1
|
Weiss ER, Davis MT, Asch RH, D'Souza DC, Cool R, Esterlis I. Metabotropic Glutamate Receptor 5 as a Potential Biomarker of the Intersection of Trauma and Cannabis Use. Int J Neuropsychopharmacol 2024; 27:pyae044. [PMID: 39320043 DOI: 10.1093/ijnp/pyae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Metabotropic glutamate receptor 5 (mGlu5) dysregulation has been implicated in the pathophysiology of trauma-related psychopathology, and there are direct interactions between the endocannabinoid and glutamatergic systems. However, relationships between cannabis use (CU) and mGlu5 have not been directly investigated in trauma-related psychopathology. METHODS Using positron emission tomography with [18F]FPEB, we examined relationships between CU status and mGlu5 availability in vivo in a cross-diagnostic sample of individuals with trauma-related psychopathology (n = 55). Specifically, we tested whether mGlu5 availability in frontolimbic regions of interest (ROIs; dorsolateral prefrontal cortex, orbitofrontal cortex, ventromedial prefrontal cortex, amygdala, hippocampus) differed as a function of CU status. RESULTS Past-year CU (n = 22) was associated with 18.62%-19.12% higher mGlu5 availability in frontal and 14.24%-16.55% higher mGlu5 in limbic ROIs relative to participants with no recent CU. Similarly, past-month or monthly CU (n = 16) was associated with higher mGlu5 availability in frontal (18.05%-20.62%) and limbic (15.53%-16.83%) ROIs. mGlu5 availability in the orbitofrontal cortex and amygdala was negatively associated with depressive symptoms in the past-year CU group. In both CU groups, exploratory analyses showed negative correlations between mGlu5 availability and sadness across all ROIs and with perceptions of worthlessness and past failures (r's = -.47 to .66, P's = .006-.033) in the ventromedial prefrontal cortex. Participants with CU reported lower mean depressive symptoms (P's = .006-.037) relative to those without CU. CONCLUSIONS These findings have substantial implications for our understanding of interactions between CU and glutamatergic neurotransmission in trauma-related psychopathology, underscoring the need for treatment development efforts to consider the effects of CU in this population.
Collapse
Affiliation(s)
- Emily R Weiss
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Margaret T Davis
- Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Ruth H Asch
- Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Deepak Cyril D'Souza
- Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Ryan Cool
- Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Irina Esterlis
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Psychology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Asch RH, Worhunsky PD, Davis MT, Holmes SE, Cool R, Boster S, Carson RE, Blumberg HP, Esterlis I. Deficits in prefrontal metabotropic glutamate receptor 5 are associated with functional alterations during emotional processing in bipolar disorder. J Affect Disord 2024; 361:415-424. [PMID: 38876317 PMCID: PMC11250898 DOI: 10.1016/j.jad.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Elucidating biological mechanisms contributing to bipolar disorder (BD) is key to improved diagnosis and treatment development. With converging evidence implicating the metabotropic glutamate receptor 5 (mGlu5) in the pathology of BD, here, we therefore test the hypothesis that recently identified deficits in mGlu5 are associated with functional brain differences during emotion processing in BD. METHODS Positron emission tomography (PET) with [18F]FPEB was used to measure mGlu5 receptor availability and functional imaging (fMRI) was performed while participants completed an emotion processing task. Data were analyzed from 62 individuals (33 ± 12 years, 45 % female) who completed both PET and fMRI, including individuals with BD (n = 18), major depressive disorder (MDD: n = 20), and psychiatrically healthy comparisons (HC: n = 25). RESULTS Consistent with some prior reports, the BD group displayed greater activation during fear processing relative to MDD and HC, notably in right lateralized frontal and parietal brain regions. In BD, (but not MDD or HC) lower prefrontal mGlu5 availability was associated with greater activation in bilateral pre/postcentral gyri and cuneus during fear processing. Furthermore, greater prefrontal mGlu5-related brain activity in BD was associated with difficulties in psychomotor function (r≥0.904, p≤0.005) and attention (r≥0.809, p≤0.028). LIMITATIONS The modest sample size is the primary limitation. CONCLUSIONS Deficits in prefrontal mGlu5 in BD were linked to increased cortical activation during fear processing, which in turn was associated with impulsivity and attentional difficulties. These data further implicate an mGlu5-related mechanism unique to BD. More generally these data suggest integrating PET and fMRI can provide novel mechanistic insights.
Collapse
Affiliation(s)
- Ruth H. Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
| | | | - Margaret T. Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
| | - Sophie E. Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511
| | - Ryan Cool
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
| | - Sarah Boster
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06511
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06511
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06511
- Child Study Center, Yale School of Medicine, New Haven, CT 06511
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06511
- Department of Psychology, Yale University, New Haven, CT 06511
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
3
|
McClintick MN, Kessler RM, Mandelkern MA, Mahmoudie T, Allen DC, Lachoff H, Pochon JBF, Ghahremani DG, Farahi JB, Partiai E, Casillas RA, Mooney LJ, Dean AC, London ED. Brain mGlu5 Is Linked to Cognition and Cigarette Smoking but Does Not Differ From Control in Early Abstinence From Chronic Methamphetamine Use. Int J Neuropsychopharmacol 2024; 27:pyae031. [PMID: 39120945 PMCID: PMC11348008 DOI: 10.1093/ijnp/pyae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/07/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND The group-I metabotropic glutamate receptor subtype 5 (mGlu5) has been implicated in methamphetamine exposure in animals and in human cognition. Because people with methamphetamine use disorder (MUD) exhibit cognitive deficits, we evaluated mGlu5 in people with MUD and controls and tested its association with cognitive performance. METHODS Positron emission tomography was performed to measure the total VT of [18F]FPEB, a radiotracer for mGlu5, in brains of participants with MUD (abstinent from methamphetamine for at least 2 weeks, N = 14) and a control group (N = 14). Drug use history questionnaires and tests of verbal learning, spatial working memory, and executive function were administered. Associations of VT with methamphetamine use, tobacco use, and cognitive performance were tested. RESULTS MUD participants did not differ from controls in global or regional VT, and measures of methamphetamine use were not correlated with VT. VT was significantly higher globally in nonsmoking vs smoking participants (main effect, P = .0041). MUD participants showed nonsignificant weakness on the Rey Auditory Verbal Learning Task and the Stroop test vs controls (P = .08 and P = .13, respectively) with moderate to large effect sizes, and significantly underperformed controls on the Spatial Capacity Delayed Response Test (P = .015). Across groups, Rey Auditory Verbal Learning Task performance correlated with VT in the dorsolateral prefrontal cortex and superior frontal gyrus. CONCLUSION Abstinent MUD patients show no evidence of mGlu5 downregulation in brain, but association of VT in dorsolateral prefrontal cortex with verbal learning suggests that medications that target mGlu5 may improve cognitive performance.
Collapse
Affiliation(s)
- Megan N McClintick
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Robert M Kessler
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Mark A Mandelkern
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
- Department of Physics, University of California Irvine, Irvine, California, USA
| | - Tarannom Mahmoudie
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | | | - Hilary Lachoff
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Jean-Baptiste F Pochon
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Dara G Ghahremani
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Judah B Farahi
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
| | - Edwin Partiai
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
| | - Robert A Casillas
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
| | - Larissa J Mooney
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Andy C Dean
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Edythe D London
- Veterans Administration of Greater Los Angeles System, Los Angeles, California, USA
- Semel Institute and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Fan S, Asch RH, Davis MT, DellaGioia N, Cool R, Blumberg HP, Esterlis I. Preliminary Study of White Matter Abnormalities and Associations With the Metabotropic Glutamate Receptor 5 to Distinguish Bipolar and Major Depressive Disorders. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2024; 8:24705470231225320. [PMID: 38250007 PMCID: PMC10798116 DOI: 10.1177/24705470231225320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Background Understanding distinct neurobiological mechanisms underlying bipolar disorder (BD) and major depressive disorder (MDD) is crucial for accurate diagnosis and the discovery of novel and more effective targeted treatments. Previous diffusion-weighted MRI studies have suggested some common frontotemporal corticolimbic system white matter (WM) abnormalities across the disorders. However, critical to the development of more precise diagnosis and treatment is identifying distinguishing abnormalities. Promising candidates include more prominent frontotemporal WM abnormalities observed in BD in the uncinate fasciculus (UF) that have been associated with frontal-amygdala functional dysconnectivity, and with suicide that is especially high in BD. Prior work also showed differentiation in metabotropic glutamate receptor 5 (mGlu5) abnormalities in BD versus MDD, which could be a mechanism affected in the frontotemporal system. However, associations between WM and mGlu5 have not been examined previously as a differentiator of BD. Using a multimodal neuroimaging approach, we examined WM integrity alterations in the disorders and their associations with mGluR5 levels. Methods Individuals with BD (N = 21), MDD (N = 10), and HC (N = 25) participated in structural and diffusion-weighted MRI scanning, and imaging with [18F]FPEB PET for quantification of mGlu5 availability. Whole-brain analyses were used to assess corticolimbic WM matter fractional anisotropy (FA) across BD and MDD relative to HC; abnormalities were tested for associations with mGlu5 availability. Results FA corticolimbic reductions were observed in both disorders and altered UF WM integrity was observed only in BD. In BD, lower UF FA was associated with lower amygdala mGlu5 availability (p < .05). Conclusions These novel preliminary findings suggest important associations between lower UF FA and lower amygdala mGlu5 levels that could represent a disorder-specific neural mechanism in which mGluR5 is associated with the frontotemporal dysconnectivity of the disorder.
