1
|
Ferrante M, Inglese M, Brusaferri L, Whitehead AC, Maccioni L, Turkheimer FE, Nettis MA, Mondelli V, Howes O, Loggia ML, Veronese M, Toschi N. Physically informed deep neural networks for metabolite-corrected plasma input function estimation in dynamic PET imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 256:108375. [PMID: 39180914 DOI: 10.1016/j.cmpb.2024.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/14/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION We propose a novel approach for the non-invasive quantification of dynamic PET imaging data, focusing on the arterial input function (AIF) without the need for invasive arterial cannulation. METHODS Our method utilizes a combination of three-dimensional depth-wise separable convolutional layers and a physically informed deep neural network to incorporatea priori knowledge about the AIF's functional form and shape, enabling precise predictions of the concentrations of [11C]PBR28 in whole blood and the free tracer in metabolite-corrected plasma. RESULTS We found a robust linear correlation between our model's predicted AIF curves and those obtained through traditional, invasive measurements. We achieved an average cross-validated Pearson correlation of 0.86 for whole blood and 0.89 for parent plasma curves. Moreover, our method's ability to estimate the volumes of distribution across several key brain regions - without significant differences between the use of predicted versus actual AIFs in a two-tissue compartmental model - successfully captures the intrinsic variability related to sex, the binding affinity of the translocator protein (18 kDa), and age. CONCLUSIONS These results not only validate our method's accuracy and reliability but also establish a foundation for a streamlined, non-invasive approach to dynamic PET data quantification. By offering a precise and less invasive alternative to traditional quantification methods, our technique holds significant promise for expanding the applicability of PET imaging across a wider range of tracers, thereby enhancing its utility in both clinical research and diagnostic settings.
Collapse
Affiliation(s)
- Matteo Ferrante
- Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Rome, Italy.
| | - Marianna Inglese
- Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Rome, Italy.
| | - Ludovica Brusaferri
- Athinoula A. Martinos Center For Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, USA; Department of Computer Science and Informatics, School of Engineering, London South Bank University, London, UK
| | | | - Lucia Maccioni
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Federico E Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychology, Psychiatry and Neuroscience (IoPPN), King's College London, London, UK
| | - Maria A Nettis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver Howes
- Psychosis Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marco L Loggia
- Athinoula A. Martinos Center For Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome, Tor Vergata, Rome, Italy; Athinoula A. Martinos Center For Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Emvalomenos GM, Kang JWM, Jupp B, Mychasiuk R, Keay KA, Henderson LA. Recent developments and challenges in positron emission tomography imaging of gliosis in chronic neuropathic pain. Pain 2024; 165:2184-2199. [PMID: 38713812 DOI: 10.1097/j.pain.0000000000003247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Understanding the mechanisms that underpin the transition from acute to chronic pain is critical for the development of more effective and targeted treatments. There is growing interest in the contribution of glial cells to this process, with cross-sectional preclinical studies demonstrating specific changes in these cell types capturing targeted timepoints from the acute phase and the chronic phase. In vivo longitudinal assessment of the development and evolution of these changes in experimental animals and humans has presented a significant challenge. Recent technological advances in preclinical and clinical positron emission tomography, including the development of specific radiotracers for gliosis, offer great promise for the field. These advances now permit tracking of glial changes over time and provide the ability to relate these changes to pain-relevant symptomology, comorbid psychiatric conditions, and treatment outcomes at both a group and an individual level. In this article, we summarize evidence for gliosis in the transition from acute to chronic pain and provide an overview of the specific radiotracers available to measure this process, highlighting their potential, particularly when combined with ex vivo / in vitro techniques, to understand the pathophysiology of chronic neuropathic pain. These complementary investigations can be used to bridge the existing gap in the field concerning the contribution of gliosis to neuropathic pain and identify potential targets for interventions.
Collapse
Affiliation(s)
- Gaelle M Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - James W M Kang
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Bianca Jupp
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Luke A Henderson
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Salerno S, Viviano M, Baglini E, Poggetti V, Giorgini D, Castagnoli J, Barresi E, Castellano S, Da Settimo F, Taliani S. TSPO Radioligands for Neuroinflammation: An Overview. Molecules 2024; 29:4212. [PMID: 39275061 PMCID: PMC11397380 DOI: 10.3390/molecules29174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The translocator protein (TSPO) is predominately localized on the outer mitochondrial membrane in steroidogenic cells. In the brain, TSPO expression, low under normal conditions, results upregulated in response to glial cell activation, that occurs in neuroinflammation. As a consequence, TSPO has been extensively studied as a biomarker of such conditions by means of TSPO-targeted radiotracers. Although [11C]-PK11195, the prototypical TSPO radioligand, is still widely used for in vivo studies, it is endowed with severe limitations, mainly low sensitivity and poor amenability to quantification. Consequently, several efforts have been focused on the design of new radiotracers for the in vivo imaging of TSPO. The present review will provide an outlook on the latest advances in TSPO radioligands for neuroinflammation imaging. The final goal is to pave the way for (radio)chemists in the future design and development of novel effective and sensitive radiopharmaceuticals targeting TSPO.
Collapse
Affiliation(s)
- Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| |
Collapse
|
4
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
5
|
Maccioni L, Michelle CM, Brusaferri L, Silvestri E, Bertoldo A, Schubert JJ, Nettis MA, Mondelli V, Howes O, Turkheimer FE, Bottlaender M, Bodini B, Stankoff B, Loggia ML, Veronese M. A blood-free modeling approach for the quantification of the blood-to-brain tracer exchange in TSPO PET imaging. Front Neurosci 2024; 18:1395769. [PMID: 39104610 PMCID: PMC11299498 DOI: 10.3389/fnins.2024.1395769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Recent evidence suggests the blood-to-brain influx rate (K1 ) in TSPO PET imaging as a promising biomarker of blood-brain barrier (BBB) permeability alterations commonly associated with peripheral inflammation and heightened immune activity in the brain. However, standard compartmental modeling quantification is limited by the requirement of invasive and laborious procedures for extracting an arterial blood input function. In this study, we validate a simplified blood-free methodologic framework for K1 estimation by fitting the early phase tracer dynamics using a single irreversible compartment model and an image-derived input function (1T1K-IDIF). Methods The method is tested on a multi-site dataset containing 177 PET studies from two TSPO tracers ([11C]PBR28 and [18F]DPA714). Firstly, 1T1K-IDIF K1 estimates were compared in terms of both bias and correlation with standard kinetic methodology. Then, the method was tested on an independent sample of [11C]PBR28 scans before and after inflammatory interferon-α challenge, and on test-retest dataset of [18F]DPA714 scans. Results Comparison with standard kinetic methodology showed good-to-excellent intra-subject correlation for regional 1T1K-IDIF-K1 (ρintra = 0.93 ± 0.08), although the bias was variable depending on IDIF ability to approximate blood input functions (0.03-0.39 mL/cm3/min). 1T1K-IDIF-K1 unveiled a significant reduction of BBB permeability after inflammatory interferon-α challenge, replicating results from standard quantification. High intra-subject correlation (ρ = 0.97 ± 0.01) was reported between K1 estimates of test and retest scans. Discussion This evidence supports 1T1K-IDIF as blood-free alternative to assess TSPO tracers' unidirectional blood brain clearance. K1 investigation could complement more traditional measures in TSPO studies, and even allow further mechanistic insight in the interpretation of TSPO signal.
