1
|
Karakiliç E, Başçeken S, Eskiler GG, Uzuner U, Baran A. Bioimaging of thiazolidine-4-one-based new probes, fluorimetric detection of Cu 2+ "on-off" sensor property, DFT calculation, molecular docking studies, and multiple real samples application. Food Chem 2025; 463:141269. [PMID: 39288467 DOI: 10.1016/j.foodchem.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Thiazolidinones have been the subject of various research areas for their biological activities, thus they were promising scaffolds to develop new drug agents. A novel thiazolidine 4-one-based fluorescent chemosensor probes PS (thiazolidine) and BO (oxazolidine) were designed and synthesized. Both probes showed specific recognition against Cu2+ via a "turn-off" fluorescence response in ACN/H2O (v/v: 50/50) stock solution (10 mM, pH = 7.0) with a detection limit of (for BO: 1.9 nM and PS: 1.03 nM). Finally, the detection of chemosensory PS and BO showed positive potential for the determination of Cu2+ in real food samples, drinking water, and mung beans. The compounds were characterized by diferent chemical and spectroscopic methods. The proposed binding mode for PS and BO with Cu2+ was confirmed by DFT calculation, and also they elucidated by bioimaging studies against MCF-7 live cell lines. Additionally, the docking experiment was performed on XylE and hAChE targets.
Collapse
Affiliation(s)
- Emel Karakiliç
- Department of Chemistry, Science Faculty, Sakarya University, 54187, Sakarya, Turkey
| | - Sinan Başçeken
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, 19030 Çorum, Turkey
| | - Gamze Güney Eskiler
- Department of Medical Biolog, Faculty of Medicine, Sakarya University, 54187, Sakarya, Turkey
| | - Uğur Uzuner
- Department of Molecular Biology and Genetics Department, Science Faculty, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Arif Baran
- Department of Chemistry, Science Faculty, Sakarya University, 54187, Sakarya, Turkey.
| |
Collapse
|
2
|
Althobaiti NA. Heavy metals exposure and Alzheimer's disease: Underlying mechanisms and advancing therapeutic approaches. Behav Brain Res 2025; 476:115212. [PMID: 39187176 DOI: 10.1016/j.bbr.2024.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metals such as lead, cadmium, mercury, and arsenic are prevalent in the environment due to both natural and anthropogenic sources, leading to significant public health concerns. These heavy metals are known to cause damage to the nervous system, potentially leading to a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and attention-deficit hyperactivity disorder (ADHD). The present study examines the complex relationship between heavy metal exposure and AD, focusing on the underlying mechanisms of toxicity and potential therapeutic approaches. This review article highlights how these metals can impair brain function through mechanisms such as oxidative stress, inflammation, and neurotransmitter disruption, ultimately contributing to neurodegenerative diseases like AD. It also addresses the challenges in diagnosing heavy metal-induced cognitive impairments and emphasizes the need for further research to explore effective treatment strategies and preventive measures against heavy metal exposure.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia.
| |
Collapse
|
3
|
Ordoñez-Araque R, Mosquera A, Román-Carrión JL, Vargas-Jentzsch P, Ramos-Guerrero L, Rivera-Parra JL, Romero-Bastidas M, Montalvo-Puente C, Ruales J. Evidence of eared doves consumption and the potential toxic exposure during the Regional Development period in Quito-Ecuador. Sci Rep 2025; 15:554. [PMID: 39747532 PMCID: PMC11697382 DOI: 10.1038/s41598-024-84388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Throughout history, food has played a fundamental role in the development of societies. An understanding of the diets of different cultures and their impact on health can provide valuable insights into their lifestyle. The identification of the animal remains found within two vessels is reported and, in addition, an assessment of whether the diet and soil composition of the period may be associated with toxic elements was carried out. The animal bones retrieved from the settlement, which dated from 25 to 203 cal AD, were identified as belonging to Zenaida cf. auriculata, commonly known as eared dove. Ancient starch was discovered in the sediments inside the vessels. These sediments, along with the pre-Hispanic soil collected in the study zone, showed moderate pollution, suggesting potential environmental contamination. For the first time, evidence that eared doves were part of the diet of the ancient inhabitants of Quito is presented, as shown by the occurrence of their bones within food processing utensils. Furthermore, the study highlights the possibility of environmental contamination due to volcanic eruptions that occurred during the Regional Development period from 500 BC to AD 500. These results can contribute to a better understanding of the living conditions of the early inhabitants of Quito and similar regions.
Collapse
Affiliation(s)
- Roberto Ordoñez-Araque
- Programa de Doctorado en Ciencia y Tecnología de Alimentos, Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, 170525, Quito, Ecuador
- Facultad de Salud y Bienestar, Escuela de Nutrición y Dietética, Universidad Iberoamericana del Ecuador (UNIB.E), 170143, Quito, Ecuador
- Escuela de Gastronomía, Universidad de las Américas (UDLA), 170513, Quito, Ecuador
- Programa de Maestría en Desarrollo e Innovación en Alimentos, Universidad de las Américas (UDLA), 170125, Quito, Ecuador
| | - Andrés Mosquera
- Facultad de Ciencias Sociales y Humanísticas, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Guayaquil 090902, Ecuador
- Centro de Estudios Antropológicos y Arqueológicos (CEAA-FCSH), Facultad de Ciencias Sociales y Humanísticas, Campus Gustavo Galindo, Guayaquil 090902, Ecuador
| | - José Luis Román-Carrión
- Departamento de Biología, Facultad de Ciencias, Escuela Politécnica Nacional, 170525, Quito, Ecuador
| | - Paul Vargas-Jentzsch
- Programa de Doctorado en Ciencia y Tecnología de Alimentos, Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, 170525, Quito, Ecuador
- Departamento de Ciencias Nucleares, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, 170525, Quito, Ecuador
| | - Luis Ramos-Guerrero
- Grupo de Investigación Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Américas (UDLA), 170125, Quito, Ecuador.
| | - José Luis Rivera-Parra
- Departamento de Petróleos, Facultad de Geología y Petróleos, Escuela Politécnica Nacional, 170525, Quito, Ecuador
| | - Martha Romero-Bastidas
- Centro de Investigación de Alimentos (CIAL), Ingeniería de Alimentos, Facultad de Ciencias de La Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
- Dirección de Investigación e Innovación, Instituto Nacional de Patrimonio Cultural (INPC), Quito, Ecuador
| | - Carlos Montalvo-Puente
- Instituto Panamericano de Geografía e Historia-Sección Ecuador, 170401, Quito, Ecuador
- Museo de Arte Precolombino Casa del Alabado, Área de Curaduría e Investigación, Cuenca N1-41 entre Bolivar y Rocafuerte, Quito 170401, Ecuador
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), 170143, Quito, Ecuador
| |
Collapse
|
4
|
Oladimeji T, Oyedemi M, Emetere M, Agboola O, Adeoye J, Odunlami O. Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon 2024; 10:e40370. [PMID: 39654720 PMCID: PMC11625160 DOI: 10.1016/j.heliyon.2024.e40370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The incidence of water pollution in developing countries is high due to the lack of regulatory policies and laws that protect water bodies from anthropogenic activities and industrial wastewater. Industrial wastewater contains significant amounts of heavy metals that are detrimental to human health, aquatic organisms, and the ecosystem. The focus of this review was to evaluate the sources and treatment methods of wastewater, with an emphasis on technologies, advantages, disadvantages, and innovation. It was observed that conventional methods of wastewater treatment (such as flotation, coagulation/flocculation, and adsorption) had shown promising results but posed certain limitations, such as the generation of high volumes of sludge, relatively low removal rates, inefficiency in treating low metal concentrations, and sensitivity to varying pH. Recent technologies like nanotechnology, photocatalysis, and electrochemical coagulation have significant advantages over conventional methods for removing heavy metals, including higher removal rates, improved energy efficiency, and greater selectivity for specific contaminants. However, the high costs associated with these advanced methods remain a major drawback. Therefore, we recommend that future developments in wastewater treatment technology focus on reducing both costs and waste generation.
Collapse
Affiliation(s)
- T.E. Oladimeji
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M. Oyedemi
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M.E. Emetere
- Department of Physics, Bowen University, Osun State, Nigeria
- Department of Mechanical Engineering Science, University of Johannesburg, South Africa
| | - O. Agboola
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - J.B. Adeoye
- Department of Chemical and Energy Engineering, Curtin University, Malaysia
| | - O.A. Odunlami
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| |
Collapse
|
5
|
Owonikoko WM, Alimba CG. Heavy metal contamination of the Nigerian environment from e-waste management: A systematic review of exposure pathway and attendant pathophysiological implications. Toxicology 2024; 509:153966. [PMID: 39384010 DOI: 10.1016/j.tox.2024.153966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Nigerian environment has become a depository of worrisome levels of toxicants including heavy metals. Electrical and electronic equipment which leads to the generation of e-waste is one of the considerable sources of environmental contaminants in Nigeria. This systematic review deployed Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) method to analyze various empirical and quantitative outputs on heavy metal components of e-waste management sites in Nigeria and investigated the distribution of heavy metals in several environmental matrices such as soil, water, surface dust, plant and blood of e-waste scavengers. Also, the probable environmental multi-transformation that ultimately potentiates the susceptibility of humans to the pathophysiological effects and genetic related disorders of exposure to heavy metal component of e-waste was discussed. The relative abundance of metals in soils due to inappropriate e-waste handling is given as follow: Fe>Cu>Pb>Zn>Mn>Co>Cr>Ni>As>Cd, in underground and surface water: Zn>Fe>Cu>Cr>Mn>Pb>Hg>Ni>Co>Cd>As; in surface dusts: Fe>Zn>Pb>Cu>Mn>Cr>Ni>Cd>Co; in plants: Pb>Cu>Mn>Zn>Ni>Cr>Cd obtained from the Nigerian environment. Moreso, the estimated abundance of heavy metals in the blood of e-waste scavengers is Nigeria is given as Cr>Cd>Hg>Zn>As>Pb>Cu>Mn>Fe. Conclusively, this study does not only show that various matrices of Nigerian environment is contaminated with heavy metal but also that the pattern of abundance differ in the environment and in biological systems with the latter having the abundance of Pb, Cr and Cd and the former having the abundance of Cu, Zn and Fe.
Collapse
Affiliation(s)
- Wasiu Mathew Owonikoko
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Edo State, Nigeria
| | - Chibuisi Gideon Alimba
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund 44139, Germany.
| |
Collapse
|
6
|
Chakraborty J, Pakrashi S, Bandyopadhyay J. Copper-induced pro-apoptotic response and its alleviation by Quercetin through autophagic modulation in HEPG2 cells. J Trace Elem Med Biol 2024; 86:127508. [PMID: 39178556 DOI: 10.1016/j.jtemb.2024.127508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Recent studies indicated that the liver is susceptible to Cu-induced stress as it stores and distributes the metal to other cellular organelles. To counteract the hepatocytic damage, a known polyphenol, quercetin, was employed for its remarkable antioxidant properties. Thus, the study aimed to assess quercetin's potency against Cu-induced toxicity in HEPG2 cells. METHODS The cellular viability of HEPG2 cells was carried out by MTT assay. All the cellular experiments were divided into control, Cu 100 µM, Cu 100 µM (with Q μM), Cu 300 µM, Cu 300 µM (with Q 50 nM), and only quercetin (50 nM). Following this, reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were evaluated in co-exposure studies. Moreover, rhodamine-123, Hoechst stain, monodansylcadaverine (MDC), and acridine orange (AO) stain were used to visualize the morphological changes under bright field and fluorescent microscopy. Subsequently, western blotting was adopted to determine the expression level of apoptotic and autophagic marker proteins. RESULTS Copper increased intracellular ROS, resulted in morphological abnormalities, nuclear condensation, and disrupted MMP. Moreover, Cu caused apoptotic cell deaths characterized by overexpressed pro-apoptotic proteins such as poly (ADP-ribose) polymerase (PARP), cysteine-dependent aspartate-specific proteases 3 (Caspase 3), and Bcl-2-associated X protein (Bax) and downregulated anti-apoptotic proteins such as B-cell lymphoma 2 (Bcl-2), respectively. However, quercetin restored overexpressed pro-apoptotic proteins and induced autophagosome-bound microtubule-associated protein light chain-3 (LC3II) conversion from LC3I. Furthermore, Cu-modulated autophagy marker proteins, including sequestosome-1 (p62), heat shock cognate proteins (Hsc 70, Hsc 90), lysosome-associated membrane protein (LAMP-2A), and AMP-associated protein kinase (AMPK). CONCLUSION This study promotes the nutraceutical ability of quercetin to combat Cu-induced hepatotoxicity by understanding the intricate biological signaling pathways within cells.