Collapse
Affiliation(s)
- Siyan Fan
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Ruth H. Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Margaret T. Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale School of Medicine, New Haven, CT, USA
| | - Nicole DellaGioia
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Ryan Cool
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale School of Medicine, New Haven, CT, USA
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Division, U.S. Department of Veteran Affairs Nation Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
5
|
Asch RH, Naganawa M, Nabulsi N, Huan Y, Esterlis I, Carson RE. Evaluating infusion methods and simplified quantification of synaptic density in vivo with [ 11C]UCB-J and [ 18F]SynVesT-1 PET. J Cereb Blood Flow Metab 2023; 43:2120-2129. [PMID: 37669455 PMCID: PMC10925870 DOI: 10.1177/0271678x231200423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 09/07/2023]
Abstract
For some positron emission tomography studies, radiotracer is administered as bolus plus continuous infusion (B/I) to achieve a state of equilibrium. This approach can reduce scanning time and simplify data analysis; however, the method must be validated and optimized for each tracer. This study aimed to validate a B/I method for in vivo quantification of synaptic density using radiotracers which target the synaptic vesicle glycoprotein 2 A: [11C]UCB-J and [18F]SynVesT-1. Observed mean standardized uptake values (SUV) in target tissue relative to that in plasma (CT/CP) or a reference tissue (SUVR-1) were calculated for 30-minute intervals across 120 or 150-minute dynamic scans and compared against one-tissue compartment (1TC) model estimates of volume of distribution (VT) and binding potential (BPND), respectively. We were unable to reliably achieve a state of equilibrium with [11C]UCB-J, and all 30-minute windows yielded overly large bias and/or variability for CT/CP and SUVR-1. With [18F]SynVesT-1, a 30-minute scan 90-120 minutes post-injection yielded CT/CP and SUVR-1 values that estimated their respective kinetic parameter with sufficient accuracy and precision (within 7± 6%) . This B/I approach allows a clinically feasible scan at equilibrium with potentially better accuracy than a static scan SUVR following a bolus injection.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Huan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Dupont AC, Arlicot N, Vercouillie J, Serrière S, Maia S, Bonnet-Brilhault F, Santiago-Ribeiro MJ. Metabotropic Glutamate Receptor Subtype 5 Positron-Emission-Tomography Radioligands as a Tool for Central Nervous System Drug Development: Between Progress and Setbacks. Pharmaceuticals (Basel) 2023; 16:1127. [PMID: 37631042 PMCID: PMC10458693 DOI: 10.3390/ph16081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGluR5) is a class C G-protein-coupled receptor (GPCR) that has been implicated in various neuronal processes and, consequently, in several neuropsychiatric or neurodevelopmental disorders. Over the past few decades, mGluR5 has become a major focus for pharmaceutical companies, as an attractive target for drug development, particularly through the therapeutic potential of its modulators. In particular, allosteric binding sites have been targeted for better specificity and efficacy. In this context, Positron Emission Tomography (PET) appears as a useful tool for making decisions along a drug candidate's development process, saving time and money. Thus, PET provides quantitative information about a potential drug candidate and its target at the molecular level. However, in this area, particular attention has to be given to the interpretation of the PET signal and its conclusions. Indeed, the complex pharmacology of both mGluR5 and radioligands, allosterism, the influence of endogenous glutamate and the choice of pharmacokinetic model are all factors that may influence the PET signal. This review focuses on mGluR5 PET radioligands used at several stages of central nervous system drug development, highlighting advances and setbacks related to the complex pharmacology of these radiotracers.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Nicolas Arlicot
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- CIC 1415, Tours University, INSERM, 37000 Tours, France
| | | | - Sophie Serrière
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Serge Maia
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, 37000 Tours, France
| | - Maria-Joao Santiago-Ribeiro
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- Nuclear Medicine Department, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
7
|
Holmes SE, Asch RH, Davis MT, DellaGioia N, Pashankar N, Gallezot JD, Nabulsi N, Matuskey D, Sanacora G, Carson RE, Blumberg HP, Esterlis I. Differences in Quantification of the Metabotropic Glutamate Receptor 5 Across Bipolar Disorder and Major Depressive Disorder. Biol Psychiatry 2023; 93:1099-1107. [PMID: 36764853 PMCID: PMC10164841 DOI: 10.1016/j.biopsych.2022.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Understanding the neurobiology underlying bipolar disorder (BD) versus major depressive disorder (MDD) is crucial for accurate diagnosis and for driving the discovery of novel treatments. A promising target is the metabotropic glutamate receptor 5 (mGluR5), a modulator of glutamate transmission associated with synaptic plasticity. We measured mGluR5 availability in individuals with MDD and BD for the first time using positron emission tomography. METHODS Individuals with BD (n = 17 depressed; n = 10 euthymic) or MDD (n = 17) and healthy control (HC) individuals (n = 18) underwent imaging with [18F]FPEB positron emission tomography to quantify mGluR5 availability in regions of the prefrontal cortex, which was compared across groups and assessed in relation to depressive symptoms and cognitive function. RESULTS Prefrontal cortex mGluR5 availability was significantly different across groups (F6,116 = 2.18, p = .050). Specifically, mGluR5 was lower in BD versus MDD and HC groups, with no difference between MDD and HC groups. Furthermore, after dividing the BD group, mGluR5 was lower in both BD-depression and BD-euthymia groups versus both MDD and HC groups across regions of interest. Interestingly, lower dorsolateral prefrontal cortex mGluR5 was associated with worse depression in MDD (r = -0.67, p = .005) but not in BD. Significant negative correlations were observed between mGluR5 and working memory in MDD and BD-depression groups. CONCLUSIONS This work suggests that mGluR5 could be helpful in distinguishing BD and MDD as a possible treatment target for depressive symptoms in MDD and for cognitive alterations in both disorders. Further work is needed to confirm differentiating roles for mGluR5 in BD and MDD and to probe modulation of mGluR5 as a preventive/treatment strategy.
Collapse
Affiliation(s)
- Sophie E Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Margaret T Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| | - Nicole DellaGioia
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Neha Pashankar
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - David Matuskey
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Child Study Center, Yale School of Medicine, New Haven, Connecticut; Clinical Neurosciences Division, U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, Connecticut.
| |
Collapse
|
8
|
Galineau L, Arlicot N, Dupont AC, Briend F, Houy-Durand E, Tauber C, Gomot M, Gissot V, Barantin L, Lefevre A, Vercouillie J, Roussel C, Roux S, Nadal L, Mavel S, Laumonnier F, Belzung C, Chalon S, Emond P, Santiago-Ribeiro MJ, Bonnet-Brilhault F. Glutamatergic synapse in autism: a complex story for a complex disorder. Mol Psychiatry 2023; 28:801-809. [PMID: 36434055 DOI: 10.1038/s41380-022-01860-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathophysiological mechanisms are still unclear. Hypotheses suggest a role for glutamate dysfunctions in ASD development, but clinical studies investigating brain and peripheral glutamate levels showed heterogenous results leading to hypo- and hyper-glutamatergic hypotheses of ASD. Recently, studies proposed the implication of elevated mGluR5 densities in brain areas in the pathophysiology of ASD. Thus, our objective was to characterize glutamate dysfunctions in adult subjects with ASD by quantifying (1) glutamate levels in the cingulate cortex and periphery using proton magnetic resonance spectroscopy and metabolomics, and (2) mGluR5 brain density in this population and in a validated animal model of ASD (prenatal exposure to valproate) at developmental stages corresponding to childhood and adolescence in humans using positron emission tomography. No modifications in cingulate Glu levels were observed between individuals with ASD and controls further supporting the difficulty to evaluate modifications in excitatory transmission using spectroscopy in this population, and the complexity of its glutamate-related changes. Our imaging results showed an overall increased density in mGluR5 in adults with ASD, that was only observed mostly subcortically in adolescent male rats prenatally exposed to valproic acid, and not detected in the stage corresponding to childhood in the same animals. This suggest that clinical changes in mGluR5 density could reflect the adaptation of the glutamatergic dysfunctions occurring earlier rather than being key to the pathophysiology of ASD.
