1
|
Ma C, Li Y, Li M, Lv C, Tian Y. Targeting immune checkpoints on myeloid cells: current status and future directions. Cancer Immunol Immunother 2025; 74:40. [PMID: 39751898 PMCID: PMC11699031 DOI: 10.1007/s00262-024-03856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 01/04/2025]
Abstract
Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME. By summarizing the research status of myeloid checkpoints, we propose that blocking immune checkpoints on myeloid cells might be an effective strategy to reverse the immunosuppressive status of the TME. Moreover, combining nanotechnology, cellular therapy, and bispecific antibodies to achieve precise targeting of myeloid immune checkpoints can help to avoid the adverse effects of systemic administration, ultimately achieving a balance between efficacy and safety in cancer therapy.
Collapse
Affiliation(s)
- Chuhan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center (Group), DalianLiaoning Province, 116000, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| |
Collapse
|
2
|
Hodges A, Dubuque R, Chen SH, Pan PY. The LILRB family in hematologic malignancies: prognostic associations, mechanistic considerations, and therapeutic implications. Biomark Res 2024; 12:159. [PMID: 39696628 DOI: 10.1186/s40364-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
The leukocyte immunoglobulin-like receptor B (LILRB) proteins, characterized by their transmembrane nature and canonical immunoreceptor tyrosine-based inhibitory motifs (ITIM) signaling, play a pivotal role in maintaining immune homeostasis and are implicated in the pathogenesis of various disease states. This comprehensive review will focus on the intricate involvement of the LILRB family in hematologic malignancies. These receptors have emerged as valuable diagnostic and prognostic biomarkers in leukemia, lymphoma, and myeloma. Beyond their prognostic implications, LILRBs actively shape the immune microenvironment and directly influence the disease pathogenesis of hematologic malignancies. Furthermore, their identification as potential therapeutic targets offer a promising avenue for precision medicine strategies in the treatment of these disorders. Currently, multiple LILRB directed therapies are in the preclinical and clinical trial pipelines. This review underscores the multifaceted role of the LILRB family in hematologic malignancies, highlighting their significance from diagnostic and prognostic perspectives to their broader impact on disease pathophysiology and as valuable therapeutic targets.
Collapse
Affiliation(s)
- Alan Hodges
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA
| | - Rachel Dubuque
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York City, NY, 10065, USA
| | - Shu-Hsia Chen
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA.
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York City, NY, 10065, USA.
| | - Ping-Ying Pan
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA.
| |
Collapse
|
3
|
Liu Q, Liu Y, Yang Z. Leukocyte immunoglobulin-like receptor B4: A keystone in immune modulation and therapeutic target in cancer and beyond. CANCER INNOVATION 2024; 3:e153. [PMID: 39444949 PMCID: PMC11495969 DOI: 10.1002/cai2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 10/25/2024]
Abstract
Leukocyte immunoglobulin-like receptor B4 (LILRB4) significantly impacts immune regulation and the pathogenesis and progression of various cancers. This review discusses LILRB4's structural attributes, expression patterns in immune cells, and molecular mechanisms in modulating immune responses. We describe the influence of LILRB4 on T cells, dendritic cells, NK cells, and macrophages, and its dual role in stimulating and suppressing immune activities. The review discusses the current research on LILRB4's involvement in acute myeloid leukemia, chronic lymphocytic leukemia, and solid tumors, such as colorectal cancer, pancreatic cancer, non-small cell lung cancer, hepatocellular carcinoma, and extramedullary multiple myeloma. The review also describes LILRB4's role in autoimmune disorders, infectious diseases, and other conditions. We evaluate the recent advancements in targeting LILRB4 using monoclonal antibodies and peptide inhibitors and their therapeutic potential in cancer treatment. Together, these studies underscore the need for further research on LILRB4's interactions in the tumor microenvironment and highlight its importance as a therapeutic target in oncology and for future clinical innovations.
Collapse
Affiliation(s)
- Qi Liu
- Faculty of Hepato‐Pancreato‐Biliary Surgery, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
- Medical School of Chinese People's Liberation ArmyBeijingChina
| | - Yuyang Liu
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingYunnanChina
| | - Zhanyu Yang
- Faculty of Hepato‐Pancreato‐Biliary Surgery, The First Medical CenterChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
4
|
Li M, Zhao X. Leukocyte immunoglobulin-like receptor B4 (LILRB4) in acute myeloid leukemia: From prognostic biomarker to immunotherapeutic target. Chin Med J (Engl) 2024; 137:2697-2711. [PMID: 38973293 PMCID: PMC11611246 DOI: 10.1097/cm9.0000000000003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT Leukocyte immunoglobulin-like receptor (LILR) B4 (also known as ILT3/CD85k) is an immune checkpoint protein that is highly expressed in solid tumors and hematological malignancies and plays a significant role in the pathophysiology of cancer. LILRB4 is highly expressed in acute myeloid leukemia (AML), and this phenotype is associated with adverse patient outcomes. Its differential expression in tumors compared to normal tissues, its presence in tumor stem cells, and its multifaceted roles in tumorigenesis position it as a promising therapeutic target in AML. Currently, several immunotherapies targeting LILRB4 are undergoing clinical trials. This review summarizes advancements made in the study of LILRB4 in AML, focusing on its structure, ligands, expression, and significance in normal tissues and AML; its protumorigenic effects and mechanisms in AML; and the application of LILRB4-targeted therapies in AML. These insights highlight the potential advantages of LILRB4 as an immunotherapeutic target in the context of AML.
Collapse
Affiliation(s)
- Muzi Li
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Xiangyu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| |
Collapse
|
5
|
Parthasarathy S, Moreno de Lara L, Carrillo-Salinas FJ, Werner A, Borchers A, Iyer V, Vogell A, Fortier JM, Wira CR, Rodriguez-Garcia M. Human genital dendritic cell heterogeneity confers differential rapid response to HIV-1 exposure. Front Immunol 2024; 15:1472656. [PMID: 39524443 PMCID: PMC11543421 DOI: 10.3389/fimmu.2024.1472656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Dendritic cells (DCs) play critical roles in HIV pathogenesis and require further investigation in the female genital tract, a main portal of entry for HIV infection. Here we characterized genital DC populations at the single cell level and how DC subsets respond to HIV immediately following exposure. We found that the genital CD11c+HLA-DR+ myeloid population contains three DC subsets (CD1c+ DC2s, CD14+ monocyte-derived DCs and CD14+CD1c+ DC3s) and two monocyte/macrophage populations with distinct functional and phenotypic properties during homeostasis. Following HIV exposure, the antiviral response was dominated by DCs' rapid secretory response, activation of non-classical inflammatory pathways and host restriction factors. Further, we uncovered subset-specific differences in anti-HIV responses. CD14+ DCs were the main population activated by HIV and mediated the secretory antimicrobial response, while CD1c+ DC2s activated inflammasome pathways and IFN responses. Identification of subset-specific responses to HIV immediately after exposure could aid targeted strategies to prevent HIV infection.
Collapse
Affiliation(s)
- Siddharth Parthasarathy
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Laura Moreno de Lara
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | | | - Alexandra Werner
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Anna Borchers
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Vidya Iyer
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
- Mass General Research Institute (MGRI), Division of Clinical Research, Massachusetts General Hospital, Boston, MA, United States
| | - Alison Vogell
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
| | - Jared M. Fortier
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
6
|
Parsons A, Colon ES, Spasic M, Kurt BB, Swarbrick A, Freedman RA, Mittendorf EA, van Galen P, McAllister SS. Cell Populations in Human Breast Cancers are Molecularly and Biologically Distinct with Age. RESEARCH SQUARE 2024:rs.3.rs-5167339. [PMID: 39483921 PMCID: PMC11527348 DOI: 10.21203/rs.3.rs-5167339/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aging is associated with increased breast cancer risk and outcomes are worse for the oldest and youngest patients, regardless of subtype. It is not known how cells in the breast tumor microenvironment are impacted by age and how they might contribute to age-related disease pathology. Here, we discover age-associated differences in cell states and interactions in human estrogen receptor-positive (ER+) and triple-negative breast cancers (TNBC) using new computational analyses of existing single-cell gene expression data. Age-specific program enrichment (ASPEN) analysis reveals age-related changes, including increased tumor cell epithelial-mesenchymal transition, cancer-associated fibroblast inflammatory responses, and T cell stress responses and apoptosis in TNBC. ER+ breast cancer is dominated by increased cancer cell estrogen receptor 1 (ESR1) and luminal cell activity, reduced immune cell metabolism, and decreased vascular and extracellular matrix (ECM) remodeling with age. Cell interactome analysis reveals candidate signaling pathways that drive many of these cell states. This work lays a foundation for discovery of age-adapted therapeutic interventions for breast cancer.
Collapse
Affiliation(s)
- Adrienne Parsons
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Sauras Colon
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Oncological Pathology and Bioinformatics Research Group, Hospital Verge de la Cinta, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tortosa, Tarragona, Spain
| | - Milos Spasic
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Busem Binboga Kurt
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel A. Freedman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Peter van Galen
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Sandra S. McAllister
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Breast Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Rafiei A, Gualandi M, Yang CL, Woods R, Kumar A, Brunner K, Sigrist J, Ebersbach H, Coats S, Renner C, Marroquin Belaunzaran O. IOS-1002, a Stabilized HLA-B57 Open Format, Exerts Potent Anti-Tumor Activity. Cancers (Basel) 2024; 16:2902. [PMID: 39199672 PMCID: PMC11352577 DOI: 10.3390/cancers16162902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
HLA-B27 and HLA-B57 are associated with autoimmunity and long-term viral control and protection against HIV and HCV infection; however, their role in cancer immunity remains unknown. HLA class I molecules interact with innate checkpoint receptors of the LILRA, LILRB and KIR families present in diverse sets of immune cells. Here, we demonstrate that an open format (peptide free conformation) and expression- and stability-optimized HLA-B57-B2m-IgG4_Fc fusion protein (IOS-1002) binds to human leukocyte immunoglobulin-like receptor B1 and B2 (LILRB1 and LILRB2) and to killer immunoglobulin-like receptor 3DL1 (KIR3DL1). In addition, we show that the IgG4 Fc backbone is required for engagement to Fcγ receptors and potent activation of macrophage phagocytosis. IOS-1002 blocks the immunosuppressive ITIM and SHP1/2 phosphatase signaling cascade, reduces the expression of immunosuppressive M2-like polarization markers of macrophages and differentiation of monocytes to myeloid-derived suppressor cells, enhances tumor cell phagocytosis in vitro and potentiates activation of T and NK cells. Lastly, IOS-1002 demonstrates efficacy in an ex vivo patient-derived tumor sample tumoroid model. IOS-1002 is a first-in-class multi-target and multi-functional human-derived HLA molecule that activates anti-tumor immunity and is currently under clinical evaluation.