Collapse
Affiliation(s)
- Joyeeta Chakraborty
- Maulana Abul Kalam Azad University of Technology, Department of Biotechnology, NH 12, Haringhata, West Bengal 741249, India
| | - Sourav Pakrashi
- Maulana Abul Kalam Azad University of Technology, Department of Biotechnology, NH 12, Haringhata, West Bengal 741249, India; Bidhannagar College, Department of Microbiology, Kolkata, West Bengal 700064, India
| | - Jaya Bandyopadhyay
- Maulana Abul Kalam Azad University of Technology, Department of Biotechnology, NH 12, Haringhata, West Bengal 741249, India.
| |
Collapse
|
7
|
Durgaparameshwari M, Kaviya K, Prabakaran DS, Santhamoorthy M, Rajamanikandan R, Al-Ansari MM, Mani KS. Designing a Simple Quinoline-Based Chromo-Fluorogenic Receptor for Highly Specific Quantification of Copper (II) Ions: Environmental and Bioimaging Applications. LUMINESCENCE 2024; 39:e70068. [PMID: 39710514 DOI: 10.1002/bio.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Many industries use copper metal ions (Cu2+ ions), and their salts are utilized as supplemental materials in both agriculture and medicine. Identifying and monitoring these Cu2+ ions in biological and environmental specimens is crucial due to their association with several health issues. In this investigation, we have designed a simple quinoline-based receptor (E)-3-(((2,4-di-tert-butyl-5-hydroxyphenyl)imino)methyl)-6-methoxyquinolin-2(1H)-one (QAP) containing imine functional groups to inspect its capability to identify metal ions in a semi-aqueous medium. The photophysical characteristics and structural confirmation of the receptor QAP were investigated using various spectroscopic techniques. Among various metal ions, the receptor QAP displayed an intense color shift from slightly yellow to strong yellow in the existence of Cu2+ ions, as visualized by the nude eye. Furthermore, the fluorescence spectral maximum wavelength at 485 nm and the strong cyan fluorescence color were quenched upon introducing Cu2+ ions. The alteration in the spectral and colorimetric features of QAP with Cu2+ ions is due to coordination complex formation. The present sensor shows the linear range from 3 to 69 μM, subsequent in a computed limit of detection as 3.16 nM, which is much lower than that of the maximum threshold of Cu2+ ions in drinking water set by WHO. Therefore, the receptor can respond to Cu2+ ions sensing in two ways: by changing color and by quenching fluorescence. The binding mode of the Cu2+ ions to the functional groups of the receptor QAP is a 1:1 stoichiometry, according to ESI-mass, Job's plot analysis, and density functional theory (DFT) computations. The practical utility of the fluorescent receptor QAP was applied for Cu2+ ions determination in environmental samples (drinking, tap, and dam water) and cancer cells (HeLa cells).
Collapse
Affiliation(s)
| | - Karuppaiyan Kaviya
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - D S Prabakaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Madhappan Santhamoorthy
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | | | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kailasam Saravana Mani
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| |
Collapse
|
8
|
Wang J, Liu Y, Li X, Lei H, Liu J. A high affinity and selective DNA aptamer for copper ions. Chem Commun (Camb) 2024; 60:14272-14275. [PMID: 39540788 DOI: 10.1039/d4cc05410e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Capture-SELEX was employed for the selection of DNA aptamers for Cu2+. The best aptamer named Cu-1 has a Kd of 14.2 nM as determined using the strand-displacement assay, representing an approximate 3000-fold improvement over a previously reported Cu2+ aptamer. The sensor achieved a limit of detection of 2.1 nM.
Collapse
Affiliation(s)
- Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
9
|
Nuti F, Fernández FR, Severi M, Traversi R, Fanos V, Street ME, Palanza P, Rovero P, Papini AM. Study of Endocrine-Disrupting Chemicals in Infant Formulas and Baby Bottles: Data from the European LIFE-MILCH PROJECT. Molecules 2024; 29:5434. [PMID: 39598823 PMCID: PMC11597460 DOI: 10.3390/molecules29225434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is inevitable, and growing scientific evidence indicates that even very low doses can negatively impact human health, particularly during pregnancy and the neonatal period. As part of the European project LIFE18 ENV/IT/00460, this study aims to identify the presence of EDCs in 20 infant formulas (both powdered and liquid) and the release from baby bottles and teats. Particularly, sensitization of young people and future parents towards the potential harmful effects of EDCs could significantly help to reduce exposure. Seven different UPLC-MS/MS methodologies and one ICP-AES were set up to quantify already assessed and suspected EDCs among 85 different chemicals (bisphenols, parabens, PAHs, phthalates, pesticides, herbicides and their main metabolites, PFAS, and metals). Results showed that in 2 out of 14 baby bottles, only anthracene and phenanthrene of the group of PAHs were released (10.68-10.81 ng/mL). Phthalates such as mono-ethyl phthalate (MEP) were found in 9 of 14 samples (0.054-0.140 ng/mL), while mono(2-ethyl-5-oxohexyl) phthalate (MeOHP) appeared in 2 samples (0.870-0.930 ng/mL). In accordance with current EU regulations, other chemicals were not detected in baby bottles and teats. However, bisphenols, parabens, PAHs, phthalates, PFAS, and metals were detected in infant formula, emphasizing the need for continued monitoring and public health interventions.
Collapse
Affiliation(s)
- Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology (Peptlab) and Centre of Competences in Molecular Diagnostics and Life Sciences (MoD&LS), University of Florence, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.F.); (P.R.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.S.); (R.T.)
| | - Feliciana Real Fernández
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology (Peptlab) and Centre of Competences in Molecular Diagnostics and Life Sciences (MoD&LS), University of Florence, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.F.); (P.R.)
- Institute of Chemistry of Organometallic Compounds, National Research Council (ICCOM-CNR), 50019 Sesto Fiorentino, Italy
| | - Mirko Severi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.S.); (R.T.)
| | - Rita Traversi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.S.); (R.T.)
| | - Vassilios Fanos
- Section of Neonatal Intensive Care Unit, Department of Paediatrics, Puericulture Institute and Neonatal Section, Azienda Mista and University of Cagliari, 09124 Cagliari, Italy;
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.E.S.)
- Unit of Pediatrics, University Hospital of Parma, 43126 Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.E.S.)
- Behavioral Biology Laboratory, University of Parma, 43124 Parma, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology (Peptlab) and Centre of Competences in Molecular Diagnostics and Life Sciences (MoD&LS), University of Florence, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.F.); (P.R.)
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology (Peptlab) and Centre of Competences in Molecular Diagnostics and Life Sciences (MoD&LS), University of Florence, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.F.); (P.R.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (M.S.); (R.T.)
| |
Collapse
|
10
|
Sosnowska M, Łęga T, Nidzworski D, Olszewski M, Gromadzka B. Ultra-Selective and Sensitive Fluorescent Chemosensor Based on Phage Display-Derived Peptide with an N-Terminal Cu(II)-Binding Motif. BIOSENSORS 2024; 14:555. [PMID: 39590014 PMCID: PMC11591581 DOI: 10.3390/bios14110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
Copper, along with gold, was among the first metals that humans employed. Thus, the copper pollution of the world's water resources is escalating, posing a significant threat to human health and aquatic ecosystems. It is crucial to develop detection technology that is both low-cost and feasible, as well as ultra-selective and sensitive. This study explored the use of the NH2-Xxx-His motif-derived peptide from phage display technology for ultra-selective Cu2+ detection. Various Cu-binding M13 phage clones were isolated, and their affinity and cross-reactivity for different metal ions were determined. A detailed analysis of the amino acid sequence of the unique Cu-binding peptides was employed. For the development of an optical chemosensor, a peptide with an NH2-Xxx-His motif was selected. The dansyl group was incorporated during solid-phase peptide synthesis, and fluorescence detection assays were employed. The efficacy of the Cu2+-binding peptide was verified through spectroscopic measurements. In summary, we developed a highly selective and sensitive fluorescent chemosensor for Cu2+ detection based on a peptide sequence from a phage display library that carries the N-terminal Xxx-His motif.
Collapse
Affiliation(s)
- Marta Sosnowska
- Department of Analysis and Chemical Synthesis, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdansk, Poland;
- Nano Expo Sp z.o.o, Kładki 24, 80-822 Gdansk, Poland
| | - Tomasz Łęga
- Department of Biotechnology, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdansk, Poland; (T.Ł.); (D.N.)
| | - Dawid Nidzworski
- Department of Biotechnology, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdansk, Poland; (T.Ł.); (D.N.)
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Beata Gromadzka
- Nano Expo Sp z.o.o, Kładki 24, 80-822 Gdansk, Poland
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdansk, Poland
| |
Collapse
|
11
|
Huang J, Wu H, Wang X, Tan L, Xu W, Wang Q, Liang Y, Yu H, Liu Z, Xu B, Xiao S. Using tannin as a biological curing agent to design fully bio-based epoxidized natural rubber/polylactic thermoplastic vulcanizates with mechanical robustness and multi-stimuli-responsive shape memory properties. Int J Biol Macromol 2024; 282:137173. [PMID: 39489243 DOI: 10.1016/j.ijbiomac.2024.137173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
To effectively mitigate carbon emissions and promote sustainability in the polymer field, biological macromolecules have emerged as a prominent strategy for fabricating functional materials. Herein, tannin (TA) was used as a biological curing agent to design fully bio-based polylactic/epoxidized natural rubber thermoplastic vulcanizates (PLA/ENR TPVs) with mechanical robustness and multi-stimuli-responsive shape memory properties. A dual cross-linking network, comprising both covalent bonds and hydrogen bonds, was successfully constructed in the ENR phase. A special co-continuous morphology was concomitantly constructed in the TPVs, which promoted effective stress transfer between the PLA and ENR phases, endowing the TPVs with balanced stiffness-toughness and shape memory properties. Moreover, the photothermal effect of TA also made it respond to near-infrared light and sunlight, which achieved the non-contact multistage shape memory performance, revealing the significant potential of the TPVs in the field of actuators.
Collapse
Affiliation(s)
- Jiarong Huang
- School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China.
| | - Haonan Wu
- School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China
| | - Xiao Wang
- School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China
| | - Lingcao Tan
- School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China
| | - Wenhua Xu
- School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China
| | - Qiongyao Wang
- School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China
| | - Yong Liang
- School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China
| | - Huiwen Yu
- School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China
| | - Zhan Liu
- School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China
| | - Baiping Xu
- School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China.
| | - Shuping Xiao
- School of Mechanical and Automation Engineering, Wuyi University, Jiangmen 529020, China; Jiangmen Key Laboratory of Polymer Intelligent Manufacturing at Wuyi University, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
12
|
Binesh A, Venkatachalam K. Copper in Human Health and Disease: A Comprehensive Review. J Biochem Mol Toxicol 2024; 38:e70052. [PMID: 39503199 DOI: 10.1002/jbt.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
This comprehensive review discusses the crucial role of copper in human health and disease as an essential trace mineral. It emphasizes the significance of copper while addressing potential risks from imbalances in copper levels, be it excessive or inadequate. The review outlines various challenges in copper research, including toxicity concerns, data limitations, metabolic complexities, genetic influences, nutrient interactions, and resource constraints. Despite these challenges, the review identifies specific research areas needing exploration, such as copper homeostasis regulation, transport mechanisms, gut microbiome interactions, immune function, neurodegenerative diseases, cardiovascular health, cancer, fertility, and reproductive health. The purpose of this review is to explore the important role of copper in human health and disease, which highlights the delicate balance required to avoid deficiency or toxicity. For the researchers and scientists, it provides the gaps in the research, so it aims to provide insights that could advance diagnostic and therapeutic strategies across various medical disciplines.