Collapse
Affiliation(s)
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France
| | - Anne-Claire Dupont
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frederic Briend
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Emmanuelle Houy-Durand
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Clovis Tauber
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Marie Gomot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | | | | | - Antoine Lefevre
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Roux
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Lydie Nadal
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvie Mavel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Maria-Joao Santiago-Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France. .,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France.
| |
Collapse
|
9
|
Baldassarri SR, Asch RH, Hillmer AT, Pietrzak RH, DellaGioia N, Esterlis I, Davis MT. Nicotine Use and Metabotropic Glutamate Receptor 5 in Individuals With Major Depressive and Posttraumatic Stress Disorders. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2023; 7:24705470231154842. [PMID: 36843572 PMCID: PMC9943964 DOI: 10.1177/24705470231154842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) dysregulation has been implicated in the pathophysiology of many psychiatric disorders, as well as nicotine use and dependence. We used positron emission tomography with [18F]FPEB to measure mGluR5 availability in vivo in 6 groups: (1) nicotine users (NUs) without other psychiatric comorbidities (n = 23); (2) comparison controls (CCs) without nicotine use or psychiatric comorbidities (n = 38); (3) major depressive disorder subjects with concurrent nicotine use (MDD-NU; n = 19); (4) MDD subjects without concurrent nicotine use (MDD-CC; n = 20); (5) posttraumatic stress disorder subjects with concurrent nicotine use (PTSD-NU; n = 17); and (6) PTSD subjects without concurrent nicotine use (PTSD-CC; n = 16). The goal of the study was to test the hypothesis that mGluR5 availability in key corticolimbic regions of interest (ROIs) is different in NU with versus without comorbid psychiatric disorders (ROI: dorsolateral prefrontal cortex [dlPFC], orbitofrontal cortex [OFC], ventromedial prefrontal cortex [vmPFC], anterior cingulate cortex [ACC], amygdala, hippocampus). We found that NU had 11%-13% lower mGluR5 availability in OFC, vmPFC, dlPFC, and ACC as compared with CC, while PTSD-NU had 9%-11% higher mGluR5 availability in OFC, dlPFC, and ACC compared with PTSD. Furthermore, relationships between mGluR5 availability and psychiatric symptoms varied as a function of psychiatric diagnosis among NUs. NU showed a negative correlation between mGluR5 and smoking cravings and urges (r's = -0.58 to -0.70, p's = 0.011 - 0.047), while PTSD-NU had the reverse relationship (r's = 0.60-0.71, p's = 0.013-0.035 in ACC, vmPFC, and dlPFC). These findings have substantial implications for our understanding of glutamate homeostasis in psychiatric subgroups and for identifying key neural phenotypes among NU. mGluR5 is a potential treatment target for precision medicine in individuals with nicotine use.
Collapse
Affiliation(s)
- Stephen R. Baldassarri
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Department of Internal Medicine, Yale University School of
Medicine, New Haven, CT, USA
- Program in Addiction Medicine, Yale University School of
Medicine, New Haven, CT, USA
| | - Ruth H. Asch
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Ansel T. Hillmer
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Radiology, and
Biomedical Imaging, New Haven, CT, USA
| | - Robert H. Pietrzak
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- VA National Center for PTSD Clinical Neurosciences Division, New
Haven, CT, USA
| | - Nicole DellaGioia
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- VA National Center for PTSD Clinical Neurosciences Division, New
Haven, CT, USA
| | - Margaret T. Davis
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Glorie D, Verhaeghe J, Miranda A, De Lombaerde S, Stroobants S, Staelens S. Quantification of Metabotropic Glutamate Receptor 5 Availability With Both [ 11C]ABP688 and [ 18F]FPEB Positron Emission Tomography in the Sapap3 Knockout Mouse Model for Obsessive-Compulsive-like Behavior. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:607-615. [PMID: 34856382 DOI: 10.1016/j.bpsc.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND This study provides a first direct comparison between positron emission tomography radioligands targeting the allosteric site of the metabotropic glutamate receptor 5 (mGluR5): [11C]ABP688 and [18F]FPEB. A blocking paradigm was set up to substantiate the common binding site of both radioligands. Second, both radioligands were applied in Sapap3 knockout (KO) mice showing compulsive-like behavior characterized by a lower in vivo mGluR5 availability. METHODS First, wild-type mice (n = 7) received four position emission tomography/computed tomography scans: a [11C]ABP688 scan, a [18F]FPEB scan, and two blocking scans using cold FPEB and cold ABP688, respectively. A second experiment compared both radioligands in wild-type (n = 7) and KO (n = 10) mice. The simplified reference tissue model was used to calculate the nondisplaceable binding potential representing the in vivo availability of mGluR5 in the brain. RESULTS Using cold FPEB as a blocking compound for [11C]ABP688 micro-positron emission tomography and vice versa, we observed averaged global reductions in mGluR5 availability of circa 98% for [11C]ABP688 and 82%-96% for [18F]FPEB. For KOs, the [11C]ABP688 nondisplaceable binding potential was on average 25% lower compared with wild-type control mice (p < .0001-.001), while this was about 17% for [18F]FPEB (p < .05). CONCLUSIONS The current findings substantiate a common binding site and suggest a strong relationship between mGluR5 availability levels measured with both radioligands. In Sapap3 KO mice, a reduced mGluR5 availability could therefore be demonstrated with both radioligands. With [11C]ABP688, higher significance levels were achieved in more brain regions. These findings suggest [11C]ABP688 as a preferable radiotracer to quantify mGluR5 availability, as exemplified here in a model for compulsive-like behavior.
Collapse
Affiliation(s)
- Dorien Glorie
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Stef De Lombaerde
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium; Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium; Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
11
|
Smart K, Worhunsky PD, Scheinost D, Angarita GA, Esterlis I, Carson RE, Krystal JH, O'Malley SS, Cosgrove KP, Hillmer AT. Multimodal neuroimaging of metabotropic glutamate 5 receptors and functional connectivity in alcohol use disorder. Alcohol Clin Exp Res 2022; 46:770-782. [PMID: 35342968 PMCID: PMC9117461 DOI: 10.1111/acer.14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND People recovering from alcohol use disorder (AUD) show altered resting brain connectivity. The metabotropic glutamate 5 (mGlu5) receptor is an important regulator of synaptic plasticity potentially linked with synchronized brain activity and a target of interest in treating AUD. The goal of this work was to assess potential relationships of brain connectivity at rest with mGlu5 receptor availability in people with AUD at two time points early in abstinence. METHODS Forty-eight image data sets were acquired with a multimodal neuroimaging battery that included resting-state functional magnetic resonance imaging (fMRI) and mGlu5 receptor positron emission tomography (PET) with the radiotracer [18 F]FPEB. Participants with AUD (n = 14) were scanned twice, at approximately 1 and 4 weeks after beginning supervised abstinence. [18 F]FPEB PET results were published previously. Primary comparisons of fMRI outcomes were performed between the AUD group and healthy controls (HCs; n = 23) and assessed changes over time within the AUD group. Relationships between resting-state connectivity measures and mGlu5 receptor availability were explored within groups. RESULTS Compared to HCs, global functional connectivity of the orbitofrontal cortex was higher in the AUD group at 4 weeks of abstinence (p = 0.003), while network-level functional connectivity within the default mode network (DMN) was lower (p < 0.04). Exploratory multimodal analyses showed that mGlu5 receptor availability was correlated with global connectivity across all brain regions (HCs, r = 0.41; AUD group at 1 week of abstinence, r = 0.50 and at 4 weeks, r = 0.46; all p < 0.0001). Furthermore, a component of cortical and striatal mGlu5 availability was correlated with connectivity between the DMN and salience networks in HCs (r = 0.60, p = 0.003) but not in the AUD group (p > 0.3). CONCLUSIONS These preliminary findings of altered global and network connectivity during the first month of abstinence from drinking may reflect the loss of efficient network function, while exploratory relationships with mGlu5 receptor availability suggest a potential glutamatergic relationship with network coherence.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Patrick D Worhunsky
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Gustavo A Angarita
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard E Carson
- Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Kelly P Cosgrove
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ansel T Hillmer
- Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Esterlis I, DeBonee S, Cool R, Holmes S, Baldassari SR, Maruff P, Pietrzak RH, Davis MT. Differential Role of mGluR5 in Cognitive Processes in Posttraumatic Stress Disorder and Major Depression. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221105804. [PMID: 35958037 PMCID: PMC9358555 DOI: 10.1177/24705470221105804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Background A robust literature supports the role of the metabotropic glutamate receptor type 5 (mGluR5) in cognitive functioning. mGluR5 is also implicated in the pathophysiology of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD), which are characterized by cognitive alterations. However, the relationship between mGluR5 and cognition in MDD and PTSD has not yet been directly investigated. To address this gap, we examined the relationship between in vivo mGluR5 availability and cognition in PTSD, MDD, and matched healthy adults (HA). Methods Individuals with PTSD (N = 28) and MDD (N = 21), and HA (N = 28) were matched for age, gender, and smoking status. Participants completed 18F-FPEB positron emission tomography (PET) scan, psychiatric and cognitive assessments. Results Across models examining the relationship between mGluR5 availability and different domains of cognition across diagnostic groups, only the interaction of diagnosis*attention was significant (F 4,64 = 3.011, P = .024). Higher mGluR5 availability was associated with poorer attention in PTSD in 4 frontolimbic regions of interests (ROI's: OFC (r = -.441, P = .016), vmPFC (r = -.408, P = .028), dlPFC (r = -.421, P = .023), hippocampus (r = -.422, P = .025). By contrast, mGluR5 availability in the MDD group was positively related to Attention (ATTN) in the OFC (r = .590, P = .006), vmPFC (r = .653, P = .002), and dlPFC (r = .620, P = .004). Findings in the hippocampus for MDD followed the same pattern but did not survive correction for multiple comparisons (r = .480, P = .036). ATTN and mGluR5 availability were not significantly related in the HA group. Of note, in MANOVA analyses group*ATTN interaction results in the OFC did not survive multiple comparisons (P = .046). All other findings survived correction for multiple comparisons and remained significant when covarying for potential confounds (eg, depressed mood). Conclusions We observed a significant relationship between frontolimbic mGluR5 availability and performance on tests of attention in individuals with MDD and PTSD. This finding aligns with animal work showing dysregulation in mGluR5 in cognitive functioning, and differed as a function of diagnosis. Results suggest interventions targeting mGluR5 may help bolster cognitive difficulties, highlighting the importance of employing different mGluR5 directed treatment strategies in MDD and PTSD.