Collapse
Affiliation(s)
| | | | | | - Richard Woods
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | | | | | - John Sigrist
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | | | - Steve Coats
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | - Christoph Renner
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | | |
Collapse
|
8
|
Ogunlusi O, Sarkar M, Chakrabarti A, Boland DJ, Nguyen T, Sampson J, Nguyen C, Fails D, Jones-Hall Y, Fu L, Mallick B, Keene A, Jones J, Sarkar TR. Disruption of Circadian Clock Induces Abnormal Mammary Morphology and Aggressive Basal Tumorigenesis by Enhancing LILRB4 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585534. [PMID: 38562905 PMCID: PMC10983926 DOI: 10.1101/2024.03.19.585534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Epidemiological studies have shown that circadian rhythm disruption (CRD) is associated with the risk of breast cancer. However, the role of CRD in mammary gland morphology and aggressive basal mammary tumorigenesis and the molecular mechanisms underlying CRD and cancer risk remain unknown. To investigate the effect of CRD on aggressive tumorigenesis, a genetically engineered mouse model that recapitulates the human basal type of breast cancer was used for this study. The effect of CRD on mammary gland morphology was investigated using wild-type mice model. The impact of CRD on the tumor microenvironment was investigated using the tumors from LD12:12 and CRD mice via scRNA seq. ScRNA seq was substantiated by multiplexing immunostaining, flow cytometry, and realtime PCR. The effect of LILRB4 immunotherapy on CRD-induced tumorigenesis was also investigated. Here we identified the impact of CRD on basal tumorigenesis and mammary gland morphology and identified the role of LILRB4 on CRD-induced lung metastasis. We found that chronic CRD disrupted mouse mammary gland morphology and increased tumor burden, and lung metastasis and induced an immunosuppressive tumor microenvironment by enhancing LILRB4a expression. Moreover, CRD increased the M2-macrophage and regulatory T-cell populations but decreased the M1-macrophage, and dendritic cell populations. Furthermore, targeted immunotherapy against LILRB4 reduced CRD-induced immunosuppressive microenvironment and lung metastasis. These findings identify and implicate LILRB4a as a link between CRD and aggressive mammary tumorigenesis. This study also establishes the potential role of the targeted LILRB4a immunotherapy as an inhibitor of CRD-induced lung metastasis.
Collapse
|
9
|
Li W, Pan L, Hong W, Ginhoux F, Zhang X, Xiao C, Li X. A single-cell pan-cancer analysis to show the variability of tumor-infiltrating myeloid cells in immune checkpoint blockade. Nat Commun 2024; 15:6142. [PMID: 39034339 PMCID: PMC11271490 DOI: 10.1038/s41467-024-50478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Myeloid cells are vital components of the immune system and have pivotal functions in orchestrating immune responses. Understanding their functions within the tumor microenvironment and their interactions with tumor-infiltrating lymphocytes presents formidable challenges across diverse cancer types, particularly with regards to cancer immunotherapies. Here, we explore tumor-infiltrating myeloid cells (TIMs) by conducting a pan-cancer analysis using single-cell transcriptomics across eight distinct cancer types, encompassing a total of 192 tumor samples from 129 patients. By examining gene expression patterns and transcriptional activities of TIMs in different cancer types, we discern notable alterations in abundance of TIMs and kinetic behaviors prior to and following immunotherapy. We also identify specific cell-cell interaction targets in immunotherapy; unique and shared regulatory profiles critical for treatment response; and TIMs associated with survival outcomes. Overall, our study illuminates the heterogeneity of TIMs and improves our understanding of tissue-specific and cancer-specific myeloid subsets within the context of tumor immunotherapies.
Collapse
Affiliation(s)
- Weiyuan Li
- School of Medicine, Yunnan University, Kunming, Yunnan, 650091, China
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650031, China
| | - Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, Solna, 171 65, Sweden
| | - Weifeng Hong
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310005, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310005, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310005, China
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire 114 rue Edouard Vaillant, 94800, Villejuif, France
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning, China.
- Institute of Health Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, 171 65, Sweden.
| |
Collapse
|
10
|
Ysasi AB, Engler AE, Bawa PS, Wang F, Conrad RD, Yeung AK, Rock JR, Beane-Ebel J, Mazzilli SA, Franklin RA, Mizgerd JP, Murphy GJ. A specialized population of monocyte-derived tracheal macrophages promote airway epithelial regeneration through a CCR2-dependent mechanism. iScience 2024; 27:110169. [PMID: 38993668 PMCID: PMC11238131 DOI: 10.1016/j.isci.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/05/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Macrophages are critical for maintenance and repair of mucosal tissues. While functionally distinct subtypes of macrophage are known to have important roles in injury response and repair in the lungs, little is known about macrophages in the proximal conducting airways. Single-cell RNA sequencing and flow cytometry demonstrated murine tracheal macrophages are largely monocyte-derived and are phenotypically distinct from lung macrophages at homeostasis. Following sterile airway injury, monocyte-derived macrophages are recruited to the trachea and activate a pro-regenerative phenotype associated with wound healing. Animals lacking the chemokine receptor CCR2 have reduced numbers of circulating monocytes and tracheal macrophages, deficient pro-regenerative macrophage activation and defective epithelial repair. Together, these studies indicate that recruitment and activation of monocyte-derived tracheal macrophages is CCR2-dependent and is required for normal airway epithelial regeneration.
Collapse
Affiliation(s)
- Alexandra B. Ysasi
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Anna E. Engler
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pushpinder Singh Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Regan D. Conrad
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Anthony K. Yeung
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jason R. Rock
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jennifer Beane-Ebel
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Sarah A. Mazzilli
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ruth A. Franklin
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA 02115, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph P. Mizgerd
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - George J. Murphy
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
11
|
Binder AK, Bremm F, Dörrie J, Schaft N. Non-Coding RNA in Tumor Cells and Tumor-Associated Myeloid Cells-Function and Therapeutic Potential. Int J Mol Sci 2024; 25:7275. [PMID: 39000381 PMCID: PMC11242727 DOI: 10.3390/ijms25137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.
Collapse
Affiliation(s)
- Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
12
|
Palvair J, Farhat I, Chaintreuil M, Dal Zuffo L, Messager L, Tinel C, Lamarthée B. The Potential Role of the Leucocyte Immunoglobulin-Like Receptors in Kidney Transplant Rejection: A Mini Review. Transpl Int 2024; 37:12995. [PMID: 39010891 PMCID: PMC11247310 DOI: 10.3389/ti.2024.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Antibody-mediated rejection (ABMR) remains one of the main causes of long-term graft failure after kidney transplantation, despite the development of powerful immunosuppressive therapy. A detailed understanding of the complex interaction between recipient-derived immune cells and the allograft is therefore essential. Until recently, ABMR mechanisms were thought to be solely caused by adaptive immunity, namely, by anti-human leucocyte antigen (HLA) donor-specific antibody. However recent reports support other and/or additive mechanisms, designating monocytes/macrophages as innate immune contributors of ABMR histological lesions. In particular, in mouse models of experimental allograft rejection, monocytes/macrophages are readily able to discriminate non-self via paired immunoglobulin receptors (PIRs) and thus accelerate rejection. The human orthologs of PIRs are leukocyte immunoglobulin-like receptors (LILRs). Among those, LILRB3 has recently been reported as a potential binder of HLA class I molecules, shedding new light on LILRB3 potential as a myeloid mediator of allograft rejection. In this issue, we review the current data on the role of LILRB3 and discuss the potential mechanisms of its biological functions.
Collapse
Affiliation(s)
- Jovanne Palvair
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Imane Farhat
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | - Mélanie Chaintreuil
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | | | - Lennie Messager
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Claire Tinel
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Centre Hospitalier Universitaire de Dijon, Service de Néphrologie et Transplantation Rénale, Université de Bourgogne, Dijon, France
| | | |
Collapse
|
13
|
Gui Z, Al Moussawy M, Sanders SM, Abou-Daya KI. Innate Allorecognition in Transplantation: Ancient Mechanisms With Modern Impact. Transplantation 2024; 108:1524-1531. [PMID: 38049941 PMCID: PMC11188633 DOI: 10.1097/tp.0000000000004847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2023]
Abstract
Through the effective targeting of the adaptive immune system, solid organ transplantation became a life-saving therapy for organ failure. However, beyond 1 y of transplantation, there is little improvement in transplant outcomes. The adaptive immune response requires the activation of the innate immune system. There are no modalities for the specific targeting of the innate immune system involvement in transplant rejection. However, the recent discovery of innate allorecognition and innate immune memory presents novel targets in transplantation that will increase our understanding of organ rejection and might aid in improving transplant outcomes. In this review, we look at the latest developments in the study of innate allorecognition and innate immune memory in transplantation.
Collapse
Affiliation(s)
- Zeping Gui
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Mouhamad Al Moussawy
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Steven M. Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Khodor I. Abou-Daya
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
14
|
Tian J, Ashique AM, Weeks S, Lan T, Yang H, Chen HIH, Song C, Koyano K, Mondal K, Tsai D, Cheung I, Moshrefi M, Kekatpure A, Fan B, Li B, Qurashi S, Rocha L, Aguayo J, Rodgers C, Meza M, Heeke D, Medfisch SM, Chu C, Starck S, Basak NP, Sankaran S, Malhotra M, Crawley S, Tran TT, Duey DY, Ho C, Mikaelian I, Liu W, Rivera LB, Huang J, Paavola KJ, O'Hollaren K, Blum LK, Lin VY, Chen P, Iyer A, He S, Roda JM, Wang Y, Sissons J, Kutach AK, Kaplan DD, Stone GW. ILT2 and ILT4 Drive Myeloid Suppression via Both Overlapping and Distinct Mechanisms. Cancer Immunol Res 2024; 12:592-613. [PMID: 38393969 DOI: 10.1158/2326-6066.cir-23-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/28/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.
Collapse
Affiliation(s)
- Jane Tian
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Sabrina Weeks
- NGM Biopharmaceuticals, South San Francisco, California
| | - Tian Lan
- NGM Biopharmaceuticals, South San Francisco, California
| | - Hong Yang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Kikuye Koyano
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Daniel Tsai
- NGM Biopharmaceuticals, South San Francisco, California
| | - Isla Cheung
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Bin Fan
- NGM Biopharmaceuticals, South San Francisco, California
| | - Betty Li
- NGM Biopharmaceuticals, South San Francisco, California
| | - Samir Qurashi
- NGM Biopharmaceuticals, South San Francisco, California
| | - Lauren Rocha
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Col Rodgers
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Darren Heeke
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Chun Chu
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | | | | | | | | | - Dana Y Duey
- NGM Biopharmaceuticals, South San Francisco, California
| | - Carmence Ho
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Wenhui Liu
- NGM Biopharmaceuticals, South San Francisco, California
| | - Lee B Rivera
- NGM Biopharmaceuticals, South San Francisco, California
| | - Jiawei Huang
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | | - Lisa K Blum
- NGM Biopharmaceuticals, South San Francisco, California
| | - Vicky Y Lin
- NGM Biopharmaceuticals, South San Francisco, California
| | - Peirong Chen
- NGM Biopharmaceuticals, South San Francisco, California
| | | | - Sisi He
- NGM Biopharmaceuticals, South San Francisco, California
| | - Julie M Roda
- NGM Biopharmaceuticals, South San Francisco, California
| | - Yan Wang
- NGM Biopharmaceuticals, South San Francisco, California
| | - James Sissons
- NGM Biopharmaceuticals, South San Francisco, California
| | - Alan K Kutach
- NGM Biopharmaceuticals, South San Francisco, California
| | | | | |
Collapse
|
15
|
Long K, Gong A, Yu D, Dong S, Ying Z, Zhang L. Exploring the immunological landscape of osteomyelitis through mendelian randomization analysis. Front Genet 2024; 15:1362432. [PMID: 38650858 PMCID: PMC11033344 DOI: 10.3389/fgene.2024.1362432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Background Osteomyelitis is a severe bone marrow infection, whose pathogenesis is not yet fully understood. This study aims to explore the causal relationship between immune cell characteristics and osteomyelitis, hoping to provide new insights for the prevention and treatment of osteomyelitis. Methods Based on two independent samples, this study employed a two-sample Mendelian randomization (MR) analysis to assess the causal relationship between 731 immune cell characteristics (divided into seven groups) and osteomyelitis. Genetic variants were used as proxies for risk factors to ensure that the selected instrumental variables meet the three key assumptions of MR analysis. Genome-Wide Association Studies (GWAS) data for immune characteristics were obtained from the public GWAS catalog, while data for osteomyelitis was sourced from the FinnGen. Results At a significance level of 0.05, 21 immune phenotypes were identified as having a causal relationship with osteomyelitis development. In the B cell group, phenotypes such as Memory B cell % B cell (percentage of memory B cells within the total B cell population, % finger cell ratio), CD20- %B cell (percentage of B cells that do not express the CD20 marker on their surface), and Memory B cell % lymphocyte showed a positive causal relationship with osteomyelitis, while Naive-mature B cell %B cell and IgD-CD38-absolute cell counts (AC) phenotypes showed a negative causal relationship. In addition, specific immune phenotypes in the conventional dendritic cells (cDCs) group, Myeloid cell group, TBNK (T cells, B cells, natural killer cells) cell group, T cell maturation stage, and Treg cell group also showed significant associations with osteomyelitis. Through reverse MR analysis, it was found that osteomyelitis had no significant causal impact on these immune phenotypes, suggesting that the occurrence of osteomyelitis may not affect these immune cell phenotypes. Conclusion To our knowledge, this is the first study to shed light on the causal relationship between specific immune cell characteristics and the development of osteomyelitis, thereby providing a new perspective to understand the immune mechanism of osteomyelitis. These findings are significant for formulating targeted prevention and treatment strategies, and hold promise to improve the treatment outcomes for patients with osteomyelitis.
