs with the coding sequences and/or promoters of cell wall-related genes highlights a potential role for lncRNAs as important regulators of the yeast cell wall structure.
Collapse
Affiliation(s)
- Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Ivan Vučenović
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
44
|
Graus MS, Wester MJ, Lowman DW, Williams DL, Kruppa MD, Martinez CM, Young JM, Pappas HC, Lidke KA, Neumann AK. Mannan Molecular Substructures Control Nanoscale Glucan Exposure in Candida. Cell Rep 2020; 24:2432-2442.e5. [PMID: 30157435 DOI: 10.1016/j.celrep.2018.07.088] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/05/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022] Open
Abstract
Cell wall mannans of Candida albicans mask β-(1,3)-glucan from recognition by Dectin-1, contributing to innate immune evasion. Glucan exposures are predominantly single receptor-ligand interaction sites of nanoscale dimensions. Candida species vary in basal glucan exposure and molecular complexity of mannans. We used super-resolution fluorescence imaging and a series of protein mannosylation mutants in C. albicans and C. glabrata to investigate the role of specific N-mannan features in regulating the nanoscale geometry of glucan exposure. Decreasing acid labile mannan abundance and α-(1,6)-mannan backbone length correlated most strongly with increased density and nanoscopic size of glucan exposures in C. albicans and C. glabrata, respectively. Additionally, a C. albicans clinical isolate with high glucan exposure produced similarly perturbed N-mannan structures and elevated glucan exposure geometry. Thus, acid labile mannan structure influences the nanoscale features of glucan exposure, impacting the nature of the pathogenic surface that triggers immunoreceptor engagement, aggregation, and signaling.
Collapse
Affiliation(s)
- Matthew S Graus
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael J Wester
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
| | - Douglas W Lowman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37684, USA; AppRidge International, LLC, Telford, TN 37690, USA
| | - David L Williams
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37684, USA; Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37684, USA
| | - Michael D Kruppa
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37684, USA; Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37684, USA
| | - Carmen M Martinez
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jesse M Young
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Harry C Pappas
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Aaron K Neumann
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
45
|
Nawawi WMFBW, Jones M, Murphy RJ, Lee KY, Kontturi E, Bismarck A. Nanomaterials Derived from Fungal Sources-Is It the New Hype? Biomacromolecules 2020; 21:30-55. [PMID: 31592650 PMCID: PMC7076696 DOI: 10.1021/acs.biomac.9b01141] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/07/2019] [Indexed: 12/21/2022]
Abstract
Greener alternatives to synthetic polymers are constantly being investigated and sought after. Chitin is a natural polysaccharide that gives structural support to crustacean shells, insect exoskeletons, and fungal cell walls. Like cellulose, chitin resides in nanosized structural elements that can be isolated as nanofibers and nanocrystals by various top-down approaches, targeted at disintegrating the native construct. Chitin has, however, been largely overshadowed by cellulose when discussing the materials aspects of the nanosized components. This Perspective presents a thorough overview of chitin-related materials research with an analytical focus on nanocomposites and nanopapers. The red line running through the text emphasizes the use of fungal chitin that represents several advantages over the more popular crustacean sources, particularly in terms of nanofiber isolation from the native matrix. In addition, many β-glucans are preserved in chitin upon its isolation from the fungal matrix, enabling new horizons for various engineering solutions.
Collapse
Affiliation(s)
- Wan M. F. B. W. Nawawi
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Department
of Biotechnology Engineering, International
Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| | - Mitchell Jones
- School
of Engineering, RMIT University, Bundoora
East Campus, P.O. Box 71, Bundoora 3083, Victoria, Australia
- Polymer and
Composite Engineering (PaCE) Group, Institute of Materials Chemistry
and Research, Faculty of Chemistry, University
of Vienna, Währinger
Strasse 42, 1090 Vienna, Austria
| | - Richard J. Murphy
- Centre
for Environment & Sustainability, University
of Surrey, Arthur C Clarke
building, Floor 2, Guildford GU2 7XH, U.K.
| | - Koon-Yang Lee
- Department
of Aeronautics, Imperial College London,
South Kensington Campus, London SW7 2AZ, U.K.
| | - Eero Kontturi
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Alexander Bismarck
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Polymer and
Composite Engineering (PaCE) Group, Institute of Materials Chemistry
and Research, Faculty of Chemistry, University
of Vienna, Währinger
Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
46
|
Lapeña D, Olsen PM, Arntzen MØ, Kosa G, Passoth V, Eijsink VGH, Horn SJ. Spruce sugars and poultry hydrolysate as growth medium in repeated fed-batch fermentation processes for production of yeast biomass. Bioprocess Biosyst Eng 2019; 43:723-736. [PMID: 31883034 PMCID: PMC7064453 DOI: 10.1007/s00449-019-02271-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The production of microbial protein in the form of yeast grown on lignocellulosic sugars and nitrogen-rich industrial residues is an attractive approach for reducing dependency on animal and plant protein. Growth media composed of enzymatically saccharified sulfite-pulped spruce wood, enzymatic hydrolysates of poultry by-products and urea were used for the production of single-cell protein. Strains of three different yeast species, Cyberlindnera jadinii, Wickerhamomyces anomalus and Blastobotrys adeninivorans, were cultivated aerobically using repeated fed-batch fermentation up to 25 L scale. Wickerhamomyces anomalus was the most efficient yeast with yields of 0.6 g of cell dry weight and 0.3 g of protein per gram of glucose, with cell and protein productivities of 3.92 g/L/h and 1.87 g/L/h, respectively. Using the conditions developed here for producing W. anomalus, it would take 25 industrial (200 m3) continuously operated fermenters to replace 10% of the fish feed protein used in Norway.
