1
|
Okkels N, Grothe MJ, Taylor JP, Hasselbalch SG, Fedorova TD, Knudsen K, van der Zee S, van Laar T, Bohnen NI, Borghammer P, Horsager J. Cholinergic changes in Lewy body disease: implications for presentation, progression and subtypes. Brain 2024; 147:2308-2324. [PMID: 38437860 DOI: 10.1093/brain/awae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behaviour disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behaviour disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Reina Sofia Alzheimer's Centre, CIEN Foundation-ISCIII, 28031 Madrid, Spain
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Center, Department of Neurology, Copenhagen University Hospital, 2100 Copenhagen Ø, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
2
|
Grodner B, Pisklak DM, Szeleszczuk Ł. Succinimide Derivatives as Acetylcholinesterase Inhibitors-In Silico and In Vitro Studies. Curr Issues Mol Biol 2024; 46:5117-5130. [PMID: 38920979 PMCID: PMC11202142 DOI: 10.3390/cimb46060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
We studied the effect of succinimide derivatives on acetylcholinesterase activity due to the interest in compounds that influence this enzyme's activity, which could help treat memory issues more effectively. The following parameters were established for this purpose based on kinetic investigations of the enzyme in the presence of succinimide derivatives: the half-maximal inhibitory concentration, the maximum rate, the inhibition constant, and the Michaelis-Menten constant. Furthermore, computational analyses were performed to determine the energy required for succinimide derivatives to dock with the enzyme's active site. The outcomes acquired in this manner demonstrated that all compounds inhibited acetylcholinesterase in a competitive manner. The values of the docking energy parameters corroborated the kinetic parameter values, which indicated discernible, albeit slight, variations in the inhibitory intensity among the various derivatives.
Collapse
Affiliation(s)
- Błażej Grodner
- Chair and Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Dariusz Maciej Pisklak
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| |
Collapse
|
3
|
Balkrishna A, Bhattacharya K, Shukla S, Varshney A. Neuroprotection by Polyherbal Medicine Divya-Medha-Vati Against Scopolamine-Induced Cognitive Impairment Through Modulation of Oxidative Stress, Acetylcholine Activity, and Cell Signaling. Mol Neurobiol 2024; 61:1363-1382. [PMID: 37707741 DOI: 10.1007/s12035-023-03601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/20/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer disease is associated with cognitive impairments and neuronal damages. In this study, Scopolamine, a model drug used for the generation of Alzheimer-like symptoms induced cognitive dysfunction in C57BL/6 mice. It also elevated acetylcholine esterase (AcHE) activity, and reduced antioxidant (superoxide dismutase and catalase) activity in cortex tissue. Scop reduced neuronal density and increased pyknotic neurons in hippocampus tissue. In mouse neuroblastoma (Neuro2a) cells, Scop triggered a dose-dependent loss of cell viability and neurite outgrowth reduction. Scop-treated Neuro2a cells showed oxidative stress and reduction in mRNA expression for brain-derived neurotrophic factor (BDNF), nerve growth factor-1 (NGF-1), and Synapsin-1 (SYN-1) genes. Mice treated with Divya-Medha-Vati (DMV), an Ayurvedic polyherbal medicine showed protection against Scop-induced cognitive impairment (Morris Water Maze Escape Latency, and Elevated Plus Maze Transfer Latency). DMV protected against Scop-induced AcHE activity, and loss of antioxidant activities in the mice brain cortex while sustaining neuronal density in the hippocampus region. In the Neuro2a cells, DMV reduced Scop-induced loss of cell viability and neurite outgrowth loss. DMV protected the cells against induction of oxidative stress and promoted mRNA expression of BDNF, NGF-1, and SYN-1 genes. Phytochemical profiling of DMV showed the presence of Withanolide A, Withanolide B, Bacopaside II, Jujubogenin, Apigenin, Gallic acid, Caffeic acid, and Quercetin that are associated with antioxidant and neurostimulatory activities. In conclusion, the study showed that Divya-Medha-Vati was capable of promoting neuronal health and inhibiting Alzheimer-like cognitive dysfunction through enhanced antioxidant activities and modulation of neuronal activities.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Uttarakhand, Haridwar, 249 405, India
- Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow, G41 1AU, UK
- Vedic Acharya Samaj Foundation Inc, NFP 21725 CR 33, Groveland, FL, 34736, USA
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India.
| | - Sunil Shukla
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Uttarakhand, Haridwar, 249 405, India.
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Uttarakhand, Haridwar, 249 405, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
4
|
Darvesh S, Banfield S, Dufour M, Forrestall KL, Maillet H, Reid GA, Sands D, Pottie IR. A method for the efficient evaluation of substrate-based cholinesterase imaging probes for Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2225797. [PMID: 38061987 PMCID: PMC10294744 DOI: 10.1080/14756366.2023.2225797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 08/16/2023] Open
Abstract
Cholinesterase (ChE) enzymes have been identified as diagnostic markers for Alzheimer disease (AD). Substrate-based probes have been synthesised to detect ChEs but they have not detected changes in ChE distribution associated with AD pathology. Probes are typically screened using spectrophotometric methods with pure enzyme for specificity and kinetics. However, the biochemical properties of ChEs associated with AD pathology are altered. The present work was undertaken to determine whether the Karnovsky-Roots (KR) histochemical method could be used to evaluate probes at the site of pathology. Thirty thioesters and esters were synthesised and evaluated using enzyme kinetic and KR methods. Spectrophotometric methods demonstrated all thioesters were ChE substrates, yet only a few provided staining in the brain with the KR method. Esters were ChE substrates with interactions with brain ChEs. These results suggest that the KR method may provide an efficient means to screen compounds as probes for imaging AD-associated ChEs.
Collapse
Affiliation(s)
- Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Geriatric Medicine & Neurology), Halifax, Nova Scotia, Canada
- Department of Chemistry and Physics, Mount St. Vincent University, Halifax, Nova Scotia, Canada
| | - Scott Banfield
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maeve Dufour
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Katrina L. Forrestall
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hillary Maillet
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G. Andrew Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dane Sands
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian R. Pottie
- Department of Chemistry and Physics, Mount St. Vincent University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Saint Mary’s University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Gil-Rivas A, de Pascual-Teresa B, Ortín I, Ramos A. New Advances in the Exploration of Esterases with PET and Fluorescent Probes. Molecules 2023; 28:6265. [PMID: 37687094 PMCID: PMC10488407 DOI: 10.3390/molecules28176265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Esterases are hydrolases that catalyze the hydrolysis of esters into the corresponding acids and alcohols. The development of fluorescent probes for detecting esterases is of great importance due to their wide spectrum of biological and industrial applications. These probes can provide a rapid and sensitive method for detecting the presence and activity of esterases in various samples, including biological fluids, food products, and environmental samples. Fluorescent probes can also be used for monitoring the effects of drugs and environmental toxins on esterase activity, as well as to study the functions and mechanisms of these enzymes in several biological systems. Additionally, fluorescent probes can be designed to selectively target specific types of esterases, such as those found in pathogenic bacteria or cancer cells. In this review, we summarize the recent fluorescent probes described for the visualization of cell viability and some applications for in vivo imaging. On the other hand, positron emission tomography (PET) is a nuclear-based molecular imaging modality of great value for studying the activity of enzymes in vivo. We provide some examples of PET probes for imaging acetylcholinesterases and butyrylcholinesterases in the brain, which are valuable tools for diagnosing dementia and monitoring the effects of anticholinergic drugs on the central nervous system.
Collapse
Affiliation(s)
- Alba Gil-Rivas
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Irene Ortín
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| |
Collapse
|
7
|
Lieberman OJ, Douglas VC, LaHue SC. Reexamining cholinesterase inhibitors for the prevention and treatment of delirium in high-risk populations. Crit Care 2023; 27:129. [PMID: 37004115 PMCID: PMC10064732 DOI: 10.1186/s13054-023-04413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Affiliation(s)
- Ori J Lieberman
- Department of Neurology, University of California, San Francisco, CA, USA.
| | - Vanja C Douglas
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Sara C LaHue
- Department of Neurology, University of California, San Francisco, CA, USA
- Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
8
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Costantini E, Carrarini C, Borrelli P, De Rosa M, Calisi D, Consoli S, D’Ardes D, Cipollone F, Di Nicola M, Onofrj M, Reale M, Bonanni L. Different peripheral expression patterns of the nicotinic acetylcholine receptor in dementia with Lewy bodies and Alzheimer's disease. Immun Ageing 2023; 20:3. [PMID: 36647139 PMCID: PMC9843938 DOI: 10.1186/s12979-023-00329-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/26/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The diffuse distribution of nicotinic cholinergic receptors (nAChRs) in both brain and peripheral immune cells points out their involvement in several pathological conditions. Indeed, the deregulated function of the nAChR was previously correlated with cognitive decline and neuropsychiatric symptoms in Alzheimer's disease (AD) and Dementia with Lewy bodies (DLB). The evaluation in peripheral immune cells of nAChR subtypes, which could reflect their expression in brain regions, is a prominent investigation area. OBJECTIVES This study aims to evaluate the expression levels of both the nAChR subunits and the main known inflammatory cytokines in peripheral blood mononuclear cells (PBMCs) of patients with DLB and AD to better characterize their involvement in these two diseases. RESULTS Higher gene expression levels of TNFα, IL6 and IL1β were observed in DLB and AD patients in comparison with healthy controls (HC). In our cohort, a reduction of nAChRα4, nAChRβ2 and nAChRβ4 was detected in both DLB and AD with respect to HC. Considering nAChR gene expressions in DLB and AD, significant differences were observed for nAChRα3, nAChRα4, nAChRβ2 and nAChRβ4 between the two groups. Moreover, the acetylcholine esterase (AChE) gene expression was significantly higher in DLB than in AD. Correlation analysis points out the relation between different nAChR subtype expressions in DLB (nAChRβ2 vs nAChRα3; nAChRα4 vs nAChRα3) and AD (nAChRα4 vs nAChRα3; nAChRα4 vs nAChRβ4; nAChRα7 vs nAChRα3; nAChRα7 vs nAChRα4). CONCLUSIONS Different gene expressions of both pro-inflammatory cytokines and nAChR subtypes may represent a peripheral link between inflammation and neurodegeneration. Inflammatory cytokines and different nAChRs should be valid and accurate peripheral markers for the clinical diagnosis of DLB and AD. However, although nAChRs show a great biological role in the regulation of inflammation, no significant correlation was detected between nAChR subtypes and the examined cytokines in our cohort of patients.