Collapse
Affiliation(s)
- Kehan Long
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Ao Gong
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dou Yu
- School of Clinical Medicine, Shandong First Medical University, Jinan, Shandong, China
| | - Sumiao Dong
- School of Clinical Medicine, Shandong First Medical University, Jinan, Shandong, China
| | - Zhendong Ying
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lei Zhang
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
16
|
Edwards GA, Wood CA, He Y, Nguyen Q, Kim PJ, Gomez-Gutierrez R, Park KW, Xu Y, Zurhellen C, Al-Ramahi I, Jankowsky JL. TMEM106B coding variant is protective and deletion detrimental in a mouse model of tauopathy. Acta Neuropathol 2024; 147:61. [PMID: 38526616 DOI: 10.1007/s00401-024-02701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/07/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
TMEM106B is a risk modifier of multiple neurological conditions, where a single coding variant and multiple non-coding SNPs influence the balance between susceptibility and resilience. Two key questions that emerge from past work are whether the lone T185S coding variant contributes to protection, and if the presence of TMEM106B is helpful or harmful in the context of disease. Here, we address both questions while expanding the scope of TMEM106B study from TDP-43 to models of tauopathy. We generated knockout mice with constitutive deletion of TMEM106B, alongside knock-in mice encoding the T186S knock-in mutation (equivalent to the human T185S variant), and crossed both with a P301S transgenic tau model to study how these manipulations impacted disease phenotypes. We found that TMEM106B deletion accelerated cognitive decline, hind limb paralysis, tau pathology, and neurodegeneration. TMEM106B deletion also increased transcriptional correlation with human AD and the functional pathways enriched in KO:tau mice aligned with those of AD. In contrast, the coding variant protected against tau-associated cognitive decline, synaptic impairment, neurodegeneration, and paralysis without affecting tau pathology. Our findings reveal that TMEM106B is a critical safeguard against tau aggregation, and that loss of this protein has a profound effect on sequelae of tauopathy. Our study further demonstrates that the coding variant is functionally relevant and contributes to neuroprotection downstream of tau pathology to preserve cognitive function.
Collapse
Affiliation(s)
- George A Edwards
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Caleb A Wood
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Yang He
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Quynh Nguyen
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Peter J Kim
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Ruben Gomez-Gutierrez
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Kyung-Won Park
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Yong Xu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cody Zurhellen
- NeuroScience Associates, 10915 Lake Ridge Drive, Knoxville, TN, 37934, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Tabachnick-Cherny S, Pulliam T, Rodriguez H, Fan X, Hippe DS, Jones DC, Moshiri AS, Smythe KS, Kulikauskas R, Zaba L, Paulson K, Nghiem P. Characterization of Immunosuppressive Myeloid Cells in Merkel Cell Carcinoma: Correlation with Resistance to PD-1 Pathway Blockade. Clin Cancer Res 2024; 30:1189-1199. [PMID: 37851052 PMCID: PMC10947966 DOI: 10.1158/1078-0432.ccr-23-1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer. Although essentially all MCCs are antigenic through viral antigens or high tumor mutation burden, MCC has a response rate of only approximately 50% to PD-(L)1 blockade suggesting barriers to T-cell responses. Prior studies of MCC immunobiology have focused on CD8 T-cell infiltration and their exhaustion status, while the role of innate immunity, particularly myeloid cells, in MCC remains underexplored. EXPERIMENTAL DESIGN We utilized single-cell transcriptomics from 9 patients with MCC and multiplex IHC staining of 54 patients' preimmunotherapy tumors, to identify myeloid cells and evaluate association with immunotherapy response. RESULTS Single-cell transcriptomics identified tumor-associated macrophages (TAM) as the dominant myeloid component within MCC tumors. These TAMs express an immunosuppressive gene signature characteristic of monocytic myeloid-derived suppressor cells and importantly express several targetable immune checkpoint molecules, including PD-L1 and LILRB receptors, that are not present on tumor cells. Analysis of 54 preimmunotherapy tumor samples showed that a subset of TAMs (CD163+, CD14+, S100A8+) selectively infiltrated tumors that had significant CD8 T cells. Indeed, higher TAM prevalence was associated with resistance to PD-1 blockade. While spatial interactions between TAMs and CD8 T cells were not associated with response, myeloid transcriptomic data showed evidence for cytokine signaling and expression of LILRB receptors, suggesting potential immunosuppressive mechanisms. CONCLUSIONS This study further characterizes TAMs in MCC tumors and provides insights into their possible immunosuppressive mechanism. TAMs may reduce the likelihood of treatment response in MCC by counteracting the benefit of CD8 T-cell infiltration. See related commentary by Silk and Davar, p. 1076.
Collapse
Affiliation(s)
| | - Thomas Pulliam
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Haroldo Rodriguez
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Xinyi Fan
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Ata S Moshiri
- Department of Dermatology, New York University, New York, NY, USA
| | | | - Rima Kulikauskas
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Lisa Zaba
- Department of Dermatology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kelly Paulson
- Paul G Allen Research Center, Providence-Swedish Cancer Institute, Seattle, WA, USA
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Huang R, Liu X, Kim J, Deng H, Deng M, Gui X, Chen H, Wu G, Xiong W, Xie J, Lewis C, Homsi J, Yang X, Zhang C, He Y, Lou Q, Smith C, John S, Zhang N, An Z, Zhang CC. LILRB3 Supports Immunosuppressive Activity of Myeloid Cells and Tumor Development. Cancer Immunol Res 2024; 12:350-362. [PMID: 38113030 PMCID: PMC10932818 DOI: 10.1158/2326-6066.cir-23-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
The existing T cell-centered immune checkpoint blockade therapies have been successful in treating some but not all patients with cancer. Immunosuppressive myeloid cells, including myeloid-derived suppressor cells (MDSC), that inhibit antitumor immunity and support multiple steps of tumor development are recognized as one of the major obstacles in cancer treatment. Leukocyte Ig-like receptor subfamily B3 (LILRB3), an immune inhibitory receptor containing tyrosine-based inhibitory motifs (ITIM), is expressed solely on myeloid cells. However, it is unknown whether LILRB3 is a critical checkpoint receptor in regulating the activity of immunosuppressive myeloid cells, and whether LILRB3 signaling can be blocked to activate the immune system to treat solid tumors. Here, we report that galectin-4 and galectin-7 induce activation of LILRB3 and that LILRB3 is functionally expressed on immunosuppressive myeloid cells. In some samples from patients with solid cancers, blockade of LILRB3 signaling by an antagonistic antibody inhibited the activity of immunosuppressive myeloid cells. Anti-LILRB3 also impeded tumor development in myeloid-specific LILRB3 transgenic mice through a T cell-dependent manner. LILRB3 blockade may prove to be a novel approach for immunotherapy of solid cancers.
Collapse
Affiliation(s)
- Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- These authors contributed equally
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- These authors contributed equally
| | - Jaehyup Kim
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Xun Gui
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jade Homsi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Xing Yang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Qi Lou
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Caroline Smith
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
19
|
Nechanitzky R, Ramachandran P, Nechanitzky D, Li WY, Wakeham AC, Haight J, Saunders ME, Epelman S, Mak TW. CaSSiDI: novel single-cell "Cluster Similarity Scoring and Distinction Index" reveals critical functions for PirB and context-dependent Cebpb repression. Cell Death Differ 2024; 31:265-279. [PMID: 38383888 PMCID: PMC10923835 DOI: 10.1038/s41418-024-01268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
PirB is an inhibitory cell surface receptor particularly prominent on myeloid cells. PirB curtails the phenotypes of activated macrophages during inflammation or tumorigenesis, but its functions in macrophage homeostasis are obscure. To elucidate PirB-related functions in macrophages at steady-state, we generated and compared single-cell RNA-sequencing (scRNAseq) datasets obtained from myeloid cell subsets of wild type (WT) and PirB-deficient knockout (PirB KO) mice. To facilitate this analysis, we developed a novel approach to clustering parameter optimization called "Cluster Similarity Scoring and Distinction Index" (CaSSiDI). We demonstrate that CaSSiDI is an adaptable computational framework that facilitates tandem analysis of two scRNAseq datasets by optimizing clustering parameters. We further show that CaSSiDI offers more advantages than a standard Seurat analysis because it allows direct comparison of two or more independently clustered datasets, thereby alleviating the need for batch-correction while identifying the most similar and different clusters. Using CaSSiDI, we found that PirB is a novel regulator of Cebpb expression that controls the generation of Ly6Clo patrolling monocytes and the expansion properties of peritoneal macrophages. PirB's effect on Cebpb is tissue-specific since it was not observed in splenic red pulp macrophages (RPMs). However, CaSSiDI revealed a segregation of the WT RPM population into a CD68loIrf8+ "neuronal-primed" subset and an CD68hiFtl1+ "iron-loaded" subset. Our results establish the utility of CaSSiDI for single-cell assay analyses and the determination of optimal clustering parameters. Our application of CaSSiDI in this study has revealed previously unknown roles for PirB in myeloid cell populations. In particular, we have discovered homeostatic functions for PirB that are related to Cebpb expression in distinct macrophage subsets.
