1
|
Simard MA, Cabrera-Galvez C, Viteri S, Geist F, Reischmann N, Zühlsdorf M, Karachaliou N. Spatial profiling of METex14-altered NSCLC under tepotinib treatment: Shifting the immunosuppressive landscape. Neoplasia 2024; 57:101063. [PMID: 39366215 PMCID: PMC11489045 DOI: 10.1016/j.neo.2024.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
MET inhibitors have demonstrated efficacy in treating patients with non-small cell lung cancer (NSCLC) harboring METex14 skipping alterations. Advancements in spatial profiling technologies have unveiled the complex dynamics of the tumor microenvironment (TME), a crucial factor in cancer progression and therapeutic response. This study uses spatial profiling to investigate the effects of the MET inhibitor tepotinib on the TME in a case of locally advanced NSCLC with a METex14 skipping alteration. A patient with resectable stage IIIB NSCLC, unresponsive to neoadjuvant platinum-based chemotherapy, received tepotinib following the detection of a METex14 skipping alteration. Paired pre- and post-treatment biopsies were subjected to GeoMx Digital Spatial Profiling using the Cancer Transcriptome Atlas and immune-related protein panels to evaluate shifts in the immune TME. Tepotinib administration allowed for a successful lobectomy and a pathological downstaging to stage IA1. The TME was transformed from an immunosuppressive to a more permissive state, with upregulation of antigen-presenting and pro-inflammatory immune cells. Moreover, a marked decrease in immune checkpoint molecules, including PD-L1, was noted. Spatial profiling identified discrete immune-enriched clusters, indicating the role of tepotinib in modulating immune cell trafficking and function. Tepotinib appears to remodel the immune TME in a patient with METex14 skipping NSCLC, possibly increasing responsiveness to immunotherapy. Our study supports the integration of genetic profiling into the management of early and locally advanced NSCLC to guide personalized, targeted interventions. These findings underscore the need to further evaluate combinations of MET inhibitors and immunotherapies.
Collapse
Affiliation(s)
- Manon A Simard
- The Healthcare Business of Merck KGaA, 250 Frankfurterstrasse, Darmstadt 64293, Germany
| | | | - Santiago Viteri
- UOMi Cancer Center, Clínica Mi Tres Torres, Barcelona, Spain
| | - Felix Geist
- The Healthcare Business of Merck KGaA, 250 Frankfurterstrasse, Darmstadt 64293, Germany
| | - Nadine Reischmann
- The Healthcare Business of Merck KGaA, 250 Frankfurterstrasse, Darmstadt 64293, Germany
| | - Michael Zühlsdorf
- The Healthcare Business of Merck KGaA, 250 Frankfurterstrasse, Darmstadt 64293, Germany
| | - Niki Karachaliou
- The Healthcare Business of Merck KGaA, 250 Frankfurterstrasse, Darmstadt 64293, Germany.
| |
Collapse
|
2
|
Shirima CA, Bleotu C, Spandidos DA, El-Naggar AK, Pircalabioru GG, Michalopoulos I. Epithelial‑derived head and neck squamous tumourigenesis (Review). Oncol Rep 2024; 52:141. [PMID: 39219259 PMCID: PMC11358675 DOI: 10.3892/or.2024.8800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs), a heterogeneous group of cancers that arise from the mucosal epithelia cells in the head and neck areas, present great challenges in diagnosis, treatment and prognosis due to their complex aetiology and various clinical manifestations. Several factors, including smoking, alcohol consumption, oncogenic genes, growth factors, Epstein‑Barr virus and human papillomavirus infections can contribute to HNSCC development. The unpredictable tumour microenvironment adds to the complexity of managing HNSCC. Despite significant advances in therapies, the prediction of outcome after treatment for patients with HNSCC remains poor, and the 5‑year overall survival rate is low due to late diagnosis. Early detection greatly increases the chances of successful treatment. The present review aimed to bring together the latest findings related to the molecular mechanisms of HNSCC carcinogenesis and progression. Comprehensive genomic, transcriptomic, metabolomic, microbiome and proteomic analyses allow researchers to identify important biological markers such as genetic alterations, gene expression signatures and protein markers that drive HNSCC tumours. These biomarkers associated with the stages of initiation, progression and metastasis of cancer are useful in the management of patients with cancer in order to improve their life expectancy and quality of life.