Collapse
Affiliation(s)
- E. Costantini
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - C. Carrarini
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - P. Borrelli
- grid.412451.70000 0001 2181 4941Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. De Rosa
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - D. Calisi
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - S. Consoli
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - D. D’Ardes
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - F. Cipollone
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. Di Nicola
- grid.412451.70000 0001 2181 4941Department of Medical, Oral and Biotechnological Sciences, Laboratory of Biostatistics, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - M. Onofrj
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - M. Reale
- grid.412451.70000 0001 2181 4941Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - L. Bonanni
- grid.412451.70000 0001 2181 4941Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
10
|
Wang J, Jin C, Zhou J, Zhou R, Tian M, Lee HJ, Zhang H. PET molecular imaging for pathophysiological visualization in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2023; 50:765-783. [PMID: 36372804 PMCID: PMC9852140 DOI: 10.1007/s00259-022-05999-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide. The exact etiology of AD is unclear as yet, and no effective treatments are currently available, making AD a tremendous burden posed on the whole society. As AD is a multifaceted and heterogeneous disease, and most biomarkers are dynamic in the course of AD, a range of biomarkers should be established to evaluate the severity and prognosis. Positron emission tomography (PET) offers a great opportunity to visualize AD from diverse perspectives by using radiolabeled agents involved in various pathophysiological processes; PET imaging technique helps to explore the pathomechanisms of AD comprehensively and find out the most appropriate biomarker in each AD phase, leading to a better evaluation of the disease. In this review, we discuss the application of PET in the course of AD and summarized radiolabeled compounds with favorable imaging characteristics.
Collapse
Affiliation(s)
- Jing Wang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Chentao Jin
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Jinyun Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Rui Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Mei Tian
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Hyeon Jeong Lee
- grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China
| | - Hong Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China ,grid.13402.340000 0004 1759 700XKey Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014 Zhejiang China
| |
Collapse
|
11
|
Smith DM, Terhune DB. Pedunculopontine-induced cortical decoupling as the neurophysiological locus of dissociation. Psychol Rev 2023; 130:183-210. [PMID: 35084921 PMCID: PMC10511303 DOI: 10.1037/rev0000353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mounting evidence suggests an association between aberrant sleep phenomena and dissociative experiences. However, no wake-sleep boundary theory provides a compelling explanation of dissociation or specifies its physiological substrates. We present a theoretical account of dissociation that integrates theories and empirical results from multiple lines of research concerning the domain of dissociation and the regulation of rapid eye movement (REM) sleep. This theory posits that individual differences in the circuitry governing the REM sleep promoting Pedunculopontine Nucleus and Laterodorsal Tegmental Nucleus determine the degree of similarity in the cortical connectivity profiles of wakefulness and REM sleep. We propose that a latent trait characterized by elevated dissociative experiences emerges from the decoupling of frontal executive regions due to a REM sleep-like aminergic/cholinergic balance. The Pedunculopontine-Induced Cortical Decoupling Account of Dissociation (PICDAD) suggests multiple fruitful lines of inquiry and provides novel insights. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Derek M. Smith
- Department of Psychology, Northwestern University
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine
| | | |
Collapse
|
12
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Capizzi A, Woo J, Magat E. Poststroke aphasia treatment: A review of pharmacologic therapies and noninvasive brain stimulation techniques. THE JOURNAL OF THE INTERNATIONAL SOCIETY OF PHYSICAL AND REHABILITATION MEDICINE 2022. [DOI: 10.4103/jisprm.jisprm-000151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Liang Q, Joshi S, Liu H, Yu Y, Zhao H, Benzinger TLS, Perlmutter JS, Tu Z. In vitro characterization of [ 3H]VAT in cells, animal and human brain tissues for vesicular acetylcholine transporter. Eur J Pharmacol 2021; 911:174556. [PMID: 34627806 PMCID: PMC8605764 DOI: 10.1016/j.ejphar.2021.174556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
Vesicular acetylcholine transporter plays a crucial role in the cholinergic system, and its alterations is implicated in several neurodegenerative disorders. We recently developed a PET imaging tracer [18F]VAT to target VAChT in vivo with high affinity and selectivity. Here we report in vitro characterization of [3H]VAT, a tritiated counterpart of [18F]VAT. Using human VAChT-rich cell membrane extracts, a saturated binding curve was obtained for [3H]VAT with Kd = 6.5 nM and Bmax = 22.89 pmol/mg protein. In the [3H]VAT competition-binding assay with a panel of CNS ligands, binding inhibition of [3H]VAT was observed using VAChT ligands, the Ki values ranged from 5.41 to 33.3 nM. No inhibition was detected using a panel of other CNS ligands. In vitro [3H]VAT autoradiography of rat brain sections showed strong signals in the striatum, moderate to high signals in vermis, thalamus, cortex, and hippocampus, and weak signals in cerebellum. Strong [3H]VAT ARG signals were also observed from striatal sections of normal nonhuman primates and human brains. Competitive ARG study with human striatal sections demonstrated strong ARG signals of [3H]VAT in caudate and putamen were blocked significantly by either VAChT ligand TZ659 or (-)-vesamicol, but not by the σ1 receptor ligand Yun-122. ARG study also indicated that signal in the striatal sections from PSP human brains was lower than normal human brains. These data provide solid evidence supporting [18F]VAT as a suitable PET radiotracer for quantitative assessment of VAChT levels in vivo.
Collapse
Affiliation(s)
- Qianwa Liang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sumit Joshi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Program in Occupational Therapy, Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Complementary Transcriptomic and Proteomic Analysis in the Substantia Nigra of Parkinson's Disease. DISEASE MARKERS 2021; 2021:2148820. [PMID: 34659588 PMCID: PMC8517625 DOI: 10.1155/2021/2148820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a disease that involves brain damage and is associated with neuroinflammation, mitochondrial damage, and cell aging. However, the pathogenic mechanism of PD is still unknown. Sequencing data and proteomic data can describe the fluctuation of molecular abundance in diseases at the mRNA level and protein level, respectively. In order to explore new targets in the pathogenesis of PD, the study analyzed molecular changes from the database by combining transcriptomic and proteomic analysis. Differentially expressed genes and differentially abundant proteins were summarized and analyzed. Enrichment and cluster analysis emphasized the importance of neurotransmitter release, mitochondrial damage, and vesicle transport. The molecular network revealed a subnetwork of 9 molecules related to SCNA and TH and revealed hub gene with differential expression at both mRNA and protein levels. It found that ACHE and CADPS could be used as new targets in PD, emphasizing that impaired nerve signal transmission and vesicle transport affect the pathogenesis of PD. Our research emphasized that the joint analysis and verification of transcriptomics and proteomics were devoted to understanding the comprehensive views and mechanism of pathogenesis in PD.
Collapse
|
16
|
Anjireddy K, Subramanian K. A new mode of Thinfilm and Nanofiber for burst release of the drug for Alzheimer disease; A complete scenario from dispersible polymer to formulation methodology. Mini Rev Med Chem 2021; 22:949-966. [PMID: 34629042 DOI: 10.2174/1389557521666211008152446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is usually caused intellectual deterioration which happened due to the degeneration of cholinergic neurons. Donepezil is employed for cholinesterase enzyme Inhibition (ChEI) to treat AD in a wider population. Over the years, researchers finding difficulties prompted through traditional dosage forms particularly in geriatric patience. To avoid swallowing difficulties brought about with the aid of the AD population, researchers majorly focused on oral thin-film technology (OTF). This technology strongly eliminates issues caused by solid oral dosage forms. It is one of the quality strategies to an alternate drug that is used in the first-pass metabolism or pre systematic metabolism. The solubility of the drug is a higher trouble and it can expand by way of lowering particle size. Nanofibers are the excellent desire to minimize the drug particles to the submicron stage and can increase the drug release rate drastically. It can be prepared by Electrospinning technology by incorporating polymeric material into poorly soluble drugs. Mostly natural and biodegradable polymers prefer in all pharmaceutical preparations. Polymers employed for oral delivery should be stable, possess mucoadhesive property, and should release the drug by diffusion, degradation, and swelling mechanism. The objective of the present review explains various thin-film and nanofiber formulations used for faster drug release in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Keshireddy Anjireddy
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore - 632 014, Tamilnadu. India
| | - Karpagam Subramanian
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore - 632 014, Tamilnadu. India
| |
Collapse
|
17
|
Lin WC, Lee PL, Lu CH, Lin CP, Chou KH. Linking Stage-Specific Plasma Biomarkers to Gray Matter Atrophy in Parkinson Disease. AJNR Am J Neuroradiol 2021; 42:1444-1451. [PMID: 34045303 DOI: 10.3174/ajnr.a7171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/17/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The shortcomings of synucleinopathy-based Parkinson disease staging highlight the need for systematic clinicopathologic elucidation and biomarkers. In this study, we investigated associations of proteinopathy and inflammation markers with changes in gray matter volume that accompany Parkinson disease progression. MATERIALS AND METHODS We prospectively enrolled 42 patients with idiopathic Parkinson disease, subdivided into early-/late-stage groups and 27 healthy controls. Parkinson disease severity and participants' functional and cognitive performance were evaluated. Peripheral plasma α-synuclein, β-amyloid42, and tau were quantified with immunomagnetic reduction assays, and nuclear DNA by polymerase chain reaction, and regional gray matter volumes were determined by MR imaging. Statistical tests identified stage-specific biomarkers and gray matter volume patterns in the early-stage Parkinson disease, late-stage Parkinson disease, and control groups. Correlations between gray matter volume atrophy, plasma biomarkers, Parkinson disease severity, and cognitive performance were analyzed. RESULTS Patients with Parkinson disease had significantly elevated α-synuclein, tau, and β-amyloid42 levels compared with controls; nuclear DNA levels were similar in early-stage Parkinson disease and controls, but higher in late-stage Parkinson disease (all P < .01). We identified 3 stage-specific gray matter volume atrophy patterns: 1) control > early-stage Parkinson disease = late-stage Parkinson disease: right midfrontal, left lingual, and fusiform gyri, left hippocampus, and cerebellum; 2) control > early-stage Parkinson disease > late-stage Parkinson disease: precentral, postcentral, parahippocampal, left superior-temporal, right temporal, right superior-frontal, and left cingulate gyri, occipital lobe, and bilateral parts of the cerebellum; 3) control = early-stage Parkinson disease > late-stage Parkinson disease: left midfrontal, superior-frontal and temporal, amygdala, and posterior cingulate gyri, caudate nucleus, and putamen. We discovered stage-specific correlations among proteinopathy, inflammation makers, topographic gray matter volume patterns, and cognitive performance that accompanied Parkinson disease progression. CONCLUSIONS Identifying associations linking peripheral plasma biomarkers, gray matter volume, and clinical status in Parkinson disease may facilitate earlier diagnosis and improve prognostic accuracy.