Collapse
Affiliation(s)
- Robert Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Providence Therapeutics Holdings Inc., Calgary, AB, Canada.
| | - Parameswaran Ramachandran
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Duygu Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Wanda Y Li
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Mary E Saunders
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada
- Peter Munk Cardiac Centre, UHN, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
- Department of Pathology Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
20
|
Gui M, Huang S, Li S, Chen Y, Cheng F, Liu Y, Wang JA, Wang Y, Guo R, Lu Y, Cao P, Zhou G. Integrative single-cell transcriptomic analyses reveal the cellular ontological and functional heterogeneities of primary and metastatic liver tumors. J Transl Med 2024; 22:206. [PMID: 38414027 PMCID: PMC10898050 DOI: 10.1186/s12967-024-04947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The global cellular landscape of the tumor microenvironment (TME) combining primary and metastatic liver tumors has not been comprehensively characterized. METHODS Based on the scRNA-seq and spatial transcriptomic data of non-tumor liver tissues (NTs), primary liver tumors (PTs) and metastatic liver tumors (MTs), we performed the tissue preference, trajectory reconstruction, transcription factor activity inference, cell-cell interaction and cellular deconvolution analyses to construct a comprehensive cellular landscape of liver tumors. RESULTS Our analyses depicted the heterogeneous cellular ecosystems in NTs, PTs and MTs. The activated memory B cells and effector T cells were shown to gradually shift to inhibitory B cells, regulatory or exhausted T cells in liver tumors, especially in MTs. Among them, we characterized a unique group of TCF7+ CD8+ memory T cells specifically enriched in MTs that could differentiate into exhausted T cells likely driven by the p38 MAPK signaling. With regard to myeloid cells, the liver-resident macrophages and inflammatory monocyte/macrophages were markedly replaced by tumor-associated macrophages (TAMs), with TREM2+ and UBE2C+ TAMs enriched in PTs, while SPP1+ and WDR45B+ TAMs in MTs. We further showed that the newly identified WDR45B+ TAMs exhibit an M2-like polarization and are associated with adverse prognosis in patients with liver metastases. Additionally, we addressed that endothelial cells display higher immune tolerance and angiogenesis capacity, and provided evidence for the source of the mesenchymal transformation of fibroblasts in tumors. Finally, the malignant hepatocytes and fibroblasts were prioritized as the pivotal cell populations in shaping the microenvironments of PTs and MTs, respectively. Notably, validation analyses by using spatial or bulk transcriptomic data in clinical cohorts concordantly emphasized the clinical significance of these findings. CONCLUSIONS This study defines the ontological and functional heterogeneities in cellular ecosystems of primary and metastatic liver tumors, providing a foundation for future investigation of the underlying cellular mechanisms.
Collapse
Affiliation(s)
- Menghui Gui
- School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Shilin Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Shizhou Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Yuying Chen
- Hengyang Medical College, University of South China, Hengyang, 421001, People's Republic of China
| | - Furong Cheng
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Yulin Liu
- Mudanjiang Medical College, Mudanjiang, 157011, People's Republic of China
| | - Ji-Ao Wang
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Yuting Wang
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Rui Guo
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Yiming Lu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Pengbo Cao
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Gangqiao Zhou
- School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China.
- Hengyang Medical College, University of South China, Hengyang, 421001, People's Republic of China.
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China.
| |
Collapse
|
21
|
Zhou Y, Qin X, Hu Q, Qin S, Xu R, Gu K, Lu H. Cross-talk between disulfidptosis and immune check point genes defines the tumor microenvironment for the prediction of prognosis and immunotherapies in glioblastoma. Sci Rep 2024; 14:3901. [PMID: 38365809 PMCID: PMC10873294 DOI: 10.1038/s41598-024-52128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/14/2024] [Indexed: 02/18/2024] Open
Abstract
Disulfidptosis is a condition where dysregulated NAPDH levels and abnormal accumulation of cystine and other disulfides occur in cells with high SLC7A11 expression under glucose deficiency. This disrupts normal formation of disulfide bonds among cytoskeletal proteins, leading to histone skeleton collapse and triggering cellular apoptosis. However, the correlation between disulfidptosis and immune responses in relation to glioblastoma survival rates and immunotherapy sensitivity remains understudied. Therefore, we utilized The Cancer Genome Atlas and The Chinese Glioma Genome Atlas to identify disulfidptosis-related immune checkpoint genes and established an overall survival (OS) prediction model comprising six genes: CD276, TNFRSF 14, TNFSF14, TNFSF4, CD40, and TNFRSF18, which could also be used for predicting immunotherapy sensitivity. We identified a cohort of glioblastoma patients classified as high-risk, which exhibited an upregulation of angiogenesis, extracellular matrix remodeling, and epithelial-mesenchymal transition as well as an immunosuppressive tumor microenvironment (TME) enriched with tumor associated macrophages, tumor associated neutrophils, CD8 + T-cell exhaustion. Immunohistochemical staining of CD276 in 144 cases further validated its negative correlation with OS in glioma. Disulfidptosis has the potential to induce chronic inflammation and an immunosuppressive TME in glioblastoma.
Collapse
Affiliation(s)
- Yanjun Zhou
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| | - Xue Qin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qunchao Hu
- Department of Radiation Oncology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China, Shanghai
| | - Shaolei Qin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ran Xu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, 214125, Jiangsu, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| | - Hua Lu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, 214125, Jiangsu, China.
| |
Collapse
|
22
|
Xiang Z, Yin X, Wei L, Peng M, Zhu Q, Lu X, Guo J, Zhang J, Li X, Zou Y. LILRB4 Checkpoint for Immunotherapy: Structure, Mechanism and Disease Targets. Biomolecules 2024; 14:187. [PMID: 38397424 PMCID: PMC10887124 DOI: 10.3390/biom14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
LILRB4, a myeloid inhibitory receptor belonging to the family of leukocyte immunoglobulin-like receptors (LILRs/LIRs), plays a pivotal role in the regulation of immune tolerance. LILRB4 primarily mediates suppressive immune responses by transmitting inhibitory signals through immunoreceptor tyrosine-based inhibitory motifs (ITIMs). This immune checkpoint molecule has gained considerable attention due to its potent regulatory functions. Its ability to induce effector T cell dysfunction and promote T suppressor cell differentiation has been demonstrated, indicating the therapeutic potential of LILRB4 for modulating excessive immune responses, particularly in autoimmune diseases or the induction of transplant tolerance. Additionally, through intervening with LILRB4 molecules, immune system responsiveness can be adjusted, representing significant value in areas such as cancer treatment. Thus, LILRB4 has emerged as a key player in addressing autoimmune diseases, transplant tolerance induction, and other medical issues. In this review, we provide a comprehensive overview of LILRB4, encompassing its structure, expression, and ligand molecules as well as its role as a tolerance receptor. By exploring the involvement of LILRB4 in various diseases, its significance in disease progression is emphasized. Furthermore, we propose that the manipulation of LILRB4 represents a promising immunotherapeutic strategy and highlight its potential in disease prevention, treatment and diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China; (Z.X.); (X.Y.); (L.W.); (M.P.); (Q.Z.); (X.L.); (J.G.); (J.Z.); (X.L.)
| |
Collapse
|
23
|
Park J, Kang SJ. The ontogenesis and heterogeneity of basophils. DISCOVERY IMMUNOLOGY 2024; 3:kyae003. [PMID: 38567293 PMCID: PMC10941320 DOI: 10.1093/discim/kyae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/02/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Basophils are the rarest leukocytes, but they have essential roles in protection against helminths, allergic disorders, autoimmune diseases, and some cancers. For years, the clinical significance of basophils has been neglected because of the lack of proper experimental tools to study them. The development of basophil-specific antibodies and animal models, along with genomic advances like single-cell transcriptomics, has greatly enhanced our understanding of basophil biology. Recent discoveries regarding basophils prompted us to write this review, emphasizing the basophil developmental pathway. In it, we chronologically examine the steps of basophil development in various species, which reveals the apparent advent of basophils predating IgE and basophil's IgE-independent regulatory role in primitive vertebrates. Then, we cover studies of basophil development in adult bone marrow, and compare those of murine and human basophils, introducing newly identified basophil progenitors and mature basophil subsets, as well as the transcription factors that regulate the transitions between them. Last, we discuss the heterogeneity of tissue-resident basophils, which may develop through extramedullary hematopoiesis. We expect that this review will contribute to a deeper understanding of basophil biology from the intricate aspects of basophil development and differentiation, offering valuable insights for both researchers and clinicians.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| |
Collapse
|
24
|
Mai S, Hodges A, Chen HM, Zhang J, Wang YL, Liu Y, Nakatsu F, Wang X, Fang J, Xu Y, Davidov V, Kang K, Pingali SR, Ganguly S, Suzuki M, Konopleva M, Prinzing B, Zu Y, Gottschalk S, Lu Y, Chen SH, Pan PY. LILRB3 Modulates Acute Myeloid Leukemia Progression and Acts as an Effective Target for CAR T-cell Therapy. Cancer Res 2023; 83:4047-4062. [PMID: 38098451 DOI: 10.1158/0008-5472.can-22-2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 12/18/2023]
Abstract
Identifying novel cell surface receptors that regulate leukemia cell differentiation and can be targeted to inhibit cellular proliferation is crucial to improve current treatment modalities in acute myeloid leukemia (AML), especially for relapsed or chemotherapy-refractory leukemia. Leukocyte immunoglobulin-like receptor type B (LILRB) is an immunomodulatory receptor originally found to be expressed in myeloid cells. In this study, we found that LILRB receptors can be induced under inflammatory stimuli and chemotherapy treatment conditions. Blockade of LILRB3 inhibited leukemia cell proliferation and leukemia progression. In addition, treatment with LILRB3 blocking antibodies upregulated myeloid lineage differentiation transcription factors, including PU.1, C/EBP family, and IRF, whereas phosphorylation of proliferation regulators, for example, AKT, cyclin D1, and retinoblastoma protein, was decreased. Conversely, transcriptomic analysis showed LILRB3 activation by agonist antibodies may enhance leukemia survival through upregulation of cholesterol metabolism, which has been shown to promote leukemia cell survival. Moreover, LILRB3-targeted CAR T cells exhibited potent antitumor effects both in vitro and in vivo. Taken together, our results suggest that LILRB3 is a potentially potent target for multiple treatment modalities in AML. SIGNIFICANCE LILRB3 regulates differentiation and proliferation in acute myeloid leukemia and can be targeted with monoclonal antibodies and CAR T cells to suppress leukemia growth.
Collapse
Affiliation(s)
- Sunny Mai
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
| | - Alan Hodges
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
- Texas A&M University System School of Medicine, Bryan, Texas
| | - Hui-Ming Chen
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
| | - Jilu Zhang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
| | - Yi-Ling Wang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
| | - Yongbin Liu
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
| | - Fumiko Nakatsu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Xiaoxuan Wang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
| | - Jing Fang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
| | - Yitian Xu
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
| | - Vitaliy Davidov
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
- Texas A&M University System School of Medicine, Bryan, Texas
| | - Kyeongah Kang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
| | - Sai Ravi Pingali
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
- Division of Hematology, Medical Oncology and Hematology, Houston Methodist Hospital, Houston, Texas
| | - Siddhartha Ganguly
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
- Division of Hematology, Medical Oncology and Hematology, Houston Methodist Hospital, Houston, Texas
| | - Masataka Suzuki
- Center for Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - Marina Konopleva
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Brooke Prinzing
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Youli Zu
- Department of Pathology & Genomic Medicine, Houston Methodist Research Institute, Houston Texas
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Yong Lu
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
| | - Shu-Hsia Chen
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
- Texas A&M University System School of Medicine, Bryan, Texas
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York, New York
| | - Ping-Ying Pan
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas
- Texas A&M University System School of Medicine, Bryan, Texas
| |
Collapse
|
25
|
Herrity E, Pereira MP, Kim DDH. Acute myeloid leukaemia relapse after allogeneic haematopoietic stem cell transplantation: Mechanistic diversity and therapeutic directions. Br J Haematol 2023; 203:722-735. [PMID: 37787151 DOI: 10.1111/bjh.19121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Emerging biological and clinical data, along with advances in new technologies, have exposed the mechanistic diversity in post-haematopoietic stem cell transplant (HCT) relapse. Post-HCT relapse mechanisms are relevant for guiding sophisticated selection of therapeutic interventions and identification of areas for further research. Clonal evolution and emergence of resistant leukemic strains is a common mechanism shared by relapse post-chemotherapy and post-HCT, other mechanisms such as leukemic immune escape and donor T cell exhaustion are unique entities to post-HCT relapse. Due to diversity in the mechanisms behind post-HCT relapse, the subsequent clinical approach relies on clinician discretion, rather than objective evidence. Lack of standardized selection based on post-HCT relapse mechanism(s) could be a contributing factor to observed poor outcomes. Therapeutic strategies including donor lymphocyte infusion (DLI), second transplant, immunotherapies, hypomethylating agents, and targeted strategies are supported options and efficacy may be enhanced when post-HCT AML relapse mechanism is established and guides treatment selection. This review aims, through compilation of supporting studies, to describe mechanisms of post-HCT relapse and their implications for subsequent treatment selection and inspiration for future research.