Collapse
Affiliation(s)
- Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Sarah DeBonee
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan Cool
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sophie Holmes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Stephen R. Baldassari
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
- Program in Addiction Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Robert H. Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| | - Margaret T. Davis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, U.S. Department of Veterans Affairs, West Haven, CT, USA
| |
Collapse
|
13
|
Mecca AP, Rogers K, Jacobs Z, McDonald JW, Michalak HR, DellaGioia N, Zhao W, Hillmer AT, Nabulsi N, Lim K, Ropchan J, Huang Y, Matuskey D, Esterlis I, Carson RE, van Dyck CH. Effect of age on brain metabotropic glutamate receptor subtype 5 measured with [ 18F]FPEB PET. Neuroimage 2021; 238:118217. [PMID: 34052464 PMCID: PMC8378132 DOI: 10.1016/j.neuroimage.2021.118217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/08/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Metabotropic glutamate receptor subtype 5 (mGluR5) is integral to the brain glutamatergic system and cognitive function. This study investigated whether aging is associated with decreased brain mGluR5 availability. METHODS Cognitively normal participants (n = 45), aged 18 to 84 years, underwent [18F]FPEB positron emission tomography scans to quantify brain mGluR5. Distribution volume (VT) was computed using a venous or arterial input function and equilibrium modeling from 90 to 120 min. In the primary analysis, the association between age and VT in the hippocampus and association cortex was evaluated using a linear mixed model. Exploratory analyses assessed the association between age and VT in multiple brain regions. The contribution of gray matter tissue alterations and partial volume effects to associations with age was also examined. RESULTS In the primary analysis, older age was associated with lower [18F]FPEB binding to mGluR5 (P = 0.026), whereas this association was not significant after gray matter masking or partial volume correction to account for age-related tissue loss. Post hoc analyses revealed an age-related decline in mGluR5 availability in the hippocampus of 4.5% per decade (P = 0.007) and a non-significant trend in the association cortex (P = 0.085). An exploratory analysis of multiple brain regions revealed broader inverse associations of age with mGluR5 availability, but not after partial volume correction. CONCLUSION Reductions in mGluR5 availability with age appear to be largely mediated by tissue loss. Quantification of [18F]FPEB binding to mGluR5 may expand our understanding of age-related molecular changes and the relationship with brain tissue loss.
Collapse
Affiliation(s)
- Adam P Mecca
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT, 06514, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Kelly Rogers
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT, 06514, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zachary Jacobs
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT, 06514, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Julia W McDonald
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT, 06514, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Hannah R Michalak
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT, 06514, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nicole DellaGioia
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Wenzhen Zhao
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT, 06514, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ansel T Hillmer
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Keunpoong Lim
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - David Matuskey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT, 06514, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Study of influence of the glutamatergic concentration of [ 18F]FPEB binding to metabotropic glutamate receptor subtype 5 with N-acetylcysteine challenge in rats and SRM/PET study in human healthy volunteers. Transl Psychiatry 2021; 11:66. [PMID: 33473111 PMCID: PMC7817831 DOI: 10.1038/s41398-020-01152-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022] Open
Abstract
Altered glutamate signaling is thought to be involved in a myriad of psychiatric disorders. Positron emission tomography (PET) imaging with [18F]FPEB allows assessing dynamic changes in metabotropic glutamate receptor 5 (mGluR5) availability underlying neuropathological conditions. The influence of endogenous glutamatergic levels into receptor binding has not been well established yet. The purpose of this study was to explore the [18F]FPEB binding regarding to physiological fluctuations or acute changes of glutamate synaptic concentrations by a translational approach; a PET/MRS imaging study in 12 healthy human volunteers combined to a PET imaging after an N-acetylcysteine (NAc) pharmacological challenge in rodents. No significant differences were observed with small-animal PET in the test and retest conditions on the one hand and the NAc condition on the other hand for any regions. To test for an interaction of mGuR5 density and glutamatergic concentrations in healthy subjects, we correlated the [18F]FPEB BPND with Glu/Cr, Gln/Cr, Glx/Cr ratios in the anterior cingulate cortex VOI; respectively, no significance correlation has been revealed (Glu/Cr: r = 0.51, p = 0.09; Gln/Cr: r = -0.46, p = 0.13; Glx/Cr: r = -0.035, p = 0.92).These data suggest that the in vivo binding of [18F]FPEB to an allosteric site of the mGluR5 is not modulated by endogenous glutamate in vivo. Thus, [18F]FPEB appears unable to measure acute fluctuations in endogenous levels of glutamate.
Collapse
|
15
|
Longitudinal imaging of metabotropic glutamate 5 receptors during early and extended alcohol abstinence. Neuropsychopharmacology 2021; 46:380-385. [PMID: 32919411 PMCID: PMC7852514 DOI: 10.1038/s41386-020-00856-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023]
Abstract
Chronic alcohol use has important effects on the glutamate system. The metabotropic glutamate 5 (mGlu5) receptor has shown promise in preclinical models as a target to reduce drinking-related behaviors and cue-induced reinstatement, motivating human studies of mGlu5 receptor negative allosteric modulators. The goal of this work was to measure levels of mGlu5 receptor availability with positron emission tomography (PET) imaging using the mGlu5 receptor-specific radiotracer [18F]FPEB during early and extended alcohol abstinence. Subjects who met DSM-5 criteria for alcohol use disorder (AUD; n = 17) were admitted inpatient for the study duration. [18F]FPEB PET scans were acquired first during early abstinence (6 ± 4 days after last drink) and a second time during extended abstinence (n = 13; 27 ± 6 days after last drink). A single scan was acquired in healthy controls matched for sex and smoking status (n = 20). [18F]FPEB total volumes of distribution (VT) corrected for partial volume effects were measured using equilibrium analysis throughout the brain. A linear mixed model controlling for smoking status and sex identified significantly higher [18F]FPEB VT in AUD subjects at early abstinence compared to controls (F(1,32) = 7.23, p = 0.011). Post-hoc analyses revealed this effect to occur in cortical brain regions. No evidence for significant changes in [18F]FPEB VT over time were established. These findings provide human evidence consistent with a robust preclinical literature supporting mGlu5 receptor drugs as pharmacotherapies for AUD.