Collapse
Affiliation(s)
- Lucia Maccioni
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Carranza Mellana Michelle
- Department of Information Engineering, University of Padova, Padova, Italy
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Ludovica Brusaferri
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Computer Science and Informatics, School of Engineering, London South Bank University, London, United Kingdom
| | - Erica Silvestri
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Julia J. Schubert
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Maria A. Nettis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Valeria Mondelli
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Federico E. Turkheimer
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Michel Bottlaender
- BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS Inserm, Université Paris-Saclay, Orsay, France
| | - Benedetta Bodini
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Bruno Stankoff
- Paris Brain Institute, ICM, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Mattia Veronese
- Department of Information Engineering, University of Padova, Padova, Italy
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| |
Collapse
|
6
|
Rossano SM, Johnson AS, Smith A, Ziaggi G, Roetman A, Guzman D, Okafor A, Klein J, Tomljanovic Z, Stern Y, Brickman AM, Lee S, Kreisl WC, Lao P. Microglia measured by TSPO PET are associated with Alzheimer's disease pathology and mediate key steps in a disease progression model. Alzheimers Dement 2024; 20:2397-2407. [PMID: 38298155 PMCID: PMC11032543 DOI: 10.1002/alz.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Evidence suggests microglial activation precedes regional tau and neurodegeneration in Alzheimer's disease (AD). We characterized microglia with translocator protein (TSPO) positron emission tomography (PET) within an AD progression model where global amyloid beta (Aβ) precedes local tau and neurodegeneration, resulting in cognitive impairment. METHODS Florbetaben, PBR28, and MK-6240 PET, T1 magnetic resonance imaging, and cognitive measures were performed in 19 cognitively unimpaired older adults and 22 patients with mild cognitive impairment or mild AD to examine associations among microglia activation, Aβ, tau, and cognition, adjusting for neurodegeneration. Mediation analyses evaluated the possible role of microglial activation along the AD progression model. RESULTS Higher PBR28 uptake was associated with higher Aβ, higher tau, and lower MMSE score, independent of neurodegeneration. PBR28 mediated associations between tau in early and middle Braak stages, between tau and neurodegeneration, and between neurodegeneration and cognition. DISCUSSION Microglia are associated with AD pathology and cognition and may mediate relationships between subsequent steps in AD progression.
Collapse
Affiliation(s)
- Samantha M. Rossano
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Aubrey S. Johnson
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Anna Smith
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Galen Ziaggi
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Andrew Roetman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Diana Guzman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Amarachukwu Okafor
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Julia Klein
- Department of Anesthesiology and Perioperative MedicineUniversity of California Los Angeles HealthLos AngelesCaliforniaUSA
| | - Zeljko Tomljanovic
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Yaakov Stern
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Adam M. Brickman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Seonjoo Lee
- Department of Psychiatry and BiostatisticsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - William C. Kreisl
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Patrick Lao
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
7
|
Mantovani DBA, Pitombeira MS, Schuck PN, de Araújo AS, Buchpiguel CA, de Paula Faria D, M da Silva AM. Evaluation of Non-Invasive Methods for (R)-[ 11C]PK11195 PET Image Quantification in Multiple Sclerosis. J Imaging 2024; 10:39. [PMID: 38392087 PMCID: PMC10889702 DOI: 10.3390/jimaging10020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
This study aims to evaluate non-invasive PET quantification methods for (R)-[11C]PK11195 uptake measurement in multiple sclerosis (MS) patients and healthy controls (HC) in comparison with arterial input function (AIF) using dynamic (R)-[11C]PK11195 PET and magnetic resonance images. The total volume of distribution (VT) and distribution volume ratio (DVR) were measured in the gray matter, white matter, caudate nucleus, putamen, pallidum, thalamus, cerebellum, and brainstem using AIF, the image-derived input function (IDIF) from the carotid arteries, and pseudo-reference regions from supervised clustering analysis (SVCA). Uptake differences between MS and HC groups were tested using statistical tests adjusted for age and sex, and correlations between the results from the different quantification methods were also analyzed. Significant DVR differences were observed in the gray matter, white matter, putamen, pallidum, thalamus, and brainstem of MS patients when compared to the HC group. Also, strong correlations were found in DVR values between non-invasive methods and AIF (0.928 for IDIF and 0.975 for SVCA, p < 0.0001). On the other hand, (R)-[11C]PK11195 uptake could not be differentiated between MS patients and HC using VT values, and a weak correlation (0.356, p < 0.0001) was found between VTAIF and VTIDIF. Our study shows that the best alternative for AIF is using SVCA for reference region modeling, in addition to a cautious and appropriate methodology.
Collapse
Affiliation(s)
| | - Milena S Pitombeira
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | | | - Adriel S de Araújo
- Graduate Program in Computer Science, Pontificia Universidade Catolica do Rio Grande do Sul PUCRS, Porto Alegre 90619-900, Brazil
| | - Carlos Alberto Buchpiguel
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Daniele de Paula Faria
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Ana Maria M da Silva
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| |
Collapse
|
8
|
Butler T, Wang X, Chiang G, Xi K, Niogi S, Glodzik L, Li Y, Razlighi QR, Zhou L, Hojjati SH, Ozsahin I, Mao X, Maloney T, Tanzi E, Rahmouni N, Tissot C, Lussier F, Shah S, Shungu D, Gupta A, De Leon M, Mozley PD, Pascoal TA, Rosa-Neto P. Reduction in Constitutively Activated Auditory Brainstem Microglia in Aging and Alzheimer's Disease. J Alzheimers Dis 2024; 99:307-319. [PMID: 38669537 DOI: 10.3233/jad-231312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Alzheimer's disease (AD) pathology is considered to begin in the brainstem, and cerebral microglia are known to play a critical role in AD pathogenesis, yet little is known about brainstem microglia in AD. Translocator protein (TSPO) PET, sensitive to activated microglia, shows high signal in dorsal brainstem in humans, but the precise location and clinical correlates of this signal are unknown. Objective To define age and AD associations of brainstem TSPO PET signal in humans. Methods We applied new probabilistic maps of brainstem nuclei to quantify PET-measured TSPO expression over the whole brain including brainstem in 71 subjects (43 controls scanned using 11C-PK11195; 20 controls and 8 AD subjects scanned using 11C-PBR28). We focused on inferior colliculi (IC) because of visually-obvious high signal in this region, and potential relevance to auditory dysfunction in AD. We also assessed bilateral cortex. Results TSPO expression was normally high in IC and other brainstem regions. IC TSPO was decreased with aging (p = 0.001) and in AD subjects versus controls (p = 0.004). In cortex, TSPO expression was increased with aging (p = 0.030) and AD (p = 0.033). Conclusions Decreased IC TSPO expression with aging and AD-an opposite pattern than in cortex-highlights underappreciated regional heterogeneity in microglia phenotype, and implicates IC in a biological explanation for strong links between hearing loss and AD. Unlike in cerebrum, where TSPO expression is considered pathological, activated microglia in IC and other brainstem nuclei may play a beneficial, homeostatic role. Additional study of brainstem microglia in aging and AD is needed.