Collapse
Affiliation(s)
- Elizabeth Herrity
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mariana Pinto Pereira
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Dennis Dong Hwan Kim
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Leukemia Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
27
|
Khalaji A, Yancheshmeh FB, Farham F, Khorram A, Sheshbolouki S, Zokaei M, Vatankhah F, Soleymani-Goloujeh M. Don't eat me/eat me signals as a novel strategy in cancer immunotherapy. Heliyon 2023; 9:e20507. [PMID: 37822610 PMCID: PMC10562801 DOI: 10.1016/j.heliyon.2023.e20507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Cancer stands as one of the prominent global causes of death, with its incidence burden continuously increasing, leading to a substantial rise in mortality rates. Cancer treatment has seen the development of various strategies, each carrying its drawbacks that can negatively impact the quality of life for cancer patients. The challenge remains significant within the medical field to establish a definitive cancer treatment that minimizes complications and limitations. In the forthcoming years, exploring new strategies to surmount the failures in cancer treatment appears to be an unavoidable pursuit. Among these strategies, immunology-based ones hold substantial promise in combatting cancer and immune-related disorders. A particular subset of this approach identifies "eat me" and "Don't eat me" signals in cancer cells, contrasting them with their counterparts in non-cancerous cells. This distinction could potentially mark a significant breakthrough in treating diverse cancers. By delving into signal transduction and engineering novel technologies that utilize distinct "eat me" and "Don't eat me" signals, a valuable avenue may emerge for advancing cancer treatment methodologies. Macrophages, functioning as vital components of the immune system, regulate metabolic equilibrium, manage inflammatory disorders, oversee fibrosis, and aid in the repair of injuries. However, in the context of tumor cells, the overexpression of "Don't eat me" signals like CD47, PD-L1, and beta-2 microglobulin (B2M), an anti-phagocytic subunit of the primary histocompatibility complex class I, enables these cells to evade macrophages and proliferate uncontrollably. Conversely, the presentation of an "eat me" signal, such as Phosphatidylserine (PS), along with alterations in charge and glycosylation patterns on the cellular surface, modifications in intercellular adhesion molecule-1 (ICAM-1) epitopes, and the exposure of Calreticulin and PS on the outer layer of the plasma membrane represent universally observed changes on the surface of apoptotic cells, preventing phagocytosis from causing harm to adjacent non-tumoral cells. The current review provides insight into how signaling pathways and immune cells either stimulate or obstruct these signals, aiming to address challenges that may arise in future immunotherapy research. A potential solution lies in combination therapies targeting the "eat me" and "Don't eat me" signals in conjunction with other targeted therapeutic approaches. This innovative strategy holds promise as a novel avenue for the future treatment of cancer.
Collapse
Affiliation(s)
- Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatereh Baharlouei Yancheshmeh
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Farham
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arya Khorram
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Shiva Sheshbolouki
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Veterinary Medicine, Beyza Branch, Islamic Azad University, Beyza, Iran
| | - Fatemeh Vatankhah
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Soleymani-Goloujeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Liu E, Li W, Jian LP, Yin S, Yang S, Zhao H, Huang W, Zhang Y, Zhou H. Identification of LOX as a candidate prognostic biomarker in Glioblastoma multiforme. Transl Oncol 2023; 36:101739. [PMID: 37544033 PMCID: PMC10423882 DOI: 10.1016/j.tranon.2023.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant type of glioma. GBM tumors grow rapidly, have a high degree of malignancy, and are characterized by a fast disease progression. Unfortunately, there is a lack of effective treatments. An effective strategy for the treatment of GBM would be to identify key biomarkers correlating with the occurrence and progression of GBM and developing these biomarkers into therapeutic targets. METHOD AND RESULTS In this study, using integrated bioinformatics analysis, we identified differentially expressed genes (DEGs), including 130 genes that were upregulated in GBM compared to normal brain tissue, and 128 genes that were downregulated in GBM. Based on Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis, these genes were associated with regulation of tumor cell adhesion, differentiation, morphology in GBM and were mainly enriched in Complement and coagulation cascades pathway. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to construct a Protein-Protein Interaction network. Ten hub genes were identified, including FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2, all of which were significantly upregulated in GBM, these results were confirmed by oncomine database exploration. Alteration analysis of hub genes found that patients with alteration in at least one of the hub genes showed shorter median survival times (p = 0.013) and shorter median disease-free survival times (p = 2.488E-3) than patients without alterations in any of the hub genes. Multiple tests for survival analysis showed that among individual hub genes only expression of LOX was correlated with patient survival (P < 0.05).GDS4467 data set was used to analyze the expression of LOX in gliomas with different degrees of malignancy, and it was found that the expression level of LOX was positively correlated with the malignant degree of gliomas.By analyzing GDS 4535 data set showed that the expression level of LOX was positively correlated with the differentiation degree of GBM cells CONCLUSION: This research suggests that FN1, CD44, MYC, CDK1, SERPINE1, COL3A1, COL1A2, LOX, POSTN and EZH2 are key genes in GBM. However, only LOX is correlated with patient survival and promotes glioblastoma cell differentiation and tumor recurrence. LOX may be a candidate prognostic biomarker and potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Erheng Liu
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Wenjuan Li
- Department of Chemical Biology, Yunnan Technician College, Kunming 650500, Yunnan, China.
| | - Li-Peng Jian
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Shi Yin
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Shuaifeng Yang
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Heng Zhao
- Neurosurgery Department, The First People's Hospital of Yunnan Province
| | - Wei Huang
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Yongfa Zhang
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| | - Hu Zhou
- Neurosurgery Department, The First People's Hospital of Yunnan Province.
| |
Collapse
|
29
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
30
|
Zeller T, Münnich IA, Windisch R, Hilger P, Schewe DM, Humpe A, Kellner C. Perspectives of targeting LILRB1 in innate and adaptive immune checkpoint therapy of cancer. Front Immunol 2023; 14:1240275. [PMID: 37781391 PMCID: PMC10533923 DOI: 10.3389/fimmu.2023.1240275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
Immune checkpoint blockade is a compelling approach in tumor immunotherapy. Blocking inhibitory pathways in T cells has demonstrated clinical efficacy in different types of cancer and may hold potential to also stimulate innate immune responses. A novel emerging potential target for immune checkpoint therapy is leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1). LILRB1 belongs to the superfamily of leukocyte immunoglobulin-like receptors and exerts inhibitory functions. The receptor is expressed by a variety of immune cells including macrophages as well as certain cytotoxic lymphocytes and contributes to the regulation of different immune responses by interaction with classical as well as non-classical human leukocyte antigen (HLA) class I molecules. LILRB1 has gained increasing attention as it has been demonstrated to function as a phagocytosis checkpoint on macrophages by recognizing HLA class I, which represents a 'Don't Eat Me!' signal that impairs phagocytic uptake of cancer cells, similar to CD47. The specific blockade of the HLA class I:LILRB1 axis may provide an option to promote phagocytosis by macrophages and also to enhance cytotoxic functions of T cells and natural killer (NK) cells. Currently, LILRB1 specific antibodies are in different stages of pre-clinical and clinical development. In this review, we introduce LILRB1 and highlight the features that make this immune checkpoint a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Ira A. Münnich
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Patricia Hilger
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Denis M. Schewe
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
31
|
Yang X, Wang Z. Identification of novel immune-related biomarker and therapeutic drugs in Parkinson disease via integrated bioinformatics analysis. Medicine (Baltimore) 2023; 102:e34456. [PMID: 37543820 PMCID: PMC10402960 DOI: 10.1097/md.0000000000034456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND The present study was designed to identify immune-related biomarker and candidate drugs for Parkinson disease (PD) by weighted gene co-expression network analysis. METHODS Differentially expressed genes were identified in PD and healthy samples in the Gene Expression Omnibus (GEO) database. Besides, immune-related genes were obtained from the immunology database. Then, a co-expression network was constructed by the weighted gene co-expression network analysis package. Diagnostic model for PD was constructed by Lasso and multivariate Cox regression. Furthermore, differentially expressed genes (DEGs) were used to establish PPI and competing endogenous RNA (ceRNA) networks. Functional enrichment and pathway analysis were performed. Drug-hub gene interaction analysis was performed via DGIdb database. RESULTS PD samples and normal samples were found to have 220 upregulated genes and 216 downregulated genes in the GSE6613 dataset. The differentially expressed genes contained 50 immune-related genes, with 40 upregulated genes and 10 downregulated genes. We obtained 7 hub genes by intersecting the DEGs and candidate hub genes. As potential diagnostic markers, 2 immune-related DEGs were identified among the 7 hub genes. According to functional enrichment analysis, these DEGs were mainly enriched in immune response, inflammatory response, and cytokine-cytokine receptor interactions. Totally, we obtained 182 drug-gene interaction pairs in Drug-Gene Interaction database (DGIdb). CONCLUSION Our results revealed crucial genes and candidate drugs for PD patients and deepen our understanding of the molecular mechanisms involved in PD.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Department of Neurology, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | | |
Collapse
|
32
|
Lamarthée B, Callemeyn J, Van Herck Y, Antoranz A, Anglicheau D, Boada P, Becker JU, Debyser T, De Smet F, De Vusser K, Eloudzeri M, Franken A, Gwinner W, Koshy P, Kuypers D, Lambrechts D, Marquet P, Mathias V, Rabant M, Sarwal MM, Senev A, Sigdel TK, Sprangers B, Thaunat O, Tinel C, Van Brussel T, Van Craenenbroeck A, Van Loon E, Vaulet T, Bosisio F, Naesens M. Transcriptional and spatial profiling of the kidney allograft unravels a central role for FcyRIII+ innate immune cells in rejection. Nat Commun 2023; 14:4359. [PMID: 37468466 DOI: 10.1038/s41467-023-39859-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/28/2023] [Indexed: 07/21/2023] Open
Abstract
Rejection remains the main cause of premature graft loss after kidney transplantation, despite the use of potent immunosuppression. This highlights the need to better understand the composition and the cell-to-cell interactions of the alloreactive inflammatory infiltrate. Here, we performed droplet-based single-cell RNA sequencing of 35,152 transcriptomes from 16 kidney transplant biopsies with varying phenotypes and severities of rejection and without rejection, and identified cell-type specific gene expression signatures for deconvolution of bulk tissue. A specific association was identified between recipient-derived FCGR3A+ monocytes, FCGR3A+ NK cells and the severity of intragraft inflammation. Activated FCGR3A+ monocytes overexpressed CD47 and LILR genes and increased paracrine signaling pathways promoting T cell infiltration. FCGR3A+ NK cells overexpressed FCRL3, suggesting that antibody-dependent cytotoxicity is a central mechanism of NK-cell mediated graft injury. Multiplexed immunofluorescence using 38 markers on 18 independent biopsy slides confirmed this role of FcγRIII+ NK and FcγRIII+ nonclassical monocytes in antibody-mediated rejection, with specificity to the glomerular area. These results highlight the central involvement of innate immune cells in the pathogenesis of allograft rejection and identify several potential therapeutic targets that might improve allograft longevity.