Collapse
Affiliation(s)
- Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, Tamil Nadu, India
| |
Collapse
|
13
|
Nishimura T, Hashimoto M, Yamada K, Iwata R, Tateda K. The precipitate structure of copper-based antibacterial and antiviral agents enhances their longevity for kitchen use. NPJ Sci Food 2024; 8:83. [PMID: 39448621 PMCID: PMC11502883 DOI: 10.1038/s41538-024-00324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The transmission of bacteria through cooking surfaces, the handles of hot plates, and cookware that is not cleaned frequently can pose a problem. In this study, a copper ion-based mixed solution (CBMS) containing only inorganic ions with controlled acidity was assessed as a new antibacterial and antiviral agent. We analysed the structure of the precipitates, and various deposits measuring a few micrometres were observed on the substrates. We have defined these deposits as strongly bonded scaly copper dispersion (SBSCD) structures.The antibacterial copper component of the liquid agent changed over time after application; this mechanism appears to be responsible for the maintenance of antibacterial performance.CBMS demonstrates high safety for the human body and can be applied to stainless steel materials used in kitchens and tables. It exhibits a sustained antibacterial effect over time, and its antibacterial properties can be continuously maintained.
Collapse
Affiliation(s)
- Takashi Nishimura
- Saitama Industrial Promotion Public Corporation, Shintoshin Business Exchange Plaza 3F, 2-3-2 Kamiochiai, Chuo-ku, Saitama City, Saitama Prefecture, 338-0001, Japan.
| | - Masami Hashimoto
- Materials Research and Development Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, 456-8587, Japan
| | - Kageto Yamada
- Department of Microbiology and Infection Diseases, Toho University, 5-21-16 Omorinishi, Ota-ku, Tokyo, 1143-8540, Japan
| | - Ryuji Iwata
- Department of Technology Management for Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infection Diseases, Toho University, 5-21-16 Omorinishi, Ota-ku, Tokyo, 1143-8540, Japan
| |
Collapse
|
14
|
Yang Y, Wu J, Wang L, Ji G, Dang Y. Copper homeostasis and cuproptosis in health and disease. MedComm (Beijing) 2024; 5:e724. [PMID: 39290254 PMCID: PMC11406047 DOI: 10.1002/mco2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Copper is a vital trace element in human physiology, essential for the synthesis of numerous crucial metabolic enzymes and facilitation of various biological processes. Regulation of copper levels within a narrow range is imperative for maintaining metabolic homeostasis. Numerous studies have demonstrated the significant roles of copper homeostasis and cuproptosis in health and disease pathogenesis. However, a comprehensive and up-to-date systematic review in this domain remains absent. This review aims to consolidate recent advancements in understanding the roles of cuproptosis and copper homeostasis in health and disease, focusing on the underlying mechanisms and potential therapeutic interventions. Dysregulation of copper homeostasis, manifesting as either copper excess or deficiency, is implicated in the etiology of various diseases. Cuproptosis, a recently identified form of cell death, is characterized by intracellular copper overload. This phenomenon mediates a diverse array of evolutionary processes in organisms, spanning from health to disease, and is implicated in genetic disorders, liver diseases, neurodegenerative disorders, and various cancers. This review provides a comprehensive summary of the pathogenic mechanisms underlying cuproptosis and copper homeostasis, along with associated targeted therapeutic agents. Furthermore, it explores future research directions with the potential to yield significant advancements in disease treatment, health management, and disease prevention.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Jiaxuan Wu
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine University of Ottawa Ottawa Ontario Canada
- China-Canada Centre of Research for Digestive Diseases University of Ottawa Ottawa Ontario Canada
| | - Guang Ji
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Yanqi Dang
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| |
Collapse
|
15
|
Chang P, Zhou S, Wang T, Hua D, Liu S, Okoro OV, Shavandi A, Nie L. Eco-Friendly Carbon Nanotubes Reinforced with Sodium Alginate/Polyacrylic Acid for Enhanced Adsorption of Copper Ions: Kinetics, Isotherm, and Mechanism Adsorption Studies. Molecules 2024; 29:4518. [PMID: 39407448 PMCID: PMC11477899 DOI: 10.3390/molecules29194518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigates the removal efficiency of Cu2+ from wastewater using a composite hydrogel made of carbon nanotubes (CNTs), sodium alginate (SA), and polyacrylic acid (PAA) prepared by free radical polymerization. The CNTs@SA/PAA hydrogel's structure and properties were characterized using SEM, TEM, FTIR, XRD, rheology, DSC, EDS, elemental mapping analysis, and swelling. The adsorption performance for Cu2+ was tested in batch adsorption experiments, considering the pH, dosage, initial concentration, and contact time. The optimal conditions for Cu2+ removal were pH 5.0, an adsorbent dosage of 500 mg/L, and a contact time of 360 min. The adsorption followed pseudo-second order kinetics. Isotherm analyses (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Sips, Toth, and Khan) revealed that the Freundlich isotherm best described the adsorption, with a maximum capacity of 358.52 mg/g. A thermodynamic analysis indicated that physical adsorption was the main interaction, with the spontaneity of the process also demonstrated. This study highlights the high efficiency and environmental friendliness of CNT@SA/PAA composites for Cu2+ removal from wastewater, offering a promising approach for water treatment.
Collapse
Affiliation(s)
- Pengbo Chang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
- Zhengzhou Technical College, Zhengzhou 450121, China
| | - Shuyang Zhou
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China;
| | - Tongchao Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Dangling Hua
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Armin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China;
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
16
|
Zhang Y, Wu L, Zhong X, Lian X, Wu M, Liu H, Zheng Y, Yang Y, Lv J. Biosorption of Cu 2+ on magnetic calcium alginate immobilized Phanerochaete chrysosporium. Int J Biol Macromol 2024; 280:135877. [PMID: 39317290 DOI: 10.1016/j.ijbiomac.2024.135877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Phanerochaete chrysosporium were immobilized in magnetic Fe3O4 nanoparticles and calcium alginate to form MC microspheres. The obtained MC microsphere was characterized by SEM, EDS, XRD, BET, VSM and TGA. The results indicated that MC microsphere was a three-dimensional structure with relatively large specific surface area and good porosity. MC microspheres had excellent magnetic recovery performance and thermal stability. The characteristics and performance of MC microspheres on adsorption of Cu2+ were evaluated based on batch adsorption experiments. The maximum adsorption capacity of Cu2+ by MC microspheres was 35.07 mg g-1 at pH of 5.0, temperature of 35 °C and adsorption time of 8 h. MC microspheres can still effectively adsorb Cu2+ at 400 mg L-1. Integrating simulation results from pseudo-second-order kinetic model, Intra-particle diffusion model and Freundlich model, the process was mainly dominated by chemical adsorption, and it is a multi-molecular layer adsorption. The results of XPS and FTIR showed that complexation, ion replacement, and reduction are important mechanisms for adsorption of Cu2+ on MC microspheres. -OH and C-O/C=O mainly complexes with Cu2+ in the biosorption process. After five adsorption-desorption cycles, the adsorption efficiency can still reach 32.40 %. Therefore, MC microspheres are a potential adsorbent that can achieve effective recovery.
Collapse
Affiliation(s)
- Yaohui Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Lijuan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xianbao Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Xiaohui Lian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Mengyuan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Hexiang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Yuguo Zheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China.
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China.
| |
Collapse
|
17
|
Aldakheel R, Gondal M, Almessiere M, Nasr M, Rehan I, Adel F. Rapid qualitative and quantitative vital nutrient contents in high-altitude cultivated folklore herbal medicinal Costus roots using calibration-free LIBS. ARAB J CHEM 2024; 17:105941. [DOI: 10.1016/j.arabjc.2024.105941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
18
|
Charkiewicz AE. Is Copper Still Safe for Us? What Do We Know and What Are the Latest Literature Statements? Curr Issues Mol Biol 2024; 46:8441-8463. [PMID: 39194715 DOI: 10.3390/cimb46080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Copper (Cu) is a precious metal and one of the three most abundant trace elements in the body (50-120 mg). It is involved in a large number of cellular mechanisms and pathways and is an essential cofactor in the function of cellular enzymes. Both its excess and deficiency may be harmful for many diseases. Even small changes in Cu concentration may be associated with significant toxicity. Consequently, it can be damaging to any organ or tissue in our body, beginning with harmful effects already at the molecular level and then affecting the degradation of individual tissues/organs and the slow development of many diseases, such as those of the immunological system, skeletal system, circulatory system, nervous system, digestive system, respiratory system, reproductive system, and skin. The main purpose of this article is to review the literature with regard to both the healthiness and toxicity of copper to the human body. A secondary objective is to show its widespread use and sources, including in food and common materials in contact with humans. Its biological half-life from diet is estimated to range from 13 to 33 days. The retention or bioavailability of copper from the diet is influenced by several factors, such as age, amount and form of copper in the diet, lifestyle, and genetic background. The upper limit of normal in serum in healthy adults is approximately 1.5 mg Cu/L, while the safe upper limit of average intake is set at 10-12 mg/day, the reference limit at 0.9 mg/day, and the minimum limit at 0.6-0.7 mg/day. Cu is essential, and in the optimal dose, it provides antioxidant defense, while its deficiency reduces the body's ability to cope with oxidative stress. The development of civilization and the constant, widespread use of Cu in all electrical devices will not be stopped, but the health of people directly related to its extraction, production, or distribution can be controlled, and the inhabitants of nearby towns can be protected. It is extremely difficult to assess the effects of copper on the human body because of its ubiquity and the increasing reports in the literature about its effects, including copper nanoparticles.
Collapse
|
19
|
Fontes A, Jauch AT, Sailer J, Engler J, Azul AM, Zischka H. Metabolic Derangement of Essential Transition Metals and Potential Antioxidant Therapies. Int J Mol Sci 2024; 25:7880. [PMID: 39063122 PMCID: PMC11277342 DOI: 10.3390/ijms25147880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Essential transition metals have key roles in oxygen transport, neurotransmitter synthesis, nucleic acid repair, cellular structure maintenance and stability, oxidative phosphorylation, and metabolism. The balance between metal deficiency and excess is typically ensured by several extracellular and intracellular mechanisms involved in uptake, distribution, and excretion. However, provoked by either intrinsic or extrinsic factors, excess iron, zinc, copper, or manganese can lead to cellular damage upon chronic or acute exposure, frequently attributed to oxidative stress. Intracellularly, mitochondria are the organelles that require the tightest control concerning reactive oxygen species production, which inevitably leaves them to be one of the most vulnerable targets of metal toxicity. Current therapies to counteract metal overload are focused on chelators, which often cause secondary effects decreasing patients' quality of life. New therapeutic options based on synthetic or natural antioxidants have proven positive effects against metal intoxication. In this review, we briefly address the cellular metabolism of transition metals, consequences of their overload, and current therapies, followed by their potential role in inducing oxidative stress and remedies thereof.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adrian T. Jauch
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Judith Sailer
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Jonas Engler
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| |
Collapse
|
20
|
Dey S, Ghosh S, Das A, Yadav RN, Chakrabarty R, Pradhan S, Saha D, Srivastava AK, Hossain MF. Synthesis of Cu (II) and Zn (II) Complexes of a Quinoline Based Flexible Amide Receptor as Fluorescent Probe for Dihydrogen Phosphate and Hydrogen Sulphate and Their Antibacterial Activity. J Fluoresc 2024; 34:1829-1840. [PMID: 37646874 DOI: 10.1007/s10895-023-03416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
A novel 8-hydroxy quinoline-derived amide receptor, in conjunction with its Cu (II) and Zn (II) complexes, has been strategically developed to function as remarkably efficient fluorescent receptors with a distinct capability for anion sensing. The comprehensive characterization of the synthesized compounds were achieved through UV-Vis, IR, NMR, and HRMS spectroscopic techniques. Among the Cu (II) and Zn (II) complexes, the latter exhibits superior selectivity for anions, specifically dihydrogen phosphate and hydrogen sulfate, as their tetrabutylammonium salts in a 9:1 acetonitrile-water (v/v) mixture. The Cu (II) complex demonstrates enhanced anion binding compared to the amide ligand, albeit with reduced selectivity. Furthermore, the affinity was evaluated using the Benesi-Hildebrand plot. The binding constants and Limit of Detection (LOD) for both complexes were precisely quantified. The Job plot illustrates a clear 1:1 binding interaction between the metal complexes and the guest anions. Significantly, both metal-complex receptors display a broad spectrum of antibacterial activity, against both gram-positive and gram-negative bacteria. It is worth highlighting that the Zn (II) complexed receptor outperforms the Cu (II) complexed receptor, as evidenced by its considerably lower Minimum Inhibitory Concentration (MIC) value against both bacterial strains.