Collapse
|
16
|
Groman SM, Hillmer AT, Heather L, Fowles K, Holden D, Morris ED, Lee D, Taylor JR. Dysregulation of Decision Making Related to Metabotropic Glutamate 5, but Not Midbrain D 3, Receptor Availability Following Cocaine Self-administration in Rats. Biol Psychiatry 2020; 88:777-787. [PMID: 32826065 PMCID: PMC8935943 DOI: 10.1016/j.biopsych.2020.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Compulsive patterns of drug use are thought to be the consequence of drug-induced adaptations in the neural mechanisms that enable behavior to be flexible. Neuroimaging studies have found evidence of robust alterations in glutamate and dopamine receptors within brain regions that are known to be critical for decision-making processes in cocaine-dependent individuals, and these changes have been argued to be the consequence of persistent drug use. The causal relationships among drug-induced alterations, cocaine taking, and maladaptive decision-making processes, however, are difficult to establish in humans. METHODS We assessed decision making in adult male rats using a probabilistic reversal learning task and used positron emission tomography with the [11C]-(+)-PHNO and [18F]FPEB radioligands to quantify regional dopamine D2/3 and metabotropic glutamate 5 (mGlu5) receptor availability, respectively, before and after 21 days of cocaine or saline self-administration. Tests of motivation and relapse-like behaviors were also conducted. RESULTS We found that self-administration of cocaine, but not of saline, disrupted behavior in the probabilistic reversal learning task measured by selective impairments in negative-outcome updating and also increased cortical mGlu5 receptor availability following 2 weeks of forced abstinence. D2/3 and, importantly, midbrain D3 receptor availability was not altered following 2 weeks of abstinence from cocaine. Notably, the degree of the cocaine-induced increase in cortical mGlu5 receptor availability was related to the degree of disruption in negative-outcome updating. CONCLUSIONS These findings suggest that cocaine-induced changes in mGlu5 signaling may be a mechanism by which disruptions in negative-outcome updating emerge in cocaine-dependent individuals.
Collapse
Affiliation(s)
- Stephanie M. Groman
- Department of Psychiatry Yale University,Correspondence should be addressed to: Stephanie M. Groman, Ph.D. (), Jane R. Taylor, Ph.D. (), 34 Park Street, New Haven CT 06515
| | - Ansel T. Hillmer
- Department of Psychiatry Yale University,Department of Radiology and Biomedical Imaging Yale University,Department of Yale Positron Emission Tomography Center Yale University
| | - Liu Heather
- Department of Radiology and Biomedical Imaging Yale University
| | - Krista Fowles
- Department of Yale Positron Emission Tomography Center Yale University
| | - Daniel Holden
- Department of Yale Positron Emission Tomography Center Yale University
| | - Evan D. Morris
- Department of Radiology and Biomedical Imaging Yale University,Department of Yale Positron Emission Tomography Center Yale University,Invicro LLC
| | - Daeyeol Lee
- The Zanvyl Krieger Mind/Brain Institute, The Solomon H Snyder Department of Neuroscience, Department of Psychological and Brain Sciences, Johns Hopkins University
| | - Jane R. Taylor
- Department of Psychiatry Yale University,Department of Neuroscience Yale University,Correspondence should be addressed to: Stephanie M. Groman, Ph.D. (), Jane R. Taylor, Ph.D. (), 34 Park Street, New Haven CT 06515
| |
Collapse
|
17
|
Holmes SE, Gallezot JD, Davis MT, DellaGioia N, Matuskey D, Nabulsi N, Krystal JH, Javitch JA, DeLorenzo C, Carson RE, Esterlis I. Measuring the effects of ketamine on mGluR5 using [ 18F]FPEB and PET. J Cereb Blood Flow Metab 2020; 40:2254-2264. [PMID: 31744389 PMCID: PMC7585925 DOI: 10.1177/0271678x19886316] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 01/21/2023]
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is a promising treatment target for psychiatric disorders due to its modulatory effects on glutamate transmission. Using [11C]ABP688, we previously showed that the rapidly acting antidepressant ketamine decreases mGluR5 availability. The mGluR5 radioligand [18F]FPEB offers key advantages over [11C]ABP688; however, its suitability for drug challenge studies is unknown. We evaluated whether [18F]FPEB can be used to capture ketamine-induced effects on mGluR5. Seven healthy subjects participated in three [18F]FPEB scans: a baseline, a same-day post-ketamine, and a 24-h post-ketamine scan. The outcome measure was VT/fP, obtained using a two-tissue compartment model and a metabolite-corrected arterial input function. Dissociative symptoms, heart rate and blood pressure increased following ketamine infusion. [18F]FPEB VT/fP decreased by 9% across the cortex after ketamine infusion, with minimal difference between baseline and 24-h scans. Compared to our previous work using [11C]ABP688, the magnitude of the ketamine-induced change in mGluR5 was smaller using [18F]FPEB; however, effect sizes were similar for the same-day post-ketamine vs. baseline scan (Cohen's d = 0.75 for [18F]FPEB and 0.88 for [11C]ABP688). [18F]FPEB is therefore able to capture some of the effects of ketamine on mGluR5, but [11C]ABP688 appears to be more suitable in drug challenge paradigms designed to probe glutamate transmission.
Collapse
Affiliation(s)
- Sophie E Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Margaret T Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Nicole DellaGioia
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - David Matuskey
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jonathan A Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Departments of Psychiatry and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Christine DeLorenzo
- Department of Psychiatry and Behavioral Health, Stony Brook University, New York, NY, USA
| | - Richard E Carson
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
18
|
Abstract
Neuroimaging with positron emission tomography (PET) is the most powerful tool for understanding pharmacology, neurochemistry, and pathology in the living human brain. This technology combines high-resolution scanners to measure radioactivity throughout the human body with specific, targeted radioactive molecules, which allow measurements of a myriad of biological processes in vivo. While PET brain imaging has been active for almost 40 years, the pace of development for neuroimaging tools, known as radiotracers, and for quantitative analytical techniques has increased dramatically over the past decade. Accordingly, the fundamental questions that can be addressed with PET have expanded in basic neurobiology, psychiatry, neurology, and related therapeutic development. In this review, we introduce the field of human PET neuroimaging, some of its conceptual underpinnings, and motivating questions. We highlight some of the more recent advances in radiotracer development, quantitative modeling, and applications of PET to the study of the human brain.
Collapse
Affiliation(s)
- Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA;
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
19
|
Hillmer AT, Carson RE. Quantification of PET infusion studies without true equilibrium: A tissue clearance correction. J Cereb Blood Flow Metab 2020; 40:860-874. [PMID: 31088233 PMCID: PMC7168787 DOI: 10.1177/0271678x19850000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/21/2019] [Indexed: 11/16/2022]
Abstract
In some positron emission tomography (PET) studies, a reversibly binding radioligand is administered as a constant infusion to establish true equilibrium for quantification. This approach reduces scanning time and simplifies data analysis, but assumes similar behavior of the radioligand in plasma across the study population to establish true equilibrium in all subjects. Bias in outcome measurements can result if this assumption is not met. This work developed and validated a correction that reduces bias in total distribution volume (VT) estimates when true equilibrium is not present. This correction, termed tissue clearance correction (TCC), took the form V T = V T ( A ) / ( 1 + β γ V T ( A ) ) , where β is the radioligand clearance rate in tissue, γ is a radiotracer-specific constant, and VT(A) is the apparent VT. Simulations characterized the robustness of TCC across imperfect values of γ and β and demonstrated reduction to false positive rates. This approach was validated with human infusion data for three radiotracers: [18F]FPEB, (-)-[18F]flubatine, and [11C]UCB-J. TCC reduced bias in VT estimates for all radiotracers and significantly reduced intersubject variance in VT for [18F]FPEB data in some brain regions. Thus, TCC improves quantification of data acquired from PET infusion studies.