Collapse
Affiliation(s)
- Baptiste Lamarthée
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Université de Franche-Comté, UBFC, EFS, Inserm UMR RIGHT, Besançon, France
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Yannick Van Herck
- Department of Oncology, Laboratory for Experimental Oncology, KU Leuven, Leuven, Belgium
| | - Asier Antoranz
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Inserm U1151, Necker Enfants-Malades Institute, Paris, France
| | - Patrick Boada
- Division of Multi-Organ Transplantation, Department of Surgery, UCSF, 513 Parnassus, San Francisco, CA, USA
| | - Jan Ulrich Becker
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Tim Debyser
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Katrien De Vusser
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maëva Eloudzeri
- Université Paris Cité, Inserm U1151, Necker Enfants-Malades Institute, Paris, France
| | - Amelie Franken
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Wilfried Gwinner
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Priyanka Koshy
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Pierre Marquet
- Department of Pharmacology and Transplantation, University of Limoges, Inserm U1248, Limoges University Hospital, Limoges, France
| | - Virginie Mathias
- EFS, HLA Laboratory, Décines, France
- Université Claude Bernard Lyon I, Inserm U1111, CNRS UMR5308, CIRI, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marion Rabant
- Université Paris Cité, Inserm U1151, Necker Enfants-Malades Institute, Paris, France
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Minnie M Sarwal
- Division of Multi-Organ Transplantation, Department of Surgery, UCSF, 513 Parnassus, San Francisco, CA, USA
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, Mechelen, Belgium
| | - Tara K Sigdel
- Division of Multi-Organ Transplantation, Department of Surgery, UCSF, 513 Parnassus, San Francisco, CA, USA
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Olivier Thaunat
- Université Claude Bernard Lyon I, Inserm U1111, CNRS UMR5308, CIRI, Ecole Normale Supérieure de Lyon, Lyon, France
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, Lyon, France
| | - Claire Tinel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Université de Franche-Comté, UBFC, EFS, Inserm UMR RIGHT, Besançon, France
- Department of Nephrology and Kidney Transplantation, Dijon Hospital, Dijon, France
| | - Thomas Van Brussel
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Amaryllis Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Thibaut Vaulet
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium.
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
33
|
Lima K, Ribas GT, Riella LV, Borges TJ. Inhibitory innate receptors and their potential role in transplantation. Transplant Rev (Orlando) 2023; 37:100776. [PMID: 37451057 DOI: 10.1016/j.trre.2023.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The regulatory arm of the immune system plays a crucial role in maintaining immune tolerance and preventing excessive immune responses. Immune regulation comprises various regulatory cells and molecules that work together to suppress or regulate immune responses. The programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) are examples of inhibitory receptors that counteract activating signals and fine-tune immune responses. While most of the discoveries of immune regulation have been related to T cells and the adaptive immune system, the innate arm of the immune system also has a range of inhibitory receptors that can counteract activating signals and suppress the effector immune responses. Targeting these innate inhibitory receptors may provide a complementary therapeutic approach in several immune-related conditions, including transplantation. In this review, we will explore the potential role of innate inhibitory receptors in controlling alloimmunity during solid organ transplantation.
Collapse
Affiliation(s)
- Karina Lima
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guilherme T Ribas
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Dong W, Jin Y, Shi H, Zhang X, Chen J, Jia H, Zhang Y. Using bioinformatics and systems biology methods to identify the mechanism of interaction between COVID-19 and nonalcoholic fatty liver disease. Medicine (Baltimore) 2023; 102:e33912. [PMID: 37335656 DOI: 10.1097/md.0000000000033912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered a risk factor for severe COVID-19, but the mechanism remains unknown. This study used bioinformatics to help define the relationship between these diseases. The GSE147507 (COVID-19), GSE126848 (NAFLD), and GSE63067 (NAFLD-2) datasets were screened using the Gene Expression Omnibus. Common differentially expressed genes were then identified using a Venn diagram. Gene ontology analysis and KEGG pathway enrichment were performed on the differentially expressed genes. A protein-protein interaction network was also constructed using the STRING platform, and key genes were identified using the Cytoscape plugin. GES63067 was selected for validation of the results. Analysis of ferroptosis gene expression during the development of the 2 diseases and prediction of their upstream miRNAs and lncRNAs. In addition, transcription factors (TFs) and miRNAs related to key genes were identified. Effective drugs that act on target genes were found in the DSigDB. The GSE147507 and GSE126848 datasets were crossed to obtain 28 co-regulated genes, 22 gene ontology terms, 3 KEGG pathways, and 10 key genes. NAFLD may affect COVID-19 progression through immune function and inflammatory signaling pathways. CYBB was predicted to be a differential ferroptosis gene associated with 2 diseases, and the CYBB-hsa-miR-196a/b-5p-TUG1 regulatory axis was identified. TF-gene interactions and TF-miRNA coregulatory network were constructed successfully. A total of 10 drugs, (such as Eckol, sulfinpyrazone, and phenylbutazone) were considered as target drugs for Patients with COVID-19 and NAFLD. This study identified key gene and defined molecular mechanisms associated with the progression of COVID-19 and NAFLD. COVID-19 and NAFLD progression may regulate ferroptosis through the CYBB-hsa-miR-196a/b-5p-TUG1 axis. This study provides additional drug options for the treatment of COVID-19 combined with NAFLD disease.
Collapse
Affiliation(s)
- Wenbo Dong
- Shandong Traditional Chinese Medicine University, Jinan, China
| | - Yan Jin
- Shandong Traditional Chinese Medicine University, Jinan, China
| | - Hongshuo Shi
- Shandong Traditional Chinese Medicine University, Jinan, China
| | | | - Jinshu Chen
- Shandong Traditional Chinese Medicine University, Jinan, China
| | - Hongling Jia
- The Second Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Yongchen Zhang
- Shandong Traditional Chinese Medicine University, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
35
|
Kumata S, Notsuda H, Su MT, Saito-Koyama R, Tanaka R, Suzuki Y, Funahashi J, Endo S, Yokota I, Takai T, Okada Y. Prognostic impact of LILRB4 expression on tumor-infiltrating cells in resected non-small cell lung cancer. Thorac Cancer 2023. [PMID: 37290427 PMCID: PMC10363795 DOI: 10.1111/1759-7714.14991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4/ILT3) is an up-and-coming molecule that promotes immune evasion. We have previously reported that LILRB4 facilitates myeloid-derived suppressor cells (MDSCs)-mediated tumor metastasis in mice. This study aimed to investigate the impact of the LILRB4 expression levels on tumor-infiltrating cells on the prognosis of non-small cell lung cancer (NSCLC) patients. METHODS We immunohistochemically evaluated the LILRB4 expression levels of completely resected 239 NSCLC specimens. Whether the blocking of LILRB4 on human PBMC-derived CD33+ MDSCs inhibited the migration ability of lung cancer cells was also examined using transwell migration assay. RESULTS The LILRB4 high group, in which patients with a high LILRB4 expression level on tumor-infiltrating cells, showed a shorter overall survival (OS) (p = 0.013) and relapse-free survival (RFS) (p = 0.0017) compared to the LILRB4 low group. Multivariate analyses revealed that a high LILRB4 expression was an independent factor for postoperative recurrence, poor OS and RFS. Even in the cohort background aligned by propensity score matching, OS (p = 0.023) and RFS (p = 0.0046) in the LILRB4 high group were shorter than in the LILRB4 low group. Some of the LILRB4 positive cells were positive for MDSC markers, CD33 and CD14. Transwell migration assay demonstrated that blocking LILRB4 significantly inhibited the migration of human lung cancer cells cocultured with CD33+ MDSCs. CONCLUSION Together, signals through LILRB4 on tumor-infiltrating cells, including MDSCs, play an essential role in promoting tumor evasion and cancer progression, impacting the recurrence and poor prognosis of patients with resected NSCLC.
Collapse
Affiliation(s)
- Sakiko Kumata
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Thoracic Surgery, Miyagi Cancer Center Hospital, Natori, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Mei-Tzu Su
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ryoko Saito-Koyama
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology, National Hospital Organization, Sendai Medical Center, Sendai, Japan
| | - Ryota Tanaka
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuyo Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Junichi Funahashi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Isao Yokota
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
36
|
Shang P, Simpson JD, Taylor GM, Sutherland DM, Welsh OL, Aravamudhan P, Natividade RDS, Schwab K, Michel JJ, Poholek AC, Wu Y, Rajasundaram D, Koehler M, Alsteens D, Dermody TS. Paired immunoglobulin-like receptor B is an entry receptor for mammalian orthoreovirus. Nat Commun 2023; 14:2615. [PMID: 37147336 PMCID: PMC10163058 DOI: 10.1038/s41467-023-38327-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.
Collapse
Affiliation(s)
- Pengcheng Shang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gwen M Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kristina Schwab
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua J Michel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University Munich, Freising, Germany
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
37
|
Zou R, Zhong X, Liang K, Zhi C, Chen D, Xu Z, Zhang J, Liao D, Lai M, Weng Y, Peng H, Pang X, Ji Y, Ke Y, Zhang H, Wang Z, Wang Y. Elevated LILRB1 expression predicts poor prognosis and is associated with tumor immune infiltration in patients with glioma. BMC Cancer 2023; 23:403. [PMID: 37142967 PMCID: PMC10161664 DOI: 10.1186/s12885-023-10906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor subfamily B1 (LILRB1) is regarded as an inhibitory molecule. However, the importance of LILRB1 expression in glioma has not yet been determined. This investigation examined the immunological signature, clinicopathological importance and prognostic value of LILRB1 expression in glioma. METHODS We used data from the UCSC XENA database, the Cancer Genome Atlas (TCGA) database, the Chinese Glioma Genome Atlas (CGGA) database, the STRING database, the MEXPRESS database and our clinical glioma samples to perform bioinformatic analysis and used vitro experiments to examine the predictive value and potential biological roles of LILRB1 in glioma. RESULTS Higher LILRB1 expression was considerably present in the higher WHO grade glioma group and was linked to a poorer prognosis in patients with glioma. Gene set enrichment analysis (GSEA) revealed that LILRB1 was positively correlated with the JAK/STAT signaling pathway. LILRB1 combined with tumor mutational burden (TMB) and microsatellite instability (MSI) may be a promising indicator for the effectiveness of immunotherapy in patients with glioma. Increased LILRB1 expression was positively linked with the hypomethylation, M2 macrophage infiltration, immune checkpoints (ICPs) and M2 macrophage makers. Univariate and multivariate Cox regression analyses determined that increased LILRB1 expression was a standalone causal factor for glioma. Vitro experiments determined that LILRB1 positively enhanced the proliferation, migration and invasion in glioma cells. MRI images demonstrated that higher LILRB1 expression was related with larger tumor volume in patients with glioma. CONCLUSION Dysregulation of LILRB1 in glioma is correlated with immune infiltration and is a standalone causal factor for glioma.