Collapse
Affiliation(s)
- Sovan Dey
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India
| | - Sandip Ghosh
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India
| | - Arindam Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, 222003, India
| | - Rinku Chakrabarty
- Department of Chemistry, Alipurduar University, Alipurduar, 736122, India.
| | - Smriti Pradhan
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India
| | - Dipanwita Saha
- Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India
| | - Ashok Kumar Srivastava
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, 222003, India
| | - Md Firoj Hossain
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, 734013, India.
| |
Collapse
|
21
|
Mondal P, Brahma BK, Vali DK, Ray J, Kasu JVN, Gangopadhyay A, Laha S, Adhikari U. Calcium-Based Metal-Organic Framework: Detection and Idiosyncratic Removal of Copper by Nano-Particle Deposition. Chemistry 2024; 30:e202400587. [PMID: 38639718 DOI: 10.1002/chem.202400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
A novel calcium-based metal-organic framework (CaMOF@LSB) was designed and synthesized, exhibiting dual functionality for both selective detection and removal of Cu2+ ions from aqueous solutions. The framework's stability, including solvent and pH variations, was established with notable thermal resilience. Colorimetric Cu2+ detection (≥5 ppm) with a high capture capacity of 484.2 mg g-1 by CaMOF@LSB places this material among the few that ensure efficient colorimetric detection and high removal capabilities of Cu2+ ions. Batch adsorption experiments revealed pH-dependent behavior and competitive interactions. Langmuir and pseudo-second-order kinetics models aptly described adsorption isotherms and kinetics, respectively. Thermodynamic assessments confirmed spontaneous and endothermic adsorption. Mechanistically, nanoparticle deposition contributes to the Cu2+ uptake. CaMOF@LSB also exhibited one of the best removal behaviour of Cu2+ by means of oxide formation on the surface. Regeneration of CaMOF@LSB was achieved by simple sonication in 0.1 M aqueous NaOH solution. The recyclability was also tested up to 5 cycles, and it exhibited a small decrease in adsorption capacity observed across the cycles. This research presents a promising avenue for addressing heavy metal pollution using metal-organic frameworks, thereby offering potential applications in water purification and environmental pollution monitoring and remediation.
Collapse
Affiliation(s)
- Pallav Mondal
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Bhaskar K Brahma
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Dudekula Khasim Vali
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Joydeep Ray
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Jyothirlatha V N Kasu
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Avishek Gangopadhyay
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Sourav Laha
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| | - Utpal Adhikari
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713 209, India
| |
Collapse
|
22
|
Teschke R. Copper, Iron, Cadmium, and Arsenic, All Generated in the Universe: Elucidating Their Environmental Impact Risk on Human Health Including Clinical Liver Injury. Int J Mol Sci 2024; 25:6662. [PMID: 38928368 PMCID: PMC11203474 DOI: 10.3390/ijms25126662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Humans are continuously exposed to various heavy metals including copper, iron, cadmium, and arsenic, which were specifically selected for the current analysis because they are among the most frequently encountered environmental mankind and industrial pollutants potentially causing human health hazards and liver injury. So far, these issues were poorly assessed and remained a matter of debate, also due to inconsistent results. The aim of the actual report is to thoroughly analyze the positive as well as negative effects of these four heavy metals on human health. Copper and iron are correctly viewed as pollutant elements essential for maintaining human health because they are part of important enzymes and metabolic pathways. Healthy individuals are prepared through various genetically based mechanisms to maintain cellular copper and iron homeostasis, thereby circumventing or reducing hazardous liver and organ injury due to excessive amounts of these metals continuously entering the human body. In a few humans with gene aberration, however, liver and organ injury may develop because excessively accumulated copper can lead to Wilson disease and substantial iron deposition to hemochromatosis. At the molecular level, toxicities of some heavy metals are traced back to the Haber Weiss and Fenton reactions involving reactive oxygen species formed in the course of oxidative stress. On the other hand, cellular homeostasis for cadmium and arsenic cannot be provided, causing their life-long excessive deposition in the liver and other organs. Consequently, cadmium and arsenic represent health hazards leading to higher disability-adjusted life years and increased mortality rates due to cancer and non-cancer diseases. For unknown reasons, however, liver injury in humans exposed to cadmium and arsenic is rarely observed. In sum, copper and iron are good for the human health of most individuals except for those with Wilson disease or hemochromatosis at risk of liver injury through radical formation, while cadmium and arsenic lack any beneficial effects but rather are potentially hazardous to human health with a focus on increased disability potential and risk for cancer. Primary efforts should focus on reducing the industrial emission of hazardous heavy metals.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany; ; Tel.: +49-6181/21859; Fax: +49-6181/2964211
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60590 Hanau, Germany
| |
Collapse
|
23
|
Yahaya T, Nana Aisha L, Sani Kalgo A, Muhammad N, Abubakar MJ, Faruk MU. Contamination and risk assessment of heavy metals in water and fish obtained in Bunza River in Kebbi State, Nigeria. ENVIRONMENTAL HEALTH ENGINEERING AND MANAGEMENT 2024; 11:191-199. [DOI: 10.34172/ehem.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/14/2024] [Indexed: 01/11/2025]
Abstract
Background: Fish are consumed worldwide due to their nutritional and health benefits; however, heavy metal pollution is compromising their safety. This study aimed to determine heavy metal safety in water and fish, specifically tilapia (Oreochromis niloticus) and catfish (Clarias gariepinus), collected from Bunza River in Kebbi State, Nigeria. Methods: Water and fish samples underwent analysis for zinc (Zn), cadmium (Cd), copper (Cu), and lead (Pb) using atomic absorption spectroscopy. The obtained values were then utilized to assess the associated health risks. Results: The atomic absorption spectroscopy of fish revealed significant differences (P<0.05) between heavy metal concentrations in the fish organs and FAO/WHO standards. It indicated non-tolerable concentrations of copper (1.77-5.24 mg kg-1) and lead (1.85-4.53 mg kg-1). The estimated daily intake (EDI) of Pb and Cd through fish consumption was above the recommended daily intake (RDI). However, the hazard quotient (HQ) and health risk index (HI) of all the heavy metals were within tolerable limits (<1). On water samples, non-tolerable levels of the heavy metals and significant differences (P<0.05) were observed when compared with the standards. The water samples had average concentrations of Cu (4.64±0.62 mg kg-1), Pb (1.78±0.70 mg kg-1), Cd (0.50±0.02 mg kg-1), and Zn (18.90±3.08 mg kg-1). The average daily ingestion (ADI) and HQ of the heavy metals through the consumption of the water were above the recommended limits. Conclusion: Based on the results, the fish and water samples could cause heavy metal-related toxicity. There is a need for policies aimed at decontaminating the river.
Collapse
Affiliation(s)
- Tajudeen Yahaya
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Lawal Nana Aisha
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Abdulrahman Sani Kalgo
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Nasiru Muhammad
- Department of Physiology, College of Health Sciences, Federal University Birnin Kebbi, Nigeria
| | - Muhammad-Jamil Abubakar
- Department of Quantity Surveying, Faculty of Environmental Sciences, Federal University Birnin Kebbi, Nigeria
| | - Mohammed Umar Faruk
- Department of Pure and Industrial Chemistry, Federal University Birnin Kebbi, Nigeria
| |
Collapse
|
24
|
Kandel DR, Poudel MB, Radoor S, Chang S, Lee J. Decoration of dandelion-like manganese-doped iron oxide microflowers on plasma-treated biochar for alleviation of heavy metal pollution in water. CHEMOSPHERE 2024; 357:141757. [PMID: 38583537 DOI: 10.1016/j.chemosphere.2024.141757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024]
Abstract
Carbon-based biowaste incorporated with inorganic oxides as a composite is an enticing option to mitigate heavy metal pollution in water resources due to its more economical and efficient performance. With this in mind, we constructed manganese-doped iron oxide microflowers resembling the dandelion-like structure on the surface of cold plasma-treated carbonized rice husk (MnFe2O3/PCRH). The prepared composite exhibited 45% and 19% higher removal rates for Cu2+ and Cd2+, respectively than the pristine CRH. The MnFe2O3/PCRH composite was characterized using XRD, FTIR, FESEM, EDX, HR-TEM, XPS, BET, TGA, and zeta potential, while the adsorption capacities were investigated as a function of pH, time, and initial concentration in batch trials. As for the kinetics, the pseudo-second-order was the rate-limiting over the pseudo-first-order and Elovich model, demonstrating that the chemisorption process governed the adsorption of Cu2+ and Cd2+. Additionally, the maximum adsorption capacities of the MnFe2O3/PCRH were found to be 122.8 and 102.5 mg/g for Cu2+ and Cd2+, respectively. Based on thorough examinations by FESEM-EDS, FTIR, and XPS, the possible mechanisms for the adsorption can be ascribed to surface complexation by oxygen-containing groups, a dissolution-precipitation of the ions with -OH groups, electrostatic attraction between metal ions and the adsorbent's partially charged surface, coordination of Cu2+ and Cd2+ with π electrons by aromatic/graphitic carbon in the MnFe2O3/PCRH, and pore filling and diffusion. Lastly, the adsorption efficiencies were maintained at about 70% of its initial adsorption even after five adsorption-desorption cycles, displaying its remarkable stability and reusability.
Collapse
Affiliation(s)
- Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Milan Babu Poudel
- Department of Convergence Technology Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Seungwon Chang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Jaewoo Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
25
|
Bevan R, Levy L. Biomonitoring for workplace exposure to copper and its compounds is currently not interpretable. Int J Hyg Environ Health 2024; 258:114358. [PMID: 38531293 DOI: 10.1016/j.ijheh.2024.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
This paper sets out to explore the requirements needed to recommend a useable and reliable biomonitoring system for occupational exposure to copper and its inorganic compounds. Whilst workplace environmental monitoring of copper is used to measure ambient air concentrations for comparison against occupational exposure limits, biological monitoring could provide complementary information about the internal dose of workers, taking into account intra-individual variability and exposure from all routes. For biomonitoring to be of reliable use for copper, a biomarker and the analytical ability to measure it with sufficient sensitivity must be identified and this is discussed in a range of matrices. In addition, there needs to be a clear understanding of the dose-response relationship of the biomarker with any health-effect (clinical or sub-clinical) or, between the level of external exposure (by any route) and the level of the copper biomarker in the biological matrix being sampled, together with a knowledge of the half-life in the body to determine accurate sampling times. For many biologically non-essential metals the requirements for reliable biomarkers can be met, however, for 'essential' metals such as copper that are under homeostatic control, the relationship between exposure (short- or long-term) and the level of any copper biomarker in the blood or urine is complex, which may limit the use and interpretation of measured levels. There are a number of types of biomarker guidance values currently in use which are discussed in this paper, but no values have yet been determined for copper (or its inorganic compounds) due to the complexity of its essential nature; the US The American Conference of Governmental Industrial Hygienists (ACGIH) has however indicated that it is considering the development of a biological exposure index for copper and its compounds. In light of this, we present a review of the reliability of current copper biomarkers and their potential use in the occupational context to evaluate whether there is value in carrying out human biomonitoring for copper exposure. Based on the available evidence we have concluded that the reliable use of biomonitoring of occupational exposure to copper and its application in risk assessment is not possible at the present time.