Collapse
Affiliation(s)
- Charles Adolfu Shirima
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania
| | - Coralia Bleotu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Adel K. El-Naggar
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Meng L, Sun S. Single-cell RNA sequencing reveals the change in cytotoxic NK/T cells, epithelial cells and myeloid cells of the tumor microenvironment of high-grade serous ovarian carcinoma. Discov Oncol 2024; 15:417. [PMID: 39249551 PMCID: PMC11383903 DOI: 10.1007/s12672-024-01290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND The heterogeneity of high-grade serous ovarian carcinoma (HGSOC) has hindered the clinical treatment, and our current study aims to characterize the change in tumor microenvironment (TME) with the progression of HGSOC via single cell RNA sequencing (scRNA-seq). METHODS The single-cell landscape in HGSOC was downloaded from the dataset GSE184880, which included 7 HGSOC and 5 normal samples and then applied for the filtering and annotation of cell clusters. The differentially expressed marker genes in these clusters were analyzed via "FindAllMarker" function in Seurat package and the functional enrichment analyses were implemented using clusterProflier package. Finally, the CellChat package was applied for the cell-cell communication analysis. Cellular experimental were determined Real-time Reverse Transcription Polymerase Chain Reaction (RT-qPCR). RESULTS 45,448 single cells were categorized into 10 cell clusters. The proportion of NK/T cells (49.5%), epithelial cells (15.3%) and myeloid cells (14%) was higher in the HGSOC samples. The heterogeneity and different enriched pathways of epithelial cells have been revealed with the progression of HGSOC from early to late stage, concurrent with the reduced activity of cytotoxic NK/T cells and the decreased capabilities of recruiting immune cells and presenting antigens in macrophages. Besides, the cell-cell communication analysis has revealed a strong communication of CXCL and CCL signal between M1 macrophages and cytotoxic NK/T cells in early stage of HGSOC. Moreover, RT-qPCR indicated that CCL4/5 and CCR1/5 levels were upregulated in tumor cell SK-OV-3. CONCLUSION The investigation using scRNA-seq has depicted the change in cytotoxic NK/T cells, epithelial cells and myeloid cells of the TME of HGSOC, which may provide another insight into the specific mechanisms underlying the progression of HGSOC.
Collapse
Affiliation(s)
- Lingnan Meng
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150007, China
| | - Shujuan Sun
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150007, China.
| |
Collapse
|
4
|
Bourbour F, Abdolahad M, Alast FH, Aslan Sefat S. The superiority of innovative spiral-interdigital microelectrode pattern in increasing the sensitivity of tracing synchronization via serum starvation in cellular metabolism. Sci Rep 2024; 14:17986. [PMID: 39097605 PMCID: PMC11297976 DOI: 10.1038/s41598-024-68297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
In order to investigate the changes in the properties of the cell culture solution in the effect of cell synchronization via cell starvation (for 12, 24, and 36 h), a new spiral-interdigital pattern of microelectrode as a biosensor has been proposed. Then, to test its superiority, the results of this spiral-interdigital pattern with the results of the commercial pattern have been compared. The cells were selected from breast cancer standard lines (MDA-MB-231). Changes in CV peaks of the secretions were recorded by the spiral-interdigital pattern, in which increasing the interactive surface with homogenous electric paths had been considered by simulation before fabrication. The results of the simulation and experimental procedures showed a meaningful correlation. The occurrence of CV oxidative peaks at about 0.1-0.4 V and reductive peaks at approximately 0 V in the spiral-interdigital biosensor in the starved MDA-MB-231 cell line has been observed. The starvation situation resembles one that does not cause meaningful cell apoptosis or necrosis, and this method is only used to make the cells synchronized. Also, no peak is observed in normal cell growth conditions. In addition, by using the commercial design of the electrodes, no peak is observed in any of the conditions of normal and synchronized growth of the cells. Therefore, it seems that the observed peaks are caused by the agents that are secreted in the cell culture solution in a synchronized situation. Moreover, the design of the new spiral-interdigital electrode can significantly increase the sensitivity of the sensor to receive these peaks due to more space and a uniform electric field.