Collapse
Affiliation(s)
- W-C Lin
- From the Department of Diagnostic Radiology (W.-C.L.), Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - P-L Lee
- Institute of Neuroscience (P.-L.L., C.-P.L., K.-H.C.), National Yang-Ming University, Taipei, Taiwan
| | - C-H Lu
- Department of Neurology (C.-H.L.), Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - C-P Lin
- Institute of Neuroscience (P.-L.L., C.-P.L., K.-H.C.), National Yang-Ming University, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences (C.-P.L.), National Yang-Ming University, Taipei, Taiwan
- Brain Research Center (C.-P.L., K.-H.C.), National Yang-Ming University, Taipei, Taiwan
| | - K-H Chou
- Institute of Neuroscience (P.-L.L., C.-P.L., K.-H.C.), National Yang-Ming University, Taipei, Taiwan
- Brain Research Center (C.-P.L., K.-H.C.), National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Karsan N, Goadsby PJ. Migraine Is More Than Just Headache: Is the Link to Chronic Fatigue and Mood Disorders Simply Due to Shared Biological Systems? Front Hum Neurosci 2021; 15:646692. [PMID: 34149377 PMCID: PMC8209296 DOI: 10.3389/fnhum.2021.646692] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Migraine is a symptomatically heterogeneous condition, of which headache is just one manifestation. Migraine is a disorder of altered sensory thresholding, with hypersensitivity among sufferers to sensory input. Advances in functional neuroimaging have highlighted that several brain areas are involved even prior to pain onset. Clinically, patients can experience symptoms hours to days prior to migraine pain, which can warn of impending headache. These symptoms can include mood and cognitive change, fatigue, and neck discomfort. Some epidemiological studies have suggested that migraine is associated in a bidirectional fashion with other disorders, such as mood disorders and chronic fatigue, as well as with other pain conditions such as fibromyalgia. This review will focus on the literature surrounding alterations in fatigue, mood, and cognition in particular, in association with migraine, and the suggested links to disorders such as chronic fatigue syndrome and depression. We hypothesize that migraine should be considered a neural disorder of brain function, in which alterations in aminergic networks integrating the limbic system with the sensory and homeostatic systems occur early and persist after headache resolution and perhaps interictally. The associations with some of these other disorders may allude to the inherent sensory sensitivity of the migraine brain and shared neurobiology and neurotransmitter systems rather than true co-morbidity.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,NIHR-Wellcome Trust King's Clinical Research Facility, SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
19
|
Ozenil M, Aronow J, Millard M, Langer T, Wadsak W, Hacker M, Pichler V. Update on PET Tracer Development for Muscarinic Acetylcholine Receptors. Pharmaceuticals (Basel) 2021; 14:530. [PMID: 34199622 PMCID: PMC8229778 DOI: 10.3390/ph14060530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
The muscarinic cholinergic system regulates peripheral and central nervous system functions, and, thus, their potential as a therapeutic target for several neurodegenerative diseases is undoubted. A clinically applicable positron emission tomography (PET) tracer would facilitate the monitoring of disease progression, elucidate the role of muscarinic acetylcholine receptors (mAChR) in disease development and would aid to clarify the diverse natural functions of mAChR regulation throughout the nervous system, which still are largely unresolved. Still, no mAChR PET tracer has yet found broad clinical application, which demands mAChR tracers with improved imaging properties. This paper reviews strategies of mAChR PET tracer design and summarizes the binding properties and preclinical evaluation of recent mAChR tracer candidates. Furthermore, this work identifies the current major challenges in mAChR PET tracer development and provides a perspective on future developments in this area of research.
Collapse
Affiliation(s)
- Marius Ozenil
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Jonas Aronow
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marlon Millard
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria; (M.O.); (J.A.); (W.W.); (M.H.)
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Wien, Austria; (M.M.); (T.L.)
| |
Collapse
|
20
|
Protective Effect of Processed Polygoni multiflori Radix and Its Major Substance during Scopolamine-Induced Cognitive Dysfunction. Processes (Basel) 2021. [DOI: 10.3390/pr9020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cognitive disorder in the elderly population. However, effective pharmacological agents targeting AD have not been developed. The processed Polygoni multiflori Radix (PPM) and its main active substance, 2,3,5,4′-tetrahydroxystilbene-2-O-β-glucoside (TSG), has received considerable attention, majorly due to its neuroprotective activities against multiple biological activities within the human body. In this study, we provide new evidence on the therapeutic effect of PPM and TSG during cognitive impairment by evaluating the ameliorative potential of PPM and TSG in scopolamine-induced amnesia in ICR mice. PPM (100 or 200 mg/kg) was orally administered during the experimental period (days 1–15), and scopolamine was intraperitoneally injected to induce cognitive deficits during the behavioural test periods (days 8–15). The administration of PPM and TSG significantly improved memory loss and cognitive dysfunction in behavioural tests and regulated the cholinergic function, brain-derived neurotrophic factor, and neural apoptosis. The present study suggests that PPM and TSG improved scopolamine-induced cognitive dysfunction, but further study has to be supported for the clinical application of PPM and TSG for AD prevention and treatment.
Collapse
|
21
|
Abstract
This article presents an overview of imaging agents for PET that have been applied for research and diagnostic purposes in patients affected by dementia. Classified by the target which the agents visualize, seven groups of tracers can be distinguished, namely radiopharmaceuticals for: (1) Misfolded proteins (ß-amyloid, tau, α-synuclein), (2) Neuroinflammation (overexpression of translocator protein), (3) Elements of the cholinergic system, (4) Elements of monoamine neurotransmitter systems, (5) Synaptic density, (6) Cerebral energy metabolism (glucose transport/ hexokinase), and (7) Various other proteins. This last category contains proteins involved in mechanisms underlying neuroinflammation or cognitive impairment, which may also be potential therapeutic targets. Many receptors belong to this category: AMPA, cannabinoid, colony stimulating factor 1, metabotropic glutamate receptor 1 and 5 (mGluR1, mGluR5), opioid (kappa, mu), purinergic (P2X7, P2Y12), sigma-1, sigma-2, receptor for advanced glycation endproducts, and triggering receptor expressed on myeloid cells-1, besides several enzymes: cyclooxygenase-1 and 2 (COX-1, COX-2), phosphodiesterase-5 and 10 (PDE5, PDE10), and tropomyosin receptor kinase. Significant advances in neuroimaging have been made in the last 15 years. The use of 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) for quantification of regional cerebral glucose metabolism is well-established. Three tracers for ß-amyloid plaques have been approved by the Food and Drug Administration and European Medicines Agency. Several tracers for tau neurofibrillary tangles are already applied in clinical research. Since many novel agents are in the preclinical or experimental stage of development, further advances in nuclear medicine imaging can be expected in the near future. PET studies with established tracers and tracers for novel targets may result in early diagnosis and better classification of neurodegenerative disorders and in accurate monitoring of therapy trials which involve these targets. PET data have prognostic value and may be used to assess the response of the human brain to interventions, or to select the appropriate treatment strategy for an individual patient.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sofia Marcolini
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands
| | - Peter Paul de Deyn
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands; University of Antwerp, Born-Bunge Institute, Neurochemistry and Behavior, Campus Drie Eiken, Wilrijk, Belgium
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands; Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Wilson H, de Natale ER, Politis M. Nucleus basalis of Meynert degeneration predicts cognitive impairment in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:189-205. [DOI: 10.1016/b978-0-12-819975-6.00010-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
23
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|
24
|
Cao F, Guan X, Ma Y, Shao Y, Zhong J. Altered Functional Network Associated With Cognitive Performance in Early Parkinson Disease Measured by Eigenvector Centrality Mapping. Front Aging Neurosci 2020; 12:554660. [PMID: 33178007 PMCID: PMC7596167 DOI: 10.3389/fnagi.2020.554660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/11/2020] [Indexed: 02/01/2023] Open
Abstract
Objective: To investigate relationships between whole-brain functional changes and the performance of multiple cognitive functions in early Parkinson’s disease (PD). Methods: In the current study, we evaluated resting-state functional MRI (rsfMRI) data and neuropsychological assessments for various cognitive functions in a cohort with 84 early PD patients from the Parkinson’s Progression Markers Initiative (PPMI). Eigenvector centrality (EC) mapping based on rsfMRI was used to identify the functional connectivity of brain areas correlated with different neuropsychological scores at a whole-brain level. Results: Our study demonstrated that in the early PD patients, scores of Letter Number Sequencing (LNS) were positively correlated with EC in the left inferior occipital gyrus (IOG) and lingual gyrus. The immediate recall scores of Hopkins Verbal Learning Test-Revised (HVLT-R) were positively correlated with EC in the left superior frontal gyrus. No correlation was found between the EC and other cognitive performance scores. Conclusions: Functional alternations in the left occipital lobe (inferior occipital and lingual gyrus) and left superior frontal gyrus may account for the performance of working memory and immediate recall memory, respectively in early PD. These results may broaden the understanding of the potential mechanism of cognitive impairments in early PD.