Collapse
Affiliation(s)
- Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Xiuyuan Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Gloria Chiang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ke Xi
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Sumit Niogi
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Li
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Liangdong Zhou
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Ilker Ozsahin
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas Maloney
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Emily Tanzi
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montréal, QC, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montréal, QC, Canada
| | - Firoza Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montréal, QC, Canada
| | - Sudhin Shah
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Dikoma Shungu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Mony De Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Tharick A Pascoal
- Departments of Neurology and Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montréal, QC, Canada
| |
Collapse
|
9
|
Ottoy J, De Picker L, Kang MS. Microglial Positron Emission Tomography Imaging In Vivo : Positron Emission Tomography Radioligands: Utility in Research and Clinical Practice. ADVANCES IN NEUROBIOLOGY 2024; 37:579-589. [PMID: 39207714 DOI: 10.1007/978-3-031-55529-9_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS) play a key role in regulating and maintaining homeostasis in the brain. However, the CNS is also vulnerable to infections and inflammatory processes. In response to CNS perturbations, microglia become reactive, notably with expression of the translocator protein (TSPO), primarily on their outer mitochondrial membrane. Despite TSPO being commonly used as a marker for microglia, it is also present in other cell types such as astrocytes. Positron emission tomography (PET) ligands that target the TSPO enable the noninvasive detection and quantification of glial reactivity. While some limitations were raised, TSPO PET remains an attractive biomarker of CNS infection and inflammation. This book chapter delves into the development and application of microglial PET imaging with a focus on the TSPO PET. First, we provide an overview of the evolution of TSPO PET radioligands from first-generation to second-generation ligands and their applications in studying neuroinflammation (or CNS inflammation). Subsequently, we discuss the limitations and challenges associated with TSPO PET. Then we go on to explore non-TSPO targets for microglial PET imaging. Finally, we conclude with future directions for research and clinical practice in this field.
Collapse
Affiliation(s)
- Julie Ottoy
- Dr. Sandra E. Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Psychiatric Hospital Campus Duffel, Duffel, Belgium
| | - Min Su Kang
- Dr. Sandra E. Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Cheval M, Rodrigo S, Taussig D, Caillé F, Petrescu AM, Bottlaender M, Tournier N, Besson FL, Leroy C, Bouilleret V. [ 18F]DPA-714 PET Imaging in the Presurgical Evaluation of Patients With Drug-Resistant Focal Epilepsy. Neurology 2023; 101:e1893-e1904. [PMID: 37748889 PMCID: PMC10663012 DOI: 10.1212/wnl.0000000000207811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Translocator protein 18 kDa (TSPO) PET imaging is used to monitor glial activation. Recent studies have proposed TSPO PET as a marker of the epileptogenic zone (EZ) in drug-resistant focal epilepsy (DRFE). This study aims to assess the contributions of TSPO imaging using [18F]DPA-714 PET and [18F]FDG PET for localizing the EZ during presurgical assessment of DRFE, when phase 1 presurgical assessment does not provide enough information. METHODS We compared [18F]FDG and [18F]DPA-714 PET images of 23 patients who had undergone a phase 1 presurgical assessment, using qualitative visual analysis and quantitative analysis, at both the voxel and the regional levels. PET abnormalities (increase in binding for [18F]DPA-714 vs decrease in binding for [18F]FDG) were compared with clinical hypotheses concerning the localization of the EZ based on phase 1 presurgical assessment. The additional value of [18F]DPA-714 PET imaging to [18F]FDG for refining the localization of the EZ was assessed. To strengthen the visual analysis, [18F]DPA-714 PET imaging was also reviewed by 2 experienced clinicians blind to the EZ location. RESULTS The study included 23 patients. Visual analysis of [18F]DPA-714 PET was significantly more accurate than [18F]FDG PET to both, show anomalies (95.7% vs 56.5%, p = 0.022), and provide additional information to refine the EZ localization (65.2% vs 17.4%, p = 0.019). All 10 patients with normal [18F]FDG PET had anomalies when using [18F]DPA-714 PET. The additional value of [18F]DPA-714 PET seemed to be greater in patients with normal brain MRI or with neocortical EZ (especially if insula is involved). Regional analysis of [18F]DPA-714 and [18F]FDG PET provided similar results. However, using voxel-wise analysis, [18F]DPA-714 was more effective than [18F]FDG for unveiling clusters whose localization was more often consistent with the EZ hypothesis (87.0% vs 39.1%, p = 0.019). Nonrelevant bindings were seen in 14 of 23 patients in visual analysis and 9 patients of 23 patients in voxel-wise analysis. DISCUSSION [18F]DPA-714 PET imaging provides valuable information for presurgical assessments of patients with DRFE. TSPO PET could become an additional tool to help to the localization of the EZ, especially in patients with negative [18F]FDG PET. TRIAL REGISTRATION INFORMATION Eudract 2017-003381-27. Inclusion of the first patient: September 24, 2018. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence on the utility of [18F]DPA-714 PET compared with [18F]FDG PET in identifying the epileptic zone in patients undergoing phase 1 presurgical evaluation for intractable epilepsy.
Collapse
Affiliation(s)
- Margaux Cheval
- From the Université Paris-Saclay (M.C., C.L., M.B., N.T.); BioMAPS (S.R., F.C., F.L.B.); Bicetre University Hospital (D.T., A.M.P.), Paris; and Imagerie Moléculaire In Vivo (V.B.), SHFJ, CEA, Orsay, France.
| | - Sebastian Rodrigo
- From the Université Paris-Saclay (M.C., C.L., M.B., N.T.); BioMAPS (S.R., F.C., F.L.B.); Bicetre University Hospital (D.T., A.M.P.), Paris; and Imagerie Moléculaire In Vivo (V.B.), SHFJ, CEA, Orsay, France
| | - Delphine Taussig
- From the Université Paris-Saclay (M.C., C.L., M.B., N.T.); BioMAPS (S.R., F.C., F.L.B.); Bicetre University Hospital (D.T., A.M.P.), Paris; and Imagerie Moléculaire In Vivo (V.B.), SHFJ, CEA, Orsay, France
| | - Fabien Caillé
- From the Université Paris-Saclay (M.C., C.L., M.B., N.T.); BioMAPS (S.R., F.C., F.L.B.); Bicetre University Hospital (D.T., A.M.P.), Paris; and Imagerie Moléculaire In Vivo (V.B.), SHFJ, CEA, Orsay, France
| | - Ana Maria Petrescu
- From the Université Paris-Saclay (M.C., C.L., M.B., N.T.); BioMAPS (S.R., F.C., F.L.B.); Bicetre University Hospital (D.T., A.M.P.), Paris; and Imagerie Moléculaire In Vivo (V.B.), SHFJ, CEA, Orsay, France
| | - Michel Bottlaender
- From the Université Paris-Saclay (M.C., C.L., M.B., N.T.); BioMAPS (S.R., F.C., F.L.B.); Bicetre University Hospital (D.T., A.M.P.), Paris; and Imagerie Moléculaire In Vivo (V.B.), SHFJ, CEA, Orsay, France
| | - Nicolas Tournier
- From the Université Paris-Saclay (M.C., C.L., M.B., N.T.); BioMAPS (S.R., F.C., F.L.B.); Bicetre University Hospital (D.T., A.M.P.), Paris; and Imagerie Moléculaire In Vivo (V.B.), SHFJ, CEA, Orsay, France
| | - Florent L Besson
- From the Université Paris-Saclay (M.C., C.L., M.B., N.T.); BioMAPS (S.R., F.C., F.L.B.); Bicetre University Hospital (D.T., A.M.P.), Paris; and Imagerie Moléculaire In Vivo (V.B.), SHFJ, CEA, Orsay, France
| | - Claire Leroy
- From the Université Paris-Saclay (M.C., C.L., M.B., N.T.); BioMAPS (S.R., F.C., F.L.B.); Bicetre University Hospital (D.T., A.M.P.), Paris; and Imagerie Moléculaire In Vivo (V.B.), SHFJ, CEA, Orsay, France
| | - Viviane Bouilleret
- From the Université Paris-Saclay (M.C., C.L., M.B., N.T.); BioMAPS (S.R., F.C., F.L.B.); Bicetre University Hospital (D.T., A.M.P.), Paris; and Imagerie Moléculaire In Vivo (V.B.), SHFJ, CEA, Orsay, France
| |
Collapse
|
11
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
12
|
De Picker LJ, Morrens M, Branchi I, Haarman BCM, Terada T, Kang MS, Boche D, Tremblay ME, Leroy C, Bottlaender M, Ottoy J. TSPO PET brain inflammation imaging: A transdiagnostic systematic review and meta-analysis of 156 case-control studies. Brain Behav Immun 2023; 113:415-431. [PMID: 37543251 DOI: 10.1016/j.bbi.2023.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/26/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
