1
|
Whiteside TL. Evaluating tumor cell- and T cell-derived extracellular vesicles as potential biomarkers of cancer and immune cell competence. Expert Rev Mol Diagn 2023; 23:109-122. [PMID: 36787282 PMCID: PMC9998373 DOI: 10.1080/14737159.2023.2178902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) produced by tumors, also called tumor-derived exosomes (TEX), have been implicated in inducing immune cell suppression in vitro and in vivo. The development of a novel category of noninvasive biomarkers for precision oncology remains an unmet need, and TEX emerge as a promising liquid tumor biopsy component. AREAS COVERED TEX play a critical role in monitoring cancer presence/progression and in reprograming of anti-tumor effector T cells to producers of EVs with pro-tumor activity. TEX are a subset of circulating EVs. Their separation by immune capture from EVs derived from nonmalignant cells allows for TEX phenotypic/functional assessments. TEX cross-talking with CD3(+) T cells induce the release of CD3(+) small EV (sEV), whose cargo of suppressor proteins resembles that of TEX and further contributes to cancer-induced immune suppression. While TEX recapitulate the genetic/molecular phenotype of tumor cells, CD3(+) sEV might serve as 'T cell liquid biopsy.' EXPERT OPINION Preclinical explorations of the role in cancer body fluids of TEX and CD3(+) sEV as cancer biomarkers suggest that these EV subsets may qualify as liquid tumor biopsy noninvasive components in the near future. Their potential to simultaneously serve as noninvasive liquid tumor biopsy and T cell biopsy remains to be validated in future clinical trials.
Collapse
Affiliation(s)
- Theresa L Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Giannotta C, Castella B, Tripoli E, Grimaldi D, Avonto I, D’Agostino M, Larocca A, Kopecka J, Grasso M, Riganti C, Massaia M. Immune dysfunctions affecting bone marrow Vγ9Vδ2 T cells in multiple myeloma: Role of immune checkpoints and disease status. Front Immunol 2022; 13:1073227. [PMID: 36605214 PMCID: PMC9808386 DOI: 10.3389/fimmu.2022.1073227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Bone marrow (BM) Vγ9Vδ2 T cells are intrinsically predisposed to sense the immune fitness of the tumor microenvironment (TME) in multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS). Methods In this work, we have used BM Vγ9Vδ2 T cells to interrogate the role of the immune checkpoint/immune checkpoint-ligand (ICP/ICP-L) network in the immune suppressive TME of MM patients. Results PD-1+ BM MM Vγ9Vδ2 T cells combine phenotypic, functional, and TCR-associated alterations consistent with chronic exhaustion and immune senescence. When challenged by zoledronic acid (ZA) as a surrogate assay to interrogate the reactivity to their natural ligands, BM MM Vγ9Vδ2 T cells further up-regulate PD-1 and TIM-3 and worsen TCR-associated alterations. BM MM Vγ9Vδ2 T cells up-regulate TIM-3 after stimulation with ZA in combination with αPD-1, whereas PD-1 is not up-regulated after ZA stimulation with αTIM-3, indicating a hierarchical regulation of inducible ICP expression. Dual αPD-1/αTIM-3 blockade improves the immune functions of BM Vγ9Vδ2 T cells in MM at diagnosis (MM-dia), whereas single PD-1 blockade is sufficient to rescue BM Vγ9Vδ2 T cells in MM in remission (MM-rem). By contrast, ZA stimulation induces LAG-3 up-regulation in BM Vγ9Vδ2 T cells from MM in relapse (MM-rel) and dual PD-1/LAG-3 blockade is the most effective combination in this setting. Discussion These data indicate that: 1) inappropriate immune interventions can exacerbate Vγ9Vδ2 T-cell dysfunction 2) ICP blockade should be tailored to the disease status to get the most of its beneficial effect.
Collapse
Affiliation(s)
- Claudia Giannotta
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy
| | - Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy,Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Ezio Tripoli
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy,Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Daniele Grimaldi
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Ilaria Avonto
- Servizio Interdipartimentale di Immunoematologia e Medicina Trasfusionale, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Mattia D’Agostino
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza di Torino, Torino, Italy
| | - Alessandra Larocca
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliero-Universitaria (AOU) Città della Salute e della Scienza di Torino, Torino, Italy
| | - Joanna Kopecka
- Dipartimento di Oncologia, Università degli Studi di Torino, Torino, Italy
| | - Mariella Grasso
- Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Torino, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy,Struttura Complessa (SC) Ematologia, Azienda Ospedaliera (AO) S.Croce e Carle, Cuneo, Italy,*Correspondence: Massimo Massaia,
| |
Collapse
|
3
|
Norouzian M, Mehdipour F, Ashraf MJ, Khademi B, Ghaderi A. Regulatory and effector T cell subsets in tumor-draining lymph nodes of patients with squamous cell carcinoma of head and neck. BMC Immunol 2022; 23:56. [PMCID: PMC9664675 DOI: 10.1186/s12865-022-00530-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
A crucial role for the immune system has been proposed in the establishment and progression of head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the cytokine and regulatory profiles of T cells in tumor draining lymph nodes (TDLNs) of patients with HNSCC.
Results
The frequencies of CD4+TNF-α+ and CD4+TNF-αhi negatively were associated with poor prognostic factors such as LN involvement (P = 0.015 and P = 0.019, respectively), stage of the disease (P = 0.032 and P = 0.010, respectively) and tumor size (P = 0.026 and P = 0.032, respectively). Frequencies of CD8+IFN-γ+ and CD8+IFN-γ+ TNF-α+ T cells showed negative relationship with tumor grade (P = 0.035 and P = 0.043, respectively). While, the frequencies of CD4+IL-4+, CD8+IL-10+, CD8+IL-4+T cells were higher in advanced stages of the disease (P = 0.042, P = 0.041 and P = 0.030, respectively) and CD4+IFN-γ+TNF-α−, CD8+IL-4+ and CD8+IFN-γ+TNF-α− T cells were higher in patients with larger tumor size (P = 0.026 and P = 0.032, respectively). Negative associations were found between the frequencies of CD4+CD25+Foxp3+ and CD4+CD25+Foxp3+CD127low/− Treg cells and cancer stage (P = 0.015 and P = 0.059).
Conclusion
This study shed more lights on the changes in immune profile of T cells in TDLNs of HNSCC. Larger tumor size and/or LN involvement were associated with lower frequencies of CD4+TNF-α+, CD8+IFN-γ+ and CD8+IFN-γ+TNF-α+ but higher frequency of CD4+IL-4+ T cells. Moreover, Foxp3+Tregs correlated with good prognostic indicators.
Collapse
|
4
|
Sun Z, Sun X, Chen Z, Du J, Wu Y. Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines. Int J Pept Res Ther 2021; 28:19. [PMID: 34903958 PMCID: PMC8653808 DOI: 10.1007/s10989-021-10334-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/29/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises from the epithelial lining of the oral cavity, hypopharynx, oropharynx, and larynx. There are several potential risk factors that cause the generation of HNSCC, including cigarette smoking, alcohol consumption, betel quid chewing, inadequate nutrition, poor oral hygiene, HPV and Epstein–Barr virus, and Candida albicans infections. HNSCC has causative links to both environmental factors and genetic mutations, with the latter playing a more critical role in cancer progression. These molecular changes to epithelial cells include the inactivation of cancer suppressor genes and proto-oncogenes overexpression, resulting in tumour cell proliferation and distant metastasis. HNSCC patients have impaired dendritic cell (DC) and natural killer (NK) cell functions, increased production of higher immune-suppressive molecules, loss of regulatory T cells and co-stimulatory molecules and major histocompatibility complex (MHC) class Ι molecules, lower number of lymphocyte subsets, and a poor response to antigen-presenting cells. At present, the standard treatment modalities for HNSCC patients include surgery, chemotherapy and radiotherapy, and combinatorial therapy. Despite advances in the development of novel treatment modalities over the last few decades, survival rates of HNSCC patients have not increased. To establish effective immunotherapies, a greater understanding of interactions between the immune system and HNSCC is required, and there is a particular need to develop novel therapeutic options. A therapeutic cancer vaccine has been proposed as a promising method to improve outcome by inducing a powerful adaptive immune response that leads to cancer cell elimination. Compared with other vaccines, peptide cancer vaccines are more robust and specific. In the past few years, there have been remarkable achievements in peptide-based vaccines for HNSCC patients. Here, we summarize the latest molecular alterations in HNSCC, explore the immune response to HNSCC, and discuss the latest developments in peptide-based cancer vaccine strategies. This review highlights areas for valuable future research focusing on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, Shandong 250000 China
| | - Zhanwei Chen
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Juan Du
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| | - Yihua Wu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021 China
| |
Collapse
|
5
|
Whiteside TL, Diergaarde B, Hong CS. Tumor-Derived Exosomes (TEX) and Their Role in Immuno-Oncology. Int J Mol Sci 2021; 22:ijms22126234. [PMID: 34207762 PMCID: PMC8229953 DOI: 10.3390/ijms22126234] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in health and disease, including cancer. Tumors produce a mix of EVs differing in size, cellular origin, biogenesis and molecular content. Small EVs (sEV) or exosomes are a subset of 30-150 nm (virus-size) vesicles originating from the multivesicular bodies (MVBs) and carrying a cargo that in its content and topography approximates that of a parent cell. Tumor-derived exosomes (TEX) present in all body fluids of cancer patients, are considered promising candidates for a liquid tumor biopsy. TEX also mediate immunoregulatory activities: they maintain a crosstalk between the tumor and various non-malignant cells, including immunocytes. Effects that EVs exert on immune cells may be immunosuppressive or immunostimulatory. Here, we review the available data for TEX interactions with immunocytes, focusing on strategies that allow isolation from plasma and separation of TEX from sEV produced by non-malignant cells. Immune effects mediated by either of the subsets can now be distinguished and measured. The approach has allowed for the comparison of molecular and functional profiles of the two sEV fractions in plasma of cancer patients. While TEX carried an excess of immunosuppressive proteins and inhibited immune cell functions in vitro and in vivo, the sEV derived from non-malignant cells, including CD3(+)T cells, were variably enriched in immunostimulatory proteins and could promote functions of immunocytes. Thus, sEV in plasma of cancer patients are heterogenous, representing a complex molecular network which is not evident in healthy donors' plasma. Importantly, TEX appear to be able to reprogram functions of non-malignant CD3(+)T cells inducing them to produce CD3(+)sEV enriched in immunosuppressive proteins. Ratios of stimulatory/inhibitory proteins carried by TEX and by CD3(+)sEV derived from reprogrammed non-malignant cells vary broadly in patients and appear to negatively correlate with disease progression. Simultaneous capture from plasma and functional/molecular profiling of TEX and the CD3(+)sEV fractions allows for defining their role as cancer biomarkers and as monitors of cancer patients' immune competence, respectively.