Collapse
Affiliation(s)
- Fang Cao
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanqing Ma
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuan Shao
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianguo Zhong
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
25
|
Wilson JE, Mart MF, Cunningham C, Shehabi Y, Girard TD, MacLullich AMJ, Slooter AJC, Ely EW. Delirium. Nat Rev Dis Primers 2020; 6:90. [PMID: 33184265 PMCID: PMC9012267 DOI: 10.1038/s41572-020-00223-4] [Citation(s) in RCA: 466] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Delirium, a syndrome characterized by an acute change in attention, awareness and cognition, is caused by a medical condition that cannot be better explained by a pre-existing neurocognitive disorder. Multiple predisposing factors (for example, pre-existing cognitive impairment) and precipitating factors (for example, urinary tract infection) for delirium have been described, with most patients having both types. Because multiple factors are implicated in the aetiology of delirium, there are likely several neurobiological processes that contribute to delirium pathogenesis, including neuroinflammation, brain vascular dysfunction, altered brain metabolism, neurotransmitter imbalance and impaired neuronal network connectivity. The Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) is the most commonly used diagnostic system upon which a reference standard diagnosis is made, although many other delirium screening tools have been developed given the impracticality of using the DSM-5 in many settings. Pharmacological treatments for delirium (such as antipsychotic drugs) are not effective, reflecting substantial gaps in our understanding of its pathophysiology. Currently, the best management strategies are multidomain interventions that focus on treating precipitating conditions, medication review, managing distress, mitigating complications and maintaining engagement to environmental issues. The effective implementation of delirium detection, treatment and prevention strategies remains a major challenge for health-care organizations globally.
Collapse
Affiliation(s)
- Jo Ellen Wilson
- Center for Critical Illness, Brain Dysfunction, and Survivorship (CIBS), Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Division of General Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Matthew F Mart
- Center for Critical Illness, Brain Dysfunction, and Survivorship (CIBS), Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Republic of Ireland
| | - Yahya Shehabi
- Monash Health School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
- Prince of Wales Clinical School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy D Girard
- Center for Critical Illness, Brain Dysfunction, and Survivorship (CIBS), Vanderbilt University Medical Center, Nashville, TN, USA
- Clinical Research, Investigation, and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alasdair M J MacLullich
- Edinburgh Delirium Research Group, Geriatric Medicine, Usher Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Arjen J C Slooter
- Department of Intensive Care Medicine and UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - E Wesley Ely
- Center for Critical Illness, Brain Dysfunction, and Survivorship (CIBS), Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of General Internal Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
- Veteran's Affairs TN Valley, Geriatrics Research, Education and Clinical Center (GRECC), Nashville, TN, USA
| |
Collapse
|
26
|
Khedr EM, Gomaa AMS, Ahmed OG, Sayed HMM, Gamea A. Cognitive Impairment, P300, and Transforming Growth Factor β1 in Different Forms of Dementia. J Alzheimers Dis 2020; 78:837-845. [PMID: 33044184 DOI: 10.3233/jad-200885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND There are currently few biomarkers to assist in early diagnosis of dementias. OBJECTIVE To distinguish between different dementias: Alzheimer's disease (AD), vascular dementia (VaD), and Parkinson's disease dementia (PDD) using simple neurophysiologic (P300) and laboratory markers (transforming growth factor β1 "TGF-β1"). METHODS The study included 15 patients for each type of dementia and 25 age- and sex-matched control subjects. Dementia patients were diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders 4th edition-revised (DSM-IV-R). Modified Mini-Mental State Examination (3MS), Memory Assessment Scale (MAS), P300, and TGF-β1 were examined for each participant. RESULTS There were no significant differences between groups as regard to age, sex, and education, social, and economic levels. Significant differences between groups were observed in registration and naming variables of the 3MS. Compared with the control group, P300 latency was prolonged in all groups, although to a greater extent in AD and PDD than in VaD. A serum level of TGF-β1 was significantly elevated in all groups but was significantly higher in AD and VaD than in PDD. 3MS tended to correlate with P300 more than TGF-β1, and to be stronger in AD than the other groups. CONCLUSION Measurements of P300 latency and serum levels of TGF-β1 can help distinguish AD, PDD, and VaD. P300 was more prolonged in AD and PDD than VaD whereas TGF-β1 was significantly higher in AD and VaD than PDD. Thus P300 and TGF-β1 may be useful biomarkers for detection and evaluation of the extent of cognitive dysfunction.
Collapse
Affiliation(s)
- Eman M Khedr
- Department of Neuropsychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M S Gomaa
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omyma G Ahmed
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hanaa M M Sayed
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ayman Gamea
- Department of Neuropsychiatry, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
27
|
Thorne MWD, Cash MK, Reid GA, Burley DE, Luke D, Pottie IR, Darvesh S. Imaging Butyrylcholinesterase in Multiple Sclerosis. Mol Imaging Biol 2020; 23:127-138. [PMID: 32926288 DOI: 10.1007/s11307-020-01540-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Molecular imaging agents targeting butyrylcholinesterase (BChE) have shown promise in other neurodegenerative disorders and may have utility in detecting changes to normal appearing white matter in multiple sclerosis (MS). BChE activity is present in white matter and localizes to activated microglia associated with MS lesions. The purpose of this study was to further characterize changes in the cholinergic system in MS pathology, and to explore the utility of BChE radioligands as potential diagnostic and treatment monitoring agents in MS. PROCEDURE Cortical and white matter lesions were identified using myelin staining, and lesions were classified based on microglial activation patterns. Adjacent brain sections were used for cholinesterase histochemistry and in vitro autoradiography using phenyl 4-[123I]-iodophenylcarbamate (123I-PIP), a previously described small-molecule cholinesterase-binding radioligand. RESULTS BChE activity is positively correlated with microglial activation in white matter MS lesions. There is no alteration in cholinesterase activity in cortical MS lesions. 123I-PIP autoradiography revealed uptake of radioactivity in normal white matter, absence of radioactivity within demyelinated MS lesions, and variable uptake of radioactivity in adjacent normal-appearing white matter. CONCLUSIONS BChE imaging agents have the potential to detect MS lesions and subtle pathology in normal-appearing white matter in postmortem MS brain tissue. The possibility of BChE imaging agents serving to supplement current diagnostic and treatment monitoring strategies should be evaluated.
Collapse
Affiliation(s)
- M W D Thorne
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Medicine (Neurology), Dalhousie University, Halifax, NS, Canada
| | - M K Cash
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - G A Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - D E Burley
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - D Luke
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - I R Pottie
- Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, Canada.,Department of Chemistry, Saint Mary's University, Halifax, NS, Canada
| | - S Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada. .,Department of Medicine (Neurology), Dalhousie University, Halifax, NS, Canada. .,Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, Canada.
| |
Collapse
|
28
|
Massa F, Meli R, Grazzini M, Famà F, De Carli F, Filippi L, Arnaldi D, Pardini M, Morbelli S, Nobili F. Utility of quantitative EEG in early Lewy body disease. Parkinsonism Relat Disord 2020; 75:70-75. [DOI: 10.1016/j.parkreldis.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/09/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
|
29
|
Vriend C, van Balkom TD, van Druningen C, Klein M, van der Werf YD, Berendse HW, van den Heuvel OA. Processing speed is related to striatal dopamine transporter availability in Parkinson's disease. Neuroimage Clin 2020; 26:102257. [PMID: 32344372 PMCID: PMC7186552 DOI: 10.1016/j.nicl.2020.102257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Parkinson's disease (PD) affects the integrity of the dopamine and serotonin system, and is characterized by a plethora of different symptoms, including cognitive impairments of which the pathophysiology is not yet fully elucidated. OBJECTIVES Investigate the role of the integrity of the dopaminergic and serotonergic system in cognitive functioning in early-stage PD using Single Photon Emission Computed Tomography (SPECT) combined with the radiotracer 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (123I-FP-CIT). METHODS We studied the association between cognitive functions and dopamine transporter (DAT) availability in the caudate nucleus and putamen - as a proxy for striatal dopaminergic integrity - and serotonin transporter (SERT) availability as a proxy for serotonergic integrity in the thalamus and hippocampus using bootstrapped multiple regression. One-hundred-and-twenty-nine (129) PD patients underwent a 123I-FP-CIT SPECT scan and a neuropsychological assessment. RESULTS We showed a positive association between DAT availability in the head of the caudate nucleus and the Stroop Color Word Task - card I (reading words; β = 0.32, P = 0.001) and a positive association between DAT availability in the anterior putamen and the Trail Making Test part A (connecting consecutively numbered circles; β = 0.25, P = 0.02). These associations remained after adjusting for motor symptom severity or volume of the region-of-interest and were most pronounced in medication-naïve PD patients. There were no associations between cognitive performance and SERT availability in the thalamus or hippocampus. CONCLUSIONS We interpret these results as a role for striatal dopamine - and its PD-related decline - in aspects of processing speed.