INTRODUCTION The 18-kDa translocator protein (TSPO) is increasingly recognized as a molecular target for PET imaging of inflammatory responses in various central nervous system (CNS) disorders. However, the reported sensitivity and specificity of TSPO PET to identify brain inflammatory processes appears to vary greatly across disorders, disease stages, and applied quantification methods. To advance TSPO PET as a potential biomarker to evaluate brain inflammation and anti-inflammatory therapies, a better understanding of its applicability across disorders is needed. We conducted a transdiagnostic systematic review and meta-analysis of all in vivo human TSPO PET imaging case-control studies in the CNS. Specifically, we investigated the direction, strength, and heterogeneity associated with the TSPO PET signal across disorders in pre-specified brain regions, and explored the demographic and methodological sources of heterogeneity. METHODS We searched for English peer-reviewed articles that reported in vivo human case-control TSPO PET differences. We extracted the demographic details, TSPO PET outcomes, and technical variables of the PET procedure. A random-effects meta-analysis was applied to estimate case-control standardized mean differences (SMD) of the TSPO PET signal in the lobar/whole-brain cortical grey matter (cGM), thalamus, and cortico-limbic circuitry between different illness categories. Heterogeneity was evaluated with the I2 statistic and explored using subgroup and meta-regression analyses for radioligand generation, PET quantification method, age, sex, and publication year. Significance was set at the False Discovery Rate (FDR)-corrected P < 0.05. RESULTS 156 individual case-control studies were included in the systematic review, incorporating data for 2381 healthy controls and 2626 patients. 139 studies documented meta-analysable data and were grouped into 11 illness categories. Across all the illness categories, we observed a significantly higher TSPO PET signal in cases compared to controls for the cGM (n = 121 studies, SMD = 0.358, PFDR < 0.001, I2 = 68%), with a significant difference between the illness categories (P = 0.004). cGM increases were only significant for Alzheimer's disease (SMD = 0.693, PFDR < 0.001, I2 = 64%) and other neurodegenerative disorders (SMD = 0.929, PFDR < 0.001, I2 = 73%). Cortico-limbic increases (n = 97 studies, SMD = 0.541, P < 0.001, I2 = 67%) were most prominent for Alzheimer's disease, mild cognitive impairment, other neurodegenerative disorders, mood disorders and multiple sclerosis. Thalamic involvement (n = 79 studies, SMD = 0.393, P < 0.001, I2 = 71%) was observed for Alzheimer's disease, other neurodegenerative disorders, multiple sclerosis, and chronic pain and functional disorders (all PFDR < 0.05). Main outcomes for systemic immunological disorders, viral infections, substance use disorders, schizophrenia and traumatic brain injury were not significant. We identified multiple sources of between-study variance to the TSPO PET signal including a strong transdiagnostic effect of the quantification method (explaining 25% of between-study variance; VT-based SMD = 0.000 versus reference tissue-based studies SMD = 0.630; F = 20.49, df = 1;103, P < 0.001), patient age (9% of variance), and radioligand generation (5% of variance). CONCLUSION This study is the first overarching transdiagnostic meta-analysis of case-control TSPO PET findings in humans across several brain regions. We observed robust increases in the TSPO signal for specific types of disorders, which were widespread or focal depending on illness category. We also found a large and transdiagnostic horizontal (positive) shift of the effect estimates of reference tissue-based compared to VT-based studies. Our results can support future studies to optimize experimental design and power calculations, by taking into account the type of disorder, brain region-of-interest, radioligand, and quantification method.
Collapse
Affiliation(s)
- Livia J De Picker
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium.
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tatsuhiro Terada
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Min Su Kang
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, UK
| | - Marie-Eve Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, BC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Claire Leroy
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Orsay, France
| | - Michel Bottlaender
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Orsay, France; Université Paris-Saclay, UNIACT, Neurospin, CEA, Gif-sur-Yvette, France
| | - Julie Ottoy
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Peyronneau MA, Kuhnast B, Nguyen DL, Jego B, Sayet G, Caillé F, Lavisse S, Gervais P, Stankoff B, Sarazin M, Remy P, Bouilleret V, Leroy C, Bottlaender M. [ 18F]DPA-714: Effect of co-medications, age, sex, BMI and TSPO polymorphism on the human plasma input function. Eur J Nucl Med Mol Imaging 2023; 50:3251-3264. [PMID: 37291448 DOI: 10.1007/s00259-023-06286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE We aimed to assess the effect of concomitant medication, age, sex, body mass index and 18-kDa translocator protein (TSPO) binding affinity status on the metabolism and plasma pharmacokinetics of [18F]DPA-714 and their influence on the plasma input function in a large cohort of 201 subjects who underwent brain and whole-body PET imaging to investigate the role of neuroinflammation in neurological diseases. METHODS The non-metabolized fraction of [18F]DPA-714 was estimated in venous plasma of 138 patients and 63 healthy controls (HCs; including additional arterial sampling in 16 subjects) during the 90 min brain PET acquisition using a direct solid-phase extraction method. The mean fraction between 70 and 90 min post-injection ([18F]DPA-71470-90) and corresponding normalized plasma concentration (SUV70-90) were correlated with all factors using a multiple linear regression model. Differences between groups (arterial vs venous measurements; HCs vs patients; high- (HAB), mixed- (MAB) and low-affinity binders (LAB); subjects with vs without co-medications, females vs males were also assessed using the non-parametric Mann-Whitney or Kruskal-Wallis ANOVA tests. Finally, the impact of co-medications on the brain uptake of [18F]DPA-714 at equilibrium was investigated. RESULTS As no significant differences were observed between arterial and venous [18F]DPA-71470-90 and SUV70-90, venous plasma was used for correlations. [18F]DPA-71470-90 was not significantly different between patients and HCS (59.7 ± 12.3% vs 60.2 ± 12.9%) despite high interindividual variability. However, 47 subjects exhibiting a huge increase or decrease of [18F]DPA-71470-90 (up to 88% or down to 23%) and SUV70-90 values (2-threefold) were found to receive co-medications identified as inhibitors or inducers of CYP3A4, known to catalyse [18F]DPA-714 metabolism. Comparison between cortex-to-plasma ratios using individual input function (VTIND) or population-based input function derived from untreated HCs (VTPBIF) indicated that non-considering the individual metabolism rate led to a bias of about 30% in VT values. Multiple linear regression model analysis of subjects free of these co-medications suggested significant correlations between [18F]DPA-71470-90 and age, BMI and sex while TSPO polymorphism did not influence the metabolism of the radiotracer. [18F]DPA-714 metabolism fell with age and BMI and was significantly faster in females than in males. Whole-body PET/CT exhibited a high uptake of the tracer in TSPO-rich organs (heart wall, spleen, kidneys…) and those involved in metabolism and excretion pathways (liver, gallbladder) in HAB and MAB with a strong decrease in LAB (-89% and -85%) resulting in tracer accumulation in plasma (4.5 and 3.3-fold increase). CONCLUSION Any co-medication that inhibits or induces CYP3A4 as well as TSPO genetic status, age, BMI and sex mostly contribute to interindividual variations of the radiotracer metabolism and/or concentration that may affect the input function of [18F]DPA-714 and consequently its human brain and peripheral uptake. TRIAL REGISTRATION INFLAPARK, NCT02319382, registered December 18, 2014, retrospectively registered; IMABIO 3, NCT01775696, registered January 25, 2013, retrospectively registered; INFLASEP, NCT02305264, registered December 2, 2014, retrospectively registered; EPI-TEP, EudraCT 2017-003381-27, registered September 24, 2018.