Collapse
Affiliation(s)
- Ruth Bevan
- IEH Consulting Ltd., Nottingham, United Kingdom.
| | - Len Levy
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom.
| |
Collapse
|
26
|
Ohse VA, Klotz LO, Priebs J. Copper Homeostasis in the Model Organism C. elegans. Cells 2024; 13:727. [PMID: 38727263 PMCID: PMC11083455 DOI: 10.3390/cells13090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.
Collapse
Affiliation(s)
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| | - Josephine Priebs
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| |
Collapse
|
27
|
Anjum S, Sarwar M, Ali Q, Alam MW, Manzoor MT, Mukhtar A. Assessment of bioremediation potential of Calotropis procera and Nerium oleander for sustainable management of vehicular released metals in roadside soils. Sci Rep 2024; 14:8920. [PMID: 38637588 PMCID: PMC11026540 DOI: 10.1038/s41598-024-58897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Land transportation is a major source of heavy metal contamination along the roadside, posing significant risks to human health through inhalation, oral ingestion, and dermal contact. Therefore, this study has been designed to determine the concentrations of vehicular released heavy metals (Cd, Pb, Ni, and Cu) in roadside soil and leaves of two commonly growing native plant species (Calotropis procera and Nerium oleander).Two busy roads i.e., Lahore-Okara road (N-5) and Okara-Faisalabad roads (OFR) in Punjab, Pakistan, were selected for the study. The data were collected from five sites along each road during four seasons. Control samples were collected ~ 50 m away from road. The metal content i.e. lead (Pb), cadmium (Cd) nickel (Ni) and copper (Cu) were determined in the plant leaves and soil by using Atomic Absorption Spectrophotometer (AAS). Significantly high amount of all studied heavy metals were observed in soil and plant leaves along both roads in contrast to control ones. The mean concentration of metals in soil ranged as Cd (2.20-6.83 mg/kg), Pb (4.53-15.29 mg/kg), Ni (29.78-101.26 mg/kg), and Cu (61.68-138.46 mg/kg) and in plant leaves Cd (0.093-0.53 mg/kg), Pb (4.31-16.34 mg/kg), Ni (4.13-16.34 mg/kg) and Cu (2.98-32.74 mg/kg). Among roads, higher metal contamination was noted along N-5 road. Significant temporal variations were also noted in metal contamination along both roads. The order of metal contamination in soil and plant leaves in different seasons was summer > autumn > spring > winter. Furthermore, the metal accumulation potential of Calotropis procera was higher than that of Nerium oleander. Therefore, for sustainable management of metal contamination, the plantation of Calotropis procera is recommended along roadsides.
Collapse
Affiliation(s)
- Sumreen Anjum
- Institute of Botany, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Mubeen Sarwar
- Department of Horticulture, University of the Punjab, Lahore, 54590, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | | | | | - Adnan Mukhtar
- Department of Food Science, University of Agriculture, Faisalabad, Suib-Campus Depalpur Okara, Okara, Pakistan
| |
Collapse
|
28
|
Everman ER, Macdonald SJ. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae015. [PMID: 38262701 PMCID: PMC11021028 DOI: 10.1093/g3journal/jkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper results in cell and tissue damage ranging in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes respond to nonessential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the heavy metal stress response. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource using a combination of differential expression analysis and expression quantitative trait locus mapping. Differential expression analysis revealed clear patterns of tissue-specific expression. Tissue and treatment specific responses to copper stress were also detected using expression quantitative trait locus mapping. Expression quantitative trait locus associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited both genotype-by-tissue and genotype-by-treatment effects on gene expression under copper stress, illuminating tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight candidate genes for future functional characterization.
Collapse
Affiliation(s)
- Elizabeth R Everman
- School of Biological Sciences, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Stuart J Macdonald
- Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, USA
| |
Collapse
|
29
|
Liang Y, Jin X, Xu X, Wu Y, Ghfar AA, Lam SS, Sonne C, Aminabhavi TM, Xia C. A novel porous lignocellulosic standing hierarchical hydroxyapatite for enhanced aqueous copper(II) removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168873. [PMID: 38016558 DOI: 10.1016/j.scitotenv.2023.168873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Potentially toxic metal-polluted water resources are a heavily discussed topic the pollution by potentially toxic metals can cause significant health risks. Nanomaterials are actively developed towards providing high specific surface area and creating active adsorption sites for the treatment and remediation of these polluted waters. In an effort to tackle the limitations of conventional type adsorbents, nano-hydroxyapatite (HAp) was developed in this study by in situ generation onto wood powder, resulting in the formation of uniform hybrid powder (HAp@wood composite) structure consisting of HAp nanoparticles that showed the removal efficiency up to 80 % after 10 min; the maximum adsorption capacity for Cu(II) ions (98.95 mg/g-HAp) was higher compared to agglomerated nano-HAp (72.85 mg/g-HAp). The adsorption capacity of Cu(II) remained stable (89.85-107.66 mg/g-HAp) during the four adsorption-desorption cycles in multi-component system, thereby demonstrating high selectivity for Cu(II). This approach of using nanoparticle is relatively simple yet effective in improving the adsorption of potentially toxic metals and the developed approach can be used to develop advanced nanocomposites in commercial wastewater treatment.
Collapse
Affiliation(s)
- Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xinshuai Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, Karnataka, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
30
|
Taharia M, Dey D, Das K, Sukul U, Chen JS, Banerjee P, Dey G, Sharma RK, Lin PY, Chen CY. Microbial induced carbonate precipitation for remediation of heavy metals, ions and radioactive elements: A comprehensive exploration of prospective applications in water and soil treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115990. [PMID: 38262090 DOI: 10.1016/j.ecoenv.2024.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Improper disposal practices have caused environmental disruptions, possessing by heavy metal ions and radioactive elements in water and soil, where the innovative and sustainable remediation strategies are significantly imperative in last few decades. Microbially induced carbonate precipitation (MICP) has emerged as a pioneering technology for remediating contaminated soil and water. Generally, MICP employs urease-producing microorganisms to decompose urea (NH2CONH2) into ammonium (NH4+and carbon dioxide (CO2), thereby increasing pH levels and inducing carbonate precipitation (CO32-), and effectively removing remove contaminants. Nonetheless, the intricate mechanism underlying heavy metal mineralization poses a significant challenge, constraining its application in contaminants engineering, particularly in the context of prolonged heavy metal leaching over time and its efficacy in adverse environmental conditions. This review provides a comprehensive idea of recent development of MICP and its application in environmental engineering, examining metabolic pathways, mineral precipitation mechanisms, and environmental factors as well as providing future perspectives for commercial utilization. The use of ureolytic bacteria in MICP demonstrates cost-efficiency, environmental compatibility, and successful pollutant abatement over tradition bioremediation techniques, and bio-synthesis of nanoparticles. limitations such as large-scale application, elevated Ca2+levels in groundwater, and gradual contaminant release need to be overcome. The possible future research directions for MICP technology, emphasizing its potential in conventional remediation, CO2 sequestration, bio-material synthesis, and its role in reducing environmental impact for long-term economic benefits.
Collapse
Affiliation(s)
- Md Taharia
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Debanjan Dey
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC campus, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Uttara Sukul
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Pritam Banerjee
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pin-Yun Lin
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
31
|
Momin SC, Pradhan RB, Nath J, Lalmuanzeli R, Kar A, Mehta SK. Metal sequestration by Microcystis extracellular polymers: a promising path to greener water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11192-11213. [PMID: 38217816 DOI: 10.1007/s11356-023-31755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
The problem of heavy metal pollution in water bodies poses a significant threat to both the environment and human health, as these toxic substances can persist in aquatic ecosystems and accumulate in the food chain. This study investigates the promising potential of using Microcystis aeruginosa extracellular polymeric substances (EPS) as an environmentally friendly, highly efficient solution for capturing copper (Cu2+) and nickel (Ni2+) ions in water treatment, emphasizing their exceptional ability to promote green technology in heavy metal sequestration. We quantified saccharides, proteins, and amino acids in M. aeruginosa biomass and isolated EPS, highlighting their metal-chelating capabilities. Saccharide content was 36.5 mg g-1 in biomass and 21.4 mg g-1 in EPS, emphasizing their metal-binding ability. Proteins and amino acids were also prevalent, particularly in EPS. Scanning electron microscopy (SEM) revealed intricate 3D EPS structures, with pronounced porosity and branching configurations enhancing metal sorption. Elemental composition via energy dispersive X-ray analysis (EDAX) identified essential elements in both biomass and EPS. Fourier transform infrared (FTIR) spectroscopy unveiled molecular changes after metal treatment, indicating various binding mechanisms, including oxygen atom coordination, π-electron interactions, and electrostatic forces. Kinetic studies showed EPS expedited and enhanced Cu2+ and Ni2+ sorption compared to biomass. Thermodynamic analysis confirmed exothermic, spontaneous sorption. Equilibrium biosorption studies displayed strong binding and competitive interactions in binary metal systems. Importantly, EPS exhibited impressive maximum sorption capacities of 44.81 mg g-1 for Ni2+ and 37.06 mg g-1 for Cu2+. These findings underscore the potential of Microcystis EPS as a highly efficient sorbent for heavy metal removal in water treatment, with significant implications for environmental remediation and sustainable water purification.
Collapse
Affiliation(s)
- Sengjrang Ch Momin
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Ran Bahadur Pradhan
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Jyotishma Nath
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Ruthi Lalmuanzeli
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Agniv Kar
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Surya Kant Mehta
- Laboratory of Algal Physiology and Biochemistry, Department of Botany, Mizoram University, Aizawl, 796004, India.
| |
Collapse
|
32
|
Kaplan M, Yavuz O, Ozdemir E, Alcay Y, Kaya K, Yilmaz I. Architecture of Easy-to-Synthesize and Superior Probe Based on Aminoquinoline Appended Naphthoquinone: Instant and On-Site Cu 2+ Ion Quantification in Real Samples and Unusual Crystal Structure and Logic Gate Operations. Inorg Chem 2024; 63:2257-2267. [PMID: 38221778 DOI: 10.1021/acs.inorgchem.3c04229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Easy-to-synthesize aminoquinoline (AQ) appended naphthoquinone (NQ)-based colorimetric and ratiometric probe (AQNQ) was successfully synthesized in one step with high yield and low cost, and was utilized to supply an effective solution to critical shortcomings encountered in Cu2+ analysis. The structure of AQNQ and its interaction with Cu2+ forming an unusual AQNQ-Cu complex were enlightened with single-crystal X-ray diffraction analysis and different spectroscopic methods. AQNQ-Cu complex is the first Cu2+ containing dinuclear crystal where the octahedral coordination sphere is fulfilled through the coordination of a NQ oxygen atom. AQNQ exhibited long-term stability (more than 1 month), superior probe ability toward Cu2+ with quite fast response (30 s), high selectivity among many ions, and limit of detection of 12.13 ppb that is significantly below the highest amount of Cu2+ allowed in drinking water established by both WHO and EPA. Ratiometric determination of Cu2+ using AQNQ was performed with high recovery and low RSD values for drinking water, tap water, lake water, cherry, and watermelon samples. Colorimetric on-site determination including smartphone and paper strip applications, IMPLICATION, and INHIBIT logic gate applications were successfully carried out. The reversibility and reusability of the response to Cu2+ ions with the paper strip application were examined for the first time.