Collapse
Affiliation(s)
- Theresa L. Whiteside
- Department of Pathology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Correspondence: ; Tel.: +1-(412)-624-0096; Fax: +1-(412)-623-0264
| | - Brenda Diergaarde
- Department of Human Genetics and UPMC Hillman Cancer Center, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA;
| | - Chang-Sook Hong
- Department of Pathology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
6
|
Aloe C, Wang H, Vlahos R, Irving L, Steinfort D, Bozinovski S. Emerging and multifaceted role of neutrophils in lung cancer. Transl Lung Cancer Res 2021; 10:2806-2818. [PMID: 34295679 PMCID: PMC8264329 DOI: 10.21037/tlcr-20-760] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
It has long been recognized that cigarette smoking is a shared risk factor for lung cancer and the debilitating lung disease, chronic obstructive pulmonary disease (COPD). As the severity of COPD increases, so does the risk for developing lung cancer, independently of pack years smoked. Neutrophilic inflammation increases with COPD severity and anti-inflammatories such as non-steroidal anti-inflammatory drugs (NSAIDs) can modulate neutrophil function and cancer risk. This review discusses the biology of tumour associated neutrophils (TANs) in lung cancer, which increase in density with tumour progression, particularly in smokers with non-small cell lung cancer (NSCLC). It is now increasingly recognized that neutrophils are responsive to the tumour microenvironment (TME) and polarize into distinct phenotypes that operate in an anti- (N1) or pro-tumorigenic (N2) manner. Intriguingly, the emergence of the pro-tumorigenic N2 phenotype increases with tumour growth, to suggest that cancer cells and the surrounding stroma can re-educate neutrophils. The neutrophil itself is a potent source of reactive oxygen species (ROS), arginase, proteases and cytokines that paradoxically can exert a potent immunosuppressive effect on lymphocytes including cytotoxic T cells (CTLs). Indeed, the neutrophil to lymphocyte ratio (NLR) is a systemic biomarker that is elevated in lung cancer patients and prognostic for poor survival outcomes. Herein, we review the molecular mechanisms by which neutrophil derived mediators can suppress CTL function. Selective therapeutic strategies designed to suppress pathogenic neutrophils in NSCLC may cooperate with immune checkpoint inhibitors (ICI) to increase CTL killing of cancer cells in the TME.
Collapse
Affiliation(s)
- Christian Aloe
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Hao Wang
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
7
|
Zarobkiewicz M, Kowalska W, Chocholska S, Tomczak W, Szymańska A, Morawska I, Wojciechowska A, Bojarska-Junak A. High M-MDSC Percentage as a Negative Prognostic Factor in Chronic Lymphocytic Leukaemia. Cancers (Basel) 2020; 12:cancers12092614. [PMID: 32937740 PMCID: PMC7563618 DOI: 10.3390/cancers12092614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Chronic lymphocytic leukaemia (CLL) is a malignancy of mature B cells. Tumour microenvironment is important for survival and proliferation of malignant cells. In the current study, we investigated the potential role of circulating monocytic myeloid-derived suppressor cells (M-MDSC) in CLL. We have observed an increased percentage of M-MDSC cells in CLL patients. Moreover, we have observed a close association with unfavourable prognostic markers, which suggests a potential role of M-MDSC as a prognostic factor in CLL. We have established an association between a high M-MDSC percentage on the one side and shorter time-to-treatment and overall survival on the other. Therefore, we strongly suggest to use M-MDSC percentage as another prognostic factor. Abstract In the current study, we analysed the role and prognostic value of myeloid-derived suppressor cells (MDSC) in chronic lymphocytic leukaemia (CLL). The frequency of circulating monocytic MDSC (M-MDSC; defined as CD14+CD11b+CD15-HLA-DR-/low cells) was assessed in correlation with clinical and laboratory parameters characterising the disease activity and patient immune status. Samples of peripheral blood from untreated CLL patients and healthy volunteers were stained with monoclonal antibodies for flow cytometry analysis. CLL patients with M-MDSC percentages above 9.35% (according to the receiver operating characteristic (ROC) analysis) had a shorter time-to-treatment and shorter survival time than the group with a lower percentage of M-MDSC. The M-MDSC percentage was higher in patients with adverse prognostic factors (i.e., 17p and 11q deletion and CD38 and ZAP-70 expression). A high M-MDSC percentage was linked to significantly lower expression of the CD3ζ in T cells. Furthermore, an analysis of immune regulatory molecules (arginase 1 (ARG1), nitric oxide synthase (NOS2), indoleamine 2,3-dioxygenase (IDO), transforming growth factor beta (TGF-β), and interleukin (IL)-10) was performed. By the means of flow cytometry and RT-qPCR, we showed an overexpression of three of them in M-MDSC of CLL patients. M-MDSC cells seem to be an important factor in the immunosuppressive microenvironment of CLL and seem to be a good and novel prognostic factor
Collapse
Affiliation(s)
- Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
- Correspondence: (M.Z.); (A.B.-J.); Tel.: +48-81-4486420 (M.Z. & A.B.-J.)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
| | - Sylwia Chocholska
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-080 Lublin, Poland; (S.C.); (W.T.)
| | - Waldemar Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-080 Lublin, Poland; (S.C.); (W.T.)
| | - Agata Szymańska
- Department of Clinical Transplantology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Izabela Morawska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
| | | | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
- Correspondence: (M.Z.); (A.B.-J.); Tel.: +48-81-4486420 (M.Z. & A.B.-J.)
| |
Collapse
|
8
|
Furumaya C, Martinez-Sanz P, Bouti P, Kuijpers TW, Matlung HL. Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Front Immunol 2020; 11:2100. [PMID: 32983165 PMCID: PMC7492657 DOI: 10.3389/fimmu.2020.02100] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, cancer immunotherapies such as checkpoint blockade and adoptive T cell transfer have been a game changer in many aspects and have improved the treatment for various malignancies considerably. Despite the clinical success of harnessing the adaptive immunity to combat the tumor, the benefits of immunotherapy are still limited to a subset of patients and cancer types. In recent years, neutrophils, the most abundant circulating leukocytes, have emerged as promising targets for anti-cancer therapies. Traditionally regarded as the first line of defense against infections, neutrophils are increasingly recognized as critical players during cancer progression. Evidence shows the functional plasticity of neutrophils in the tumor microenvironment, allowing neutrophils to exert either pro-tumor or anti-tumor effects. This review describes the tumor-promoting roles of neutrophils, focusing on their myeloid-derived suppressor cell activity, as well as their role in tumor elimination, exerted mainly via antibody-dependent cellular cytotoxicity. We will discuss potential approaches to therapeutically target neutrophils in cancer. These include strategies in humans to either silence the pro-tumor activity of neutrophils, or to activate or enhance their anti-tumor functions. Redirecting neutrophils seems a promising approach to harness innate immunity to improve treatment for cancer patients.
Collapse
Affiliation(s)
- Charita Furumaya
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Paula Martinez-Sanz
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Panagiota Bouti
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Ye W, Zhou Y, Xu B, Zhu D, Rui X, Xu M, Shi L, Zhang D, Jiang J. CD247 expression is associated with differentiation and classification in ovarian cancer. Medicine (Baltimore) 2019; 98:e18407. [PMID: 31861005 PMCID: PMC6940041 DOI: 10.1097/md.0000000000018407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignant tumors in female reproductive system and most OC cases are diagnosed at an advanced stage with the overall 5-year survival rate below 40%. The function of CD247 enhances T-cell antigen receptor (TCR) signaling cascade and it is necessary for assembling of the TCR/CD3 complex on the surface of T lymphocytes. It is well established that defective CD247 function leads to impaired activation of T cells upon engagement of the TCR.Flow cytometry was used to examine the difference of CD247 T lymphocyte between the OC and ovarian cyst, immunohistochemistry analysis was used to investigate the correlation between CD247 expression and clinicopathologic features of epithelial OC patients.Our study showed that the expression of CD247 in peripheral blood lymphocytes from patients with OC is decreased compared with ovarian cyst patients and the expression of CD247 in tumor infiltrating lymphocytes with cancer tissue is decreased compared with adjacent tissues. We showed that abnormal expression of CD247 was related with differentiation and classification in OC.Our findings suggested that CD247-targeted treatment could be used as a potential therapeutic strategy for OC.
Collapse
Affiliation(s)
- Wenfeng Ye
- Department of Tumor Biological Treatment
- Department of Obstetrics and Gynecology
| | - Yi Zhou
- Department of Tumor Biological Treatment
| | - Bin Xu
- Department of Tumor Biological Treatment
| | - Dawei Zhu
- Department of Tumor Biological Treatment
| | | | - Ming Xu
- Department of Obstetrics and Gynecology
| | | | - Dachuan Zhang
- Department of pathology, The Third Affiliated Hospital, Soochow University
| | - Jingting Jiang
- Department of Tumor Biological Treatment
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China
| |
Collapse
|
10
|
Abstract
Introduction T-cell activation requires the T-cell receptor (TCR)-CD3 complex, which integrates and transduces signals. CD3ζ plays a vital role in TCR signalling by mediating T-cell activation. Abnormal CD3ζ expression is a common characteristic of haematological malignancies with T-cell immune dysfunction or autoimmune diseases. Targeted regulation of CD3ζ expression by either direct or indirect approaches is important for regulating T-cell activation. Aim of the study In this study, we focused on identifying miRNAs that may regulate CD3ζ expression. Material and methods Three microRNA target search algorithms (TargetScan, PicTar, and microrna.org) were used to identify hypothetical miRNAs that target CD3ζ in T cells. Of the predicted miRNAs, miR-214 was chosen and validated to determine whether miR-214 directly binds to the CD3ζ 3’-UTR and regulates CD3ζ expression by luciferase reporter assays, real-time PCR, and Western blotting. Results The results indicate that miR-214 specifically binds the CD3ζ 3’-UTR, and miR-214 mimics remarkably reduce the expression of CD3ζ in MOLT-4 cells. Conclusions We identify for the first time that miR-214 targets expression in MOLT-4 cells, suggesting that miR-214 might negatively regulate T-cell activation by targeting CD3ζ.