Collapse
Affiliation(s)
- Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1007 MB, the Netherlands.
| | - Tim D van Balkom
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Corné van Druningen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Martin Klein
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Psychology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1007 MB, the Netherlands
| | - Henk W Berendse
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurology, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1007 MB, the Netherlands
| |
Collapse
|
30
|
Carli G, Caminiti SP, Galbiati A, Marelli S, Casoni F, Padovani A, Ferini‐Strambi L, Perani D. In‐vivo
signatures of neurodegeneration in isolated rapid eye movement sleep behaviour disorder. Eur J Neurol 2020; 27:1285-1295. [DOI: 10.1111/ene.14215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Affiliation(s)
- G. Carli
- School of Psychology Vita‐Salute San Raffaele University MilanItaly
- In Vivo Human Molecular and Structural Neuroimaging Unit Division of Neuroscience IRCCS San Raffaele Scientific Institute MilanItaly
| | - S. P. Caminiti
- School of Psychology Vita‐Salute San Raffaele University MilanItaly
- In Vivo Human Molecular and Structural Neuroimaging Unit Division of Neuroscience IRCCS San Raffaele Scientific Institute MilanItaly
| | - A. Galbiati
- School of Psychology Vita‐Salute San Raffaele University MilanItaly
- Department of Clinical Neuroscience Sleep Disorders Centre San Raffaele Hospital MilanItaly
| | - S. Marelli
- Department of Clinical Neuroscience Sleep Disorders Centre San Raffaele Hospital MilanItaly
| | - F. Casoni
- Department of Clinical Neuroscience Sleep Disorders Centre San Raffaele Hospital MilanItaly
| | - A. Padovani
- Neurology Unit Department of Clinical and Experimental Sciences University of Brescia BresciaItaly
| | - L. Ferini‐Strambi
- School of Psychology Vita‐Salute San Raffaele University MilanItaly
- Department of Clinical Neuroscience Sleep Disorders Centre San Raffaele Hospital MilanItaly
| | - D. Perani
- School of Psychology Vita‐Salute San Raffaele University MilanItaly
- In Vivo Human Molecular and Structural Neuroimaging Unit Division of Neuroscience IRCCS San Raffaele Scientific Institute MilanItaly
- Nuclear Medicine Unit San Raffaele Hospital Milan Italy
| |
Collapse
|
31
|
Cranston AL, Wysocka A, Steczkowska M, Zadrożny M, Palasz E, Harrington CR, Theuring F, Wischik CM, Riedel G, Niewiadomska G. Cholinergic and inflammatory phenotypes in transgenic tau mouse models of Alzheimer's disease and frontotemporal lobar degeneration. Brain Commun 2020; 2:fcaa033. [PMID: 32954291 PMCID: PMC7425524 DOI: 10.1093/braincomms/fcaa033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023] Open
Abstract
An early and sizeable loss of basal forebrain cholinergic neurons is a well-characterized feature associated with measurable deficits in spatial learning and cognitive impairment in patients with Alzheimer’s disease. In addition, pro-inflammatory glial cells such as astrocytes and microglia may play a key role in the neurodegenerative cascade of Alzheimer’s disease and tauopathies. We recently presented two mouse models: Line 1, expressing the truncated tau fragment identified as the core of the Alzheimer’s paired helical filament, and Line 66, expressing full-length human tau carrying a double mutation (P301S and G335D). Line 1 mice have a pathology that is akin to Alzheimer’s, whilst Line 66 resembles frontotemporal lobar degeneration. However, their cholinergic and inflammatory phenotypes remain elusive. We performed histological evaluation of choline acetyltransferase, acetylcholinesterase, p75 neurotrophin receptor, microglial ionized calcium binding adaptor molecule 1 and astrocytic glial fibrillary acidic protein in the basal forebrain, hippocampus and cortex of these models. A significant lowering of choline acetyltransferase-positive neurons and p75-positive neurons in the basal forebrain of Line 1 at 3, 6 and 9 months was observed in two independent studies, alongside a significant decrease in acetylcholinesterase staining in the cortex and hippocampus. The reductions in choline acetyltransferase positivity varied between 30% and 50% at an age when Line 1 mice show spatial learning impairments. Furthermore, an increase in microglial ionized calcium binding adaptor molecule 1 staining was observed in the basal forebrain, hippocampus and entorhinal cortex of Line 1 at 6 months. Line 66 mice displayed an intact cholinergic basal forebrain, and no difference in p75-positive neurons at 3 or 9 months. In addition, Line 66 exhibited significant microglial ionized calcium binding adaptor molecule 1 increase in the basal forebrain and hippocampus, suggesting a prominent neuroinflammatory profile. Increased concentrations of microglial interleukin-1β and astrocytic complement 3 were also seen in the hippocampus of both Line 1 and Line 66. The cholinergic deficit in Line 1 mice confirms the Alzheimer’s disease-like phenotype in Line 1 mice, whilst Line 66 revealed no measurable change in total cholinergic expression, a phenotypic trait of frontotemporal lobar degeneration. These two transgenic lines are therefore suitable for discriminating mechanistic underpinnings between the Alzheimer’s and frontotemporal lobar degeneration-like phenotypes of these mice.
Collapse
Affiliation(s)
- Anna L Cranston
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Adrianna Wysocka
- Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| | | | | | - Ewelina Palasz
- Mossakowski Medical Research Centre, Warsaw 02-106, Poland
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.,TauRx Therapeutics Ltd, Foresterhill, Aberdeen AB25 2ZP, UK
| | - Franz Theuring
- Institute of Pharmacology, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.,TauRx Therapeutics Ltd, Aberdeen AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw 02-093, Poland
| |
Collapse
|
32
|
Carotenuto A, Wilson H, Giordano B, Caminiti SP, Chappell Z, Williams SCR, Hammers A, Silber E, Brex P, Politis M. Impaired connectivity within neuromodulatory networks in multiple sclerosis and clinical implications. J Neurol 2020; 267:2042-2053. [PMID: 32219555 PMCID: PMC7320961 DOI: 10.1007/s00415-020-09806-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022]
Abstract
There is mounting evidence regarding the role of impairment in neuromodulatory networks for neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the role of neuromodulatory networks in multiple sclerosis (MS) has not been assessed. We applied resting-state functional connectivity and graph theory to investigate the changes in the functional connectivity within neuromodulatory networks including the serotonergic, noradrenergic, cholinergic, and dopaminergic systems in MS. Twenty-nine MS patients and twenty-four age- and gender-matched healthy controls performed clinical and cognitive assessments including the expanded disability status score, symbol digit modalities test, and Hamilton Depression rating scale. We demonstrated a diffuse reorganization of network topography (P < 0.01) in serotonergic, cholinergic, noradrenergic, and dopaminergic networks in patients with MS. Serotonergic, noradrenergic, and cholinergic network functional connectivity derangement was associated with disease duration, EDSS, and depressive symptoms (P < 0.01). Derangements in serotonergic, noradrenergic, cholinergic, and dopaminergic network impairment were associated with cognitive abilities (P < 0.01). Our results indicate that functional connectivity changes within neuromodulatory networks might be a useful tool in predicting disability burden over time, and could serve as a surrogate endpoint to assess efficacy for symptomatic treatments.
Collapse
Affiliation(s)
- Antonio Carotenuto
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Federico II University, Naples, Italy
| | - Heather Wilson
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | - Beniamino Giordano
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Silvia P Caminiti
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Zachary Chappell
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Steven C R Williams
- Institute of Psychiatry, Psychology and Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Alexander Hammers
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, St Thomas' Hospital, London, UK
| | - Eli Silber
- Department of Neurology, King's College Hospital NHS Foundation Trust, London, UK
| | - Peter Brex
- Department of Neurology, King's College Hospital NHS Foundation Trust, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.
| |
Collapse
|
33
|
McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 2020; 47:451-489. [PMID: 31541283 PMCID: PMC6974496 DOI: 10.1007/s00259-019-04488-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE A limit on developing new treatments for a number of central nervous system (CNS) disorders has been the inadequate understanding of the in vivo pathophysiology underlying neurological and psychiatric disorders and the lack of in vivo tools to determine brain penetrance, target engagement, and relevant molecular activity of novel drugs. Molecular neuroimaging provides the tools to address this. This article aims to provide a state-of-the-art review of new PET tracers for CNS targets, focusing on developments in the last 5 years for targets recently available for in-human imaging. METHODS We provide an overview of the criteria used to evaluate PET tracers. We then used the National Institute of Mental Health Research Priorities list to identify the key CNS targets. We conducted a PubMed search (search period 1st of January 2013 to 31st of December 2018), which yielded 40 new PET tracers across 16 CNS targets which met our selectivity criteria. For each tracer, we summarised the evidence of its properties and potential for use in studies of CNS pathophysiology and drug evaluation, including its target selectivity and affinity, inter and intra-subject variability, and pharmacokinetic parameters. We also consider its potential limitations and missing characterisation data, but not specific applications in drug development. Where multiple tracers were present for a target, we provide a comparison of their properties. RESULTS AND CONCLUSIONS Our review shows that multiple new tracers have been developed for proteinopathy targets, particularly tau, as well as the purinoceptor P2X7, phosphodiesterase enzyme PDE10A, and synaptic vesicle glycoprotein 2A (SV2A), amongst others. Some of the most promising of these include 18F-MK-6240 for tau imaging, 11C-UCB-J for imaging SV2A, 11C-CURB and 11C-MK-3168 for characterisation of fatty acid amide hydrolase, 18F-FIMX for metabotropic glutamate receptor 1, and 18F-MNI-444 for imaging adenosine 2A. Our review also identifies recurrent issues within the field. Many of the tracers discussed lack in vivo blocking data, reducing confidence in selectivity. Additionally, late-stage identification of substantial off-target sites for multiple tracers highlights incomplete pre-clinical characterisation prior to translation, as well as human disease state studies carried out without confirmation of test-retest reproducibility.
Collapse
Affiliation(s)
- Stuart P McCluskey
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Christophe Plisson
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
34
|
Hypermethioninemia induces memory deficits and morphological changes in hippocampus of young rats: implications on pathogenesis. Amino Acids 2020; 52:371-385. [PMID: 31902007 DOI: 10.1007/s00726-019-02814-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the effect of the chronic administration of methionine (Met) and/or its metabolite, methionine sulfoxide (MetO), on the behavior and neurochemical parameters of young rats. Rats were treated with saline (control), Met (0.2-0.4 g/kg), MetO (0.05-0.1 g/kg), and/or a combination of Met + MetO, subcutaneously twice a day from postnatal day 6 (P6) to P28. The results showed that Met, MetO, and Met + MetO impaired short-term and spatial memories (P < 0.05), reduced rearing and grooming (P < 0.05), but did not alter locomotor activity (P > 0.05). Acetylcholinesterase activity was increased in the cerebral cortex, hippocampus, and striatum following Met and/or MetO (P < 0.05) treatment, while Na+, K+-ATPase activity was reduced in the hippocampus (P < 0.05). There was an increase in the level of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex in Met-, MetO-, and Met + MetO-treated rats (P < 0.05). Met and/or MetO treatment reduced superoxide dismutase, catalase, and glutathione peroxidase activity, total thiol content, and nitrite levels, and increased reactive oxygen species and TBARS levels in the hippocampus and striatum (P < 0.05). Hippocampal brain-derived neurotrophic factor was reduced by MetO and Met + MetO compared with the control group. The number of NeuN-positive cells was decreased in the CA3 in Met + MetO group and in the dentate gyrus in the Met, MetO, and Met + MetO groups compared to control group (P < 0.05). Taken together, these findings further increase our understanding of changes in the brain in hypermethioninemia by elucidating behavioral alterations, biological mechanisms, and the vulnerability of brain function to high concentrations of Met and MetO.