Collapse
Affiliation(s)
- Mehmet Kaplan
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| | - Ozgur Yavuz
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| | - Emre Ozdemir
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| | - Yusuf Alcay
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| | - Kerem Kaya
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| | - Ismail Yilmaz
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Maslak, Turkey
| |
Collapse
|
33
|
Kim Y, Lee Y, Choo M, Yun N, Cho JW, Oh YJ. A surge of cytosolic calcium dysregulates lysosomal function and impairs autophagy flux during cupric chloride-induced neuronal death. J Biol Chem 2024; 300:105479. [PMID: 37981210 PMCID: PMC10750191 DOI: 10.1016/j.jbc.2023.105479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023] Open
Abstract
Autophagy is a degradative pathway that plays an important role in maintaining cellular homeostasis. Dysfunction of autophagy is associated with the progression of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Although one of the typical features of brain aging is an accumulation of redox-active metals that eventually lead to neurodegeneration, a plausible link between trace metal-induced neurodegeneration and dysregulated autophagy has not been clearly determined. Here, we used a cupric chloride-induced neurodegeneration model in MN9D dopaminergic neuronal cells along with ultrastructural and biochemical analyses to demonstrate impaired autophagic flux with accompanying lysosomal dysfunction. We found that a surge of cytosolic calcium was involved in cupric chloride-induced dysregulated autophagy. Consequently, buffering of cytosolic calcium by calbindin-D28K overexpression or co-treatment with the calcium chelator BAPTA attenuated the cupric chloride-induced impairment in autophagic flux by ameliorating dysregulation of lysosomal function. Thus, these events allowed the rescue of cells from cupric chloride-induced neuronal death. These phenomena were largely confirmed in cupric chloride-treated primary cultures of cortical neurons. Taken together, these results suggest that abnormal accumulation of trace metal elements and a resultant surge of cytosolic calcium leads to neuronal death by impairing autophagic flux at the lysosomal level.
Collapse
Affiliation(s)
- Yoonkyung Kim
- Department of Systems Biology Yonsei University College of Life Science and Biotechnology, Seoul, Korea
| | - Yangsin Lee
- Glycosylation Network Research Center, Yonsei University, Seoul, Korea
| | - Minjung Choo
- Department of Systems Biology Yonsei University College of Life Science and Biotechnology, Seoul, Korea
| | - Nuri Yun
- Department of Systems Biology Yonsei University College of Life Science and Biotechnology, Seoul, Korea; GNT Pharma Science Technology Center for Health, Incheon, Korea
| | - Jin Won Cho
- Department of Systems Biology Yonsei University College of Life Science and Biotechnology, Seoul, Korea; Glycosylation Network Research Center, Yonsei University, Seoul, Korea.
| | - Young J Oh
- Department of Systems Biology Yonsei University College of Life Science and Biotechnology, Seoul, Korea; GNT Pharma Science Technology Center for Health, Incheon, Korea.
| |
Collapse
|
34
|
Özbek O, Altunoluk OC, Isildak Ö. Surface characterization and electroanalytical applications of the newly developed copper(II)-selective potentiometric sensor. ANAL SCI 2024; 40:141-149. [PMID: 37821773 DOI: 10.1007/s44211-023-00436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
In this work, we developed a new copper(II)-selective potentiometric sensor and investigated its surface with scanning electron microscopy (SEM). Besides the surface images of the sensors conditioned in copper(II) solutions, energy-dispersive X-ray (EDX) and mapping studies were carried out. According to the results obtained, it was determined that copper(II) ions adhered to the porous areas on the sensor surface, and that Cu2+ ions showed a wide distribution on the sensor surface in mapping studies. The new sensor had a Nernstian response of 29.3 ± 0.5 mV/decade in the concentration range of 1.0 × 10-1-1.0 × 10-5 M and a low detection limit of 8.56 × 10-6 M. The proposed sensor had fast response time (< 10 s), wide pH working range (5.0-10.0), good repeatability and stability. Finally, the sensor performed the determination of copper(II) ions in various water samples with very high recoveries (96.0-102.0%).
Collapse
Affiliation(s)
- Oguz Özbek
- Science and Technology, Application and Research Center, Zonguldak Bülent Ecevit University, 67600, Zonguldak, Turkey.
| | - Onur Cem Altunoluk
- Department of Chemistry, Faculty of Science and Arts, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Ömer Isildak
- Department of Chemistry, Faculty of Science and Arts, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| |
Collapse
|
35
|
Wade AM, Peloquin DM, Matheson JM, Luxton TP. Dermal and oral exposure risks to heavy metals from 3D printing metal-fill thermoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166538. [PMID: 37625731 PMCID: PMC10653099 DOI: 10.1016/j.scitotenv.2023.166538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Manufacturing advancements in polymer printing now allow for the addition of metal additives to thermoplastic feedstock up to 80-90 % by weight and subsequent printing on low-cost desktop 3D printers. Particles associated with metal additives are not chemically bound to the plastic polymer, meaning these particles can potentially migrate and become bioavailable. This study investigated the degree to which two human exposure pathways, oral (ingestion) and dermal (skin contact), are important exposure pathways for metals (copper, chromium, and tin) from metal-fill thermoplastics used in consumer fused filament fabrication (FFF). We found that dermal exposure to copper and bronze filaments presents the highest exposure risk due to chloride (Cl-) in synthetic sweat driving copper (Cu2+) release and dissolution. Chromium and tin were released as micron-sized particles < 24 μm in diameter with low bioaccessibility during simulated oral and dermal exposure scenarios, with potential to undergo dissolution in the gastrointestinal tract based on testing using synthetic stomach fluids. The rate of metal particle release increased by one to two orders of magnitude when thermoplastics were degraded under 1 year of simulated UV weathering. This calls into question the long-term suitability of biodegradable polymers such as PLA for use in metal-fill thermoplastics if they are designed not to be sintered. The greatest exposure risk appears to be from the raw filaments rather than the printed forms, with the former having higher metal release rates in water and synthetic body fluids for all but one filament type. For brittle feedstock that requires greater handling, as metal-fill thermoplastics can be, practices common in metal powder 3D printing such as wearing gloves and washing hands may adequately reduce metal exposure risks.
Collapse
Affiliation(s)
- Anna M Wade
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA; U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 5995 Center Hill Avenue, Cincinnati, OH 45224, USA.
| | - Derek M Peloquin
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 5995 Center Hill Avenue, Cincinnati, OH 45224, USA.
| | - Joanna M Matheson
- U.S. Consumer Product and Safety Commission, 5 Research Place, Rockville, MD 20850, USA.
| | - Todd P Luxton
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 5995 Center Hill Avenue, Cincinnati, OH 45224, USA.
| |
Collapse
|
36
|
Li Y, Wang L, Wang L, Zhu B, Ma J. A novel carbazole-based fluorometric and colorimetric sensor for the highly sensitive and specific detection of Cu 2+ in aqueous solution. RSC Adv 2023; 13:33276-33287. [PMID: 37964909 PMCID: PMC10641437 DOI: 10.1039/d3ra04571d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Based on the typical Suzuki coupling reaction and Schiff base reaction, a novel fluorescent molecular PCBW is synthesized and applied as a fluorescence and colorimetric sensor to detect Cu2+ in aqueous solution. The PCBW sensor presents the aggregation-caused quenching (ACQ) effect and at 1 × 10-5 mol L-1 it emits the strongest turquoise fluorescence in the DMSO-H2O system (fw = 40%). The sensor exhibits a 'turn-off' fluorescent characteristic by adding Cu2+, and its fluorescent intensity shows a reliable linear relationship with the Cu2+ concentration in the range of 0-6 × 10-6 mol L-1, with a detection limit of 1.19 × 10-8 mol L-1. Meanwhile, the PCBW sensor also exhibits the colorimetric sensing from colorless to light yellow. The sensor has good selectivity and anti-interference and its pH application range can be extended from 5 to 10. The intramolecular charge transfer (ICT) is speculated as the main fluorescence mechanism of PCBW. In addition, the sensor presents good reusability and is practicable to detect Cu2+ in diverse aqueous samples.
Collapse
Affiliation(s)
- Yiduo Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Luyue Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Liqiang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Baokun Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Jie Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| |
Collapse
|
37
|
Sahu R, Yadav S, Gunturu KC, Kapdi AR. Phenothiazine-Based Cu(II)-Selective Fluorescent Sensor: GHK-Cu Sensing Applications. J Org Chem 2023; 88:15118-15129. [PMID: 37830186 DOI: 10.1021/acs.joc.3c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Sensing important metals in different environments is an important area and involves the development of a wide variety of metal-sensing materials. The employment of fluorescent sensors in metal sensing has been one of the most widely applied methodologies, and the identification of selective metal sensors is important. We herein report a phenothiazine-based Cu(II) fluorescent sensor that is highly selective to Cu(II) ions compared with other transition metal salts. The Lewis acidity of the Cu(II) salt certainly was found to be a factor for obtaining an enhanced sensing response in MeOH as the solvent, while a ratio of 1:1 was calculated to be the most optimum for getting the desired response.
Collapse
Affiliation(s)
- Rajesh Sahu
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Saurav Yadav
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | | | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| |
Collapse
|
38
|
Tisarum R, Sotesaritkul T, Pipatsitee P, Cha-Um K, Samphumphuang T, Singh HP, Cha-Um S. Toxicity, physiological, and morphological alterations of Indian camphorweed (Pluchea indica) in response to excess copper. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7637-7649. [PMID: 37402936 DOI: 10.1007/s10653-023-01679-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Indian camphorweed (Pluchea indica (L.) Less.) is used as herbal tea due to the presence of volatile aromatic oils and several phytochemical compounds. The aim of this study was to assess the impact of copper (Cu) contamination on the physiology and morphology of P. indica, and the health risks associated with its consumption as tea. The cuttings of P. indica were subjected to 0 mM (control), 5 mM (low Cu), and 20 mM (excess Cu) of CuSO4 treatments for 1, 2, and 4 weeks. Thereafter, Cu contamination as well as physiological and morphological parameters were assessed. Cu accumulation was higher in the root tissues of plants (25.8 folds higher as compared to the leaves) grown under 20 mM CuSO4 for 4 weeks. This increased Cu accumulation resulted in the inhibition of root length, root fresh weight, and root dry weight. Cu concentration was found maximum (1.36 μg g-1 DW) in the leaf tissues under 20 mM Cu exposure for 4 weeks, with the highest target hazard quotient (THQ = 1.85), whereas Cu was not detected in control. Under exposure to 20 mM Cu treatment for 4 weeks, leaf greenness, maximum quantum yield of photosystem II, and photon yield of photosystem II diminished by 21.4%, 16.1%, and 22.4%, respectively, as compared to the control. Leaf temperature was increased by 2.5 °C, and the crop stress index (CSI) exceeded 0.6 when exposed to 20 mM Cu treatment for 2 and 4 weeks; however, the control had a CSI below 0.5. This led to a reduced transpiration rate and stomatal conductance. In addition, the net photosynthetic rate was also found sensitive to Cu treatment, which resulted in decreased shoot and root growth. Based on the key results, it can be suggested that P. indica herbal tea derived from the foliage of plants grown under a 5 mM Cu level (0.75 μg g-1 DW) with a target hazard quotient below one aligns with the recommended dietary intake of Cu in leafy vegetables. The study recommends choosing cuttings from plants with a small canopy as plant material in the greenhouse microclimates to validate the growth performance in the Cu-contaminated soil and simulate the natural shrub architecture and life cycle.
Collapse
Affiliation(s)
- Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Piyanan Pipatsitee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Kwankhao Cha-Um
- Science Classrooms in University-Affiliated School Project (SCIUS), Thamasart University, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
39
|
Lousada ME, Lopez Maldonado EA, Nthunya LN, Mosai A, Antunes MLP, Fraceto LF, Baigorria E. Nanoclays and mineral derivates applied to pesticide water remediation. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104264. [PMID: 37984165 DOI: 10.1016/j.jconhyd.2023.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Although pesticides are vital in agroecosystems to control pests, their indiscriminate use generates innumerable environmental problems daily. Groundwater and surface water networks are the most affected environmental matrices. Since these water basins are mainly used to obtain water for human consumption, it is a challenge to find solutions to pesticide contamination. For these reasons, development of efficient and sustainable remedial technologies is key. Based on their unique properties including high surface area, recyclability, environmental friendliness, tunable surface chemistry and low cost, nanoclays and derived minerals emerged as effective adsorbents towards environmental remediation of pesticides. This study provides a comprehensive review of the use of nanoclays and mineral derivatives as adsorbents for pesticides in water. For this purpose, the characteristics of existing pesticides and general aspects of the relevant clays and minerals are discussed. Furthermore, the study provides insightful discussion on the potential application of nanoclays and their derivatives toward the mitigation of pesticide pollution in the environment. Finally, the outlook and future prospects on nanoclay implications and their environmental implementation are elucidated.