Collapse
|
11
|
Zhou X, Wu S, Zhou H, Wang M, Wang M, Lü Y, Cheng Z, Xu J, Ai Y. Marek's Disease Virus Regulates the Ubiquitylome of Chicken CD4 + T Cells to Promote Tumorigenesis. Int J Mol Sci 2019; 20:E2089. [PMID: 31035338 PMCID: PMC6539122 DOI: 10.3390/ijms20092089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination and deubiquitination of cellular proteins are reciprocal reactions catalyzed by ubiquitination-related enzymes and deubiquitinase (DUB) which regulate almost all cellular processes. Marek's disease virus (MDV) encodes a viral DUB that plays an important role in the MDV pathogenicity. Chicken CD4+ T-cell lymphoma induced by MDV is a key contributor to multiple visceral tumors and immunosuppression of chickens with Marek's disease (MD). However, alterations in the ubiquitylome of MDV-induced T lymphoma cells are still unclear. In this study, a specific antibody against K-ε-GG was used to isolate ubiquitinated peptides from CD4+ T cells and MD T lymphoma cells. Mass spectrometry was used to compare and analyze alterations in the ubiquitylome. Our results showed that the ubiquitination of 717 and 778 proteins was significantly up- and downregulated, respectively, in T lymphoma cells. MDV up- and downregulated ubiquitination of a similar percentage of proteins. The ubiquitination of transferases, especially serine/threonine kinases, was the main regulatory target of MDV. Compared with CD4+ T cells of the control group, MDV mainly altered the ubiquitylome associated with the signal transduction, immune system, cancer, and infectious disease pathways in T lymphoma cells. In these pathways, the ubiquitination of CDK1, IL-18, PRKCB, ETV6, and EST1 proteins was significantly up- or downregulated as shown by immunoblotting. The current study revealed that the MDV infection could exert a significant influence on the ubiquitylome of CD4+ T cells.
Collapse
Affiliation(s)
- Xiaolu Zhou
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Shanli Wu
- College of Basic Medical Sciences, Jilin University, 126 Xin Min Avenue, Changchun 130021, Jilin, China.
| | - Hongda Zhou
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Mengyun Wang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Menghan Wang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Yan Lü
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Zhongyi Cheng
- Jingjie PTM Biolabs Co. Ltd., 452 6th Street, Hangzhou Eco. & Tech. Developmental Area, Hangzhou 310018, Zhejiang, China.
| | - Jiacui Xu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| | - Yongxing Ai
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun 130062, Jilin, China.
| |
Collapse
|
12
|
Chakraborty P, Karmakar T, Arora N, Mukherjee G. Immune and genomic signatures in oral (head and neck) cancer. Heliyon 2018; 4:e00880. [PMID: 30417146 PMCID: PMC6218671 DOI: 10.1016/j.heliyon.2018.e00880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/22/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is responsible for a large number of deaths each year. Oral cancer is the most frequent subtype of HNSCC. Historically, oral cancer has been associated with an increase in the consumption of tobacco and alcohol products, seen especially in the Asian subcontinent. It has also been associated with infection by the human papilloma virus (HPV), particularly strain HPV16. Treatment usually involves a multidisciplinary approach of surgery combined with chemotherapy and radiation. The advent of immunotherapy has broadened the scope for treatment. A better immune response to the tumour can also elicit the action of other therapeutic approaches. A heightened immune response, on the other hand, can lead to resistant tumour formation through the process of immunoediting. Molecular profiling of the tumour microenvironment (TME) can provide us with better insight into the mechanism and progression of the disease, ultimately opening up new therapeutic options. High-throughput molecular profiling techniques over the past decade have enabled us to appreciate the heterogeneity of the TME. In this review, we will be describing the clinicopathological role of the immune and genomic landscape in oral cancer. This study will update readers on the several immunological and genetic factors that can play an important function as predictive and prognostic biomarkers in various forms of head and neck cancer, with a special emphasis on oral carcinoma.
Collapse
|
13
|
Aarts CEM, Kuijpers TW. Neutrophils as myeloid-derived suppressor cells. Eur J Clin Invest 2018; 48 Suppl 2:e12989. [PMID: 29956819 DOI: 10.1111/eci.12989] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
Neutrophils form the first line of defence against invading pathogens, such as bacteria and fungi, as part of the innate immune response. Recently, neutrophils have also been discovered as repressors of adaptive immune responses. Under certain conditions, such as cancer and severe injury, an expansion of immature and mature neutrophils has been observed to induce suppression of T-cell proliferation. These suppressing cells are known as so-called myeloid-derived suppressor cells (MDSCs), a heterogeneous population of granulocytic-MDSCs and monocytic-MDSCs. Initially, MDSCs were believed to be a specific immature type of myeloid immune cell released from the bone marrow, but mature neutrophils have also been proposed to have suppressive capacity. However, granulocytic-MDSCs show a similar morphology and expression of cell surface markers as mature neutrophils. The only characteristic that discriminates granulocytic (g)-MDSCs from mature neutrophils is their suppressive capacity, raising the question whether human g-MDSCs and neutrophils are actually different cell types or whether they are one plastic cell type that can functionally polarize from microbial killers to immunosuppressor cells, depending on local conditions. In this review, we will focus on the MDSC activity of circulating mature neutrophils.
Collapse
Affiliation(s)
- Cathelijn E M Aarts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Hematology, Immunology & Infectious Disease, Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Koch C, Kim Y, Zöller T, Born C, Steinle A. Chronic NKG2D Engagement In Vivo Differentially Impacts NK Cell Responsiveness by Activating NK Receptors. Front Immunol 2017; 8:1466. [PMID: 29163533 PMCID: PMC5675847 DOI: 10.3389/fimmu.2017.01466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/19/2017] [Indexed: 11/25/2022] Open
Abstract
Immunosuppression is a typical hallmark of cancer and frequently includes perturbations of the NKG2D tumor recognition system as well as impaired signaling by other activating NK cell receptors. Several in vitro studies suggested that sustained engagement of the NKG2D receptor, as it is occurring in the tumor microenvironment, not only impairs expression and function of NKG2D but also impacts signaling by other activating NK receptors. Here, we made use of a transgenic mouse model of ubiquitous NKG2D ligand expression (H2-Kb-MICA mice) to investigate consequences of chronic NKG2D engagement in vivo for functional responsiveness by other activating NK receptors such as NKp46 and Ly49D. Unexpectedly, we found no evidence for an impairment of NKp46 expression and function in H2-Kb-MICA mice, as anticipated from previous in vitro experiments. However, we observed a marked downregulation and dysfunction of the activating receptor Ly49D in activated NK cells from H2-Kb-MICA mice. Ly49D shares the adaptor proteins DAP10 and DAP12 with NKG2D possibly explaining the collateral impairment of Ly49D function in situations of chronic NKG2D engagement. Altogether, our results demonstrate that persistent engagement of NKG2D in vivo, as often observed in tumors, can selectively impair functions of unrelated NK receptors and thereby compromise NK responsiveness to third-party antigens.
Collapse
Affiliation(s)
- Christine Koch
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany.,Department of Internal Medicine I, Division of Gastroenterology and Hepatology, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Younghoon Kim
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Tobias Zöller
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Christina Born
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Tanaka T, Watanabe S, Takahashi M, Sato K, Saida Y, Baba J, Arita M, Sato M, Ohtsubo A, Shoji S, Nozaki K, Ichikawa K, Kondo R, Aoki N, Ohshima Y, Sakagami T, Abe T, Moro H, Koya T, Tanaka J, Kagamu H, Yoshizawa H, Kikuchi T. Transfer of in vitro-expanded naïve T cells after lymphodepletion enhances antitumor immunity through the induction of polyclonal antitumor effector T cells. PLoS One 2017; 12:e0183976. [PMID: 28854279 PMCID: PMC5576657 DOI: 10.1371/journal.pone.0183976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022] Open
Abstract
The adoptive transfer of effector T cells combined with lymphodepletion has demonstrated promising antitumor effects in mice and humans, although the availability of tumor-specific T cells is limited. We and others have also demonstrated that the transfer of polyclonal naïve T cells induces tumor-specific effector T cells and enhances antitumor immunity after lymphodepletion. Because tumors have been demonstrated to induce immunosuppressive networks and regulate the function of T cells, obtaining a sufficient number of fully functional naïve T cells that are able to differentiate into tumor-specific effector T cells remains difficult. To establish culture methods to obtain a large number of polyclonal T cells that are capable of differentiating into tumor-specific effector T cells, naïve T cells were activated with anti-CD3 mAbs in vitro. These cells were stimulated with IL-2 and IL-7 for the CD8 subset or with IL-7 and IL-23 for the CD4 subset. Transfer of these hyperexpanded T cells after lymphodepletion showed significant antitumor efficacy, and tumor-specific effector T cells were primed from these expanded T cells in tumor-bearing hosts. Moreover, these ex vivo-expanded T cells maintained T cell receptor diversity and showed long-term persistence of memory against specific tumors. Further analyses revealed that combination therapy consisting of vaccination with dendritic cells that were co-cultured with irradiated whole tumor cells and the transfer of ex vivo-expanded T cells significantly enhanced antitumor immunity. These results indicate that the transfer of ex vivo-expanded polyclonal T cells can be combined with other immunotherapies and augment antitumor effects.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
- * E-mail:
| | - Miho Takahashi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Ko Sato
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Yu Saida
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Junko Baba
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Masashi Arita
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Miyuki Sato
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Aya Ohtsubo
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Satoshi Shoji
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Koichiro Nozaki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Kosuke Ichikawa
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Rie Kondo
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Nobumasa Aoki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Yasuyoshi Ohshima
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Tetsuya Abe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Hiroshi Moro
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Toshiyuki Koya
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Junta Tanaka
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Hiroshi Kagamu
- Respiratory Medicine, Saitama International Medical Center, Saitama, Japan
| | - Hirohisa Yoshizawa
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata City, Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| |
Collapse
|
16
|
Treffers LW, Hiemstra IH, Kuijpers TW, van den Berg TK, Matlung HL. Neutrophils in cancer. Immunol Rev 2017; 273:312-28. [PMID: 27558343 DOI: 10.1111/imr.12444] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neutrophils play an important role in cancer. This does not only relate to the well-established prognostic value of the presence of neutrophils, either in the blood or in tumor tissue, in the context of cancer progression or for the monitoring of therapy, but also to their active role in the progression of cancer. In the current review, we describe what is known in general about the role of neutrophils in cancer. What is emerging is a complex, rather heterogeneous picture with both pro- and anti-tumorigenic roles, which apparently differs with cancer type and disease stage. Furthermore, we will discuss the well-known role of neutrophils as myeloid-derived suppressor cells (MDSC), and also on the role of neutrophils as important effector cells during antibody therapy in cancer. It is clear that neutrophils contribute substantially to cancer progression in multiple ways, and this includes both direct effects on the cancer cells and indirect effect on the tumor microenvironment. While in many cases neutrophils have been shown to promote tumor progression, for instance by acting as MDSC, there are also protective effects, particularly when antibody immunotherapy is performed. A better understanding of the role of neutrophils is likely to provide opportunities for immunomodulation and for improving the treatment of cancer patients.