Collapse
|
35
|
Beaurain M, Salabert AS, Ribeiro MJ, Arlicot N, Damier P, Le Jeune F, Demonet JF, Payoux P. Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 2019; 6:268. [PMID: 31828073 PMCID: PMC6890558 DOI: 10.3389/fmed.2019.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.
Collapse
Affiliation(s)
- Marie Beaurain
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Anne-Sophie Salabert
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Maria Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Philippe Damier
- Inserm U913, Neurology Department, University Hospital, Nantes, France
| | | | - Jean-François Demonet
- Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Payoux
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| |
Collapse
|
36
|
Noufi P, Khoury R, Jeyakumar S, Grossberg GT. Use of Cholinesterase Inhibitors in Non-Alzheimer's Dementias. Drugs Aging 2019; 36:719-731. [PMID: 31201687 DOI: 10.1007/s40266-019-00685-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-Alzheimer's dementias constitute 30% of all dementias and present with major cognitive and behavioral disturbances. Cholinesterase inhibitors improve memory by increasing brain acetylcholine levels and are approved symptomatic therapies for Alzheimer's disease (AD). They have also been investigated in other types of dementias with potential cholinergic dysfunction. There is compelling evidence for a profound cholinergic deficit in Lewy Body dementia (LBD) and Parkinson's disease dementia (PDD), even to a greater extent than AD. However, this deficit is difficult to objectivize in vascular dementia (VaD) given the increased comorbidity with AD. Furthermore, there is minimal to no evidence for cholinergic loss in frontotemporal dementia (FTD). Although cholinesterase inhibitors showed significant improvement in cognitive, behavioral, and functional measures in both LBD and PDD clinical trials, only rivastigmine is approved for PDD, due to the heterogeneity of the scales used, the duration of trials, and the limited sample sizes impacting data interpretation. Similarly, the interpretation of findings in VaD trials are limited by the lack of pre-defined inclusion criteria for 'pure VaD' and the wide heterogeneity of patients enrolled with respect to location and extent of cerebrovascular disease. In FTD patients, cholinesterase inhibitors were mostly associated with worsening of cognitive and behavioral symptoms. In non-AD dementias, cholinesterase inhibitors were well tolerated, with increased reports of mild to moderate cholinergic side effects and a non-significant trend for increased cardio and cerebrovascular events with rivastigmine in VaD, justifying their cautious use on a case-by-case basis, especially when there is evidence for cholinergic deficit.
Collapse
Affiliation(s)
- Paul Noufi
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| | - Rita Khoury
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA.
| | - Sajeeka Jeyakumar
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| |
Collapse
|
37
|
Wu Q, Cao Y, Liu M, Liu F, Brantner AH, Yang Y, Wei Y, Zhou Y, Wang Z, Ma L, Wang F, Pei H, Li H. Traditional Chinese Medicine Shenmayizhi Decoction Ameliorates Memory And Cognitive Impairment Induced By Scopolamine Via Preventing Hippocampal Cholinergic Dysfunction In Rats. Neuropsychiatr Dis Treat 2019; 15:3167-3176. [PMID: 31814724 PMCID: PMC6858809 DOI: 10.2147/ndt.s214976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Clinical trials have illustrated that Shenmayizhi decoction (SMYZ) could improve the cognitive functions in patients with dementia. However, the mechanism needs to be explored. METHODS Fifty adult male rats (Wistar strain) were divided into five groups equally and randomly, including control, model, and SMYZ of low dose, medium dose and high dose. Rats in each group received a daily gavage of respective treatment. Rats in control and model group were administrated by the same volume of distilled water. Memory impairment was induced by intraperitoneal administration of scopolamine (0.7 mg/kg) for 5 continuous days. Four weeks later, Morris water maze (MWM) was performed to evaluate the spatial memory in all rats. Then, rats were sacrificed and the hippocampus was removed for further tests. Furthermore, Western blot analysis was employed to assess the levels of acetylcholine M1 receptor (M1), acetylcholine M2 receptor (M2), acetylcholinesterase (AChE) and cholineacetyltransferase (ChAT). AChE and ChAT activities were determined. RESULTS The SMYZ decoction significantly improved behavioral performance of rats in high dose. The SMYZ decoction in three doses exhibited anti-acetylcholinesterase activity. In addition, a high dose of SMYZ promoted ChAT activity. Moreover, a high dose of SMYZ increased the level of ChAT and declined the level of AChE assessed by Western blotting. Besides, an increased level of M1 receptor was found after treatment. CONCLUSION Shenmayizhi decoction could mitigate scopolamine-induced cognitive deficits through the preventative effect on cholinergic system dysfunction.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing100078, People’s Republic of China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Fang Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Adelheid H Brantner
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Yu Zhou
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, Groningen9747 AG, The Netherlands
| | - Zhiyong Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Feixue Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| |
Collapse
|
38
|
Tiepolt S, Patt M, Aghakhanyan G, Meyer PM, Hesse S, Barthel H, Sabri O. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharm Chem 2019; 4:17. [PMID: 31659510 PMCID: PMC6660543 DOI: 10.1186/s41181-019-0070-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
The term of neurodegenerative diseases covers a heterogeneous group of disorders that are distinguished by progressive degeneration of the structure and function of the nervous system such as dementias, movement disorders, motor neuron disorders, as well as some prion disorders. In recent years, a paradigm shift started for the diagnosis of neurodegenerative diseases, for which successively clinical testing is supplemented by biomarker information. In research scenarios, it was even proposed recently to substitute the current syndromic by a biological definition of Alzheimer's diseases. PET examinations with various radiotracers play an important role in providing non-invasive biomarkers and co-morbidity information in neurodegeneration. Information on co-morbidity, e.g. Aβ plaques and Lewy-bodies or Aβ plaques in patients with aphasia or the absence of Aβ plaques in clinical AD patients are of interest to expand our knowledge about the pathogenesis of different phenotypically defined neurodegenerative diseases. Moreover, this information is also important in therapeutic trials targeting histopathological abnormalities.The aim of this review is to present an overview of the currently available radiotracers for imaging neurodegenerative diseases in research and in routine clinical settings. In this context, we also provide a short summary of the most frequent neurodegenerative diseases from a nuclear medicine point of view, their clinical and pathophysiological as well as nuclear imaging characteristics, and the resulting need for new radiotracers.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Gayane Aghakhanyan
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Philipp M. Meyer
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| |
Collapse
|
39
|
Cognitive complaints in Parkinson's disease patients: from subjective cognitive complaints to dementia and affective disorders. J Neural Transm (Vienna) 2019; 126:1329-1335. [PMID: 31278557 DOI: 10.1007/s00702-019-02042-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
Subjective cognitive complaints (SCC) are frequent in elderly populations. PD patients report SCC more often than healthy controls. The association between SCC, objective cognitive impairment and affective symptoms remains controversial. We assessed consecutive PD patients between March 2014 and March 2015. Presence of SCC was defined as a score ≥ 1 in the Non-Motor Symptom Assessment Scale for Parkinson's Disease (NMSS) Domain 5. MoCA was used for cognitive impairment assessment. Pill Questionnaire measured the impact in daily activities. PD with Dementia (PDD) and PD with Mild Cognitive Impairment (PDMCI) were defined as the presence of cognitive impairment with or without impact on daily activities. Anxiety and depression were assessed using the Hospital Anxiety and Depression Scales. Significance was set at p < 0.05. From 134 patients, 128 were included. PDD was diagnosed in 21 (16.4%), PDMCI in 31 (24.2%), and 76 (59.4%) had normal cognition (PDCN). SCC were present in 85% of whole cohort and evenly distributed (p = 0.361), PDD (95.2%), PDMCI (83.9%) and PDCN (82.9%). Severity was significantly different between PDD (20.00 ± 10.81), PDMCI (6.54 ± 5.5) and PDCN (6.97 ± 6.98), p < 0.001. A score ≥ 19 had a specificity of 77.3% and a sensitivity of 78.8% for identifying PDD. In PDCN, SCC severity was found to be related to depression (OR 1.23, CI 95% 1.02-1.47, p = 0.026) more than with MoCA scores (OR: 0.86, CI 95% 0.69-1.05, p = 0.141). SCC are common in PD. Their severity can help distinguish PDD from non-demented PD patients. In PDCN, SCC should alert the clinician for an affective disorder.
Collapse
|
40
|
Elaeagnus glabra f. oxyphylla Attenuates Scopolamine-Induced Learning and Memory Impairments in Mice by Improving Cholinergic Transmission via Activation of CREB/NGF Signaling. Nutrients 2019; 11:nu11061205. [PMID: 31141948 PMCID: PMC6627942 DOI: 10.3390/nu11061205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 01/11/2023] Open
Abstract
We aimed to investigate the therapeutic effects of an Elaeagnus glabra f. oxyphylla (EGFO) ethanol extract in mice with scopolamine-induced memory dysfunction. Fifty male mice were randomly divided into a normal control group, a scopolamine-treated group, a scopolamine and EGFO extract-treated group, and a scopolamine and tacrine-treated group. EGFO (50 or 100 mg/kg/day) was received for 21 days. Step-through passive avoidance and Y-maze tests were performed to examine the effects of treatment on learning and memory impairments. Acetylcholine (Ach) levels and acetylcholinesterase (AchE) activity were measured via an enzyme-linked immunosorbent assay (ELISA). Levels of choline acetyltransferase (ChAT), nerve growth factor (NGF), cAMP response element-binding protein (CREB), and apoptosis-related protein expression were determined via Western blot analysis. EGFO pretreatment significantly attenuated scopolamine-induced memory impairments, relative to findings observed in the scopolamine-treated group. Levels of cholinergic factors in the brain tissues were markedly attenuated in the scopolamine-treated group. EGFO treatment also attenuated neural apoptosis in scopolamine-treated mice by decreasing the expression of apoptosis-related proteins such as Bax, Bcl2, cleaved caspase-3, and TUNEL staining. These results suggest that EGFO improves memory and cognition in a mouse model of memory impairment by restoring cholinergic and anti-apoptotic activity, possibly via activation of CREB/NGF signaling.