Collapse
Affiliation(s)
- María E Lousada
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Eduardo A Lopez Maldonado
- Faculty of Chemical Sciences and Engineering Autonomous University of Baja California, Parque Internacional Industrial Tijuana, 22424 Tijuana, B.C., Mexico.
| | - Lebea N Nthunya
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | - Alseno Mosai
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa.
| | - María Lucia Pereira Antunes
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Leonardo F Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil.
| | - Estefanía Baigorria
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil; Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), CONICET - Universidad Nacional de Mar del Plata (UNMdP), Av. Colón 10890, Mar del Plata, Buenos Aires 7600, Argentina.
| |
Collapse
|
40
|
Al-Bukhari MS, Abdulazeez I, Abdelnaby MM, Aljundi IH, Al Hamouz OCS. 3D porous polymers for selective removal of CO 2 and H 2 storage: experimental and computational studies. Front Chem 2023; 11:1265324. [PMID: 37744064 PMCID: PMC10513180 DOI: 10.3389/fchem.2023.1265324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
In this article, newly designed 3D porous polymers with tuned porosity were synthesized by the polycondensation of tetrakis (4-aminophenyl) methane with pyrrole to form M1 polymer and with phenazine to form M2 polymer. The polymerization reaction used p-formaldehyde as a linker and nitric acid as a catalyst. The newly designed 3D porous polymers showed permanent porosity with a BET surface area of 575 m2/g for M1 and 389 m2/g for M2. The structure and thermal stability were investigated by solid 13C-NMR spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The performance of the synthesized polymers toward CO2 and H2 was evaluated, demonstrating adsorption capacities of 1.85 mmol/g and 2.10 mmol/g for CO2 by M1 and M2, respectively. The importance of the synthesized polymers lies in their selectivity for CO2 capture, with CO2/N2 selectivity of 43 and 51 for M1 and M2, respectively. M1 and M2 polymers showed their capability for hydrogen storage with a capacity of 66 cm3/g (0.6 wt%) and 87 cm3/g (0.8 wt%), respectively, at 1 bar and 77 K. Molecular dynamics (MD) simulations using the grand canonical Monte Carlo (GCMC) method revealed the presence of considerable microporosity on M2, making it highly selective to CO2. The exceptional removal capabilities, combined with the high thermal stability and microporosity, enable M2 to be a potential material for flue gas purification and hydrogen storage.
Collapse
Affiliation(s)
- Muath S. Al-Bukhari
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Ismail Abdulazeez
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Mahmoud M. Abdelnaby
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Isam H. Aljundi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Othman Charles S. Al Hamouz
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
41
|
Bharathi SD, Dilshani A, Rishivanthi S, Khaitan P, Vamsidhar A, Jacob S. Resource Recycling, Recovery, and Xenobiotic Remediation from E-wastes Through Biofilm Technology: A Review. Appl Biochem Biotechnol 2023; 195:5669-5692. [PMID: 35796946 DOI: 10.1007/s12010-022-04055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Around 50 million tonnes of electronic waste has been generated globally per year, causing an environmental hazard and negative effects on human health, such as infertility and thyroid disorders in adults, endocrine and neurological damage in both animals and humans, and impaired mental and physical development in children. Out of that, only 15% is recycled each year and the remaining is disposed of in a landfill, illegally traded or burned, and treated in a sub-standard way. The processes of recycling are challenged by the presence of brominated flame retardants. The different recycling technologies such as the chemical and mechanical methods have been well studied, while the most promising approach is the biological method. The process of utilizing microbes to decontaminate and degrade a wide range of pollutants into harmless products is known as bioremediation and it is an eco-friendly, cost-effective, and sustainable method. The bioremediation process is significantly aided by biofilm communities attached to electronic waste because they promote substrate bioavailability, metabolite transfer, and cell viability, all of which accelerate bioleaching and biodegradation. Microbes existing in biofilm mode relatable to free-floating planktonic cells are advantageous of bioremediation due to their tolerant ability to environmental stress and pollutants through diverse catabolic pathways. This article discusses the harmful effects of electronic waste and its management using biological strategies especially biofilm-forming communities for resource recovery.
Collapse
Affiliation(s)
- Sundaram Deepika Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Aswin Dilshani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Srinivasan Rishivanthi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Pratham Khaitan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Adhinarayan Vamsidhar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India.
| |
Collapse
|
42
|
Salman BI, Hassan AI, Saraya RE, Ibrahim AE, Mohammed BS, Batakoushy HA, El Deeb S, Hassan YF. Development of cysteine-doped MnO 2 quantum dots for spectrofluorimetric estimation of copper: applications in different matrices. Anal Bioanal Chem 2023; 415:5529-5538. [PMID: 37432444 PMCID: PMC10444647 DOI: 10.1007/s00216-023-04827-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Copper (Cu) plays a role in maintaining healthy nerve cells and the immune system. Osteoporosis is a high-risk factor for Cu deficiency. In the proposed research, unique green, fluorescent cysteine-doped MnO2 quantum dots (Cys@MnO2 QDs) were synthesized and assessed for the determination of Cu in different food and hair samples. The developed quantum dots were synthesized with the help of cysteine using a straightforward ultrasonic approach to create 3D fluorescent Cys@MnO2 QDs. The resulting QDs' morphological and optical characteristics were carefully characterized. By adding Cu ions, the intensity of fluorescence for the produced Cys@MnO2 QDs was found to be dramatically reduced. Additionally, the applicability of Cys@MnO2 QDs as a new luminous nanoprobe was found to be strengthened by the quenching effect grounded on the Cu-S bonding. The concentrations of Cu2+ ions were estimated within the range of 0.06 to 7.00 µg mL-1, with limit of quantitation equal to 33.33 ng mL-1 and detection limit equal to 10.97 ng mL-1. The Cys@MnO2 QD technique was applied successfully for the quantification of Cu in a variety of foods, including chicken meat, turkey, and tinned fish, as well as in human hair samples. The chance that this novel technique could be a useful tool for figuring out the amount of cysteine in bio-samples is increased by the sensing system's remarkable advantages, which include being rapid, simple, and economical.
Collapse
Affiliation(s)
- Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed I Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Roshdy E Saraya
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman
| | - Bassam Shaaban Mohammed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, Shibin-Elkom, 32511, Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, Shibin-Elkom, 32511, Egypt
| | - Sami El Deeb
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman.
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38106, Braunschweig, Germany.
| | - Yasser F Hassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
43
|
Akhtar S, Shoaib A, Javiad I, Qaisar U, Tasadduq R. Farmyard manure, a potential organic additive to reclaim copper and Macrophomina phaseolina stress responses in mash bean plants. Sci Rep 2023; 13:14383. [PMID: 37658111 PMCID: PMC10474152 DOI: 10.1038/s41598-023-41509-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
In the era of global warming, stress combinations instead of individual stress are realistic threats faced by plants that can alter or trigger a wide range of plant responses. In the current study, the cumulative effect of charcoal rot disease caused by notorious fungal pathogen viz., Macrophomina phaseolina was investigated under toxic levels of copper (Cu) in mash bean, and farmyard manure (FYM) was employed to manage stress. Therefore, Cu-spiked soil (50 and 100 mg/kg) was inoculated with the pathogen, and amended with 2% FYM, to assess the effect of intricate interactions on mash bean plants through pot experiments. Results demonstrated that the individual stress of the pathogen or Cu was more severe for morpho-growth, physio-biochemical, and expression profiles of stress-related genes and total protein in mash bean plants as compared to stress combinations. Under single Cu stress, a significant amount of Cu accumulated in plant tissues, particularly in roots than in upper ground tissues, while, under stress combination less Cu accumulated in the plants. Nonetheless, 2% FYM in soil encountered the negative effect of stress responses provoked by the pathogen, Cu, or both by improving health markers (photosynthetic pigments, reducing sugar, total phenolics) and oxidative stress markers (catalase, peroxidase, and polyphenol oxidase), together with regulating the expression of stress-related genes (catalase, ascorbate peroxidase, and cytokinin-resistant genes), and proteins, besides decreasing Cu uptake in the plants. FYM worked better at lower concentrations (50 mg/kg) of Cu than at higher ones (100 mg/kg), hence could be used as a suitable option for better growth, yield, and crop performance under charcoal rot disease stress in Cu-contaminated soils.
Collapse
Affiliation(s)
- Sundus Akhtar
- School of Botany, Minhaj University Lahore, Lahore, Pakistan
| | - Amna Shoaib
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
| | - Iqra Javiad
- Central Park Medical College, Lahore, Pakistan
| | - Uzma Qaisar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Raazia Tasadduq
- Department of Biochemistry, Kinnaird College, Lahore, Pakistan
| |
Collapse
|
44
|
Hassona NM, El-Wahed AAA. Heavy Metal Concentrations of Beeswax (Apis mellifera L.) at Different Ages. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:26. [PMID: 37598395 PMCID: PMC10440263 DOI: 10.1007/s00128-023-03779-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
Beeswax is a naturally occurring product that worker bees produce. Beeswax is used in a variety of industries and pharmaceuticals. Humans utilize it extensively in cosmetics, medicinal formulations, and food manufacturing. Beeswax is an essential component of advanced contemporary beekeeping. Beekeepers, in particular, utilize significant amounts of beeswax to make beeswax comb foundation. In its natural condition, beeswax is white, but it becomes yellow then dark in color when it comes into touch with honey and pollen. The ongoing use of wax comb in bee activities (such as brood rearing, storage honey and bee bread), combined with environmental factors such as heavy metal and pesticide residues, resulted in a black color. Because of heavy metals can accumulate in wax for decades, beeswax can be a helpful tool for gathering data on hazardous contaminants in the environment. Because of their lipid-based chemical composition, beeswax combs act as a sink for numerous ambient pollutants as well as poisons when in the hive. The current study aims to measure nine heavy metals and important elements, including iron (Fe), chromium (Cr), zinc (Zn), copper (Cu), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), and cobalt (Co) in beeswax collected in the Behaira governorate region of Egypt between 2018 and 2022. Sample collection was conducted each year in triplicate. The samples were analyzed using an atomic absorption spectrophotometer. The quantity of metals in beeswax at different ages differed significantly. Depending on the wax age, Fe has the highest concentration in the range of 2.068 to 5.041 ppm, while Cd has the lowest ratio at 0.024 to 0.054 ppm from the first to fifth years old of comb age. The findings showed that as beeswax combs aged, the concentration of heavy metals rose. According to the study, it should gradually recycle beeswax combs each year and also adding new foundations.