Collapse
Affiliation(s)
- Faegheh Bourbour
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O.Box. 14395515, Tehran, Iran
- Department of Physics, Payame Noor University (PNU), P.O.Box 19395-4697, Tehran, Iran
- Nano Bio Electronic Devices Lab, Cancer Electronic Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O.Box. 14395515, Tehran, Iran.
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Nano Bio Electronic Devices Lab, Cancer Electronic Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Sogol Aslan Sefat
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O.Box. 14395515, Tehran, Iran
- Nano Bio Electronic Devices Lab, Cancer Electronic Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Miao L, Kang Y, Zhang XF. Nanotechnology for the theranostic opportunity of breast cancer lung metastasis: recent advancements and future challenges. Front Bioeng Biotechnol 2024; 12:1410017. [PMID: 38882636 PMCID: PMC11176448 DOI: 10.3389/fbioe.2024.1410017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Lung metastasis of breast cancer is rapidly becoming a thorny problem in the treatment of patients with breast cancer and an obstacle to long-term survival. The main challenges of treatment are the absence of therapeutic targets and drug resistance, which promotes the development of nanotechnology in the diagnosis and treatment process. Taking advantage of the controllability and targeting of nanotechnology, drug-targeted delivery, controlled sustained release, multi-drug combination, improved drug efficacy, and reduced side effects can be realized in the process of the diagnosis and treatment of metastatic breast cancer (MBC). Several nanotechnology-based theranostic strategies have been investigated in breast cancer lung metastases (BCLM): targeted drug delivery, imaging analysis, immunotherapy, gene therapy, and multi-modality combined therapy, and some clinical applications are in the research phase. In this review, we present current nanotechnology-based diagnosis and treatment approaches for patients of incurable breast cancer with lung metastases, and we hope to be able to summarize more effective and promising nano-drug diagnosis and treatment systems that aim to improve the survival of patients with advanced MBC. We describe nanoplatform-based experimental studies and clinical trials targeting the tumor and the tumor microenvironment (TME) for BCLM to obtain more targeted treatment and in the future treatment steps for patients to provide a pioneering strategy.
Collapse
Affiliation(s)
- Lin Miao
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yue Kang
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xin Feng Zhang
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
6
|
Ning Z, Liu K, Zhang H, Dong G, Wang X, Xiong H. Platelets induce CD39 expression in tumor cells to facilitate tumor metastasis. Br J Cancer 2024; 130:1542-1551. [PMID: 38461171 PMCID: PMC11058827 DOI: 10.1038/s41416-024-02640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Tumor cells continue to evolve the metastatic potential in response to signals provided by the external microenvironment during metastasis. Platelets closely interact with tumor cells during hematogenous metastasis and facilitate tumor development. However, the molecular mechanisms underlying this process are not fully understood. METHODS RNA-sequencing was performed to screen differentially expressed genes mediated by platelets. The effects of platelet and CD39 on tumor metastasis were determined by experimental metastasis models with WT, NCG and CD39-/- mice. RESULTS RNA-sequencing results showed that platelets significantly up-regulated CD39 expression in tumor cells. CD39 is a novel immune checkpoint molecule and a key driver of immunosuppression. Our data provided evidence that the expression of CD39 was enhanced by platelets in a platelet-tumor cell contact dependent manner. Although the role of CD39 expressed by immune cells is well established, the effect of CD39 expressed by tumor cells on tumor cell behavior, anti-tumor immunity and tumor metastasis is unclear. We found that CD39 promoted tumor cell invasion, but had no effect on proliferation and migration. Notably, we showed that the ability of platelets to prime tumor cells for metastasis depends on CD39 in the experimental tumor metastasis model. CD39 silencing resulted in fewer experimental metastasis formation, and this anti-metastasis effect was significantly reduced in platelet-depleted mice. Furthermore, overexpression of CD39 in tumor cells promoted metastasis. In order to eliminate the effect of CD39 expressed in cells other than tumor cells, we detected tumor metastasis in CD39-/- mice and obtained similar results. Moreover, overexpression of CD39 in tumor cells inhibited antitumor immunity. Finally, the data from human samples also supported our findings. CONCLUSIONS Our study shows that direct contact with platelets induces CD39 expression in tumor cells, leading to immune suppression and promotion of metastasis.