Collapse
|
41
|
Radiotracers for imaging of Parkinson's disease. Eur J Med Chem 2019; 166:75-89. [DOI: 10.1016/j.ejmech.2019.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/12/2019] [Accepted: 01/13/2019] [Indexed: 12/22/2022]
|
42
|
Wilson H, Pagano G, Politis M. Dementia spectrum disorders: lessons learnt from decades with PET research. J Neural Transm (Vienna) 2019; 126:233-251. [PMID: 30762136 PMCID: PMC6449308 DOI: 10.1007/s00702-019-01975-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
The dementia spectrum encompasses a range of disorders with complex diagnosis, pathophysiology and limited treatment options. Positron emission tomography (PET) imaging provides insights into specific neurodegenerative processes underlying dementia disorders in vivo. Here we focus on some of the most common dementias: Alzheimer's disease, Parkinsonism dementias including Parkinson's disease with dementia, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal syndrome, and frontotemporal lobe degeneration. PET tracers have been developed to target specific proteinopathies (amyloid, tau and α-synuclein), glucose metabolism, cholinergic system and neuroinflammation. Studies have shown distinct imaging abnormalities can be detected early, in some cases prior to symptom onset, allowing disease progression to be monitored and providing the potential to predict symptom onset. Furthermore, advances in PET imaging have identified potential therapeutic targets and novel methods to accurately discriminate between different types of dementias in vivo. There are promising imaging markers with a clinical application on the horizon, however, further studies are required before they can be implantation into clinical practice.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK.
| |
Collapse
|
43
|
Wang H, Zhang H. Reconsideration of Anticholinesterase Therapeutic Strategies against Alzheimer's Disease. ACS Chem Neurosci 2019; 10:852-862. [PMID: 30521323 DOI: 10.1021/acschemneuro.8b00391] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is well-known as a severe neurodegeneration disease involving complicated etiologies, and cholinesterase inhibition remain the prevailing mode of clinical intervention in AD management. Although most clinically applied cholinesterase inhibitors (ChEIs) achieve limited clinical outcomes, research on the central cholinergic system is still thriving. Recently, an impressive amount of knowledge regarding novel acetylcholinesterase functions, as well as the close association between the central cholinergic system and other key elements for AD pathogenesis, has accumulated, highlighting that this field still has great potential for future drug development. In contrast to the overwhelmingly disappointing clinical therapeutic effects of various disease-modifying drug candidates, interesting evidence has continued to emerge over the past 20 years from the wealth of preclinical and clinical data on the usage of ChEIs, indicating underestimated clinical benefits due to physician ambivalence, a lack of persistent treatment, and inappropriate medication times or doses. Here we pinpoint several topics fit for future attention, focusing on the updated cholinergic hypothesis, especially the pleiotropic relationships with key pathogenetic signaling pathways and functions in AD, as well as possible novel therapeutic strategies, including novel ChEIs and cholinesterase inhibition-based innovative multifunctional therapeutic candidates. We intend to strengthen the future value of the precise application of cholinergic drugs, especially novel ChEIs, as a cornerstone pharmacological approach to AD treatment, either alone or in combination with other targets, to relieve symptoms and to modify disease progression.
Collapse
Affiliation(s)
- Huan Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
44
|
Fabbrini G, Fabbrini A, Suppa A. Progressive supranuclear palsy, multiple system atrophy and corticobasal degeneration. ACTA ACUST UNITED AC 2019; 165:155-177. [DOI: 10.1016/b978-0-444-64012-3.00009-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Kopetzky SJ, Butz-Ostendorf M. From Matrices to Knowledge: Using Semantic Networks to Annotate the Connectome. Front Neuroanat 2018; 12:111. [PMID: 30581382 PMCID: PMC6292998 DOI: 10.3389/fnana.2018.00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
The connectome is regarded as the key to brain function in health and disease. Structural and functional neuroimaging enables us to measure brain connectivity in the living human brain. The field of connectomics describes the connectome as a mathematical graph with its connection strengths being represented by connectivity matrices. Graph theory algorithms are used to assess the integrity of the graph as a whole and to reveal brain network biomarkers for brain diseases; however, the faulty wiring of single connections or subnetworks as the structural correlate for neurological or mental diseases remains elusive. We describe a novel approach to represent the knowledge of human brain connectivity by a semantic network – a formalism frequently used in knowledge management to describe the semantic relations between objects. In our novel approach, objects are brain areas and connectivity is modeled as semantic relations among them. The semantic network turns the graph of the connectome into an explicit knowledge base about which brain areas are interconnected. Moreover, this approach can semantically enrich the measured connectivity of an individual subject by the semantic context from ontologies, brain atlases and molecular biological databases. Integrating all measurements and facts into one unified feature space enables cross-modal comparisons and analyses. We used a query mechanism for semantic networks to extract functional, structural and transcriptome networks. We found that in general higher structural and functional connectivity go along with a lower differential gene expression among connected brain areas; however, subcortical motor areas and limbic structures turned out to have a localized high differential gene expression while being strongly connected. In an additional explorative use case, we could show a localized high availability of fkbp5, gmeb1, and gmeb2 genes at a connection hub of temporo-limbic brain networks. Fkbp5 is known for having a role in stress-related psychiatric disorders, while gmeb1 and gmeb2 encode for modulator proteins of the glucocorticoid receptor, a key receptor in the hormonal stress system. Semantic networks tremendously ease working with multimodal neuroimaging and neurogenetics data and may reveal relevant coincidences between transcriptome and connectome networks.
Collapse
|
46
|
Abstract
Even before the success of combined positron emission tomography and computed tomography (PET/CT), the neuroimaging community was conceiving the idea to integrate the positron emission tomography (PET), with very high molecular quantitative data but low spatial resolution, and magnetic resonance imaging (MRI), with high spatial resolution. Several technical limitations have delayed the use of a hybrid scanner in neuroimaging studies, including the full integration of the PET detector ring within the MRI system, the optimization of data acquisition, and the implementation of reliable methods for PET attenuation, motion correction, and joint image reconstruction. To be valid and useful in clinical and research settings, this instrument should be able to simultaneously acquire PET and MRI, and generate quantitative parametric PET images comparable to PET-CT. While post hoc co-registration of combined PET and MRI data acquired separately became the most reliable technique for the generation of "fused" PET-MRI images, only hybrid PET-MRI approach allows merging these measurements naturally and correlating them in a temporal manner. Furthermore, hybrid PET-MRI represents the most accurate tool to investigate in vivo the interplay between molecular and functional aspects of brain pathophysiology. Hybrid PET-MRI technology is still in the early stages in the movement disorders field, due to the limited availability of scanners with integrated optimized methodological models. This technology is ideally suited to investigate interactions between resting-state functional/arterial spin labeling MRI and [18F]FDG PET glucose metabolism in the evaluation of the brain "hubs" particularly vulnerable to neurodegeneration, areas with a high degree of connectivity and associated with an efficient synaptic neurotransmission. In Parkinson's disease, hybrid PET-MRI is also the ideal instrument to deeper explore the relationship between resting-state functional MRI and dopamine release at [11C]raclopride PET challenge, in the identification of early drug-naïve Parkinson's disease patients at higher risk of motor complications and in the evaluation of the efficacy of novel neuroprotective treatment able to restore at the same time the altered resting state and the release of dopamine. In this chapter, we discuss the key methodological aspects of hybrid PET-MRI; the evidence in movement disorders of the key resting-state functional and perfusion MRI; [18F]FDG PET and [11C]raclopride PET challenge studies; the potential advantages of using hybrid PET-MRI to investigate the pathophysiology of movement disorders and neurodegenerative diseases. Future directions of hybrid PET-MRI will be discussed alongside with up-to-date technological innovations on hybrid systems.
Collapse
|
47
|
Yue X, Luo Z, Liu H, Kaneshige K, Parsons SM, Perlmutter JS, Tu Z. Radiosynthesis and evaluation of a fluorine-18 labeled radioligand targeting vesicular acetylcholine transporter. Bioorg Med Chem Lett 2018; 28:3425-3430. [PMID: 30274694 DOI: 10.1016/j.bmcl.2018.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/28/2022]
Abstract
Vesicular acetylcholine transporter (VAChT) is a reliable biomarker for assessing the loss of cholinergic neurons in the brain that is associated with cognitive impairment of patients. 5-Hydrotetralin compound (±)-5-OH-VAT is potent (Ki = 4.64 ± 0.32 nM) and selective for VAChT (>1800-fold and 398-fold for σ1 and σ2 receptor, respectively) with favorable hydrophilicity (LogD = 1.78), while (-)-5-OH-VAT originally serves as the radiolabeling precursor of (-)-[18F]VAT, a promising VAChT radiotracer with a logD value of 2.56. To evaluate (-)-5-OH-[18F]VAT as a radiotracer for VAChT, we performed in vitro binding assay to determine the potency of the minus enantiomer (-)-5-OH-VAT and plus enantiomer (+)-5-OH-VAT, indicating that (-)-5-OH-VAT is a more potent VAChT enantiomer. Radiosynthesis of (-)-5-OH-[18F]VAT was explored using three strategies. (-)-5-OH-[18F]VAT was achieved with a good yield (24 ± 6%) and high molar activity (∼37 GBq/µmol, at the end of synthesis) using a microwave assisted two-step one-pot procedure that started with di-MOM protected nitro-containing precursor (-)-6. MicroPET studies in the brain of nonhuman primate (NHP) suggest that (-)-5-OH-[18F]VAT readily penetrated the blood brain barrier and specifically accumulated in the VAChT-enriched striatum with improved washout kinetics from striatum compared to [18F]VAT. Nevertheless, the lower target to non-target ratio may limit its use for in vivo measurement of the VAChT level in the brain.