Collapse
Affiliation(s)
- Nadia M Hassona
- Economic Entomology & Apiculture - Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Aida A Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza, 12627, Egypt.
| |
Collapse
|
45
|
Mahmood S, Tanvir EM, Komarova T, Islam MN, Khatun M, Hossain MF, Ng JC, Whitfield KM, Hossain MS, Khalil MI, Shaw PN. Relationships between growth indicators, liver and kidney function markers, and blood concentrations of essential and potentially toxic elements in environmentally exposed young children. Int J Hyg Environ Health 2023; 253:114237. [PMID: 37544043 DOI: 10.1016/j.ijheh.2023.114237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/08/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Environmental exposure to multiple metals and metalloids is widespread, leading to a global concern relating to the adverse health effects of mixed-metals exposure, especially in young children living around industrial areas. This study aimed to quantify the concentrations of essential and potentially toxic elements in blood and to examine the potential associations between multiple elements exposures, growth determinants, and liver and kidney function biomarkers in children living in several industrial areas in Dhaka, Bangladesh. The blood distribution of 20 trace elements As, Ag, Bi, Br, Cd, Co, Cr, Cu, I, Mn, Hg, Mo, Ni, Pb, Se, Sb, Tl, V, U, and Zn, growth determinants such as body mass index and body fats, blood pressure, liver and kidney injury biomarkers including serum alanine aminotransferase and alkaline phosphatase activities, serum calcium, and creatinine levels, blood urea nitrogen, and hemoglobin concentrations, and glomerular filtration rate were measured in 141 children, aged six to 16 years. Among these elements, blood concentrations of Ag, U, V, Cr, Cd, Sb, and Bi were measured below LOQs and excluded from subsequent statistical analysis. This comprehensive study revealed that blood concentrations of these elements in children, living in industrial areas, exceeded critical reference values to varying extents; elevated exposure to As, Pb, Br, Cu, and Se was found in children living in multiple industrial areas. A significant positive association between elevated blood Tl concentration and obesity (β = 0.300, p = 0.007) and an inverse relationship between lower As concentration and underweight (β = -0.351, p < 0.001) compared to healthy weight children indicate that chronic exposure to Tl and As may influence the metabolic burden and physical growth in children. Concentration-dependent positive associations were observed between the blood concentrations of Cu, Se, and Br and hepatic- and renal dysfunction biomarkers, an inverse association with blood Mo and I level, however, indicates an increased risk of Cu, Se, and Br-induced liver and kidney toxicity. Further in-depth studies are warranted to elucidate the underlying mechanisms of the observed associations. Regular biomonitoring of elemental exposures is also indispensable to regulate pollution in consideration of the long-term health effects of mixed-elements exposure in children.
Collapse
Affiliation(s)
- Shakil Mahmood
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh; Department of Biochemistry, Gonoshasthaya Samaj Vittik Medical College, Gono Bishwabidyalay (University), Dhaka, 1344, Bangladesh
| | - E M Tanvir
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4072, Australia; Institute of Food & Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Tatiana Komarova
- Inorganic Chemistry Laboratory, Queensland Public Health and Scientific Services, Coopers Plains, Queensland, 4108, Australia
| | - Md Nazrul Islam
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia; Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Mahbuba Khatun
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay (University), Dhaka, 1344, Bangladesh
| | - Md Fuad Hossain
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay (University), Dhaka, 1344, Bangladesh
| | - Jack C Ng
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Karen M Whitfield
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4072, Australia; Pharmacy Department, Royal Brisbane and Women's Hospital, Metro North Health Services District, Herston, Queensland, 4029, Australia
| | - Md Sabir Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Ibrahim Khalil
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh.
| | - P Nicholas Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
46
|
Everman ER, Macdonald SJ. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548746. [PMID: 37503205 PMCID: PMC10370140 DOI: 10.1101/2023.07.12.548746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper quickly results in cell and tissue damage that can range in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes also respond to other non-essential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the response to heavy metal stress. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource (DSPR) using a combination of differential expression analysis and expression quantitative trait locus (eQTL) mapping. Differential expression analysis revealed clear patterns of tissue-specific expression, primarily driven by a more pronounced gene expression response in gut tissue. eQTL mapping of gene expression under control and copper conditions as well as for the change in gene expression following copper exposure (copper response eQTL) revealed hundreds of genes with tissue-specific local cis-eQTL and many distant trans-eQTL. eQTL associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited genotype by environment effects on gene expression under copper stress, illuminating several tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight many candidate genes for future functional characterization.
Collapse
Affiliation(s)
- Elizabeth R Everman
- 1200 Sunnyside Ave, University of Kansas, Molecular Biosciences, Lawrence, KS 66045, USA
- 730 Van Vleet Oval, University of Oklahoma, Biology, Norman, OK 73019, USA
| | - Stuart J Macdonald
- 1200 Sunnyside Ave, University of Kansas, Molecular Biosciences, Lawrence, KS 66045, USA
- 1200 Sunnyside Ave, University of Kansas, Center for Computational Biology, Lawrence, KS 66045, USA
| |
Collapse
|
47
|
Dodd M, Amponsah LO, Grundy S, Darko G. Human health risk associated with metal exposure at Agbogbloshie e-waste site and the surrounding neighbourhood in Accra, Ghana. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4515-4531. [PMID: 36853522 PMCID: PMC10310595 DOI: 10.1007/s10653-023-01503-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Agbogbloshie in Accra, Ghana, was a center for informal e-waste recycling until it was closed recently. This study investigated the potential health risks of toxic metals (including As, Cd, Cu, Ni, Pb, Sb, and Zn) found in the surface soils based on their concentrations and in vitro bioaccessibility. Mean concentrations at the burning sites were As: 218; Cd: 65; Cr: 182; Cu: 15,841; Ni: 145; Pb: 6,106; Sb: 552; and Zn: 16,065 mg/kg while the dismantling sites had mean concentrations of As: 23; Cd: 38; Cr: 342; Cu: 3239; Ni: 96; Pb: 681; Sb: 104; and Zn: 1658 mg/kg. The findings confirmed the enrichment of potentially toxic metals at the dismantling and burning sites, exceeding international environmental soil quality guidelines. Based on the total metal concentrations, bioaccessibility, and calculated risk indices, the risks associated with incidental ingestion of soil-borne metal contaminants at the dismantling and burning sites were very high. Despite evidence of higher metal concentrations in the communities near the burning and dismantling sites, the human health risk associated with soil ingestion was significantly lower in the surrounding neighborhood.
Collapse
Affiliation(s)
- Matt Dodd
- School of Environment and Sustainability, Royal Roads University, Victoria, BC, Canada.
| | - Lydia Otoo Amponsah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Stephen Grundy
- School of Environment and Sustainability, Royal Roads University, Victoria, BC, Canada
| | - Godfred Darko
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
48
|
Dang-Bao T, Nguyen TMC, Hoang GH, Lam HH, Phan HP, Tran TKA. Thiol-Surface-Engineered Cellulose Nanocrystals in Favor of Copper Ion Uptake. Polymers (Basel) 2023; 15:polym15112562. [PMID: 37299360 DOI: 10.3390/polym15112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cellulose, the most abundant natural polymer on earth, has recently gained attention for a large spectrum of applications. At a nanoscale, nanocelluloses (mainly involving cellulose nanocrystals or cellulose nanofibrils) possess many predominant features, such as highly thermal and mechanical stability, renewability, biodegradability and non-toxicity. More importantly, the surface modification of such nanocelluloses can be efficiently obtained based on the native surface hydroxyl groups, acting as metal ions chelators. Taking into account this fact, in the present work, the sequential process involving chemical hydrolysis of cellulose and autocatalytic esterification using thioglycolic acid was performed to obtain thiol-functionalized cellulose nanocrystals. The change in chemical compositions was attributed to thiol-functionalized groups and explored via the degree of substitution using a back titration method, X-ray powder diffraction, Fourier-transform infrared spectroscopy and thermogravimetric analysis. Cellulose nanocrystals were spherical in shape and ca. 50 nm in diameter as observed via transmission electron microscopy. The adsorption behavior of such a nanomaterial toward divalent copper ions from an aqueous solution was also assessed via isotherm and kinetic studies, elucidating a chemisorption mechanism (ion exchange, metal chelation and electrostatic force) and processing its operational parameters. In contrast to an inactive configure of unmodified cellulose, the maximum adsorption capacity of thiol-functionalized cellulose nanocrystals toward divalent copper ions from an aqueous solution was 4.244 mg g-1 at a pH of 5 and at room temperature.
Collapse
Affiliation(s)
- Trung Dang-Bao
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi-My-Chau Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Gia-Han Hoang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hoa-Hung Lam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hong-Phuong Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi-Kieu-Anh Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
49
|
Wódkowska A, Gruszecka-Kosowska A. Dietary exposure to potentially harmful elements in edible plants in Poland and the health risk dynamics related to their geochemical differentiation. Sci Rep 2023; 13:8521. [PMID: 37231099 DOI: 10.1038/s41598-023-35647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Differences in the health risk values calculated for consumers of potentially harmful elements (PHEs) present in edible plants were investigated. Based on a comprehensive literature search, the highest PHE contents in plants were identified in the southern and western regions of Poland, that also revealed the highest geochemical enrichment with Zn, Pb, Cu, As, Cd, and Tl. The highest unacceptable non-carcinogenic risk (HQ) values for mean PHE contents in Poland were found for Pb: toddlers (2.80), pre-schoolers (1.80), and school-aged children (1.45) and for Cd for toddlers (1.42). The highest unacceptable carcinogenic risk (CR) values for mean As content was observed for adults (5.9 × 10-5). The highest non-carcinogenic risk values for consumers were reported in Silesia, Lower Silesia, Lublin, Lesser Poland, and Opole Provinces, indicating the impact of geochemical variability on risk values.
Collapse
Affiliation(s)
- Agata Wódkowska
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Agnieszka Gruszecka-Kosowska
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| |
Collapse
|
50
|
Yepes-Calderón M, Kremer D, Post A, Sotomayor CG, Seidel U, Huebbe P, Knobbe TJ, Lüersen K, Eisenga MF, Corpeleijn E, de Borst MH, Navis GJ, Rimbach G, Bakker SJ. Urinary Copper Excretion Is Associated with Long-Term Graft Failure in Kidney Transplant Recipients. Am J Nephrol 2023; 54:425-433. [PMID: 37231776 PMCID: PMC10687917 DOI: 10.1159/000531147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION In chronic kidney disease, proteinuria increases urinary copper excretion, inducing oxidative tubular damage and worsening kidney function. We investigated whether this phenomenon occurred in kidney transplant recipients (KTRs). In addition, we studied the associations of urinary copper excretion with the biomarker of oxidative tubular damage urinary liver-type fatty-acid binding protein (u-LFABP) and death-censored graft failure. METHODS This prospective cohort study was performed in the Netherlands between 2008 and 2017, including outpatient KTR with a functioning graft for longer than 1 year, who were extensively phenotyped at baseline. Twenty-four-hour urinary copper excretion was measured by inductively coupled plasma mass spectrometry. Multivariable linear and Cox regression analyses were performed. RESULTS In 693 KTR (57% men, 53 ± 13 years, estimated glomerular filtration rate [eGFR] 52 ± 20 mL/min/1.73 m2), baseline median urinary copper excretion was 23.6 (interquartile range 11.3-15.9) µg/24 h. Urinary protein excretion was positively associated with urinary copper excretion (standardized β = 0.39, p < 0.001), and urinary copper excretion was positively associated with u-LFABP (standardized β = 0.29, p < 0.001). During a median follow-up of 8 years, 109 (16%) KTR developed graft failure. KTR with relatively high copper excretion were at higher risk of long-term graft failure (hazard ratio [HR]: 1.57, 95% confidence interval [CI]: 1.32-1.86 per log2, p < 0.001), independent of multiple potential confounders like eGFR, urinary protein excretion, and time after transplantation. A dose-response relationship was observed over increasing tertiles of copper excretion (HR: 5.03, 95% CI: 2.75-9.19, tertile 3 vs. 1, p < 0.001). u-LFABP was a significant mediator of this association (74% of indirect effect, p < 0.001). CONCLUSION In KTR, urinary protein excretion is positively correlated with urinary copper excretion. In turn, higher urinary copper excretion is associated with an independent increased risk of kidney graft failure, with a substantial mediating effect through oxidative tubular damage. Further studies are warranted to investigate whether copper excretion-targeted interventions could improve kidney graft survival.
Collapse
Affiliation(s)
- Manuela Yepes-Calderón
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Adrian Post
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Camilo G. Sotomayor
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
- Clinical Hospital University of Chile, Independencia, Chile
| | - Ulrike Seidel
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Tim J. Knobbe
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Michele F. Eisenga
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin H. de Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerjan J. Navis
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Stephan J.L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|