Collapse
Affiliation(s)
- M A Peyronneau
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France.
| | - B Kuhnast
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - D-L Nguyen
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - B Jego
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - G Sayet
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - F Caillé
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - S Lavisse
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, F-92265, Fontenay-Aux-Roses, France
| | - P Gervais
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - B Stankoff
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de La Moelle Epinière, Hôpital de La Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | - M Sarazin
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Service de Neurologie de La Mémoire Et du Langage, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - P Remy
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, F-92265, Fontenay-Aux-Roses, France
- Centre Expert Parkinson, Neurologie, Hôpital Henri Mondor, AP-HP, F-94010, Créteil, France
- Université Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010, Créteil, France
- Département d'Etudes Cognitives, École Normale Supérieure, Université PSL, F-75005, Paris, France
| | - V Bouilleret
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Service de Neurophysiologie Clinique et d'Epileptologie, Hôpital Bicêtre, AP-HP, Université Paris Saclay, F-94270, Le Kremlin-Bicêtre, France
| | - C Leroy
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - M Bottlaender
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Université Paris Saclay, UNIACT, Neurospin, CEA, Gif-Sur-Yvette, F-91190, France
| |
Collapse
|
14
|
Butler T, Wang XH, Chiang GC, Li Y, Zhou L, Xi K, Wickramasuriya N, Tanzi E, Spector E, Ozsahin I, Mao X, Razlighi QR, Fung EK, Dyke JP, Maloney T, Gupta A, Raj A, Shungu DC, Mozley PD, Rusinek H, Glodzik L. Choroid Plexus Calcification Correlates with Cortical Microglial Activation in Humans: A Multimodal PET, CT, MRI Study. AJNR Am J Neuroradiol 2023; 44:776-782. [PMID: 37321857 PMCID: PMC10337614 DOI: 10.3174/ajnr.a7903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND PURPOSE The choroid plexus (CP) within the brain ventricles is well-known to produce cerebrospinal fluid (CSF). Recently, the CP has been recognized as critical in modulating inflammation. MRI-measured CP enlargement has been reported in neuroinflammatory disorders like MS as well as with aging and neurodegeneration. The basis of MRI-measured CP enlargement is unknown. On the basis of tissue studies demonstrating CP calcification as a common pathology associated with aging and disease, we hypothesized that previously unmeasured CP calcification contributes to MRI-measured CP volume and may be more specifically associated with neuroinflammation. MATERIALS AND METHODS We analyzed 60 subjects (43 healthy controls and 17 subjects with Parkinson's disease) who underwent PET/CT using 11C-PK11195, a radiotracer sensitive to the translocator protein expressed by activated microglia. Cortical inflammation was quantified as nondisplaceable binding potential. Choroid plexus calcium was measured via manual tracing on low-dose CT acquired with PET and automatically using a new CT/MRI method. Linear regression assessed the contribution of choroid plexus calcium, age, diagnosis, sex, overall volume of the choroid plexus, and ventricle volume to cortical inflammation. RESULTS Fully automated choroid plexus calcium quantification was accurate (intraclass correlation coefficient with manual tracing = .98). Subject age and choroid plexus calcium were the only significant predictors of neuroinflammation. CONCLUSIONS Choroid plexus calcification can be accurately and automatically quantified using low-dose CT and MRI. Choroid plexus calcification-but not choroid plexus volume-predicted cortical inflammation. Previously unmeasured choroid plexus calcium may explain recent reports of choroid plexus enlargement in human inflammatory and other diseases. Choroid plexus calcification may be a specific and relatively easily acquired biomarker for neuroinflammation and choroid plexus pathology in humans.
Collapse
Affiliation(s)
- T Butler
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - X H Wang
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - G C Chiang
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - Y Li
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - L Zhou
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - K Xi
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - N Wickramasuriya
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - E Tanzi
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - E Spector
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - I Ozsahin
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - X Mao
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - Q R Razlighi
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - E K Fung
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - J P Dyke
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - T Maloney
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - A Gupta
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - A Raj
- Department of Radiology (A.R.), University of California, San Francisco, San Francisco, California
| | - D C Shungu
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - P D Mozley
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - H Rusinek
- Department of Radiology (H.R.), New York University, New York, New York
| | - L Glodzik
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| |
Collapse
|
15
|
Tan Z, Haider A, Zhang S, Chen J, Wei J, Liao K, Li G, Wei H, Dong C, Ran W, Li Y, Li Y, Rong J, Li Y, Liang SH, Xu H, Wang L. Quantitative assessment of translocator protein (TSPO) in the non-human primate brain and clinical translation of [ 18F]LW223 as a TSPO-targeted PET radioligand. Pharmacol Res 2023; 189:106681. [PMID: 36746361 DOI: 10.1016/j.phrs.2023.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Translocator protein 18 kDa (TSPO) positron emission tomography (PET) can be harnessed for the non-invasive detection of macrophage-driven inflammation. [18F]LW223, a newly reported TSPO PET tracer which was insensitive to rs6971 polymorphism, showed favorable performance characteristics in a recent imaging study involving a rat myocardial infarction model. To enable quantitative neuroimaging with [18F]LW223, we conducted kinetic analysis in the non-human primate (NHP) brain. Further, we sought to assess the utility of [18F]LW223-based TSPO imaging in a first-in-human study. METHODS Radiosynthesis of [18F]LW223 was accomplished on an automated module, whereas molar activities, stability in formulation, lipophilicity and unbound free fraction (fu) of the probe were measured. Brain penetration and target specificity of [18F]LW223 in NHPs were corroborated by PET-MR imaging under baseline and pre-blocking conditions using the validated TSPO inhibitor, (R)-PK11195, at doses ranging from 5 to 10 mg/kg. Kinetic modeling was performed using one-tissue compartment model (1TCM), two-tissue compartment model (2TCM) and Logan graphical analyses, using dynamic PET data acquisition, arterial blood collection and metabolic stability testing. Clinical PET scans were performed in two healthy volunteers (HVs). Regional brain standard uptake value ratio (SUVr) was assessed for different time intervals. RESULTS [18F]LW223 was synthesized in non-decay corrected radiochemical yields (n.d.c. RCYs) of 33.3 ± 6.5% with molar activities ranging from 1.8 ± 0.7 Ci/µmol (n = 11). [18F]LW223 was stable in formulation for up to 4 h and LogD7.4 of 2.31 ± 0.13 (n = 6) and fu of 5.80 ± 1.42% (n = 6) were determined. [18F]LW223 exhibited good brain penetration in NHPs, with a peak SUV value of ca. 1.79 in the whole brain. Pre-treatment with (R)-PK11195 substantially accelerated the washout and attenuated the area under the time-activity curve, indicating in vivo specificity of [18F]LW223 towards TSPO. Kinetic modeling demonstrated that 2TCM was the most suitable model for [18F]LW223-based neuroimaging. Global transfer rate constants (K1) and total volumes of distribution (VT) were found to be 0.10 ± 0.01 mL/cm3/min and 2.30 ± 0.17 mL/cm3, respectively. Dynamic PET data analyses across distinct time windows revealed that the VT values were relatively stable after 60 min post-injection. In a preliminary clinical study with two healthy volunteers, [18F]LW223 exhibited good brain uptake and considerable tracer retention across all analyzed brain regions. Of note, an excellent correlation between SUVr with VT was obtained when assessing the time interval from 20 to 40 min post tracer injection (SUVr(20-40 min), R2 = 0.94, p < 0.0001), suggesting this time window may be suitable to estimate specific binding to TSPO in human brain. CONCLUSION Our findings indicate that [18F]LW223 is suitable for quantitative TSPO-targeted PET imaging in higher species. Employing state-of-the-art kinetic modeling, we found that [18F]LW223 was effective in mapping TSPO throughout the NHP brain, with best model fits obtained from 2TCM and Logan graphical analyses. Overall, our results indicate that [18F]LW223 exhibits favorable tracer performance characteristics in higher species, and this novel imaging tool may hold promise to provide effective neuroinflammation imaging in patients with neurological disease.