Collapse
Affiliation(s)
- Zhaochen Ning
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Keyan Liu
- Department of Public Health, Jining Medical University, Jining, 272067, China
| | - Hui Zhang
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Guanjun Dong
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Xiaotong Wang
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Huabao Xiong
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
7
|
Liu YC, Chen P, Chang R, Liu X, Jhang JW, Enkhbat M, Chen S, Wang H, Deng C, Wang PY. Artificial tumor matrices and bioengineered tools for tumoroid generation. Biofabrication 2024; 16:022004. [PMID: 38306665 DOI: 10.1088/1758-5090/ad2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.
Collapse
Affiliation(s)
- Yung-Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Ping Chen
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ray Chang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Jhe-Wei Jhang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Myagmartsend Enkhbat
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Shan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
| | - Peng-Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| |
Collapse
|
8
|
Xiao H, Wu GL, Tan S, Tan X, Yang Q. Recent Progress on Tumor Microenvironment-Activated NIR-II Phototheranostic Agents with Simultaneous Activation for Diagnosis and Treatment. Chem Asian J 2024; 19:e202301036. [PMID: 38230541 DOI: 10.1002/asia.202301036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Malignant tumors seriously threaten human life and well-being. Emerging Near-infrared II (NIR-II, 1000-1700 nm) phototheranostic nanotechnology integrates diagnostic and treatment modalities, offering merits including improved tissue penetration and enhanced spatiotemporal resolution. This remarkable progress has opened promising avenues for advancing tumor theranostic research. The tumor microenvironment (TME) differs from normal tissues, exhibiting distinct attributes such as hypoxia, acidosis, overexpressed hydrogen peroxide, excess glutathione, and other factors. Capitalizing on these attributes, researchers have developed TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic attributes concurrently. Therefore, developing TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic activation holds significant research importance. Currently, research on TME-activatable NIR-II phototheranostic agents is still in its preliminary stages. This review examines the recent advances in developing dual-functional NIR-II activatable phototheranostic agents over the past years. It systematically presents NIR-II phototheranostic agents activated by various TME factors such as acidity (pH), hydrogen peroxide (H2 O2 ), glutathione (GSH), hydrogen sulfide (H2 S), enzymes, and their hybrid. This encompasses NIR-II fluorescence and photoacoustic imaging diagnostics, along with therapeutic modalities, including photothermal, photodynamic, chemodynamic, and gas therapies triggered by these TME factors. Lastly, the difficulties and opportunities confronting NIR-II activatable phototheranostic agents in the simultaneous diagnosis and treatment field are highlighted.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Gui-Long Wu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Senyou Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Xiaofeng Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| | - Qinglai Yang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| |
Collapse
|
9
|
Himcinschi ME, Uscatescu V, Gherghe G, Stoian I, Vlad A, Popa DC, Coriu D, Anghel A. The Role of Neutrophil Extracellular Traps in the Outcome of Malignant Epitheliomas: Significance of CA215 Involvement. Diagnostics (Basel) 2024; 14:328. [PMID: 38337844 PMCID: PMC10855654 DOI: 10.3390/diagnostics14030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Neutrophil extracellular traps (NETs) were originally discovered as a part of the innate immune response of the host to bacteria. They form a web-like structure that can immobilize microorganisms or exhibit direct antimicrobial properties, such as releasing reactive oxygen species (ROS). NETs are established when neutrophils undergo a sort of cellular death following exposure to ROS, chemokines, cytokines, or other soluble factors. This process results in the release of the neutrophil's DNA in a web-like form, which is decorated with citrullinated histones (H3/H4-cit), neutrophil elastase (NE), and myeloperoxidase (MPO). Emerging studies have put into perspective that NETs play an important role in oncology as they were shown to influence tumor growth, malignant initiation, and proliferation, mediate the transition from endothelial to mesenchymal tissue, stimulate angiogenesis or metastasis, and can even help cancer cells evade the immune response. The role of NETs in cancer therapy resides in their ability to form and act as a mechanical barrier that will provide the primary tumor with a reduced response to irradiation or pharmaceutical penetration. Subsequently, cancer cells are shown to internalize NETs and use them as a strong antioxidant when pharmaceutical treatment is administered. In this review, we explored the role of NETs as part of the tumor microenvironment (TME), in the context of malignant epitheliomas, which are capable of an autonomous production of CA215, a subvariant of IgG, and part of the carcinoembryonic antigen (CEA) superfamily. Studies have shown that CA215 has a functional Fc subdivision able to activate the Fc-gamma-RS receptor on the surface of neutrophils. This activation may afterward stimulate the production of NETs, thus indicating CA215 as a potential factor in cancer therapy surveillance.