Collapse
Affiliation(s)
- Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ida H Hiemstra
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Lechner A, Schlößer H, Rothschild SI, Thelen M, Reuter S, Zentis P, Shimabukuro-Vornhagen A, Theurich S, Wennhold K, Garcia-Marquez M, Tharun L, Quaas A, Schauss A, Isensee J, Hucho T, Huebbers C, von Bergwelt-Baildon M, Beutner D. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma. Oncotarget 2017; 8:44418-44433. [PMID: 28574843 PMCID: PMC5546490 DOI: 10.18632/oncotarget.17901] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/25/2017] [Indexed: 01/10/2023] Open
Abstract
The composition of tumor-infiltrating lymphocytes (TIL) reflects biology and immunogenicity of cancer. Here, we characterize T-cell subsets and expression of immune checkpoint molecules in head and neck squamous cell carcinoma (HNSCC). We analyzed TIL subsets in primary tumors (n = 34), blood (peripheral blood mononuclear cells (PBMC); n = 34) and non-cancerous mucosa (n = 7) of 34 treatment-naïve HNSCC patients and PBMC of 15 healthy controls. Flow cytometry analyses revealed a highly variable T-cell infiltration mainly of an effector memory phenotype (CD45RA-/CCR7-). Naïve T cells (CD45RA+/CCR7+) were decreased in the microenvironment compared to PBMC of patients, while regulatory T cells (CD4+/CD25+/CD127low and CD4+/CD39+) were elevated. Furthermore, we performed digital image analyses of entire cross sections of HNSCC to define the 'Immunoscore' (CD3+ and CD8+ cell infiltration in tumor core and invasive margin) and quantified MHC class I expression on tumor cells by immunohistochemistry. Immune checkpoint molecules cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1) were increased in TILs compared to peripheral T cells in flow-cytometric analysis. Human papillomavirus (HPV) positive tumors showed higher numbers of TILs, but a similar composition of T-cell subsets and checkpoint molecule expression compared to HPV negative tumors. Taken together, the tumor microenvironment of HNSCC is characterized by a strong infiltration of regulatory T cells and high checkpoint molecule expression on T-cell subsets. In view of increasingly used immunotherapies, a detailed knowledge of TILs and checkpoint molecule expression on TILs is of high translational relevance.
Collapse
Affiliation(s)
- Axel Lechner
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| | - Hans Schlößer
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Sacha I. Rothschild
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- University Hospital Basel, Department of Internal Medicine, Medical Oncology, Basel, Switzerland
| | - Martin Thelen
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sabrina Reuter
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Peter Zentis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany
| | - Sebastian Theurich
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany
- Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Kerstin Wennhold
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Maria Garcia-Marquez
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Lars Tharun
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, University of Cologne, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, University of Cologne, Germany
| | - Christian Huebbers
- Jean-Uhrmacher Institute for Clinical ENT Research, University of Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Whiteside TL. Exosomes carrying immunoinhibitory proteins and their role in cancer. Clin Exp Immunol 2017; 189:259-267. [PMID: 28369805 DOI: 10.1111/cei.12974] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2017] [Indexed: 12/17/2022] Open
Abstract
Recent emergence of exosomes as information carriers between cells has introduced us to a new previously unknown biological communication system. Multi-directional cross-talk mediated by exosomes carrying proteins, lipids and nucleic acids between normal cells, cells harbouring a pathogen or cancer and immune cells has been instrumental in determining outcomes of physiological as well as pathological conditions. Exosomes play a key role in the broad spectrum of human diseases. In cancer, tumour-derived exosomes carry multiple immunoinhibitory signals, disable anti-tumour immune effector cells and promote tumour escape from immune control. Exosomes delivering negative signals to immune cells in cancer, viral infections, autoimmune or other diseases may interfere with therapy and influence outcome. Exosomes can activate tissue cells to produce inhibitory factors and thus can suppress the host immune responses indirectly. Exosomes also promise to be non-invasive disease biomarkers with a dual capability to provide insights into immune dysfunction as well as disease progression and outcome.
Collapse
Affiliation(s)
- T L Whiteside
- Departments of Pathology, Immunology and Otolaryngology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Change in peripheral blood lymphocyte count in dogs following adoptive immunotherapy using lymphokine-activated T killer cells combined with palliative tumor resection. Vet Immunol Immunopathol 2016; 177:58-63. [DOI: 10.1016/j.vetimm.2016.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/11/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
|
20
|
Miyan M, Schmidt-Mende J, Kiessling R, Poschke I, de Boniface J. Differential tumor infiltration by T-cells characterizes intrinsic molecular subtypes in breast cancer. J Transl Med 2016; 14:227. [PMID: 27473163 PMCID: PMC4966793 DOI: 10.1186/s12967-016-0983-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background Molecular subtypes of breast cancer and presence of tumor-infiltrating immune cells have both been implicated as important predictive and prognostic factors for improved risk stratification and treatment individualization of breast cancer patients. Their association, however, has not been studied in detail. The aim of this study was to evaluate the expression of the T cell markers CD8, FoxP3, CD3 and ζ-chain in molecular subtypes of the invasive margin and tumor center of breast cancer and corresponding sentinel nodes and to deduct prognostic information from these findings. Methods Tumor and sentinel node sections from 177 patients with primary, invasive, unilateral early-stage breast cancer were stained by immunohistochemistry and T-cell phenotypes quantified manually. Clinical data were collected from medical records. Results The degree of T-cell infiltration and expression of all markers differed significantly among the molecular subtypes, being highest in non-luminal, more aggressive tumors: more T-cell infiltration and higher expression of all markers were associated with hormone receptor negativity, higher proliferation and higher histological grades, but also with larger tumor size. Basal-like tumors, and most remarkably their tumor centers, hosted the highest number of FoxP3+ T-cells with an unfavorable ratio to cytotoxic CD8+ T-cells. T-cell infiltration was generally higher in the invasive margin than the tumor center. A scoring system based on densities of CD3 and CD8 could significantly separate molecular subtypes (p < 0.001). Conclusions Thus, immunological patterns with functional implications within each subtype are associated with prognostic factors. These findings should be further validated in studies using larger patient populations and longer follow-up. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0983-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Miyan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - J Schmidt-Mende
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - R Kiessling
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - I Poschke
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
| | - J de Boniface
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Breast and Endocrine Surgery, P9:03, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
21
|
Economopoulou P, Agelaki S, Perisanidis C, Giotakis EI, Psyrri A. The promise of immunotherapy in head and neck squamous cell carcinoma. Ann Oncol 2016; 27:1675-85. [PMID: 27380958 DOI: 10.1093/annonc/mdw226] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/29/2016] [Indexed: 01/05/2023] Open
Abstract
Squamous cell cancers of the head and neck (HNSCC) comprise a diverse group of malignancies that includes tobacco-related tumors in addition to an increasing number of human papillomavirus-associated cancers. Independently of cause, there is a growing body of evidence supporting that the immune system plays a pivotal role in HNSCC development, as tumor cells evade immunosurveillance by exploiting inhibitory checkpoint pathways that suppress anti-tumor T-cell responses. HNSCC cells have the ability to manipulate the immune system through a variety of different mechanisms, forcing it to promote tumor growth and spread. Over the last decade, discoveries in immunologic research resulted in increased understanding of complex interactions between HNSCC and the host immune system as well as T-cell regulatory mechanisms, promoting the development of a variety of novel immunotherapies. Following the availability of novel immunotherapeutic strategies, the challenge for clinicians is to understand how and in which clinical setting to use these agents in order to provide greater clinical benefit for patients. Combination of immunotherapies with standard treatment approaches also represents an evolving field of research. Herein, we provide a comprehensive review of immune escape mechanisms in HNSCC, as well as current immunotherapy approaches under investigation.
Collapse
Affiliation(s)
- P Economopoulou
- Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, School of Medicine, Athens
| | - S Agelaki
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion Laboratory of Tumor Biology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - C Perisanidis
- Department of Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - E I Giotakis
- Department of Otorhinolaryngology, Facial Plastic and Reconstructive Surgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - A Psyrri
- Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, School of Medicine, Athens
| |
Collapse
|
22
|
Economopoulou P, Perisanidis C, Giotakis EI, Psyrri A. The emerging role of immunotherapy in head and neck squamous cell carcinoma (HNSCC): anti-tumor immunity and clinical applications. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:173. [PMID: 27275486 DOI: 10.21037/atm.2016.03.34] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) carries a poor prognosis, with low survival rates for advanced stage tumors and minimal improvement in survival trends through the past decades. It is becoming increasingly clear that HNSCC oncogenesis and evolution is characterized by profound immune defects, as cancer cells evade immunosurveillance due to accumulation of genetic mutations and tumor heterogeneity. Improved understanding of the role of the immune system in cancer has led to the identification of novel therapeutic targets, which are being investigated for their potential to provide durable responses. In this review, we will summarize the role of the immune system in HNSCC, the rationale behind immunotherapy strategies and their clinical applications.
Collapse
Affiliation(s)
- Panagiota Economopoulou
- 1 Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, School of Medicine, Haidari, Athens, Greece ; 2 Department of Maxillofacial and Oral Surgery, Medical University of Vienna, 1090 Vienna, Austria ; 3 Department of Otorhinolaryngology, Facial Plastic and Reconstructive Surgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
| | - Christos Perisanidis
- 1 Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, School of Medicine, Haidari, Athens, Greece ; 2 Department of Maxillofacial and Oral Surgery, Medical University of Vienna, 1090 Vienna, Austria ; 3 Department of Otorhinolaryngology, Facial Plastic and Reconstructive Surgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
| | - Evaggelos I Giotakis
- 1 Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, School of Medicine, Haidari, Athens, Greece ; 2 Department of Maxillofacial and Oral Surgery, Medical University of Vienna, 1090 Vienna, Austria ; 3 Department of Otorhinolaryngology, Facial Plastic and Reconstructive Surgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
| | - Amanda Psyrri
- 1 Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, School of Medicine, Haidari, Athens, Greece ; 2 Department of Maxillofacial and Oral Surgery, Medical University of Vienna, 1090 Vienna, Austria ; 3 Department of Otorhinolaryngology, Facial Plastic and Reconstructive Surgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
| |
Collapse
|
23
|
Sade-Feldman M, Kanterman J, Klieger Y, Ish-Shalom E, Olga M, Saragovi A, Shtainberg H, Lotem M, Baniyash M. Clinical Significance of Circulating CD33+CD11b+HLA-DR- Myeloid Cells in Patients with Stage IV Melanoma Treated with Ipilimumab. Clin Cancer Res 2016; 22:5661-5672. [PMID: 27178742 DOI: 10.1158/1078-0432.ccr-15-3104] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE High levels of circulating myeloid-derived suppressor cells (MDSCs) in various cancer types, including melanoma, were shown to correlate with poor survival. We investigated whether frequencies of circulating CD33+CD11b+HLA-DR- MDSCs could be used as immune system monitoring biomarkers to predict response and survival of patients with stage IV melanoma treated with anti-CTLA4 (ipilimumab) therapy. EXPERIMENTAL DESIGN Peripheral blood samples from 56 patients and 50 healthy donors (HDs) were analyzed for CD33+CD11b+HLA-DR- MDSC percentage, NO-, and hROS levels by flow cytometry. We determined whether MDSC levels and suppressive features detected before anti-CTLA4 therapy correlate with the patients' response and overall survival (OS). RESULTS Patients with melanoma had significantly higher levels of circulating CD33+CD11b+HLA-DR- MDSCs with suppressive phenotype when compared with HDs. Low levels of MDSCs before CTLA-4 therapy correlated with an objective clinical response, long-term survival, increased CD247 expression in T cells, and an improved clinical status. No predictive impact was observed for lactate dehydrogenase (LDH). Kaplan-Meier and log-rank tests performed on the 56 patients showed that the presence of more than 55.5% of circulating CD33+CD11b+ out of the HLA-DR- cells, were associated with significant short OS (P < 0.003), a median of 6.5 months, in comparison with the group showing lower MDSC frequencies, with a median survival of 15.6 months. CONCLUSIONS Our study suggests the use of CD33+CD11b+HLA-DR- cells as a predictive and prognostic biomarker in patients with stage IV melanoma treated with anti-CTLA4 therapy. This monitoring system may aid in the development of combinatorial modalities, targeting the suppressive environment in conjunction with iplimumab, toward facilitating better disease outcomes. Clin Cancer Res; 22(23); 5661-72. ©2016 AACR.