Collapse
Affiliation(s)
- Xuyi Yue
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Zonghua Luo
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Kota Kaneshige
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Stanley M Parsons
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, United States; Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, United States.
| |
Collapse
|
48
|
Yousaf T, Pagano G, Wilson H, Politis M. Neuroimaging of Sleep Disturbances in Movement Disorders. Front Neurol 2018; 9:767. [PMID: 30323786 PMCID: PMC6141751 DOI: 10.3389/fneur.2018.00767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
Sleep dysfunction is recognized as a distinct clinical manifestation in movement disorders, often reported early on in the disease course. Excessive daytime sleepiness, rapid eye movement sleep behavior disorder and restless leg syndrome, amidst several others, are common sleep disturbances that often result in significant morbidity. In this article, we review the spectrum of sleep abnormalities across atypical Parkinsonian disorders including multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), as well as Parkinson's disease (PD) and Huntington's disease (HD). We also explore the current concepts on the neurobiological underpinnings of sleep disorders, including the role of dopaminergic and non-dopaminergic pathways, by evaluating the molecular, structural and functional neuroimaging evidence based on several novel techniques including magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Based on the current state of research, we suggest that neuroimaging is an invaluable tool for assessing structural and functional correlates of sleep disturbances, harboring the ability to shed light on the sleep problems attached to the limited treatment options available today. As our understanding of the pathophysiology of sleep and wake disruption heightens, novel therapeutic approaches are certain to transpire.
Collapse
Affiliation(s)
- Tayyabah Yousaf
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
49
|
Magnetic resonance imaging in Alzheimer's disease and mild cognitive impairment. J Neurol 2018; 266:1293-1302. [PMID: 30120563 PMCID: PMC6517561 DOI: 10.1007/s00415-018-9016-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 11/25/2022]
Abstract
Research utilizing magnetic resonance imaging (MRI) has been crucial to the understanding of the neuropathological mechanisms behind and clinical identification of Alzheimer’s disease (AD) and mild cognitive impairment (MCI). MRI modalities show patterns of brain damage that discriminate AD from other brain illnesses and brain abnormalities that are associated with risk of conversion to AD from MCI and other behavioural outcomes. This review discusses the application of various MRI techniques to and their clinical usefulness in AD and MCI. MRI modalities covered include structural MRI, diffusion tensor imaging (DTI), arterial spin labelling (ASL), magnetic resonance spectroscopy (MRS), and functional MRI (fMRI). There is much evidence supporting the validity of MRI as a biomarker for these disorders; however, only traditional structural imaging is currently recommended for routine use in clinical settings. Future research is needed to warrant the inclusion for more advanced MRI methodology in forthcoming revisions to diagnostic criteria for AD and MCI.
Collapse
|
50
|
Pilotto A, Premi E, Paola Caminiti S, Presotto L, Turrone R, Alberici A, Paghera B, Borroni B, Padovani A, Perani D. Single-subject SPM FDG-PET patterns predict risk of dementia progression in Parkinson disease. Neurology 2018; 90:e1029-e1037. [PMID: 29453242 DOI: 10.1212/wnl.0000000000005161] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To evaluate the statistical parametric mapping (SPM) procedure for fluorodeoxyglucose (FDG)-PET imaging as a possible single-subject marker of progression to dementia in Parkinson disease (PD). METHODS Fifty-four consecutive patients with PD without dementia (age at onset of 59.9 ± 10.1 years, disease duration of 5.3 ± 3.4 years) entered the study. The patients underwent an extensive motor and cognitive assessment and a single-subject FDG-PET SPM evaluation at baseline. A 4-year follow-up provided disease progression and dementia diagnosis. RESULTS The FDG-PET SPM was evaluated by 2 expert raters allowing the identification of a "typical PD pattern" in 29 patients, whereas 25 patients presented with "atypical patterns," namely, dementia with Lewy bodies (DLB)-like (n = 12), Alzheimer disease (AD)-like (n = 6), corticobasal syndrome (CBS)-like (n = 5), and frontotemporal dementia (FTD)-like (n = 2). At 4-year follow-up, 13 patients, all showing atypical brain metabolic patterns at baseline, progressed to dementia (PD dementia). The DLB- and AD-like SPM patterns were the best predictor for incident dementia (p < 0.005, sensitivity 85%, specificity 88%), independently from demographics or cognitive baseline classification. CONCLUSIONS This study suggests that FDG-PET SPM at the single-subject level might help in identifying patients with PD at risk of developing dementia.
Collapse
Affiliation(s)
- Andrea Pilotto
- From the Neurology Unit, Department of Clinical and Experimental Sciences (A. Pilotto, E.P., R.T., A.A., B.B., A. Padovani), and Nuclear Medicine Unit (B.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A. Pilotto), FERB ONLUS S.Isidoro Hospital, Trescore Balneario; Neurovascular Unit (E.P.), Brescia Hospital; and Vita-Salute San Raffaele University (S.P.C., D.P.), and Nuclear Medicine Unit, San Raffaele Hospital (L.P., D.P.), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| | - Enrico Premi
- From the Neurology Unit, Department of Clinical and Experimental Sciences (A. Pilotto, E.P., R.T., A.A., B.B., A. Padovani), and Nuclear Medicine Unit (B.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A. Pilotto), FERB ONLUS S.Isidoro Hospital, Trescore Balneario; Neurovascular Unit (E.P.), Brescia Hospital; and Vita-Salute San Raffaele University (S.P.C., D.P.), and Nuclear Medicine Unit, San Raffaele Hospital (L.P., D.P.), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Paola Caminiti
- From the Neurology Unit, Department of Clinical and Experimental Sciences (A. Pilotto, E.P., R.T., A.A., B.B., A. Padovani), and Nuclear Medicine Unit (B.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A. Pilotto), FERB ONLUS S.Isidoro Hospital, Trescore Balneario; Neurovascular Unit (E.P.), Brescia Hospital; and Vita-Salute San Raffaele University (S.P.C., D.P.), and Nuclear Medicine Unit, San Raffaele Hospital (L.P., D.P.), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Presotto
- From the Neurology Unit, Department of Clinical and Experimental Sciences (A. Pilotto, E.P., R.T., A.A., B.B., A. Padovani), and Nuclear Medicine Unit (B.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A. Pilotto), FERB ONLUS S.Isidoro Hospital, Trescore Balneario; Neurovascular Unit (E.P.), Brescia Hospital; and Vita-Salute San Raffaele University (S.P.C., D.P.), and Nuclear Medicine Unit, San Raffaele Hospital (L.P., D.P.), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Rosanna Turrone
- From the Neurology Unit, Department of Clinical and Experimental Sciences (A. Pilotto, E.P., R.T., A.A., B.B., A. Padovani), and Nuclear Medicine Unit (B.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A. Pilotto), FERB ONLUS S.Isidoro Hospital, Trescore Balneario; Neurovascular Unit (E.P.), Brescia Hospital; and Vita-Salute San Raffaele University (S.P.C., D.P.), and Nuclear Medicine Unit, San Raffaele Hospital (L.P., D.P.), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Alberici
- From the Neurology Unit, Department of Clinical and Experimental Sciences (A. Pilotto, E.P., R.T., A.A., B.B., A. Padovani), and Nuclear Medicine Unit (B.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A. Pilotto), FERB ONLUS S.Isidoro Hospital, Trescore Balneario; Neurovascular Unit (E.P.), Brescia Hospital; and Vita-Salute San Raffaele University (S.P.C., D.P.), and Nuclear Medicine Unit, San Raffaele Hospital (L.P., D.P.), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Paghera
- From the Neurology Unit, Department of Clinical and Experimental Sciences (A. Pilotto, E.P., R.T., A.A., B.B., A. Padovani), and Nuclear Medicine Unit (B.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A. Pilotto), FERB ONLUS S.Isidoro Hospital, Trescore Balneario; Neurovascular Unit (E.P.), Brescia Hospital; and Vita-Salute San Raffaele University (S.P.C., D.P.), and Nuclear Medicine Unit, San Raffaele Hospital (L.P., D.P.), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Borroni
- From the Neurology Unit, Department of Clinical and Experimental Sciences (A. Pilotto, E.P., R.T., A.A., B.B., A. Padovani), and Nuclear Medicine Unit (B.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A. Pilotto), FERB ONLUS S.Isidoro Hospital, Trescore Balneario; Neurovascular Unit (E.P.), Brescia Hospital; and Vita-Salute San Raffaele University (S.P.C., D.P.), and Nuclear Medicine Unit, San Raffaele Hospital (L.P., D.P.), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Padovani
- From the Neurology Unit, Department of Clinical and Experimental Sciences (A. Pilotto, E.P., R.T., A.A., B.B., A. Padovani), and Nuclear Medicine Unit (B.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A. Pilotto), FERB ONLUS S.Isidoro Hospital, Trescore Balneario; Neurovascular Unit (E.P.), Brescia Hospital; and Vita-Salute San Raffaele University (S.P.C., D.P.), and Nuclear Medicine Unit, San Raffaele Hospital (L.P., D.P.), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Perani
- From the Neurology Unit, Department of Clinical and Experimental Sciences (A. Pilotto, E.P., R.T., A.A., B.B., A. Padovani), and Nuclear Medicine Unit (B.P.), University of Brescia; Parkinson's Disease Rehabilitation Centre (A. Pilotto), FERB ONLUS S.Isidoro Hospital, Trescore Balneario; Neurovascular Unit (E.P.), Brescia Hospital; and Vita-Salute San Raffaele University (S.P.C., D.P.), and Nuclear Medicine Unit, San Raffaele Hospital (L.P., D.P.), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|