Collapse
Affiliation(s)
- Mihai Emanuel Himcinschi
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.E.H.); (A.A.)
| | - Valentina Uscatescu
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania (D.C.)
| | - Georgiana Gherghe
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania (D.C.)
| | - Irina Stoian
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Delia Codruța Popa
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania (D.C.)
| | - Daniel Coriu
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania (D.C.)
| | - Andrei Anghel
- Department of Biochemistry and Pharmacology, Discipline of Biochemistry, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.E.H.); (A.A.)
| |
Collapse
|
10
|
Pino JC, Posso C, Joshi SK, Nestor M, Moon J, Hansen JR, Hutchinson-Bunch C, Gritsenko MA, Weitz KK, Watanabe-Smith K, Long N, McDermott JE, Druker BJ, Liu T, Tyner JW, Agarwal A, Traer E, Piehowski PD, Tognon CE, Rodland KD, Gosline SJC. Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia. Cell Rep Med 2024; 5:101359. [PMID: 38232702 PMCID: PMC10829797 DOI: 10.1016/j.xcrm.2023.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/20/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024]
Abstract
Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.
Collapse
Affiliation(s)
- James C Pino
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Camilo Posso
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Michael Nestor
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jamie Moon
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua R Hansen
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chelsea Hutchinson-Bunch
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marina A Gritsenko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kevin Watanabe-Smith
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Nicola Long
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Tao Liu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Paul D Piehowski
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Karin D Rodland
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
| | - Sara J C Gosline
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
11
|
Shin IJ, Tangrea M, Emmert-Buck M, Johann DJ. A Microdissection Protocol for Proteogenomic Analysis of Histological Sections to Advance Drug Development. Methods Mol Biol 2024; 2823:55-75. [PMID: 39052214 DOI: 10.1007/978-1-0716-3922-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Combining proteogenomics with laser capture microdissection (LCM) in cancer research offers a targeted way to explore the intricate interactions between tumor cells and the different microenvironment components. This is especially important for immuno-oncology (IO) research where improvements in the predictability of IO-based drugs are sorely needed, and depends on a better understanding of the spatial relationships involving the tumor, blood supply, and immune cell interactions, in the context of their associated microenvironments. LCM is used to isolate and obtain distinct histological cell types, which may be routinely performed on complex and heterogeneous solid tumor specimens. Once cells have been captured, nucleic acids and proteins may be extracted for in-depth multimodality molecular profiling assays. Optimizing the minute tissue quantities from LCM captured cells is challenging. Following the isolation of nucleic acids, RNA-seq may be performed for gene expression and DNA sequencing performed for the discovery and analysis of actionable mutations, copy number variation, methylation profiles, etc. However, there remains a need for highly sensitive proteomic methods targeting small-sized samples. A significant part of this protocol is an enhanced liquid chromatography mass spectrometry (LC-MS) analysis of micro-scale and/or nano-scale tissue sections. This is achieved with a silver-stained one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D-SDS-PAGE) approach developed for LC-MS analysis of fresh-frozen tissue specimens obtained via LCM. Included is a detailed in-gel digestion method adjusted and specifically designed to maximize the proteome coverage from amount-limited LCM samples to better facilitate in-depth molecular profiling. Described is a proteogenomic approach leveraged from microdissected fresh frozen tissue. The protocols may also be applicable to other types of specimens having limited nucleic acids, protein quantity, and/or sample volume.