Collapse
Affiliation(s)
- Moshe Sade-Feldman
- The Lautenberg Center for General and Tumor Immunology, BioMedical Research institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Julia Kanterman
- The Lautenberg Center for General and Tumor Immunology, BioMedical Research institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | | | | - Amijai Saragovi
- The Lautenberg Center for General and Tumor Immunology, BioMedical Research institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Hani Shtainberg
- Sharett Institute of Oncology, Hadassah Medical Organization, Jerusalem, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Medical Organization, Jerusalem, Israel
| | - Michal Baniyash
- Sharett Institute of Oncology, Hadassah Medical Organization, Jerusalem, Israel.
| |
Collapse
|
24
|
Upreti D, Zhang ML, Bykova E, Kung SKP, Pathak KA. Change in CD3ζ-chain expression is an independent predictor of disease status in head and neck cancer patients. Int J Cancer 2016; 139:122-9. [PMID: 26888626 DOI: 10.1002/ijc.30046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 12/31/2022]
Abstract
CD3ζ has emerged as a clinically important immunological marker in head and neck squamous cell carcinoma (HNSCC) with reduced level of expression reported in both tumor infiltrating lymphocytes and peripheral blood lymphocytes. In this prospective study (power = 0.99, α = 0.05), CD3ζ expression was compared in 47 HNSCC patients and 53 controls using standardized flow cytometric method. There was no statistical difference in the percentages of the CD3 ε+ T-cell subset present in the peripheral blood mononuclear cells of the HNSCC patients and the healthy controls; however, T cells from the HNSCC patients produced a significantly weaker IFN-γ response in comparison to the healthy controls, when they were stimulated by the recall viral CEF peptide antigen. All patients were followed up for at least 3 years with a median follow-up of 45 months. Levels of CD3ζ-chain expression were measured at 117 follow-up visits at six-month intervals. Receiver operating characteristic curve identified the optimal cut off as a 12% increase in post treatment CD3ζ-chain expression from the baseline levels to confirm absence of HNSCC with the area under curve of 0.81 (95% CI = 0.68-0.94) for predicting absence of HNSCC. The specificity, sensitivity and positive predictive value were 81.25% 79.21% and 97.56%, respectively. Three-year disease specific survival (DSS) was significantly lower (p = 0.007) at 63.2% for patients who showed <12% increase in CD3ζ-chain level as compared to 96.2% for patients who had ≥12% increase. Our results indicate that the change in CD3ζ-chain expression from the baseline is an independent predictor of residual and recurrent HNSCC.
Collapse
Affiliation(s)
- Deepak Upreti
- Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Man-li Zhang
- Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Elena Bykova
- Department of Surgical Oncology, CancerCare Manitoba & Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Sam K P Kung
- Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - K A Pathak
- Department of Surgical Oncology, CancerCare Manitoba & Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Cariani E, Pilli M, Barili V, Porro E, Biasini E, Olivani A, Dalla Valle R, Trenti T, Ferrari C, Missale G. Natural killer cells phenotypic characterization as an outcome predictor of HCV-linked HCC after curative treatments. Oncoimmunology 2016; 5:e1154249. [PMID: 27622055 DOI: 10.1080/2162402x.2016.1154249] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/26/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022] Open
Abstract
NK-cell number and function have been associated with cancer progression. A detailed analysis of phenotypic and functional characteristics of NK-cells in HCC is still lacking. NK-cell function is regulated by activating and inhibitory receptors determined by genetic factors and engagement with cognate ligands on transformed or infected cells. We evaluated phenotypic and functional characteristic of NK-cells in HCC patients undergoing curative treatment in relation to clinical outcome. NK-cells from 70 HCC patients undergoing resection or ablative treatment, 18 healthy volunteers and 12 cirrhotic patients with HCV-infection (controls) were phenotypically characterized. Unsupervised clustering based on the frequency of cells expressing different phenotypic NK-cell markers segregated HCC patients into different cohorts that were compared for outcome. NK-cell cytokine production and cytotoxicity were compared between cohorts with different overall survival (OS) and time to disease recurrence (TTR). By multivariate analysis, age, Child-Pugh class and NK-cell phenotypic clustering could independently identify patients with significantly different OS. NK-cells from patients with better outcome expressed higher levels of cytotoxic granules and CD3ζ and lower levels of natural cytotoxic receptors (NCRs) that were co-expressed with the inhibitory receptor NKG2A known to negatively regulate NCR function. Cytotoxic function and IFNγ production were significantly lower in the cohort of patients with worse outcome compared to controls (p < 0.05). Our results show a role for NK-cells in the control of HCC progression and survival providing the basis for the development of immunotherapeutic strategies to potentiate NK-cell response.
Collapse
Affiliation(s)
| | - Massimo Pilli
- Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma , Parma, Italy
| | - Valeria Barili
- Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma , Parma, Italy
| | - Emanuela Porro
- Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma , Parma, Italy
| | - Elisabetta Biasini
- Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma , Parma, Italy
| | - Andrea Olivani
- Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma , Parma, Italy
| | | | - Tommaso Trenti
- Clinical Pathology-Toxicology, Ospedale Civile , Modena, Italy
| | - Carlo Ferrari
- Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma , Parma, Italy
| | - Gabriele Missale
- Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma , Parma, Italy
| |
Collapse
|
26
|
Upreti D, Pathak A, Kung SKP. Development of a standardized flow cytometric method to conduct longitudinal analyses of intracellular CD3ζ expression in patients with head and neck cancer. Oncol Lett 2016; 11:2199-2206. [PMID: 26998149 DOI: 10.3892/ol.2016.4209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 11/13/2015] [Indexed: 12/30/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common neoplasm in the world. The follow-up protocols currently available do not appear to diagnose treatment failures and recurrences early enough to provide the best treatment to improve the survival rates of patients. The identification of biomarkers may aid in diagnosing, monitoring the progression, or predicting treatment outcomes in HNSCC. The present study aimed to evaluate whether cluster of differentiation (CD) 3ζ chain expression may serve as a biomarker for the early detection of recurrent or persistent HNSCC. However, in a longitudinal study, a standardized method that allows consistent data comparisons in an inter-assay manner is critical. The present study reveals a method to monitor expression levels of CD3ζ over multiple time-points using flow cytometry. The present study validated the use of an internal control and normalization procedure for tracking alterations in CD3ζ expression in samples from patients with HNSCC, which were collected and assayed for a longitudinal study.
Collapse
Affiliation(s)
- Deepak Upreti
- Department of Immunology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Alok Pathak
- Department of Surgery, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Sam K P Kung
- Department of Immunology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
27
|
Frey AB. Suppression of T cell responses in the tumor microenvironment. Vaccine 2015; 33:7393-7400. [PMID: 26403368 DOI: 10.1016/j.vaccine.2015.08.096] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/06/2015] [Accepted: 08/05/2015] [Indexed: 12/29/2022]
Abstract
The immune system recognizes protein antigens expressed in transformed cells evidenced by accumulation of antigen-specific T cells in tumor and tumor draining lymph nodes. However, despite demonstrable immune response, cancers grow progressively suggesting that priming of antitumor immunity is insufficiently vigorous or that antitumor immunity is suppressed, or both. Compared to virus infection, antitumor T cells are low abundance that likely contributes to tumor escape and enhancement of priming is a long-sought goal of experimental vaccination therapy. Furthermore, patient treatment with antigen-specific T cells can in some cases overcome deficient priming and cause tumor regression supporting the notion that low numbers of T cells permits tumor outgrowth. However, tumor-induced suppression of antitumor immune response is now recognized as a significant factor contributing to cancer growth and reversal of the inhibitory influences within the tumor microenvironment is a major research objective. Multiple cell types and factors can inhibit T cell functions in tumors and may be grouped in two general classes: T cell intrinsic and T cell extrinsic. T cell intrinsic factors are exemplified by T cell expression of cell surface inhibitory signaling receptors that, after contact with cells expressing a cognate ligand, inactivate proximal T Cell Receptor-mediated signal transduction therein rendering T cells dysfunctional. T cell extrinsic factors are more diverse in nature and are produced by tumors and various non-tumor cells in the tumor microenvironment. These include proteins secreted by tumor or stromal cells, highly reactive soluble oxygen and nitrogen species, cytokines, chemokines, gangliosides, and toxic metabolites. These factors may restrict T cell entrance into the tumor parenchyma, cause inactivation of effector phase T cell functions, or induce T cell apoptosis ultimately causing diminished cancer elimination. Here, we review the contributions of inhibitory factors to tumor T cell dysfunction leading to tumor escape.
Collapse
Affiliation(s)
- Alan B Frey
- Department of Cell Biology, Perlmutter Cancer Center, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
28
|
de Aquino MTP, Malhotra A, Mishra MK, Shanker A. Challenges and future perspectives of T cell immunotherapy in cancer. Immunol Lett 2015; 166:117-33. [PMID: 26096822 PMCID: PMC4499494 DOI: 10.1016/j.imlet.2015.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/10/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Abstract
Since the formulation of the tumour immunosurveillance theory, considerable focus has been on enhancing the effectiveness of host antitumour immunity, particularly with respect to T cells. A cancer evades or alters the host immune response by various ways to ensure its development and survival. These include modifications of the immune cell metabolism and T cell signalling. An inhibitory cytokine milieu in the tumour microenvironment also leads to immune suppression and tumour progression within a host. This review traces the development in the field and attempts to summarize the hurdles that the approach of adoptive T cell immunotherapy against cancer faces, and discusses the conditions that must be improved to allow effective eradication of cancer.