Collapse
Affiliation(s)
- Renheng Zou
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xunlong Zhong
- Science and Technology Innovation Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Kairong Liang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Cheng Zhi
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Danmin Chen
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhichao Xu
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jingbai Zhang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Degui Liao
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Miaoling Lai
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuhao Weng
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Huaidong Peng
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao Pang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunxiang Ji
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanbin Ke
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongri Zhang
- Department of Neurosurgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.
| | - Zhaotao Wang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Yezhong Wang
- Institute of Neuroscience, Department of Neurosurgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
38
|
Li L, Mou Y, Zhai Q, Yan C, Zhang X, Du M, Li Y, Wang Q, Xiao Z. PirB negatively regulates the inflammatory activation of astrocytes in a mouse model of sleep deprivation. Neuropharmacology 2023; 235:109571. [PMID: 37146940 DOI: 10.1016/j.neuropharm.2023.109571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Reactive astrocytes play a potential regulatory role in sleep deprivation (SD). Paired immunoglobulin-like receptor B (PirB) is expressed in reactive astrocytes, suggesting that PirB may participate in regulating the inflammatory response of astrocytes. We used lentiviral and adeno-associated viral approaches to interfere with the expression of PirB in vivo and in vitro. C57BL/6 mice were sleep deprived for 7 days and neurological function was measured via behavioral tests. We found that overexpressed PirB in SD mice could decrease the number of neurotoxic reactive astrocytes, alleviate cognitive deficits, and promote reactive astrocytes tended to be neuroprotective state. IL-1α, TNFα, and C1q were used to induce neurotoxic reactive astrocytes in vitro. Overexpression of PirB relieved the toxicity of neurotoxic astrocytes. Silencing PirB expression had the opposite effect and exacerbated the transition of reactive astrocytes to a neurotoxic state in vitro. Moreover, PirB-impaired astrocytes demonstrated STAT3 hyperphosphorylation which could be reversed by stattic (p-STAT3 inhibitor). Furthermore, Golgi-Cox staining confirmed that dendrite morphology defects and synapse-related protein were significantly increased in PirB-overexpressed SD mice. Our data demonstrated that SD induced neurotoxic reactive astrocytes and contributed to neuroinflammation and cognitive deficits. PirB performs a negative regulatory role in neurotoxic reactive astrocytes via the STAT3 signaling pathway in SD.
Collapse
Affiliation(s)
- Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Yan Mou
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Qian Zhai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xin Zhang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| |
Collapse
|
39
|
Edwards GA, Wood CA, Nguyen Q, Kim PJ, Gomez-Gutierrez R, Park KW, Zurhellen C, Al-Ramahi I, Jankowsky JL. TMEM106B coding variant is protective and deletion detrimental in a mouse model of tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533978. [PMID: 36993574 PMCID: PMC10055407 DOI: 10.1101/2023.03.23.533978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
TMEM106B is a risk modifier for a growing list of age-associated dementias including Alzheimer’s and frontotemporal dementia, yet its function remains elusive. Two key questions that emerge from past work are whether the conservative T185S coding variant found in the minor haplotype contributes to protection, and whether the presence of TMEM106B is helpful or harmful in the context of disease. Here we address both issues while extending the testbed for study of TMEM106B from models of TDP to tauopathy. We show that TMEM106B deletion accelerates cognitive decline, hindlimb paralysis, neuropathology, and neurodegeneration. TMEM106B deletion also increases transcriptional overlap with human AD, making it a better model of disease than tau alone. In contrast, the coding variant protects against tau-associated cognitive decline, neurodegeneration, and paralysis without affecting tau pathology. Our findings show that the coding variant contributes to neuroprotection and suggest that TMEM106B is a critical safeguard against tau aggregation.
Collapse
|
40
|
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y, Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:58. [PMID: 36941614 PMCID: PMC10029244 DOI: 10.1186/s12943-023-01725-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023] Open
Abstract
In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summarized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission rate of solid cancers.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
41
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
42
|
Morse JW, Rios M, Ye J, Rios A, Zhang CC, Daver NG, DiNardo CD, Zhang N, An Z. Antibody therapies for the treatment of acute myeloid leukemia: exploring current and emerging therapeutic targets. Expert Opin Investig Drugs 2023; 32:107-125. [PMID: 36762937 PMCID: PMC10031751 DOI: 10.1080/13543784.2023.2179482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is the most common and deadly type of leukemia affecting adults. It is typically managed with rounds of non-targeted chemotherapy followed by hematopoietic stem cell transplants, but this is only possible in patients who can tolerate these harsh treatments and many are elderly and frail. With the identification of novel tumor-specific cell surface receptors, there is great conviction that targeted antibody therapies will soon become available for these patients. AREAS COVERED In this review, we describe the current landscape of known target receptors for monospecific and bispecific antibody-based therapeutics for AML. Here, we characterize each of the receptors and targeted antibody-based therapeutics in development, illustrating the rational design behind each therapeutic compound. We then discuss the bispecific antibodies in development and how they improve immune surveillance of AML. For each therapeutic, we also summarize the available pre-clinical and clinical data, including data from discontinued trials. EXPERT OPINION One antibody-based therapeutic has already been approved for AML treatment, the CD33-targeting antibody-drug conjugate, gemtuzumab ozogamicin. Many more are currently in pre-clinical and clinical studies. These antibody-based therapeutics can perform tumor-specific, elaborate cytotoxic functions and there is growing confidence they will soon lead to personalized, safe AML treatment options that induce durable remissions.
Collapse
Affiliation(s)
- Joshua W Morse
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Margarita Rios
- Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - John Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Adan Rios
- Division of Oncology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
43
|
Alves CC, Arns T, Oliveira ML, Moreau P, Antunes DA, Castelli EC, Mendes-Junior CT, Giuliatti S, Donadi EA. Computational and atomistic studies applied to the understanding of the structural and behavioral features of the immune checkpoint HLA-G molecule and gene. Hum Immunol 2023:S0198-8859(23)00004-6. [PMID: 36710086 DOI: 10.1016/j.humimm.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
We took advantage of the increasingly evolving approaches for in silico studies concerning protein structures, protein molecular dynamics (MD), protein-protein and protein-DNA docking to evaluate: (i) the structure and MD characteristics of the HLA-G well-recognized isoforms, (ii) the impact of missense mutations at HLA-G receptor genes (LILRB1/2), and (iii) the differential binding of the hypoxia-inducible factor 1 (HIF1) to hypoxia-responsive elements (HRE) at the HLA-G gene. Besides reviewing these topics, they were revisited including the following novel results: (i) the HLA-G6 isoforms were unstable docked or not with β2-microglobulin or peptide, (ii) missense mutations at LILRB1/2 genes, exchanging amino acids at the intracellular domain, particularly those located within and around the ITIM motifs, may impact the HLA-G binding strength, and (iii) HREs motifs at the HLA-G promoter or exon 2 regions exhibiting a guanine at their third position present a higher affinity for HIF1 when compared to an adenine at the same position. These data shed some light into the functional aspects of HLA-G, particularly how polymorphisms may influence the role of the molecule. Computational and atomistic studies have provided alternative tools for experimental physical methodologies, which are time-consuming, expensive, demanding large quantities of purified proteins, and exhibit low output.
Collapse
Affiliation(s)
- Cinthia C Alves
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Thaís Arns
- Luxembourg Centre for Systems Biomedicine, Luxembourg
| | - Maria L Oliveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Philippe Moreau
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; U976 HIPI Unit, IRSL, Université Paris-Cité, Paris, France
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, USA
| | - Erick C Castelli
- Department of Pathology, School of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Eduardo A Donadi
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil.
| |
Collapse
|
44
|
Vitale A, Alivernini S, Caporali R, Cassone G, Bruno D, Cantarini L, Lopalco G, Rossini M, Atzeni F, Favalli EG, Conti F, Gremese E, Iannone F, Ferraccioli GF, Lapadula G, Sebastiani M. From Bench to Bedside in Rheumatoid Arthritis from the "2022 GISEA International Symposium". J Clin Med 2023; 12:jcm12020527. [PMID: 36675455 PMCID: PMC9863451 DOI: 10.3390/jcm12020527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
While precision medicine is still a challenge in rheumatic disease, in recent years many advances have been made regarding pathogenesis, the treatment of inflammatory arthropathies, and their interaction. New insight into the role of inflammasome and synovial tissue macrophage subsets as predictors of drug response give hope for future tailored therapeutic strategies and a personalized medicine approach in inflammatory arthropathies. Here, we discuss the main pathogenetic mechanisms and therapeutic approaches towards precision medicine in rheumatoid arthritis from the 2022 International GISEA/OEG Symposium.
Collapse
Affiliation(s)
- Antonio Vitale
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, 53100 Siena, SI, Italy
| | - Stefano Alivernini
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, RM, Italy
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, RM, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milano, MI, Italy
- Department of Clinical Sciences and Community Health, Research Center for Pediatric and Adult Rheumatic Diseases (RECAP.RD), University of Milan, 20122 Milano, MI, Italy
| | - Giulia Cassone
- Rheumatology Unit, Azienda Ospedaliera Policlinico di Modena, University of Modena and Reggio Emilia, 41121 Modena, MO, Italy
| | - Dario Bruno
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, RM, Italy
| | - Luca Cantarini
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet’s Disease Clinic, University of Siena, 53100 Siena, SI, Italy
| | - Giuseppe Lopalco
- Rheumatology Unit, Department of Emergency Surgery and Organ Transplantations, University of Bari, 70121 Bari, BA, Italy
| | - Maurizio Rossini
- Rheumatology Unit, University of Verona, Policlinico G.B. Rossi, Piazzale A. Scuro, 37134 Verona, VR, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, 98122 Messina, ME, Italy
| | - Ennio Giulio Favalli
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milano, MI, Italy
- Department of Clinical Sciences and Community Health, Research Center for Pediatric and Adult Rheumatic Diseases (RECAP.RD), University of Milan, 20122 Milano, MI, Italy
| | - Fabrizio Conti
- Lupus Clinic, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza University of Rome, 00185 Roma, RM, Italy
| | - Elisa Gremese
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, RM, Italy
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 20123 Milano, MI, Italy
| | - Florenzo Iannone
- Rheumatology Unit, Department of Emergency Surgery and Organ Transplantations, University of Bari, 70121 Bari, BA, Italy
| | | | - Giovanni Lapadula
- Rheumatology Unit, Department of Emergency Surgery and Organ Transplantations, University of Bari, 70121 Bari, BA, Italy
| | - Marco Sebastiani
- Rheumatology Unit, Azienda Ospedaliera Policlinico di Modena, University of Modena and Reggio Emilia, 41121 Modena, MO, Italy
- Correspondence:
| |
Collapse
|
45
|
Kerneur C, Cano CE, Olive D. Major pathways involved in macrophage polarization in cancer. Front Immunol 2022; 13:1026954. [PMID: 36325334 PMCID: PMC9618889 DOI: 10.3389/fimmu.2022.1026954] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages play an important role in tissue homeostasis, tissue remodeling, immune response, and progression of cancer. Consequently, macrophages exhibit significant plasticity and change their transcriptional profile and function in response to environmental, tissue, and inflammatory stimuli resulting in pro- and anti-tumor effects. Furthermore, the categorization of tissue macrophages in inflammatory situations remains difficult; however, there is an agreement that macrophages are predominantly polarized into two different subtypes with pro- and anti-inflammatory properties, the so-called M1-like and M2-like macrophages, respectively. These two macrophage classes can be considered as the extreme borders of a continuum of many intermediate subsets. On one end, M1 are pro-inflammatory macrophages that initiate an immunological response, damage tissue integrity, and dampen tumor progression by fostering robust T and natural killer (NK) cell anti-tumoral responses. On the other end, M2 are anti-inflammatory macrophages involved in tissue remodeling and tumor growth, that promote cancer cell proliferation, invasion, tumor metastasis, angiogenesis and that participate to immune suppression. These decisive roles in tumor progression occur through the secretion of cytokines, chemokines, growth factors, and matrix metalloproteases, as well as by the expression of immune checkpoint receptors in the case of M2 macrophages. Moreover, macrophage plasticity is supported by stimuli from the Tumor Microenvironment (TME) that are relayed to the nucleus through membrane receptors and signaling pathways that result in gene expression reprogramming in macrophages, thus giving rise to different macrophage polarization outcomes. In this review, we will focus on the main signaling pathways involved in macrophage polarization that are activated upon ligand-receptor recognition and in the presence of other immunomodulatory molecules in cancer.