Collapse
Affiliation(s)
- Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Yale University PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Yale University PET Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| |
Collapse
|
20
|
Mecca AP, McDonald JW, Michalak HR, Godek TA, Harris JE, Pugh EA, Kemp EC, Chen MK, Salardini A, Nabulsi NB, Lim K, Huang Y, Carson RE, Strittmatter SM, van Dyck CH. PET imaging of mGluR5 in Alzheimer's disease. Alzheimers Res Ther 2020; 12:15. [PMID: 31954399 PMCID: PMC6969979 DOI: 10.1186/s13195-020-0582-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/05/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Metabotropic glutamate subtype 5 receptors (mGluR5) modulate synaptic transmission and may constitute an important therapeutic target in Alzheimer's disease (AD) by mediating the synaptotoxic action of amyloid-β oligomers. We utilized the positron emission tomography (PET) radioligand [18F]FPEB to investigate mGluR5 binding in early AD. METHODS Sixteen individuals with amnestic mild cognitive impairment (MCI) due to AD or mild AD dementia who were positive for brain amyloid were compared to 15 cognitively normal (CN) participants who were negative for brain amyloid. Diagnostic groups were well balanced for age, sex, and education. Dynamic PET scans were acquired for 60 min, starting at 60 min after the initial administration of up to 185 MBq of [18F]FPEB using a bolus-plus-constant-infusion method (Kbol = 190 min). Equilibrium modeling with a cerebellum reference region was used to estimate [18F]FPEB binding (BPND) to mGluR5. Analyses were performed with and without corrections for gray matter atrophy and partial volume effects. RESULTS Linear mixed model analysis demonstrated a significant effect of group (p = 0.011) and the group × region interaction (p = 0.0049) on BPND. Post hoc comparisons revealed a significant reduction (43%) in mGluR5 binding in the hippocampus of AD (BPND = 0.76 ± 0.41) compared to CN (BPND = 1.34 ± 0.58, p = 0.003, unpaired t test) participants, and a nonsignificant trend for a reduction in a composite association cortical region in AD (BPND = 1.57 ± 0.25) compared to CN (BPND = 1.86 ± 0.63, p = 0.093) participants. Exploratory analyses suggested additional mGluR5 reductions in the entorhinal cortex and parahippocampal gyrus in the AD group. In the overall sample, hippocampal mGluR5 binding was associated with episodic memory scores and global function. CONCLUSIONS [18F]FPEB-PET revealed reductions in hippocampal mGluR5 binding in early AD. Quantification of mGluR5 binding in AD may expand our understanding of AD pathogenesis and accelerate the development of novel biomarkers and treatments.
Collapse
Affiliation(s)
- Adam P. Mecca
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Julia W. McDonald
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Hannah R. Michalak
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Tyler A. Godek
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Joanna E. Harris
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Erika A. Pugh
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Emily C. Kemp
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT USA
| | - Arash Salardini
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
| | - Nabeel B. Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT USA
| | - Keunpoong Lim
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT USA
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT USA
| | - Stephen M. Strittmatter
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
- CNNR Program, Yale University School of Medicine, 295 Congress Avenue, Ste 431-435, New Haven, CT USA
| | - Christopher H. van Dyck
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
21
|
AD molecular: Molecular imaging of Alzheimer's disease: PET imaging of neurotransmitter systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019. [PMID: 31481161 DOI: 10.1016/bs.pmbts.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Current understanding of Alzheimer's disease (AD) pathogenesis relies on the observed accumulations of amyloid β and phosphorylated tau aggregates that are thought to play key roles in initiating or propagating disease. However, other processes including changes in synaptic proteins and neurotransmitter loss have been suggested as important etiologies or contributors. Positron emission tomography (PET) imaging allows in vivo investigations of molecular changes associated with AD. PET imaging with multiple radiotracers can be used in combination with other modalities such as magnetic resonance imaging (MRI), and with assessments of cognition and neuropsychiatric symptoms to investigate the molecular underpinnings of AD. Studies of synaptic protein changes may improve the understanding of disease mechanisms and provide valuable markers of disease progression and therapeutic efficacy. This chapter will illustrate the importance of in vivo molecular imaging in the study of AD with a specific emphasis on PET and radioligands for several non-amyloid targets.
Collapse
|
22
|
Ceccarini J, Leurquin-Sterk G, Crunelle CL, de Laat B, Bormans G, Peuskens H, Van Laere K. Recovery of Decreased Metabotropic Glutamate Receptor 5 Availability in Abstinent Alcohol-Dependent Patients. J Nucl Med 2019; 61:256-262. [PMID: 31481578 DOI: 10.2967/jnumed.119.228825] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal models of alcohol dependence and relapse demonstrate an important role of the glutamatergic system, in particular, cerebral metabotropic glutamate receptor 5 (mGluR5). 18F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile (18F-FPEB) PET has revealed that chronic alcohol use leads to decreased limbic mGluR5 availability, which was associated with less craving. Here, we tested whether the state of decreased mGluR5 availability in alcohol-dependent patients normalizes during abstinence (at 2 and 6 mo of detoxification) and whether initial mGluR5 imaging parameters can predict individual relapse. Methods: 18F-FPEB scans were performed for 16 recently detoxified alcohol-dependent patients (baseline condition), 2 mo after detoxification (n = 10), and 6 mo after detoxification (n = 8); 32 age- and sex-matched controls were included for comparison. mGluR5 availability was quantified by the 18F-FPEB total distribution volume using both voxel-by-voxel and volume-of-interest analyses. During follow-up, craving was assessed using the Desire for Alcohol Questionnaire, and alcohol consumption was assessed using the timeline follow-back method and monitored by hair ethyl glucuronide analysis. Results: During abstinence, alcohol-dependent patients showed sustained recovered mGluR5 availability in cortical and subcortical regions compared with the baseline, up to the levels observed in controls, after 6 mo in most areas except for the hippocampus, nucleus accumbens, and thalamus. Higher striatopallidal mGluR5 availability was observed at the baseline in patients who had a relapse during the 6-mo follow-up period (+25.1%). Also, normalization of striatal mGluR5 to control levels was associated with reduced craving ("desire and intention to drink" and "negative reinforcement"; r = 0.72-0.94). Conclusion: Reduced cerebral mGluR5 availability in alcohol-dependent patients recovers during abstinence and is associated with reduced craving. Higher striatal mGluR5 availability in alcohol-dependent users may be associated with long-term relapse.
Collapse
Affiliation(s)
- Jenny Ceccarini
- Department of Nuclear Medicine and Molecular Imaging, UZ Leuven, Leuven, Belgium .,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Gil Leurquin-Sterk
- Department of Nuclear Medicine and Molecular Imaging, UZ Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Cleo Lina Crunelle
- Toxicological Center, University of Antwerp, Wilrijk, Belgium.,Department of Psychiatry, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Bart de Laat
- Department of Nuclear Medicine and Molecular Imaging, UZ Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,MoSAIC, Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, KU Leuven, Leuven, Belgium
| | - Hendrik Peuskens
- University Psychiatric Center, KU Leuven, Kortenberg, Belgium; and.,Kliniek Broeders Alexianen, Tienen, Belgium
| | - Koen Van Laere
- Department of Nuclear Medicine and Molecular Imaging, UZ Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,MoSAIC, Molecular Small Animal Imaging Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Jung KH, Oh SJ, Kang KJ, Han SJ, Nam KR, Park JA, Lee KC, Lee YJ, Choi JY. Effects of P-gp and Bcrp as brain efflux transporters on the uptake of [ 18 F]FPEB in the murine brain. Synapse 2019; 73:e22123. [PMID: 31269310 DOI: 10.1002/syn.22123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 01/16/2023]
Abstract
The purpose of this study was to determine whether the brain uptake of [18 F]FPEB is influenced by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) as efflux transporters in rodents. To assess this possible modulation, positron emission tomography studies were performed in animal models of pharmacological or genetic ablation of these transporters. Compared with the control conditions, when P-gp was blocked with tariquidar, there was an 8%-12% increase in the brain uptake of [18 F]FPEB. In P-gp knockout mice, such as Mdr1a/b(-/-) and Mdr1a/b(-/-) Bcrp1(-/-) , genetic ablation models, there was an increment of 8%-53% in [18 F]FPEB uptake compared with that in the wild-type mice. In contrast, Bcrp knockout mice showed a decrement of 5%-12% uptake and P-gp/Bcrp knockout group displayed an increment of 5%-17% compared with wild type. These results indicate that [18 F]FPEB is possibly a weak substrate for P-gp.
Collapse
Affiliation(s)
- Ki-Hye Jung
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Ji Ae Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| |
Collapse
|
24
|
Davis MT, Hillmer A, Holmes SE, Pietrzak RH, DellaGioia N, Nabulsi N, Matuskey D, Angarita G, Carson RE, Krystal JH, Esterlis I. In vivo evidence for dysregulation of mGluR5 as a biomarker of suicidal ideation. Proc Natl Acad Sci U S A 2019; 116:11490-11495. [PMID: 31085640 PMCID: PMC6561298 DOI: 10.1073/pnas.1818871116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent evidence implicates dysregulation of metabotropic glutamatergic receptor 5 (mGluR5) in pathophysiology of PTSD and suicidality. Using positron emission tomography and [18F]FPEB, we quantified mGluR5 availability in vivo in individuals with PTSD (n = 29) and MDD (n = 29) as a function of suicidal ideation (SI) to compare with that of healthy comparison controls (HC; n = 29). Volume of distribution was computed using a venous input function in the five key frontal and limbic brain regions. We observed significantly higher mGluR5 availability in PTSD compared with HC individuals in all regions of interest (P's = 0.001-0.01) and compared with MDD individuals in three regions (P's = 0.007). mGluR5 availability was not significantly different between MDD and HC individuals (P = 0.17). Importantly, we observed an up-regulation in mGluR5 availability in the PTSD-SI group (P's = 0.001-0.007) compared with PTSD individuals without SI. Findings point to the potential role for mGluR5 as a target for intervention and, potentially, suicide risk management in PTSD.