Collapse
Affiliation(s)
- Maria Teresa P de Aquino
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anshu Malhotra
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Manoj K Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; Tumor-Host Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
29
|
Liao Z, Zhou L, Wang C, He Z, Wang X, Luo X, Chen S, Yang L, Tan H, Li Y. Characteristics of TCRζ, ZAP-70, and FcɛRIγ gene expression in patients with T- and NK/T-cell lymphoma. DNA Cell Biol 2014; 34:201-7. [PMID: 25513989 DOI: 10.1089/dna.2014.2693] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormal expression of key signaling molecules and defective T-cell function play a crucial role in the pathogenesis of T-cell immunodeficiency in hematological malignancies. To understand the molecular basis of T-cell signaling abnormalities and TCRζ chain deficiencies in T- and NK/T-cell lymphoma, the expression level of the TCRζ, ZAP-70, and FcɛRIγ genes in peripheral blood mononuclear cells from 25 patients with T-cell lymphoma, 16 patients with NK/T-cell lymphoma (NK/T-CL), and 26 healthy individuals was determined. In addition, their relationship with disease stage and TCRζ 3' untranslated region (3'UTR) splice variants was analyzed in this study. The expression level of all three genes was significantly altered with disease progression, and a decreasing trend was found in patients compared with healthy controls. TCRζ and ZAP-70 were significantly positively related in all samples, and a negative relationship between TCRζ and FcɛRIγ was significantly lost in NK/T-CL patients. Moreover, distinct expression patterns were defined for patient groups with different TCRζ 3'UTR isoforms. In conclusion, a lower expression pattern for all three genes may indicate a weaker immune status based on reduced TCRζ and ZAP-70 expression without the complementary effects of FcɛRIγ, while aberrant TCRζ 3'UTR splicing may contribute to T-cell receptor (TCR) signaling regulation in T cells from patients with T- and NK/T-cell lymphoma.
Collapse
Affiliation(s)
- Ziwei Liao
- 1 Institute of Hematology, Jinan University , Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bao Y, Mo J, Ruan L, Li G. Increased monocytic CD14⁺HLADRlow/- myeloid-derived suppressor cells in obesity. Mol Med Rep 2014; 11:2322-8. [PMID: 25384365 DOI: 10.3892/mmr.2014.2927] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 10/24/2014] [Indexed: 11/05/2022] Open
Abstract
Obesity is associated with numerous immunological disorders. The present study investigated the proportion and phenotype of myeloid‑derived suppressor cells (MDSCs) in the plasma of obese subjects and the association of these cells with the level of liver enzymes. Certain features of the immune response in obese subjects were examined by analyzing the expression of T cell receptor‑ζ (TCRζ) molecules on the surface of T cells. The expression and secretion of S100A9, a possible marker for MDSCs, were detected in the peripheral blood of obese subjects and compared with levels in lean controls. Results showed that the percentage of monocytic MDSCs, with the phenotype CD33+CD11b+CD14+HLADRlow/‑, was significantly increased in obese subjects compared with lean controls. The circulating level of monocytic MDSCs was positively correlated with the levels of liver enzymes in serum. The expression of the TCRζ molecule in the resting T cells was significantly lower in obese individuals than that of lean controls. The expression of S100A9 was detected in the majority of monocytes in peripheral blood mononulear cells, but no difference was identified in the frequency of CD14+S100A9+ cells between the obese and lean groups. However, the plasma level of S100A8/9 was significantly increased in obese compared with lean subjects. These observations suggested that the increased frequency of CD33+CD11b+CD14+HLADRlow/‑ cells may be responsible for the impaired T‑cell function and liver injury observed in obesity.
Collapse
Affiliation(s)
- Yi Bao
- Department of Basic and Translational Research, The Key Laboratory, The Second Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Juanfen Mo
- Department of Basic and Translational Research, The Key Laboratory, The Second Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Lingjuan Ruan
- Department of Basic and Translational Research, The Key Laboratory, The Second Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Guo Li
- Department of Basic and Translational Research, The Key Laboratory, The Second Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
31
|
Yu HR, Kuo HC, Huang LT, Chen CC, Tain YL, Sheen JM, Tiao MM, Huang HC, Yang KD, Ou CY, Hsu TY. L-Arginine modulates neonatal lymphocyte proliferation through an interleukin-2 independent pathway. Immunology 2014; 143:184-92. [PMID: 24697328 DOI: 10.1111/imm.12300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/23/2014] [Accepted: 04/01/2014] [Indexed: 01/09/2023] Open
Abstract
In cases of arginine depletion, lymphocyte proliferation, cytokine production and CD3ζ chain expression are all diminished. In addition to myeloid suppressor cells, polymorphonuclear cells (PMN) also exert T-cell immune suppressive effects through arginase-induced l-arginine depletion, especially during pregnancy. In this study, we investigated how arginase/l-arginine modulates neonatal lymphocyte proliferation. Results showed that the neonatal plasma l-arginine level was lower than in adults (48·1 ± 11·3 versus 86·5 ± 14·6 μm; P = 0·003). Neonatal PMN had a greater abundance of arginase I protein than adult PMN. Both transcriptional regulation and post-transcriptional regulation were responsible for the higher arginase I expression of neonatal PMN. Exogenous l-arginine enhanced neonate lymphocyte proliferation but not that of adult cells. The RNA-binding protein HuR was important but was not the only modulation factor in l-arginine-regulated neonatal T-cell proliferation. l-Arginine-mediated neonatal lymphocyte proliferation could not be blocked by interleukin-2 receptor blocking antibodies. These results suggest that the altered arginase/l-arginine cascade may be one of the mechanisms that contribute to altered neonatal immune responses. Exogenous l-arginine could enhance neonate lymphocyte proliferation through an interleukin-2-independent pathway.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Paediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiug, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bojarska-Junak A, Hus I, Chocholska S, Tomczak W, Woś J, Czubak P, Putowski L, Roliński J. CD1d expression is higher in chronic lymphocytic leukemia patients with unfavorable prognosis. Leuk Res 2013; 38:435-42. [PMID: 24418751 DOI: 10.1016/j.leukres.2013.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/09/2013] [Accepted: 12/14/2013] [Indexed: 11/16/2022]
Abstract
Through the analysis of CD1d expression by flow cytometry and qRT-PCR we showed lower CD1d molecule and CD1d mRNA expression in B cells of CLL patients than of healthy controls. The frequency of CD1d(+)/CD19(+) cells, CD1d staining intensity and CD1d transcript levels increased with the disease stage. CD1d expression was positively associated with ZAP-70 and CD38 expressions as well as with unfavourable cytogenetic changes. We established the relationship between high CD1d expression and shorter time to treatment and overall survival. We observed that CD1d expression in individual patients significantly changed over time. The percentage of CD1d(+)/CD19(+) cells inversely correlated with the percentage of iNKT cells.
Collapse
Affiliation(s)
| | - Iwona Hus
- Department of Clinical Transplantology, Medical University of Lublin, Poland
| | - Sylwia Chocholska
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Poland
| | - Waldemar Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Poland
| | - Justyna Woś
- Chair and Department of Clinical Immunology, Medical University of Lublin, Poland
| | - Paweł Czubak
- Chair and Department of Gynaecology and Gynaecological Endocrinology, Medical University of Lublin, Poland
| | - Lechosław Putowski
- Chair and Department of Gynaecology and Gynaecological Endocrinology, Medical University of Lublin, Poland
| | - Jacek Roliński
- Chair and Department of Clinical Immunology, Medical University of Lublin, Poland
| |
Collapse
|
33
|
Hargadon KM. Tumor-altered dendritic cell function: implications for anti-tumor immunity. Front Immunol 2013; 4:192. [PMID: 23874338 PMCID: PMC3708450 DOI: 10.3389/fimmu.2013.00192] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/27/2013] [Indexed: 01/20/2023] Open
Abstract
Dendritic cells (DC) are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programing of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College , Hampden-Sydney, VA , USA
| |
Collapse
|
34
|
Turksma AW, Braakhuis BJ, Bloemena E, Meijer CJ, Leemans CR, Hooijberg E. Immunotherapy for head and neck cancer patients: shifting the balance. Immunotherapy 2013; 5:49-61. [PMID: 23256798 DOI: 10.2217/imt.12.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer in the western world. Over the last few decades little improvement has been made to increase the relatively low 5-year survival rate. This calls for novel and improved therapies. Here, we describe opportunities in immunotherapy for head and neck cancer patients and hurdles yet to be overcome. Viruses are involved in a subset of head and neck squamous cell carcinoma cases. The incidence of HPV-related head and neck cancer is increasing and is a distinctly different disease from other head and neck carcinomas. Virus-induced tumors express viral antigens that are good targets for immunotherapeutic treatment options. The type of immunotherapeutic treatment, either active or passive, should be selected depending on the HPV status of the tumor and the immune status of the patient.
Collapse
Affiliation(s)
- Annelies W Turksma
- VU University Medical Center - Cancer Center Amsterdam, Department of Pathology 2.26, de Boelelaan 1117, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Baxevanis CN, Papamichail M, Perez SA. Immune classification of colorectal cancer patients: impressive but how complete? Expert Opin Biol Ther 2013; 13:517-26. [PMID: 23289642 DOI: 10.1517/14712598.2013.751971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There is now accumulating evidence to suggest that intratumoral adaptive immune responses predict patient prognosis. The presence of tumor-infiltrating lymphocytes has been correlated with patients' disease-free and overall survival. Recent exciting studies of human colorectal cancers (CRCs) have underlined the significance of including immunological biomarkers as prognostic markers. AREAS COVERED This review covers recent literature which suggests that the type, density and location of immune cells within the colorectal tumors represent a better predictor of patient survival than the histopathological methods currently used to stage CRC. EXPERT OPINION Remarkably, the quantity, quality and spatial distribution of immune cells within the tumor has a greater prognostic value than the standard tumor staging based on tumor burden, infiltration of draining and regional lymph nodes by tumor cells, and evidence of metastases. In addition, such an immune classification may also have a predictive value. Thus, by increasing the knowledge of the immune events inside the tumors and by better understanding the immune architecture of these tumors as well as the functional programs of their constituents, there will certainly be a more complete idea of how tumors evade from immunosurveillance. This knowledge will help to identify new targets for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Constantin N Baxevanis
- Saint Savas Cancer Hospital, Cancer Immunology and Immunotherapy Center, 171 Alexandras avenue, Athens, 11522, Greece.
| | | | | |
Collapse
|
36
|
Umansky V, Sevko A. Tumor microenvironment and myeloid-derived suppressor cells. CANCER MICROENVIRONMENT 2012; 6:169-77. [PMID: 23242672 DOI: 10.1007/s12307-012-0126-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/14/2012] [Indexed: 01/04/2023]
Abstract
Tumor progression has been demonstrated to be supported by chronic inflammatory conditions developed in the tumor microenvironment and characterized by the long-term secretion of various inflammatory soluble factors (including cytokines, chemokines, growth factors, reactive oxygen and nitrogen species, prostaglandins etc.) and strong leukocyte infiltration. Among leukocytes infiltrating tumors, myeloid-derived suppressor cells (MDSCs) represent one of the most important players mediating immunosuppression. These cells may not only strongly inhibit an anti-tumor immune reactions mediated by T cells but also directly stimulate tumorigenesis, tumor growth and metastasis by enhancing neoangiogenesis and creating a suitable environment for the metastatic formation. This review provides an overview of interactions between MDSCs and tumor cells leading to MDSC generation, activation and migration to the tumor site, where they can strongly enhance tumor progression. Better understanding of the MDSC-tumor interplay is critical for the development of new strategies of tumor immunotherapy.