Collapse
Affiliation(s)
- David Lapeña
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway
| | - Pernille M Olsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway
| | - Gergely Kosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, S-75007, Uppsala, Sweden
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
47
|
Shi H, Kim IH. Dietary yeast extract complex supplementation increases growth performance and nutrient digestibility of weaning pigs. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.103850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Marcišauskas S, Ji B, Nielsen J. Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model. BMC Bioinformatics 2019; 20:551. [PMID: 31694544 PMCID: PMC6833147 DOI: 10.1186/s12859-019-3134-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Kluyveromyces marxianus is a thermotolerant yeast with multiple biotechnological potentials for industrial applications, which can metabolize a broad range of carbon sources, including less conventional sugars like lactose, xylose, arabinose and inulin. These phenotypic traits are sustained even up to 45 °C, what makes it a relevant candidate for industrial biotechnology applications, such as ethanol production. It is therefore of much interest to get more insight into the metabolism of this yeast. Recent studies suggested, that thermotolerance is achieved by reducing the number of growth-determining proteins or suppressing oxidative phosphorylation. Here we aimed to find related factors contributing to the thermotolerance of K. marxianus. RESULTS Here, we reported the first genome-scale metabolic model of Kluyveromyces marxianus, iSM996, using a publicly available Kluyveromyces lactis model as template. The model was manually curated and refined to include the missing species-specific metabolic capabilities. The iSM996 model includes 1913 reactions, associated with 996 genes and 1531 metabolites. It performed well to predict the carbon source utilization and growth rates under different growth conditions. Moreover, the model was coupled with transcriptomics data and used to perform simulations at various growth temperatures. CONCLUSIONS K. marxianus iSM996 represents a well-annotated metabolic model of thermotolerant yeast, which provides a new insight into theoretical metabolic profiles at different temperatures of K. marxianus. This could accelerate the integrative analysis of multi-omics data, leading to model-driven strain design and improvement.
Collapse
Affiliation(s)
- Simonas Marcišauskas
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96, Gothenburg, Sweden
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800, Lyngby, Denmark.
- BioInnovation Institute, Ole Måløes Vej 3, DK2200, Copenhagen N, Denmark.
| |
Collapse
|
49
|
Liu X, Lin Q, Yan Y, Peng F, Sun R, Ren J. Hemicellulose from Plant Biomass in Medical and Pharmaceutical Application: A Critical Review. Curr Med Chem 2019; 26:2430-2455. [PMID: 28685685 DOI: 10.2174/0929867324666170705113657] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Due to the non-toxicity, abundance and biodegradability, recently more and more attention has been focused on the exploration of hemicellulose as the potential substrate for the production of liquid fuels and other value-added chemicals and materials in different fields. This review aims to summarize the current knowledge on the promising application of nature hemicellulose and its derivative products including its degradation products, its new derivatives and hemicellulosebased medical biodegradable materials in the medical and pharmaceutical field, especially for inmmune regulation, bacteria inhibition, drug release, anti-caries, scaffold materials and anti-tumor. METHODS We searched the related papers about the medical and pharmaceutical application of hemicellulose and its derivative products, and summarized their preparation methods, properties and use effects. RESULTS Two hundred and twenty-seven papers were included in this review. Forty-seven papers introduced the extraction and application in immune regulation of nature hemicellulose, such as xylan, mannan, xyloglucan (XG) and β-glucan. Seventy-seven papers mentioned the preparation and application of degradation products of hemicellulose for adjusting intestinal function, maintaining blood glucose levels, enhancing the immunity and alleviating human fatigue fields such as xylooligosaccharides, xylitol, xylose, arabinose, etc. The preparation of hemicellulose derivatives were described in thirty-two papers such as hemicellulose esters, hemicellulose ethers and their effects on anticoagulants, adsorption of creatinine, the addition of immune cells and the inhibition of harmful bacteria. Finally, the preparations of hemicellulose-based materials such as hydrogels and membrane for the field of drug release, cell immobilization, cancer therapy and wound dressings were presented using fifty-five papers. CONCLUSION The structure of hemicellulose-based products has the significant impact on properties and the use effect for the immunity, and treating various diseases of human. However, some efforts should be made to explore and improve the properties of hemicellulose-based products and design the new materials to broaden hemicellulose applications.
Collapse
Affiliation(s)
- Xinxin Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuhuan Yan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
50
|
Optimization of medium composition for production of chitin-glucan complex and mannose-containing polysaccharides by the yeast Komagataella pastoris. J Biotechnol 2019; 303:30-36. [DOI: 10.1016/j.jbiotec.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 07/07/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
|