Collapse
Affiliation(s)
- Margaret T Davis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Ansel Hillmer
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520
| | - Sophie E Holmes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Robert H Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT 06516
| | - Nicole DellaGioia
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520
| | - David Matuskey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520
| | - Gustavo Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT 06516
| | - Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511;
- Clinical Neurosciences Division, National Center for PTSD, US Department of Veterans Affairs, West Haven, CT 06516
| |
Collapse
|
25
|
Finnema SJ, Nabulsi NB, Mercier J, Lin SF, Chen MK, Matuskey D, Gallezot JD, Henry S, Hannestad J, Huang Y, Carson RE. Kinetic evaluation and test-retest reproducibility of [ 11C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. J Cereb Blood Flow Metab 2018; 38:2041-2052. [PMID: 28792356 PMCID: PMC6259313 DOI: 10.1177/0271678x17724947] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 11/15/2022]
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is ubiquitously present in presynaptic terminals. Here we report kinetic modeling and test-retest reproducibility assessment of the SV2A positron emission tomography (PET) radioligand [11C]UCB-J in humans. Five volunteers were examined twice on the HRRT after bolus injection of [11C]UCB-J. Arterial blood samples were collected for measurements of radiometabolites and free fraction. Regional time-activity curves were analyzed with 1-tissue (1T) and 2-tissue (2T) compartment models to estimate volumes of distribution ( VT). Parametric maps were generated using the 1T model. [11C]UCB-J metabolized fairly quickly, with parent fraction of 36 ± 13% at 15 min after injection. Plasma free fraction was 32 ± 1%. Regional time-activity curves displayed rapid kinetics and were well described by the 1T model, except for the cerebellum and hippocampus. VT values estimated with the 2T model were similar to 1T values. Parametric maps were of high quality and VT values correlated well with time activity curve (TAC)-based estimates. Shortening of acquisition time from 120 min to 60 min had a negligible effect on VT values. The mean absolute test-retest reproducibility for VT was 3-9% across regions. In conclusion, [11C]UCB-J exhibited excellent PET tracer characteristics and has potential as a general purpose tool for measuring synaptic density in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sjoerd J Finnema
- Department of Radiology and Biomedical
Imaging, Yale Positron Emission Tomography Center,
Yale
University, New Haven, CT, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical
Imaging, Yale Positron Emission Tomography Center,
Yale
University, New Haven, CT, USA
| | | | - Shu-fei Lin
- Department of Radiology and Biomedical
Imaging, Yale Positron Emission Tomography Center,
Yale
University, New Haven, CT, USA
| | - Ming-Kai Chen
- Department of Radiology and Biomedical
Imaging, Yale Positron Emission Tomography Center,
Yale
University, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical
Imaging, Yale Positron Emission Tomography Center,
Yale
University, New Haven, CT, USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical
Imaging, Yale Positron Emission Tomography Center,
Yale
University, New Haven, CT, USA
| | - Shannan Henry
- Department of Radiology and Biomedical
Imaging, Yale Positron Emission Tomography Center,
Yale
University, New Haven, CT, USA
| | | | - Yiyun Huang
- Department of Radiology and Biomedical
Imaging, Yale Positron Emission Tomography Center,
Yale
University, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical
Imaging, Yale Positron Emission Tomography Center,
Yale
University, New Haven, CT, USA
- Department of Biomedical Engineering,
Yale
University, New Haven, CT, USA
| |
Collapse
|
26
|
Kang Y, Henchcliffe C, Verma A, Vallabhajosula S, He B, Kothari PJ, Pryor KO, Mozley PD. 18F-FPEB PET/CT Shows mGluR5 Upregulation in Parkinson's Disease. J Neuroimaging 2018; 29:97-103. [DOI: 10.1111/jon.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yeona Kang
- Department of Radiology; Weill Cornell Medicine; New York NY
| | | | | | | | - Bin He
- Department of Radiology; Weill Cornell Medicine; New York NY
| | | | - Kane O. Pryor
- Department of Anesthesiology; Weill Cornell Medicine; New York NY
| | - P. David Mozley
- Department of Radiology; Weill Cornell Medicine; New York NY
| |
Collapse
|
27
|
Smart K, Cox SML, Nagano-Saito A, Rosa-Neto P, Leyton M, Benkelfat C. Test-retest variability of [ 11 C]ABP688 estimates of metabotropic glutamate receptor subtype 5 availability in humans. Synapse 2018; 72:e22041. [PMID: 29935121 DOI: 10.1002/syn.22041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
[11 C]ABP688 is a positron emission tomography (PET) radioligand that binds selectively to metabotropic glutamate type 5 receptors (mGluR5). The use of this tracer has identified receptor binding changes in clinical populations, and has been informative in drug occupancy studies. However, previous studies have found significant increases in [11 C]ABP688 binding in the later scan of same-day comparisons, and estimates of test-retest reliability under consistent scanning conditions are not available. The objective of this study was to assess the variability of [11 C]ABP688 binding in healthy people in scans performed at the same time of day. Two [11 C]ABP688 scans were acquired in eight healthy volunteers (6 women, 2 men) using a high-resolution research tomograph (HRRT). Scans were acquired 3 weeks apart with start times between 10:00am and 1:30pm. Mean mGluR5 binding potential (BPND ) values were calculated across cortical, striatal and limbic brain regions. Participants reported on subjective mood state after each scan and blood samples were drawn for cortisol analysis. No significant change in BPND between scans was observed. Variability in BPND values of 11-21% was observed across regions, with the greatest change in the hippocampus and amygdala. Reliability was low to moderate. BPND was not statistically related to scan start time, subjective anxiety, serum cortisol levels, or menstrual phase in women. Overall, [11 C]ABP688 BPND estimates show moderate variability in healthy people. Reliability is fair in cortical and striatal regions, and lower in limbic regions. Future research using this ligand should account for this in study design and analysis.
Collapse
Affiliation(s)
- Kelly Smart
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Sylvia M L Cox
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Atsuko Nagano-Saito
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada.,Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 Boulevard LaSalle, Verdun, Quebec, H4H 1R3, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, 1033 Pine Ave W, Montreal, Quebec, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Ave, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
28
|
Ferraguti F. Metabotropic glutamate receptors as targets for novel anxiolytics. Curr Opin Pharmacol 2018; 38:37-42. [PMID: 29494817 DOI: 10.1016/j.coph.2018.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Abstract
Anxiety disorders are highly prevalent psychiatric illnesses posing an important social and economic burden. Their current pharmacotherapy shows short term efficacy, though nearly one third of patients do not achieve sustained remission. There is, therefore, a strong medical need for new therapeutic agents acting through novel mechanisms of action. Considerable work has focused on metabotropic glutamate (mGlu) receptors as potential targets for novel anxiolytics. Ligands acting at mGlu receptors showed promising results in preclinical studies, whereas their efficacy was dubious in clinical trials. Recent preclinical and clinical studies have opened new prospects for targeting mGlu receptors to treat anxiety disorders. This review provides an outlook on these progresses.
Collapse
Affiliation(s)
- Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1A, 6020 Innsbruck, Austria.
| |
Collapse
|
29
|
Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy. Bull Math Biol 2017; 81:3508-3541. [PMID: 29230702 DOI: 10.1007/s11538-017-0374-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023]
Abstract
Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.
Collapse
|
30
|
Imaging the glutamate receptor subtypes-Much achieved, and still much to do. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:27-36. [PMID: 29233264 DOI: 10.1016/j.ddtec.2017.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022]
Abstract
Functional imaging of glutamate receptors using PET imaging modality can be used to study numerous CNS disorders and also to select appropriate doses of clinically relevant glutamate-receptor-targeting candidate drugs. Great strides have been made in developing PET imaging probes for the non-invasive detection of glutamate receptors in the brain. This review highlights recent progress made towards the development of glutamatergic PET imaging agents. Focus is placed on PET imaging probes that have been labelled with either carbon-11 or fluorine-18.