Collapse
Affiliation(s)
- Ik Jae Shin
- Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael Tangrea
- Department of Biology, Loyola University Maryland, Baltimore, MD, USA
| | | | - Donald J Johann
- Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
12
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
13
|
Aydin HB, Moon HR, Han B, Ozcelikkale A, Acar A. Tumor-Microenvironment-on-Chip Platform for Assessing Drug Response in 3D Dynamic Culture. Methods Mol Biol 2024; 2764:265-278. [PMID: 38393600 DOI: 10.1007/978-1-0716-3674-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Microphysiological systems involving microfluidic 3D culture of cancer cells have emerged as a versatile toolkit to study tumor biological problems and evaluate potential treatment strategies. Incorporation of microfluidic technologies in 3D tissue culture offers opportunities for realistic simulation of tumor microenvironment in vitro by facilitating a dynamic culture environment mimicking features of human physiology such as reconstituted ECM, interstitial flow, and gradients of drugs and biomacromolecules. This protocol describes development of 3D microfluidic cell culture based on Tumor-Microenvironment-on-Chip (T-MOC) platform modeling tumor blood and lymphatic capillary vessels and the interstitial space in between. Based on earlier applications of T-MOC for transport characteristics, drug response, and tumor-stroma interactions in mammary carcinoma and pancreatic adenocarcinoma, this protocol provides detailed description of device fabrication, on-chip 3D culture, and drug treatment assays. This protocol can easily be adapted for applications involving other cancer types.
Collapse
Affiliation(s)
- Hakan Berk Aydin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Altug Ozcelikkale
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey.
- Graduate Program of Biomedical Engineering, Middle East Technical University, Ankara, Turkey.
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
14
|
Kumar G, Pandurengan RK, Parra ER, Kannan K, Haymaker C. Spatial modelling of the tumor microenvironment from multiplex immunofluorescence images: methods and applications. Front Immunol 2023; 14:1288802. [PMID: 38179056 PMCID: PMC10765501 DOI: 10.3389/fimmu.2023.1288802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Spatial modelling methods have gained prominence with developments in high throughput imaging platforms. Multiplex immunofluorescence (mIF) provides the scope to examine interactions between tumor and immune compartment at single cell resolution using a panel of antibodies that can be chosen based on the cancer type or the clinical interest of the study. The markers can be used to identify the phenotypes and to examine cellular interactions at global and local scales. Several translational studies rely on key understanding of the tumor microenvironment (TME) to identify drivers of immune response in immunotherapy based clinical trials. To improve the success of ongoing trials, a number of retrospective approaches can be adopted to understand differences in response, recurrence and progression by examining the patient's TME from tissue samples obtained at baseline and at various time points along the treatment. The multiplex immunofluorescence (mIF) technique provides insight on patient specific cell populations and their relative spatial distribution as qualitative measures of a favorable treatment outcome. Spatial analysis of these images provides an understanding of the intratumoral heterogeneity and clustering among cell populations in the TME. A number of mathematical models, which establish clustering as a measure of deviation from complete spatial randomness, can be applied to the mIF images represented as spatial point patterns. These mathematical models, developed for landscape ecology and geographic information studies, can be applied to the TME after careful consideration of the tumor type (cold vs. hot) and the tumor immune landscape. The spatial modelling of mIF images can show observable engagement of T cells expressing immune checkpoint molecules and this can then be correlated with single-cell RNA sequencing data.
Collapse
Affiliation(s)
| | | | | | - Kasthuri Kannan
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Cara Haymaker
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
15
|
Zhang Y, Tedja R, Millman M, Wong T, Fox A, Chehade H, Gershater M, Adzibolosu N, Gogoi R, Anderson M, Rutherford T, Zhang Z, Chopp M, Mor G, Alvero AB. Adipose-derived exosomal miR-421 targets CBX7 and promotes metastatic potential in ovarian cancer cells. J Ovarian Res 2023; 16:233. [PMID: 38037081 PMCID: PMC10688490 DOI: 10.1186/s13048-023-01312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. RESULTS Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. CONCLUSION In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.
Collapse
Affiliation(s)
- Yi Zhang
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA.