Collapse
Affiliation(s)
- Clément Kerneur
- ImCheck Therapeutics, Marseille, France
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Carla E. Cano
- ImCheck Therapeutics, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| |
Collapse
|
46
|
Dendritic Cells: The Long and Evolving Road towards Successful Targetability in Cancer. Cells 2022; 11:cells11193028. [PMID: 36230990 PMCID: PMC9563837 DOI: 10.3390/cells11193028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) are a unique myeloid cell lineage that play a central role in the priming of the adaptive immune response. As such, they are an attractive target for immune oncology based therapeutic approaches. However, targeting these cells has proven challenging with many studies proving inconclusive or of no benefit in a clinical trial setting. In this review, we highlight the known and unknown about this rare but powerful immune cell. As technologies have expanded our understanding of the complexity of DC development, subsets and response features, we are now left to apply this knowledge to the design of new therapeutic strategies in cancer. We propose that utilization of these technologies through a multiomics approach will allow for an improved directed targeting of DCs in a clinical trial setting. In addition, the DC research community should consider a consensus on subset nomenclature to distinguish new subsets from functional or phenotypic changes in response to their environment.
Collapse
|
47
|
Xu ZJ, Zhang XL, Jin Y, Wang SS, Gu Y, Ma JC, Wen XM, Leng JY, Mao ZW, Lin J, Qian J. Pan-cancer analysis reveals distinct clinical, genomic, and immunological features of the LILRB immune checkpoint family in acute myeloid leukemia. Mol Ther Oncolytics 2022; 26:88-104. [PMID: 35795094 PMCID: PMC9233190 DOI: 10.1016/j.omto.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/27/2022] [Indexed: 10/28/2022] Open
|
48
|
Lamarthée B, Genet C, Cattin F, Danger R, Giral M, Brouard S, Van Loon E, Callemeyn J, Naesens M, Anglicheau D, Bonnotte B, Legendre M, Rebibou JM, Tinel C. Single-cell mapping of leukocyte immunoglobulin-like receptors in kidney transplant rejection. FRONTIERS IN TRANSPLANTATION 2022; 1:952785. [PMID: 38994376 PMCID: PMC11235271 DOI: 10.3389/frtra.2022.952785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 07/13/2024]
Abstract
Leukocyte immunoglobulin-like receptors (LILRs) are a family of inhibitory or stimulatory receptors expressed by immune cell types belonging to both myeloid and lymphoid lineage. Several members of the LILR family recognize major histocompatibility complex class I and thus play important roles in a range of clinical situations including pregnancy. Moreover, paired immunoglobulin-like receptors (PIRs), the murine orthologs of LILRs, are implicated in experimental transplant allorecognition by monocytes and contribute to the induction of donor-specific monocyte-memory. After non-self recognition, activating PIRs are transiently overexpressed at the surface of monocytes and participate in donor-specific monocyte recruitment, leading to graft rejection in vivo. In the present study, we mapped LILR expression and also their respective reported ligands at single cell level in the renal allograft and circulating cells in the context of kidney transplant rejection. Recipient-derived monocytes were shown to infiltrate the donor tissue and to differentiate into macrophages. We thus also investigate LILR expression during in vitro monocyte-to-macrophage differentiation in order to characterize the myeloid population that directly contribute to allorecognition. Altogether our results emphasize non-classical monocytes and CD68+ M1 macrophages as key players in LILRs-ligand interaction in kidney transplantation.
Collapse
Affiliation(s)
- Baptiste Lamarthée
- Université Bourgogne Franche-Comté, Etablissement Français du Sang Bourgogne Franche-Comté, Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Coraline Genet
- Université Bourgogne Franche-Comté, Etablissement Français du Sang Bourgogne Franche-Comté, Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Florine Cattin
- Université Bourgogne Franche-Comté, Etablissement Français du Sang Bourgogne Franche-Comté, Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Richard Danger
- Nantes Université, CHU Nantes, Inserm UMR 1064, ITUN Center for Research in Transplantation and Translational Immunology (CR2TI), Nantes, France
| | - Magali Giral
- Nantes Université, CHU Nantes, Inserm UMR 1064, ITUN Center for Research in Transplantation and Translational Immunology (CR2TI), Nantes, France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, Inserm UMR 1064, ITUN Center for Research in Transplantation and Translational Immunology (CR2TI), Nantes, France
| | - Elisabet Van Loon
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jasper Callemeyn
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Dany Anglicheau
- Université de Paris Cité, Necker-Enfants Malades Institute, Inserm U1151, Paris, France
| | - Bernard Bonnotte
- Université Bourgogne Franche-Comté, Etablissement Français du Sang Bourgogne Franche-Comté, Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Department of Internal Medicine, Dijon University Hospital, Dijon, France
| | - Mathieu Legendre
- Université Bourgogne Franche-Comté, Etablissement Français du Sang Bourgogne Franche-Comté, Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Department of Nephrology and Kidney Transplantation, Dijon University Hospital, Dijon, France
| | - Jean-Michel Rebibou
- Université Bourgogne Franche-Comté, Etablissement Français du Sang Bourgogne Franche-Comté, Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Department of Nephrology and Kidney Transplantation, Dijon University Hospital, Dijon, France
| | - Claire Tinel
- Université Bourgogne Franche-Comté, Etablissement Français du Sang Bourgogne Franche-Comté, Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Department of Nephrology and Kidney Transplantation, Dijon University Hospital, Dijon, France
| |
Collapse
|
49
|
Simpson AP, Roghanian A, Oldham RJ, Chan HTC, Penfold CA, Kim HJ, Inzhelevskaya T, Mockridge CI, Cox KL, Bogdanov YD, James S, Tutt AL, Rycroft D, Morley P, Dahal LN, Teige I, Frendeus B, Beers SA, Cragg MS. FcγRIIB controls antibody-mediated target cell depletion by ITIM-independent mechanisms. Cell Rep 2022; 40:111099. [PMID: 35858562 PMCID: PMC9638011 DOI: 10.1016/j.celrep.2022.111099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Many therapeutic antibodies deplete target cells and elicit immunotherapy by engaging activating Fc gamma receptors (FcγRs) on host effector cells. These antibodies are negatively regulated by the inhibitory FcγRIIB (CD32B). Dogma suggests inhibition is mediated through the FcγRIIB immunoreceptor tyrosine-based inhibition motif (ITIM), negatively regulating immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling from activating FcγR. To assess this, we generated experimental models expressing human (h)FcγRIIB on targets or effectors, lacking or retaining ITIM signaling capacity. We demonstrate that signaling through the hFcγRIIB ITIM is dispensable for impairing monoclonal antibody (mAb)-mediated depletion of normal and malignant murine target cells through three therapeutically relevant surface receptors (CD20, CD25, and OX40) affecting immunotherapy. We demonstrate that hFcγRIIB competition with activating FcγRs for antibody Fc, rather than ITIM signaling, is sufficient to impair activating FcγR engagement, inhibiting effector function and immunotherapy.
Collapse
Affiliation(s)
- Alexander P Simpson
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Robert J Oldham
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - H T Claude Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Christine A Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Hyung J Kim
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Kerry L Cox
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Yury D Bogdanov
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Alison L Tutt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Daniel Rycroft
- Biopharm Discovery, GSK, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Peter Morley
- Biopharm Discovery, GSK, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Ingrid Teige
- BioInvent International AB, Sölvegatan 41, 22370 Lund, Sweden
| | - Björn Frendeus
- BioInvent International AB, Sölvegatan 41, 22370 Lund, Sweden.
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
50
|
Dechavanne C, Nouatin O, Adamou R, Edslev S, Hansen A, Meurisse F, Sadissou I, Gbaguidi E, Milet J, Cottrell G, Gineau L, Sabbagh A, Massougbodji A, Moutairou K, Donadi EA, Carosella ED, Moreau P, Remarque E, Theisen M, Rouas-Freiss N, Garcia A, Favier B, Courtin D. Placental Malaria is Associated with Higher LILRB2 Expression in Monocyte Subsets and Lower Anti-Malarial IgG Antibodies During Infancy. Front Immunol 2022; 13:909831. [PMID: 35911674 PMCID: PMC9326509 DOI: 10.3389/fimmu.2022.909831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Placental malaria (PM) is associated with a higher susceptibility of infants to Plasmodium falciparum (Pf) malaria. A hypothesis of immune tolerance has been suggested but no clear explanation has been provided so far. Our goal was to investigate the involvement of inhibitory receptors LILRB1 and LILRB2, known to drive immune evasion upon ligation with pathogen and/or host ligands, in PM-induced immune tolerance. Method Infants of women with or without PM were enrolled in Allada, southern Benin, and followed-up for 24 months. Antibodies with specificity for five blood stage parasite antigens were quantified by ELISA, and the frequency of immune cell subsets was quantified by flow cytometry. LILRB1 or LILRB2 expression was assessed on cells collected at 18 and 24 months of age. Findings Infants born to women with PM had a higher risk of developing symptomatic malaria than those born to women without PM (IRR=1.53, p=0.040), and such infants displayed a lower frequency of non-classical monocytes (OR=0.74, p=0.01) that overexpressed LILRB2 (OR=1.36, p=0.002). Moreover, infants born to women with PM had lower levels of cytophilic IgG and higher levels of IL-10 during active infection. Interpretation Modulation of IgG and IL-10 levels could impair monocyte functions (opsonisation/phagocytosis) in infants born to women with PM, possibly contributing to their higher susceptibility to malaria. The long-lasting effect of PM on infants’ monocytes was notable, raising questions about the capacity of ligands such as Rifins or HLA-I molecules to bind to LILRB1 and LILRB2 and to modulate immune responses, and about the reprogramming of neonatal monocytes/macrophages.
Collapse
Affiliation(s)
- Celia Dechavanne
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Odilon Nouatin
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Rafiou Adamou
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Sofie Edslev
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anita Hansen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Ibrahim Sadissou
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Erasme Gbaguidi
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Jacqueline Milet
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Gilles Cottrell
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Laure Gineau
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Audrey Sabbagh
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Achille Massougbodji
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Kabirou Moutairou
- Laboratoire de Biologie et Physiologie Cellulaires, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Benin
| | - Eduardo A. Donadi
- Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, Ribeirão Preto, Brazil
| | - Edgardo D. Carosella
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Philippe Moreau
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Ed Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Nathalie Rouas-Freiss
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - André Garcia
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - David Courtin
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- *Correspondence: David Courtin,
| |
Collapse
|