Collapse
|
31
|
DeLorenzo C, Gallezot JD, Gardus J, Yang J, Planeta B, Nabulsi N, Ogden RT, Labaree DC, Huang YH, Mann JJ, Gasparini F, Lin X, Javitch JA, Parsey RV, Carson RE, Esterlis I. In vivo variation in same-day estimates of metabotropic glutamate receptor subtype 5 binding using [ 11C]ABP688 and [ 18F]FPEB. J Cereb Blood Flow Metab 2017; 37:2716-2727. [PMID: 27742888 PMCID: PMC5536783 DOI: 10.1177/0271678x16673646] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/02/2016] [Accepted: 09/12/2016] [Indexed: 01/11/2023]
Abstract
Positron emission tomography tracers [11C]ABP688 and [18F]FPEB target the metabotropic glutamate receptor subtype 5 providing quantification of the brain glutamatergic system in vivo. Previous [11C]ABP688 positron emission tomography human test-retest studies indicate that, when performed on the same day, significant binding increases are observed; however, little deviation is reported when scans are >7 days apart. Due to the small cohorts examined previously (eight and five males, respectively), we aimed to replicate the same-day test-retest studies in a larger cohort including both males and females. Results confirmed large within-subject binding differences (ranging from -23% to 108%), suggesting that measurements are greatly affected by study design. We further investigated whether this phenomenon was specific to [11C]ABP688. Using [18F]FPEB and methodology that accounts for residual radioactivity from the test scan, four subjects were scanned twice on the same day. In these subjects, binding estimates increased between 5% and 39% between scans. Consistent with [11C]ABP688, mean absolute test-retest variability was previously reported as <12% when scans were >21 days apart. This replication study and pilot extension to [18F]FPEB suggest that observed within-day binding variation may be due to characteristics of mGluR5; for example, diurnal variation in mGluR5 may affect measurement of this receptor.
Collapse
Affiliation(s)
- Christine DeLorenzo
- Department of Psychiatry, Stony Brook University, Stony Brook, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Department of Psychiatry, Columbia University, New York, USA
| | | | - John Gardus
- Department of Psychiatry, Stony Brook University, Stony Brook, USA
| | - Jie Yang
- Department of Preventive Medicine, Stony Brook University, Stony Brook, USA
| | - Beata Planeta
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - R Todd Ogden
- Department of Psychiatry, Columbia University, New York, USA
| | - David C Labaree
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Yiyun H Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, USA
| | | | - Xin Lin
- Department of Psychiatry, Columbia University, New York, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University, New York, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, USA
- Department of Pharmacology, Columbia University, New York, USA
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook University, Stony Brook, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Department of Radiology, Stony Brook University, Stony Brook, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Irina Esterlis
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
- Department of Psychiatry, Yale University, New Haven, USA
| |
Collapse
|
32
|
Altered metabotropic glutamate receptor 5 markers in PTSD: In vivo and postmortem evidence. Proc Natl Acad Sci U S A 2017; 114:8390-8395. [PMID: 28716937 DOI: 10.1073/pnas.1701749114] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a prevalent and highly disabling disorder, but there is currently no targeted pharmacological treatment for it. Dysfunction of the glutamate system has been implicated in trauma and stress psychopathology, resulting in a growing interest in modulation of the glutamate system for the treatment of PTSD. Specifically, the metabotropic glutamate receptor 5 (mGluR5) represents a promising treatment target. We used [18F]FPEB, a radioligand that binds to the mGluR5, and positron emission tomography (PET) to quantify in vivo mGluR5 availability in human PTSD vs. healthy control (HCs) subjects. In an independent sample of human postmortem tissue, we investigated expression of proteins that have a functional relationship with mGluR5 and glucocorticoids in PTSD. We observed significantly higher cortical mGluR5 availability in PTSD in vivo and positive correlations between mGluR5 availability and avoidance symptoms. In the postmortem sample, we observed up-regulation of SHANK1, a protein that anchors mGluR5 to the cell surface, as well as decreased expression of FKBP5, implicating aberrant glucocorticoid functioning in PTSD. Results of this study provide insight into molecular mechanisms underlying PTSD and suggest that mGluR5 may be a promising target for mechanism-based treatments aimed at mitigating this disorder.
Collapse
|
33
|
Metabotropic Glutamate Receptor 5 and Glutamate Involvement in Major Depressive Disorder: A Multimodal Imaging Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:449-456. [PMID: 28993818 DOI: 10.1016/j.bpsc.2017.03.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Preclinical and postmortem studies have implicated the metabotropic glutamate receptor 5 (mGluR5) in the pathophysiology of major depressive disorder (MDD). The goal of the present study was to determine the role of mGluR5 in a large group of individuals with MDD compared to healthy controls (HC) in vivo with [18F]FPEB and positron emission tomography (PET). Furthermore, we sought to determine the role glutamate plays on mGluR5 availability in MDD. METHODS Sixty-five participants (30 MDD and 35 HC) completed [18F]FPEB PET to estimate the primary outcome measure - mGluR5 volume of distribution (VT), and the secondary outcome measure - mGluR5 distribution volume ratio (DVR). A subgroup of 39 participants (16 MDD and 23 HC) completed proton magnetic resonance spectroscopy (1H MRS) to estimate anterior cingulate (ACC) glutamate, glutamine, and Glx (glutamate + glutamine) levels relative to creatine (Cr). RESULTS No significant between-group differences were observed in mGluR5 VT or DVR. Compared to HC, individuals with MDD had higher ACC glutamate, glutamine, and Glx levels. Importantly, the ACC mGluR5 DVR negatively correlated with glutamate/Cr and Glx/Cr levels. CONCLUSIONS In this novel in vivo examination, we show an inverse relationship between mGluR5 availability and glutamate levels. These data highlight the need to further investigate the role of glutamatergic system in depression.
Collapse
|
34
|
Shimoda Y, Yamasaki T, Fujinaga M, Ogawa M, Kurihara Y, Nengaki N, Kumata K, Yui J, Hatori A, Xie L, Zhang Y, Kawamura K, Zhang MR. Synthesis and Evaluation of Novel Radioligands Based on 3-[5-(Pyridin-2-yl)-2H-tetrazol-2-yl]benzonitrile for Positron Emission Tomography Imaging of Metabotropic Glutamate Receptor Subtype 5. J Med Chem 2016; 59:3980-90. [DOI: 10.1021/acs.jmedchem.6b00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yoko Shimoda
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masanao Ogawa
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- SHI Accelerator
Service Co. Ltd., 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Yusuke Kurihara
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- SHI Accelerator
Service Co. Ltd., 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Nobuki Nengaki
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- SHI Accelerator
Service Co. Ltd., 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Katsushi Kumata
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Joji Yui
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department
of Radiopharmaceuticals Development, Radiological Science Research
and Development Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
35
|
Leurquin-Sterk G, Postnov A, de Laat B, Casteels C, Celen S, Crunelle CL, Bormans G, Koole M, Van Laere K. Kinetic modeling and long-term test-retest reproducibility of the mGluR5 PET tracer18F-FPEB in human brain. Synapse 2016; 70:153-62. [DOI: 10.1002/syn.21890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Gil Leurquin-Sterk
- Division of Nuclear Medicine; KU Leuven - University of Leuven and University Hospital Leuven; Herestraat 49 Leuven 3000 Belgium
| | - Andrey Postnov
- Division of Nuclear Medicine; KU Leuven - University of Leuven and University Hospital Leuven; Herestraat 49 Leuven 3000 Belgium
| | - Bart de Laat
- Division of Nuclear Medicine; KU Leuven - University of Leuven and University Hospital Leuven; Herestraat 49 Leuven 3000 Belgium
- MoSAIC, Molecular Small Animal Imaging Center, KU Leuven - University of Leuven; Leuven Belgium
| | - Cindy Casteels
- Division of Nuclear Medicine; KU Leuven - University of Leuven and University Hospital Leuven; Herestraat 49 Leuven 3000 Belgium
- MoSAIC, Molecular Small Animal Imaging Center, KU Leuven - University of Leuven; Leuven Belgium
| | - Sofie Celen
- Laboratory for Radiopharmacy, KU Leuven - University of Leuven; Leuven Belgium
| | | | - Guy Bormans
- Laboratory for Radiopharmacy, KU Leuven - University of Leuven; Leuven Belgium
| | - Michel Koole
- Division of Nuclear Medicine; KU Leuven - University of Leuven and University Hospital Leuven; Herestraat 49 Leuven 3000 Belgium
- MoSAIC, Molecular Small Animal Imaging Center, KU Leuven - University of Leuven; Leuven Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine; KU Leuven - University of Leuven and University Hospital Leuven; Herestraat 49 Leuven 3000 Belgium
- MoSAIC, Molecular Small Animal Imaging Center, KU Leuven - University of Leuven; Leuven Belgium
| |
Collapse
|
36
|
Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr Med Chem 2016; 23:1818-69. [PMID: 27087244 PMCID: PMC5579844 DOI: 10.2174/0929867323666160418114826] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|