Collapse
Affiliation(s)
- Zhiqiang Tan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Junjie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wenqing Ran
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co. Ltd., Guangzhou 510555, China
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA.
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
16
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
17
|
Du J, Jones T. Technical opportunities and challenges in developing total-body PET scanners for mice and rats. EJNMMI Phys 2023; 10:2. [PMID: 36592266 PMCID: PMC9807733 DOI: 10.1186/s40658-022-00523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Positron emission tomography (PET) is the most sensitive in vivo molecular imaging technique available. Small animal PET has been widely used in studying pharmaceutical biodistribution and disease progression over time by imaging a wide range of biological processes. However, it remains true that almost all small animal PET studies using mouse or rat as preclinical models are either limited by the spatial resolution or the sensitivity (especially for dynamic studies), or both, reducing the quantitative accuracy and quantitative precision of the results. Total-body small animal PET scanners, which have axial lengths longer than the nose-to-anus length of the mouse/rat and can provide high sensitivity across the entire body of mouse/rat, can realize new opportunities for small animal PET. This article aims to discuss the technical opportunities and challenges in developing total-body small animal PET scanners for mice and rats.
Collapse
Affiliation(s)
- Junwei Du
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Terry Jones
- grid.27860.3b0000 0004 1936 9684Department of Radiology, University of California at Davis, Davis, CA 95616 USA
| |
Collapse
|
18
|
Doot RK, Young AJ, Nasrallah IM, Wetherill RR, Siderowf A, Mach RH, Dubroff JG. [ 18F]NOS PET Brain Imaging Suggests Elevated Neuroinflammation in Idiopathic Parkinson's Disease. Cells 2022; 11:3081. [PMID: 36231041 PMCID: PMC9563966 DOI: 10.3390/cells11193081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation is implicated as a key pathologic mechanism in many neurodegenerative diseases and is thought to be mediated in large part by microglia, native phagocytic immune cells of the CNS. Abnormal aggregation of the protein α-synuclein after phagocytosis by microglia is one possible neuropathophysiological mechanism driving Parkinson's disease (PD). We conducted a human pilot study to evaluate the feasibility of targeting the inducible isoform of nitric oxide synthase using the [18F]NOS radiotracer to measure neuroinflammation in idiopathic PD. Ten adults consisting of 6 PD patients and 4 healthy controls (HC) underwent one hour of dynamic [18F]NOS positron emission tomography (PET) brain imaging with arterial blood sampling. We observed increased [18F]NOS whole brain distribution volume (VT) in PD patients compared to age-matched healthy controls (p < 0.008) via a 1-tissue compartment (TC) model. The rate constant K1 for transport from blood into tissue did not differ between groups (p = 0.72). These findings suggest elevated oxidative stress, a surrogate marker of inflammation, is present in early-stage idiopathic PD and indicate that [18F]NOS PET imaging is a promising, non-invasive method to measure neuroinflammation.
Collapse
Affiliation(s)
- Robert K. Doot
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony J. Young
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilya M. Nasrallah
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reagan R. Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob G. Dubroff
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
20
|
Butler T, Glodzik L, Wang XH, Xi K, Li Y, Pan H, Zhou L, Chiang GCY, Morim S, Wickramasuriya N, Tanzi E, Maloney T, Harvey P, Mao X, Razlighi QR, Rusinek H, Shungu DC, de Leon M, Atwood CS, Mozley PD. Positron Emission Tomography reveals age-associated hypothalamic microglial activation in women. Sci Rep 2022; 12:13351. [PMID: 35922659 PMCID: PMC9349172 DOI: 10.1038/s41598-022-17315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
In rodents, hypothalamic inflammation plays a critical role in aging and age-related diseases. Hypothalamic inflammation has not previously been assessed in vivo in humans. We used Positron Emission Tomography (PET) with a radiotracer sensitive to the translocator protein (TSPO) expressed by activated microglia, to assess correlations between age and regional brain TSPO in a group of healthy subjects (n = 43, 19 female, aged 23-78), focusing on hypothalamus. We found robust age-correlated TSPO expression in thalamus but not hypothalamus in the combined group of women and men. This pattern differs from what has been described in rodents. Prominent age-correlated TSPO expression in thalamus in humans, but in hypothalamus in rodents, could reflect evolutionary changes in size and function of thalamus versus hypothalamus, and may be relevant to the appropriateness of using rodents to model human aging. When examining TSPO PET results in women and men separately, we found that only women showed age-correlated hypothalamic TSPO expression. We suggest this novel result is relevant to understanding a stark sex difference in human aging: that only women undergo loss of fertility-menopause-at mid-life. Our finding of age-correlated hypothalamic inflammation in women could have implications for understanding and perhaps altering reproductive aging in women.
Collapse
Affiliation(s)
- Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, USA.
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA.
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Xiuyuan Hugh Wang
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Ke Xi
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Yi Li
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Hong Pan
- Department of Psychiatry, Brigham and Women's Hospital, Boston, USA
| | - Liangdong Zhou
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | | | - Simon Morim
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Nimmi Wickramasuriya
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Emily Tanzi
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Thomas Maloney
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Patrick Harvey
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Qolamreza Ray Razlighi
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Henry Rusinek
- Department of Radiology, New York University, New York, USA
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Mony de Leon
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Craig S Atwood
- Department of Gerontology, University of Wisconsin, Madison, Madison, USA
| | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, New York, USA
| |
Collapse
|
21
|
Fang YHD, McConathy JE, Yacoubian TA, Zhang Y, Kennedy RE, Standaert DG. Image Quantification for TSPO PET with a Novel Image-Derived Input Function Method. Diagnostics (Basel) 2022; 12:1161. [PMID: 35626315 PMCID: PMC9140104 DOI: 10.3390/diagnostics12051161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
There is a growing interest in using 18F-DPA-714 PET to study neuroinflammation and microglial activation through imaging the 18-kDa translocator protein (TSPO). Although quantification of 18F-DPA-714 binding can be achieved through kinetic modeling analysis with an arterial input function (AIF) measured with blood sampling procedures, the invasiveness of such procedures has been an obstacle for wide application. To address these challenges, we developed an image-derived input function (IDIF) that noninvasively estimates the arterial input function from the images acquired for 18F-DPA-714 quantification. Methods: The method entails three fully automatic steps to extract the IDIF, including a segmentation of voxels with highest likelihood of being the arterial blood over the carotid artery, a model-based matrix factorization to extract the arterial blood signal, and a scaling optimization procedure to scale the extracted arterial blood signal into the activity concentration unit. Two cohorts of human subjects were used to evaluate the extracted IDIF. In the first cohort of five subjects, arterial blood sampling was performed, and the calculated IDIF was validated against the measured AIF through the comparison of distribution volumes from AIF (VT,AIF) and IDIF (VT,IDIF). In the second cohort, PET studies from twenty-eight healthy controls without arterial blood sampling were used to compare VT,IDIF with VT,REF measured using a reference region-based analysis to evaluate whether it can distinguish high-affinity (HAB) and mixed-affinity (MAB) binders. Results: In the arterial blood-sampling cohort, VT derived from IDIF was found to be an accurate surrogate of the VT from AIF. The bias of VT, IDIF was −5.8 ± 7.8% when compared to VT,AIF, and the linear mixed effect model showed a high correlation between VT,AIF and VT, IDIF (p < 0.001). In the nonblood-sampling cohort, VT, IDIF showed a significance difference between the HAB and MAB healthy controls. VT, IDIF and standard uptake values (SUV) showed superior results in distinguishing HAB from MAB subjects than VT,REF. Conclusions: A novel IDIF method for 18F-DPA-714 PET quantification was developed and evaluated in this study. This IDIF provides a noninvasive alternative measurement of VT to quantify the TSPO binding of 18F-DPA-714 in the human brain through dynamic PET scans.