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Michael Millman
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
| | - Terrence Wong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Meyer Gershater
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Zhenggang Zhang
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
| | - Michael Chopp
- Neurology, Henry Ford Health System, 2799 W Grand Blvd., Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA
| | - Ayesha B Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock St., Detroit, MI, 48201, USA.
| |
Collapse
|
16
|
Zhang Y, Tedja R, Millman M, Wong T, Fox A, Chehade H, Gershater M, Adzibolosu N, Gogoi R, Anderson M, Rutherford T, Zhang Z, Chopp M, Mor G, Alvero AB. Adipose-derived exosomal miR-421 targets CBX7 and promotes metastatic potential in ovarian cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566022. [PMID: 37986971 PMCID: PMC10659572 DOI: 10.1101/2023.11.07.566022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Chromobox protein homolog 7 (CBX7), a member of the Polycomb repressor complex, is a potent epigenetic regulator and gene silencer. Our group has previously reported that CBX7 functions as a tumor suppressor in ovarian cancer cells and its loss accelerated formation of carcinomatosis and drove tumor progression in an ovarian cancer mouse model. The goal of this study is to identify specific signaling pathways in the ovarian tumor microenvironment that down-regulate CBX7. Given that adipocytes are an integral component of the peritoneal cavity and the ovarian tumor microenvironment, we hypothesize that the adipose microenvironment is an important regulator of CBX7 expression. Results Using conditioned media from human omental explants, we found that adipose-derived exosomes mediate CBX7 downregulation and enhance migratory potential of human ovarian cancer cells. Further, we identified adipose-derived exosomal miR-421 as a novel regulator of CBX7 expression and the main effector that downregulates CBX7. Conclusion In this study, we identified miR-421 as a specific signaling pathway in the ovarian tumor microenvironment that can downregulate CBX7 to induce epigenetic change in OC cells, which can drive disease progression. These findings suggest that targeting exosomal miR-421 may curtail ovarian cancer progression.
Collapse
Affiliation(s)
- Yi Zhang
- Neurology, Henry Ford Health, Detroit, MI
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | - Terrence Wong
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Meyer Gershater
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL
| | | | - Michael Chopp
- Neurology, Henry Ford Health, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| |
Collapse
|
17
|
Fanoodi A, Maharati A, Akhlaghipour I, Rahimi HR, Moghbeli M. MicroRNAs as the critical regulators of tumor angiogenesis in liver cancer. Pathol Res Pract 2023; 251:154913. [PMID: 37931431 DOI: 10.1016/j.prp.2023.154913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Liver cancer is one of the most common malignancies in human digestive system. Despite the recent therapeutic methods, there is a high rate of mortality among liver cancer patients. Late diagnosis in the advanced tumor stages can be one of the main reasons for the poor prognosis in these patients. Therefore, investigating the molecular mechanisms of liver cancer can be helpful for the early stage tumor detection and treatment. Vascular expansion in liver tumors can be one of the important reasons for poor prognosis and aggressiveness. Therefore, anti-angiogenic drugs are widely used in liver cancer patients. MicroRNAs (miRNAs) have key roles in the regulation of angiogenesis in liver tumors. Due to the high stability of miRNAs in body fluids, these factors are widely used as the non-invasive diagnostic and prognostic markers in cancer patients. Regarding, the importance of angiogenesis during liver tumor growth and invasion, in the present review, we discussed the role of miRNAs in regulation of angiogenesis in these tumors. It has been reported that miRNAs mainly exert an anti-angiogenic function by regulation of tumor microenvironment, transcription factors, and signaling pathways in liver tumors. This review can be an effective step to suggest the miRNAs for the non-invasive early detection of malignant and invasive liver tumors.