Collapse
Affiliation(s)
- Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center, 69120, Heidelberg, Germany,
| | | |
Collapse
|
37
|
Eleftheriadis T, Kartsios C, Pissas G, Liakopoulos V, Antoniadi G, Galaktidou G, Stefanidis I. Increased Plasma Angiogenin Level is Associated and May Contribute to Decreased T-Cell Zeta-Chain Expression in Hemodialysis Patients. Ther Apher Dial 2012; 17:48-54. [DOI: 10.1111/j.1744-9987.2012.01135.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Wiencke JK, Accomando WP, Zheng S, Patoka J, Dou X, Phillips JJ, Hsuang G, Christensen BC, Houseman EA, Koestler DC, Bracci P, Wiemels JL, Wrensch M, Nelson HH, Kelsey KT. Epigenetic biomarkers of T-cells in human glioma. Epigenetics 2012; 7:1391-402. [PMID: 23108258 DOI: 10.4161/epi.22675] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immune factors are thought to influence glioma risk and outcomes, but immune profiling studies to further our understanding of the immune response are limited by current immunodiagnostic methods. We developed a new assay to capture glioma immune biology based on quantitative methylation specific PCR (qMSP) of two T-cell genes (CD3Z: T-cells, and FOXP3: Tregs). Flow cytometry of T-cells correlated well with the CD3Z demethylation assay (r = 0.93; p < 2.2 × 10 (-16) ), demonstrating the validity of the assay. Furthermore, there was a high correlation between qMSP and immunohistochemistry (IHC) in quantifying tumor infiltrating T-cells (r = 0.85; p = 3.4 × 10 (-11) ). Applying our qMSP methods to archival whole blood from 65 glioblastoma multiforme (GBM) cases and 94 non-diseased controls, GBM cases had highly statistically significantly lower T-cells (p = 1.7 × 10 (-9) ) as well as Tregs (p = 5.2 × 10 (-11) ) and a modestly lower ratio of Tregs/T-cells (p = 0.024). Applying the methods to 120 excised glioma tumors, we observed that tumor infiltrating CD3+ T-cells were positively correlated with glioma tumor grade (p = 5.7 × 10 (-7) ), and that Tregs were enriched in tumors compared with peripheral blood indicating active chemoattraction of suppressive Tregs into the tumor compartment. Poorer patient survival was correlated with higher levels of tumor infiltrating T-cells (p = 0.01) and Tregs (p = 0.04). DNA methylation based immunodiagnostics represent a new generation of powerful laboratory tools offering many advantages over conventional methods that will facilitate large clinical epidemiologic studies and capitalize on stored archival blood and tissue banks.
Collapse
Affiliation(s)
- John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, Cova A, Canese R, Jachetti E, Rossetti M, Huber V, Parmiani G, Generoso L, Santinami M, Borghi M, Fais S, Bellone M, Rivoltini L. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 2012; 72:2746-56. [PMID: 22593198 DOI: 10.1158/0008-5472.can-11-1272] [Citation(s) in RCA: 433] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stimulating the effector functions of tumor-infiltrating T lymphocytes (TIL) in primary and metastatic tumors could improve active and adoptive T-cell therapies for cancer. Abnormal glycolysis, high lactic acid production, proton accumulation, and a reversed intra-extracellular pH gradient are thought to help render tumor microenvironments hostile to roving immune cells. However, there is little knowledge about how acidic microenvironments affect T-cell immunity. Here, we report that lowering the environmental pH to values that characterize tumor masses (pH 6-6.5) was sufficient to establish an anergic state in human and mouse tumor-specific CD8(+) T lymphocytes. This state was characterized by impairment of cytolytic activity and cytokine secretion, reduced expression of IL-2Rα (CD25) and T-cell receptors (TCR), and diminished activation of STAT5 and extracellular signal-regulated kinase (ERK) after TCR activation. In contrast, buffering pH at physiologic values completely restored all these metrics of T-cell function. Systemic treatment of B16-OVA-bearing mice with proton pump inhibitors (PPI) significantly increased the therapeutic efficacy of both active and adoptive immunotherapy. Our findings show that acidification of the tumor microenvironment acts as mechanism of immune escape. Furthermore, they illustrate the potential of PPIs to safely correct T-cell dysfunction and improve the efficacy of T-cell-based cancer treatments.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Cellular Immunology Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kanterman J, Sade-Feldman M, Baniyash M. New insights into chronic inflammation-induced immunosuppression. Semin Cancer Biol 2012; 22:307-18. [PMID: 22387003 DOI: 10.1016/j.semcancer.2012.02.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 01/11/2023]
Abstract
Chronic inflammation is a common factor linking various pathologies that differ in their etiology and physiology such as cancer, autoimmune diseases, and infections. At a certain stage of each of these diseases, while the chronic inflammation proceeds, some key players of the immune system become immunosuppressed as natural killer (NK) cells and T cells. The suppressive environment induced during chronic inflammation is governed by a complex processes characterized by the accumulation and activation of immune suppressor cells, pro-inflammatory cytokines, chemokines, growth and angiogenic factors, and by the activation of several inflammatory signaling pathways mediated predominantly by NFκB and STAT3 transcription factors. A substantial body of evidence supports the notion that the development of a suppressive environment during chronic inflammation limits the success of immune-based and conventional therapies, skewing the balance in favor of a developing pathology. Thus, appropriate, well-designed and fine tuned immune interventions that could resolve inflammatory responses and associated immunosuppression could enhance disease regression and reinforce successful responses to a given therapy. This review describes the interrelationship between chronic inflammation and induced immunosuppression, and explains the current evidence linking inflammation and pathological processes, as found in cancer. We further highlight potential strategies, harnessing the immunosuppressive environment in treating autoimmune diseases and facilitating transplantation. In parallel, we emphasize the use of modalities to combat chronic inflammation-induced immunosuppression in cancer, to enhance the success of immune-based therapies leading to tumor regression. In both cases, the urgent necessity of identifying biomarkers for the evaluation of host immune status is discussed, with the goal of developing optimal personalized treatments.
Collapse
Affiliation(s)
- Julia Kanterman
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
41
|
Melanoma-induced immunosuppression and its neutralization. Semin Cancer Biol 2012; 22:319-26. [PMID: 22349515 DOI: 10.1016/j.semcancer.2012.02.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/06/2012] [Indexed: 02/08/2023]
Abstract
Malignant melanoma is characterized by a rapid progression, metastasis to distant organs, and resistance to chemo- and radiotherapy. Well-defined immunogenic capacities of melanoma cells should allow a successful application of different immunotherapeutic strategies. However, the overall results of immunotherapeutic clinical studies are not satisfactory. These paradoxical observations are supposed to be due to the profound immunosuppression mediated by different mechanisms dealing with alterations in tumor and surrounding stroma cells. Melanoma microenvironment has been characterized by a remarkable accumulation of highly immunosuppressive regulatory leucocytes, in particular, myeloid-derived suppressor cells (MDSCs). Their migration, retention and high activity in the tumor lesions have been demonstrated to be induced by chronic inflammatory conditions developing in the tumor microenvironment and characterized by the long-term secretion of various inflammatory mediators (cytokines, chemokines, growth factors, reactive oxygen and nitrogen species, prostaglandins etc.) leading to further cancer progression. Here, we discuss the role of chronic inflammation in the recruitment and activation of MDSCs in melanoma lesions as well as therapeutic approaches of MDSC targeting to overcome tumor immunosuppressive microenvironment induced by chronic inflammation and enhance the efficiency of melanoma immunotherapies.
Collapse
|
42
|
Sasada T, Suekane S. Variation of tumor-infiltrating lymphocytes in human cancers: controversy on clinical significance. Immunotherapy 2012; 3:1235-51. [PMID: 21995574 DOI: 10.2217/imt.11.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumors develop and progress under the influence of a microenvironment comprising a variety of immune cell subsets and their products. Recent studies have shown that tumor-infiltrating lymphocytes (TILs) are not randomly distributed, but organized to accumulate more or less densely in different regions within tumors, and interact with each other. Substantial evidence has suggested that not only CD8(+) and/or CD4(+) αβ T cells but also other lymphocyte subsets, including γδ T cells, B cells, NK cells, and NKT cells, infiltrate tumor tissues in variable quantities and play a key role in the regulation of antitumor immunity. In this article, we summarize available information regarding the diversity and composition of TILs, which may positively or negatively affect tumor growth and patient clinical outcomes. The clinical significance of TILs in human cancers remains unclear and is a subject of considerable controversy; largely due to the lack of functional data for TILs, as well as due to enormous variability of TILs in different tumors. A great deal more functional data about TILs needs to be obtained for individual tumors before TILs can be considered as a prognostic parameter in human cancers.