Collapse
Affiliation(s)
- Yu-Hua Dean Fang
- Department of Radiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.A.Y.); (D.G.S.)
| | - Jonathan E. McConathy
- Department of Radiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Talene A. Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.A.Y.); (D.G.S.)
| | - Yue Zhang
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Y.Z.); (R.E.K.)
| | - Richard E. Kennedy
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (Y.Z.); (R.E.K.)
| | - David G. Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.A.Y.); (D.G.S.)
| |
Collapse
|
22
|
18F-GE180, a failed tracer for translocator protein, has no place in child abuse imaging. Pediatr Radiol 2022; 52:1015-1016. [PMID: 34837109 PMCID: PMC9035024 DOI: 10.1007/s00247-021-05248-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
|
23
|
Rogasch JMM, Hofheinz F, van Heek L, Voltin CA, Boellaard R, Kobe C. Influences on PET Quantification and Interpretation. Diagnostics (Basel) 2022; 12:451. [PMID: 35204542 PMCID: PMC8871060 DOI: 10.3390/diagnostics12020451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 01/21/2023] Open
Abstract
Various factors have been identified that influence quantitative accuracy and image interpretation in positron emission tomography (PET). Through the continuous introduction of new PET technology-both imaging hardware and reconstruction software-into clinical care, we now find ourselves in a transition period in which traditional and new technologies coexist. The effects on the clinical value of PET imaging and its interpretation in routine clinical practice require careful reevaluation. In this review, we provide a comprehensive summary of important factors influencing quantification and interpretation with a focus on recent developments in PET technology. Finally, we discuss the relationship between quantitative accuracy and subjective image interpretation.
Collapse
Affiliation(s)
- Julian M. M. Rogasch
- Department of Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Frank Hofheinz
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany;
| | - Lutz van Heek
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| | - Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam (CCA), Amsterdam University Medical Center, Free University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| |
Collapse
|
24
|
Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Péran P, Arlicot N, Pariente J, Payoux P. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer's disease: an update. Eur J Neurosci 2022; 55:1322-1343. [PMID: 35083791 DOI: 10.1111/ejn.15613] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a significant contributor to Alzheimer's disease (AD). Until now, PET imaging of the translocator protein (TSPO) has been widely used to depict the neuroimmune endophenotype of AD. The aim of this review was to provide an update to the results from 2018 and to advance the characterization of the biological basis of TSPO imaging in AD by re-examining TSPO function and expression and the methodological aspects of interest. Although the biological basis of the TSPO PET signal is obviously related to microglia and astrocytes in AD, the observed process remains uncertain and might not be directly related to neuroinflammation. Further studies are required to re-examine the cellular significance underlying a variation in the PET signal in AD and how it can be impacted by a disease-modifying treatment.
Collapse
Affiliation(s)
- Dominique Gouilly
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laure Saint-Aubert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Maria-Joao Ribeiro
- Department of Nuclear Medicine, CHU, Tours, France.,UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| | | | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Jérémie Pariente
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU, Toulouse, France.,Center of Clinical Investigations (CIC1436), CHU, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| |
Collapse
|
25
|
Martins D, Giacomel A, Williams SCR, Turkheimer F, Dipasquale O, Veronese M. Imaging transcriptomics: Convergent cellular, transcriptomic, and molecular neuroimaging signatures in the healthy adult human brain. Cell Rep 2021; 37:110173. [PMID: 34965413 DOI: 10.1016/j.celrep.2021.110173] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The integration of transcriptomic and neuroimaging data, "imaging transcriptomics," has recently emerged to generate hypotheses about potential biological pathways underlying regional variability in neuroimaging features. However, the validity of this approach is yet to be examined in depth. Here, we sought to bridge this gap by performing transcriptomic decoding of the regional distribution of well-known molecular markers spanning different elements of the biology of the healthy human brain. Imaging transcriptomics identifies biological and cell pathways that are consistent with the known biology of a wide range of molecular neuroimaging markers. The extent to which it can capture patterns of gene expression that align well with elements of the biology of the neuroinflammatory axis, at least in healthy controls without a proinflammatory challenge, is inconclusive. Imaging transcriptomics might constitute an interesting approach to improve our understanding of the biological pathways underlying regional variability in a wide range of neuroimaging phenotypes.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | - Alessio Giacomel
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK; Department of Information Engineering, University of Padua, Via Gradenigo, 6/b, 35131 Padova, Italy.
| | | |
Collapse
|
26
|
Bouilleret V, Dedeurwaerdere S. What value can TSPO PET bring for epilepsy treatment? Eur J Nucl Med Mol Imaging 2021; 49:221-233. [PMID: 34120191 DOI: 10.1007/s00259-021-05449-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy is one of the most common neurological disorders and affects both the young and adult populations. The question we asked for this review was how positron emission tomography (PET) imaging with translocator protein (TSPO) radioligands can help inform the epilepsy clinic and the development of future treatments targeting neuroinflammatory processes.Even though the first TSPO PET scans in epilepsy patients were performed over 20 years ago, this imaging modality has not seen wide adoption in the clinic. There is vast scientific evidence from preclinical studies in rodent models of temporal lobe epilepsy which have shown increased levels of TSPO corresponding to neuroinflammatory processes in the brain. These increases peaked sub-acutely (1-2 weeks) after the epileptogenic insult (e.g. status epilepticus) and remained chronically increased, albeit at lower levels. In addition, these studies have shown a correlation between TSPO levels and seizure outcome, pharmacoresistance and behavioural morbidities. Histological assessment points to a complex interplay between different cellular components such as microglial activation, astrogliosis and cell death changing dynamically over time.In epilepsy patients, a highly sensitive biomarker of neuroinflammation would provide value for the optimization of surgical assessment (particularly for extratemporal lobe epilepsy) and support the clinical development path of anti-inflammatory treatments. Clinical studies have shown a systematic increase in asymmetry indices of TSPO PET binding. However, region-based analysis typically does not yield statistical differences and changes are often not restricted to the epileptogenic zone, limiting the ability of this imaging modality to localise pathology for surgery. In this manuscript, we discuss the biological underpinnings of these findings and review for which applications in epilepsy TSPO PET could bring added value.
Collapse
Affiliation(s)
- Viviane Bouilleret
- Unité de Neurophysiologie et d'Epileptologie (UNCE), Université Paris-Saclay APHP, 78, Rue du Général Leclerc, 94275, Le Kremlin Bicêtre, France.