Collapse
Affiliation(s)
- Tetsuro Sasada
- Department of Immunology & Immunotherapy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.
| | | |
Collapse
|
43
|
Hargadon KM, Forrest OA, Reddy PR. Suppression of the maturation and activation of the dendritic cell line DC2.4 by melanoma-derived factors. Cell Immunol 2012; 272:275-82. [DOI: 10.1016/j.cellimm.2011.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/09/2011] [Accepted: 10/03/2011] [Indexed: 11/16/2022]
|
44
|
Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci U S A 2011; 108:17111-6. [PMID: 21969559 PMCID: PMC3193202 DOI: 10.1073/pnas.1108121108] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tumor microenvironment is characterized by chronic inflammation represented by infiltrating leukocytes and soluble mediators, which lead to a local and systemic immunosuppression associated with cancer progression. Here, we used the ret transgenic spontaneous murine melanoma model that mimics human melanoma. Skin tumors and metastatic lymph nodes showed increased levels of inflammatory factors such as IL-1β, GM-CSF, and IFN-γ, which correlated with tumor progression. Moreover, Gr1(+)CD11b(+) myeloid-derived suppressor cells (MDSCs), known to inhibit tumor reactive T cells, were enriched in melanoma lesions and lymphatic organs during tumor progression. MDSC infiltration was associated with a strong TCR ζ-chain down-regulation in all T cells. Coculturing normal splenocytes with tumor-derived MDSC induced a decreased T-cell proliferation and ζ-chain expression, verifying the MDSC immunosuppressive function and suggesting that the tumor inflammatory microenvironment supports MDSC recruitment and immunosuppressive activity. Indeed, upon manipulation of the melanoma microenvironment with the phosphodiesterase-5 inhibitor sildenafil, we observed reduced levels of numerous inflammatory mediators (e.g., IL-1β, IL-6, VEGF, S100A9) in association with decreased MDSC amounts and immunosuppressive function, indicating an antiinflammatory effect of sildenafil. This led to a partial restoration of ζ-chain expression in T cells and to a significantly increased survival of tumor-bearing mice. CD8 T-cell depletion resulted in an abrogation of sildenafil beneficial outcome, suggesting the involvement of MDSC and CD8 T cells in the observed therapeutic effects. Our data imply that inhibition of chronic inflammation in the tumor microenvironment should be applied in conjunction with melanoma immunotherapies to increase their efficacy.
Collapse
|
45
|
Boniface JD, Poschke I, Mao Y, Kiessling R. Tumor-dependent down-regulation of the ζ-chain in T-cells is detectable in early breast cancer and correlates with immune cell function. Int J Cancer 2011; 131:129-39. [DOI: 10.1002/ijc.26355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/22/2011] [Indexed: 12/19/2022]
|
46
|
Immune suppression in head and neck cancers: a review. Clin Dev Immunol 2011; 2010:701657. [PMID: 21437225 PMCID: PMC3061296 DOI: 10.1155/2010/701657] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/20/2010] [Accepted: 12/27/2010] [Indexed: 12/16/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common cancer in the world. Despite significant advances in the treatment modalities involving surgery, radiotherapy, and concomitant chemoradiotherapy, the 5-year survival rate remained below 50% for the past 30 years. The worse prognosis of these cancers must certainly be link to the fact that HNSCCs strongly influence the host immune system. We present a critical review of our understanding of the HNSCC escape to the antitumor immune response such as a downregulation of HLA class I and/or components of APM. Antitumor responses of HNSCC patients are compromised in the presence of functional defects or apoptosis of T-cells, both circulating and tumor-infiltrating. Langerhans cells are increased in the first steps of the carcinogenesis but decreased in invasive carcinomas. The accumulation of macrophages in the peritumoral areas seems to play a protumoral role by secreting VEGF and stimulating the neoangiogenesis.
Collapse
|
47
|
Ichim TE, Minev B, Braciak T, Luna B, Hunninghake R, Mikirova NA, Jackson JA, Gonzalez MJ, Miranda-Massari JR, Alexandrescu DT, Dasanu CA, Bogin V, Ancans J, Stevens RB, Markosian B, Koropatnick J, Chen CS, Riordan NH. Intravenous ascorbic acid to prevent and treat cancer-associated sepsis? J Transl Med 2011; 9:25. [PMID: 21375761 PMCID: PMC3061919 DOI: 10.1186/1479-5876-9-25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/04/2011] [Indexed: 02/07/2023] Open
Abstract
The history of ascorbic acid (AA) and cancer has been marked with controversy. Clinical studies evaluating AA in cancer outcome continue to the present day. However, the wealth of data suggesting that AA may be highly beneficial in addressing cancer-associated inflammation, particularly progression to systemic inflammatory response syndrome (SIRS) and multi organ failure (MOF), has been largely overlooked. Patients with advanced cancer are generally deficient in AA. Once these patients develop septic symptoms, a further decrease in ascorbic acid levels occurs. Given the known role of ascorbate in: a) maintaining endothelial and suppression of inflammatory markers; b) protection from sepsis in animal models; and c) direct antineoplastic effects, we propose the use of ascorbate as an adjuvant to existing modalities in the treatment and prevention of cancer-associated sepsis.
Collapse
Affiliation(s)
- Thomas E Ichim
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - Boris Minev
- Department of Medicine, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr, San Diego, California, 92121, USA
| | - Todd Braciak
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
- Department of Immunology, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, La Jolla, California,92121, USA
| | - Brandon Luna
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - Ron Hunninghake
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
| | - Nina A Mikirova
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
| | - James A Jackson
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
| | - Michael J Gonzalez
- Department of Human Development, Nutrition Program, University of Puerto Rico, Medical Sciences Campus, San Juan, 00936-5067, PR
| | - Jorge R Miranda-Massari
- Department of Pharmacy Practice, University of Puerto Rico, Medical Sciences Campus, School of Pharmacy, San Juan, 00936-5067, PR
| | - Doru T Alexandrescu
- Department of Experimental Studies, Georgetown Dermatology, 3301 New Mexico Ave, Washington DC, 20018, USA
| | - Constantin A Dasanu
- Department of Hematology and Oncology, University of Connecticut, 115 North Eagleville Road, Hartford, Connecticut, 06269, USA
| | - Vladimir Bogin
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - Janis Ancans
- Department of Surgery, University of Latvia, 19 Raina Blvd, Riga, LV 1586, Latvia
| | - R Brian Stevens
- Department of Surgery, Microbiology, and Pathology, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska, 86198, USA
| | - Boris Markosian
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - James Koropatnick
- Department of Microbiology and Immunology, and Department of Oncology, Lawson Health Research Institute and The University of Western Ontario, 1151 Richmond Street, London, Ontario, N2G 3M5, Canada
| | - Chien-Shing Chen
- School of Medicine, Division of Hematology and Oncology, Loma Linda University,24851 Circle Dr, Loma Linda, California, 92354, USA
| | - Neil H Riordan
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| |
Collapse
|
48
|
Profile of a serial killer: cellular and molecular approaches to study individual cytotoxic T-cells following therapeutic vaccination. J Biomed Biotechnol 2010; 2011:452606. [PMID: 21113290 PMCID: PMC2989374 DOI: 10.1155/2011/452606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.
Collapse
|
49
|
Barnas JL, Simpson-Abelson MR, Yokota SJ, Kelleher RJ, Bankert RB. T cells and stromal fibroblasts in human tumor microenvironments represent potential therapeutic targets. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2010; 3:29-47. [PMID: 21209773 PMCID: PMC2990491 DOI: 10.1007/s12307-010-0044-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/02/2010] [Indexed: 12/16/2022]
Abstract
The immune system of cancer patients recognizes tumor-associated antigens expressed on solid tumors and these antigens are able to induce tumor-specific humoral and cellular immune responses. Diverse immunotherapeutic strategies have been used in an attempt to enhance both antibody and T cell responses to tumors. While several tumor vaccination strategies significantly increase the number of tumor-specific lymphocytes in the blood of cancer patients, most vaccinated patients ultimately experience tumor progression. CD4+ and CD8+ T cells with an effector memory phenotype infiltrate human tumor microenvironments, but most are hyporesponsive to stimulation via the T cell receptor (TCR) and CD28 under conditions that activate memory T cells derived from the peripheral blood of the cancer patients or normal donors. Attempts to identify cells and molecules responsible for the TCR signaling arrest of tumor-infiltrating T cells have focused largely upon the immunosuppressive effects of tumor cells, tolerogenic dendritic cells and regulatory T cells. Here we review potential mechanisms by which human T cell function is arrested in the tumor microenvironment with a focus on the immunomodulatory effects of stromal fibroblasts. Determining in vivo which cells and molecules are responsible for the TCR arrest in human tumor-infiltrating T cells will be necessary to formulate and test strategies to prevent or reverse the signaling arrest of the human T cells in situ for a more effective design of tumor vaccines. These questions are now addressable using novel human xenograft models of tumor microenvironments.
Collapse
Affiliation(s)
- Jennifer L. Barnas
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Michelle R. Simpson-Abelson
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Sandra J. Yokota
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Raymond J. Kelleher
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| | - Richard B. Bankert
- Department of Microbiology and Immunology, Witebsky Center, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 138 Farber Hall, 3435 Main Street, Buffalo, NY 14214 USA
| |
Collapse
|
50
|
Cheriyan VT, Krishna SM, Kumar A, Jayaprakash PG, Balaram P. Signaling defects and functional impairment in T-cells from cervical cancer patients. Cancer Biother Radiopharm 2010; 24:667-73. [PMID: 20025546 DOI: 10.1089/cbr.2009.0660] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability of T-lymphocytes to recognize antigens and transduce signals to the nucleus successfully is a key component in the initiation and maintenance of an immune response. The present study addressed the expression status of the signal-transducing proteins in relation to the immune impairment in cervical cancer patients. Immune response was measured by evaluating lymphocyte subpopulations CD3(+), CD4(+), and CD8(+), using flowcytometry, natural killer cell activity, using the single-cell cytotoxicity assay, lymphocyte function, using mitogenic response to PHA and T-cell activation following anti-CD3 stimulation, and production of IL-2. Expression of the T-cell signal transduction proteins, TCR-zeta, CD3-epsilon, zap-70, p(56)lck, PKC, NFkappabeta p50, Rel-A, Rel-B, and c-rel, was evaluated by using Western blot assay. A generalized depression of the immune response with respect to the different parameters evaluated was observed. Exogenous interleukin-2 (IL-2) could increase the response in all the controls and in 30% of the patients to different degrees varying from 10% to 90%. Low levels of the signaling molecules (TCR-zeta, CD3-epsilon, zap-70, p(56)lck, and PKC) and impairment in the transduction of NFkappabeta components (p50, Rel-A, Rel-B, and c-rel) to the nuclei were observed in these lymphocytes. Decreased CD4(+)/CD8(+) ratio with an increase in suppressor cells, reduced lymphocyte proliferation, and production of IL-2 suggest a defective immune regulation in cervical cancer. Impairment in the translocation of NFkappabeta p50, Rel-A, and Rel-B to the nucleus and the reduced levels of signal-transducing proteins might be responsible for the decreased production of IL-2 and immune impairment in cervical cancer patients.
Collapse
Affiliation(s)
- Vino T Cheriyan
- Division of Cancer Research, Regional Cancer Center, Trivandrum, Kerala, India
| | | | | | | | | |
Collapse
|