- CEA, CNRS, Inserm, BioMaps, Université Paris-Saclay, Orsay, France.
| | - Stefanie Dedeurwaerdere
- Neurosciences Therapeutic Area, Early Solutions, UCB Pharma, Braine-l'Alleud, Belgium
- Experimental Laboratory of Haematology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
27
|
Lee SH, Denora N, Laquintana V, Mangiatordi GF, Lopedota A, Lopalco A, Cutrignelli A, Franco M, Delre P, Song IH, Kim HW, Kim SB, Park HS, Kim K, Lee SY, Youn H, Lee BC, Kim SE. Radiosynthesis and characterization of [ 18F]BS224: a next-generation TSPO PET ligand insensitive to the rs6971 polymorphism. Eur J Nucl Med Mol Imaging 2021; 49:110-124. [PMID: 34783879 PMCID: PMC8712300 DOI: 10.1007/s00259-021-05617-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Translocator protein 18-kDa (TSPO) positron emission tomography (PET) is a valuable tool to detect neuroinflammed areas in a broad spectrum of neurodegenerative diseases. However, the clinical application of second-generation TSPO ligands as biomarkers is limited because of the presence of human rs6971 polymorphism that affects their binding. Here, we describe the ability of a new TSPO ligand, [18F]BS224, to identify abnormal TSPO expression in neuroinflammation independent of the rs6971 polymorphism. METHODS An in vitro competitive inhibition assay of BS224 was conducted with [3H]PK 11195 using membrane proteins isolated from 293FT cells expressing TSPO-wild type (WT) or TSPO-mutant A147T (Mut), corresponding to a high-affinity binder (HAB) and low-affinity binder (LAB), respectively. Molecular docking was performed to investigate the interaction of BS224 with the binding sites of rat TSPO-WT and TSPO-Mut. We synthesized a new 18F-labeled imidazopyridine acetamide ([18F]BS224) using boronic acid pinacol ester 6 or iodotoluene tosylate precursor 7, respectively, via aromatic 18F-fluorination. Dynamic PET scanning was performed up to 90 min after the injection of [18F]BS224 to healthy mice, and PET imaging data were obtained to estimate its absorbed doses in organs. To evaluate in vivo TSPO-specific uptake of [18F]BS224, lipopolysaccharide (LPS)-induced inflammatory and ischemic stroke rat models were used. RESULTS BS224 exhibited a high affinity (Ki = 0.51 nM) and selectivity for TSPO. The ratio of IC50 values of BS224 for LAB to that for HAB indicated that the TSPO binding affinity of BS224 has low binding sensitivity to the rs6971 polymorphism and it was comparable to that of PK 11195, which is not sensitive to the polymorphism. Docking simulations showed that the binding mode of BS224 is not affected by the A147T mutation and consequently supported the observed in vitro selectivity of [18F]BS224 regardless of polymorphisms. With optimal radiochemical yield (39 ± 6.8%, decay-corrected) and purity (> 99%), [18F]BS224 provided a clear visible image of the inflammatory lesion with a high signal-to-background ratio in both animal models (BPND = 1.43 ± 0.17 and 1.57 ± 0.37 in the LPS-induced inflammatory and ischemic stroke rat models, respectively) without skull uptake. CONCLUSION Our results suggest that [18F]BS224 may be a promising TSPO ligand to gauge neuroinflammatory disease-related areas in a broad range of patients irrespective of the common rs6971 polymorphism.
Collapse
Affiliation(s)
- Sang Hee Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Nunzio Denora
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | | | - Angela Lopedota
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Massimo Franco
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, 70121 Bari, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council, Via G. Amendola 122/O, 70126 Bari, Italy
- Department of Chemistry, University of Bari “A. Moro”, Via E. Orabona, 4, 70125 Bari, Italy
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
| | - Hye Won Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Su Bin Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
| | - Kyungmin Kim
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Seok-Yong Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229 Republic of Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620 Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229 Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
28
|
Wimberley C, Buvat I, Boutin H. Imaging translocator protein expression with positron emission tomography. Eur J Nucl Med Mol Imaging 2021; 49:74-76. [PMID: 34729627 DOI: 10.1007/s00259-021-05601-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Catriona Wimberley
- Edinburgh Imaging QMRI, BioQuarter, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, Chancellor's Building, BioQuarter, University of Edinburgh, Edinburgh, EH14 4SB, UK
| | - Irene Buvat
- Institut Curie, Université PSL, Inserm, U1288 LITO, Orsay, France
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, Manchester, M13 9PL, UK. .,Wolfson Molecular Imaging Centre, University of Manchester, Manchester, M20 3LJ, UK. .,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
29
|
Schollhammer R, Lepreux S, Barthe N, Vimont D, Rullier A, Sibon I, Berard X, Zhang A, Kimura Y, Fujita M, Innis RB, Zanotti-Fregonara P, Morgat C. In vitro and pilot in vivo imaging of 18 kDa translocator protein (TSPO) in inflammatory vascular disease. EJNMMI Res 2021; 11:45. [PMID: 33950298 PMCID: PMC8099943 DOI: 10.1186/s13550-021-00786-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background Inflammatory vascular disease of the arteries, such as inflamed atheromatous plaques or arteritis, may cause aneurysms or ischemic strokes. In this context, using positron emission tomography (PET) to image inflammation may help select patients who would benefit from appropriate therapeutic interventions. This study sought to assess the usefulness of the 18 kDa translocator protein (TSPO) tracers [11C]-PBR28 and [18F]-PBR06 for imaging inflammatory vascular disease in vitro and in vivo. Immunohistochemistry for macrophage infiltration as well as autoradiography with [18F]-PBR06 were performed on eight paraffin-embedded, formalin-fixed atherosclerosis plaques prospectively collected after carotid endarterectomy of eight patients affected by ischemic stroke. Six different patients, one of whom was also included in the in vitro study, underwent PET imaging. Two patients with carotid stenosis associated with ischemic stroke were imaged with [18F]-PBR06 PET/CT, and four other patients (three with large vessel vasculitis and one with bilateral carotid stenosis but without stroke) were imaged with [11C]-PBR28. Results All in vitro sections showed specific binding of [18F]-PBR06, which co-localized with immunohistochemistry markers for inflammation. However, in vivo TSPO imaging with either [11C]-PBR28 or [18F]-PBR06 was negative in all participants. Conclusion Despite good uptake on surgical samples in vitro, [11C]-PBR28 and [18F]-PBR06 are not viable clinical tools for imaging inflammatory vascular disease. Trial registration: NCT02513589, registered 31 July 2015 and NCT00547976, registered 23 October 2007. https://clinicaltrials.gov.
Collapse
Affiliation(s)
- Romain Schollhammer
- Nuclear Medicine Department, University Hospital of Bordeaux, 33076, Bordeaux, France. .,University of Bordeaux, INCIA, UMR5287, 33400, Talence, France. .,CNRS, INCIA, UMR5287, 33400, Talence, France. .,Nuclear Medicine Department, University Hospital of Bordeaux, Place Amélie Raba Léon, 33000, Bordeaux, France.
| | | | | | - Delphine Vimont
- University of Bordeaux, INCIA, UMR5287, 33400, Talence, France.,CNRS, INCIA, UMR5287, 33400, Talence, France
| | - Anne Rullier
- Histologic Department, University Hospital of Bordeaux, 33076, Bordeaux, France
| | - Igor Sibon
- Neurology Department, University Hospital of Bordeaux, 33076, Bordeaux, France
| | - Xavier Berard
- Vascular Surgery Department, University Hospital of Bordeaux, 33076, Bordeaux, France
| | - Andrea Zhang
- Molecular Imaging Branch, NIMH, Bethesda, MD, USA
| | | | | | | | | | - Clément Morgat
- Nuclear Medicine Department, University Hospital of Bordeaux, 33076, Bordeaux, France.,University of Bordeaux, INCIA, UMR5287, 33400, Talence, France.,CNRS, INCIA, UMR5287, 33400, Talence, France
| |
Collapse
|