Collapse
Affiliation(s)
- Ali Fanoodi
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
El-Arabey A, Abdel-Hamied H, Awadalla M, Alosaimi B, Almanaa T, Al-Shouli S, Modafer Y, Alhamdi H, Abdalla M. A bioinformatic analysis of the role of TP53 status on the infiltration of CD8+ T cells into the tumor microenvironment. Braz J Med Biol Res 2023; 56:e12970. [PMID: 37878888 PMCID: PMC10591486 DOI: 10.1590/1414-431x2023e12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/27/2023] [Indexed: 10/27/2023] Open
Abstract
CD8+ T cells play basic roles in the immune system in a tumor microenvironment (TME) to fight cancer. Several reports have suggested signs of the involvement of tumor protein p53 (TP53) in a complex immune system network. Moreover, our previous research indicated that TP53 orchestrates the polarization and infiltration of macrophages into the TME. In the present study, the clinical function of TP53 status (wild/mutant) in CD8+ T cell infiltration was assessed using more than 10,000 The Cancer Genome Atlas (TCGA) samples from 30 cancer types through Tumor Immune Estimation (TIMER). Our investigation revealed that CD8+ T cell infiltration was higher in head and neck squamous cell carcinoma (HNSC) and uterine corpus endometrial carcinoma (UCEC) patients with wild-type TP53 than in those with mutant TP53. Wild-type TP53 conferred a good prognosis for HNSC and UCEC (P<0.05). In contrast, CD8+ T cell infiltration in lung adenocarcinoma (LUAD) patients with wild-type TP53 was much lower than in those with mutant TP53. Notably, clinical outcomes for LUAD with wild-type TP53 were poor (P<0.05). This study was the first to provide insights into the novel association of TP53 with CD8+ T cells infiltration in the TME in patients with HNSC, LUAD, and UCEC. Therefore, TP53 status acts as a prognostic marker, and this can be used as a basis to further study the effect of targeting TP53 in these patients. Furthermore, our study found that TP53 status was a reliable predictive factor and therapeutic target in patients with HNSC and UCEC.
Collapse
Affiliation(s)
- A.A. El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - H.E. Abdel-Hamied
- Department of General Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - M.E. Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - B. Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - T.N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - S.T. Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Y.A. Modafer
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - H.W. Alhamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | - M. Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
19
|
Zhang Y, Jin F, Wu Y, Wang B, Xie J, Li Y, Pan Y, Liu Z, Shen W. Prognostic impact of gamma-glutamyl transpeptidase to platelets ratio on hepatocellular carcinoma patients who have undergone surgery: a meta-analysis and systematic review. Eur J Gastroenterol Hepatol 2023; 35:803-811. [PMID: 37395231 DOI: 10.1097/meg.0000000000002572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Gamma-glutamyl transpeptidase to platelet ratio (GPR) is an inflammatory index and has been used as a prognostic index for a variety of tumors. However, the association between GPR and hepatocellular carcinoma (HCC) still remained controversial. Therefore, we performed a meta-analysis to determine the prognostic impact of GPR on HCC patients. PubMed, Embase, Cochrane Library, Web of Science, the Chinese National Knowledge Infrastructure, Wanfang Database, Chinese VIP Database, the US Clinical Trials Registry, and the Chinese Clinical Trials Registry were searched from inception to December 2022. A hazard ratio (HR) with a 95% confidence interval (CI) was used to evaluate the association between preoperative GPR and the prognosis of HCC patients. Ten cohort studies including 4706 HCC patients were identified. This meta-analysis showed that higher GPRs were closely related to worse overall survival (HR: 1.79; 95% CI: 1.35-2.39; P < 0.001; I2 = 82.7%), recurrence-free survival (HR: 1.30; 95% CI: 1.16-1.46; P < 0.001; I2 = 0%), and disease-free survival (HR: 1.84; 95% CI: 1.58-2.15; P < 0.001; I2 = 25.4%) in patients with HCC. This meta-analysis suggests that preoperative GPR appears to be significantly associated with the prognosis of HCC patients who have undergone surgery and may be an effective prognostic marker. Trial registration: PROSPERO: CRD42021296219.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Internal Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine
| | - Yuan Wu
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine
| | - Bingyu Wang
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine
| | - Jingri Xie
- Department of Internal Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine
| | - Yu Li
- Department of Oncology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin
| | - Yujia Pan
- Cixi People's Hospital Medical and Health Group, Ningbo
| | - Zhaolan Liu
- Evidence Based Medicine Center, Beijing University of Chinese Medicine, Beijing
| | - Wenjuan Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
20
|
Li W, Zhang P, Liu C, Xu Y, Gan Z, Kang L, Hou Y. Oncogene-targeting nanoprobes for early imaging detection of tumor. J Nanobiotechnology 2023; 21:197. [PMID: 37340418 DOI: 10.1186/s12951-023-01943-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023] Open
Abstract
Malignant tumors have been one of the major reasons for deaths worldwide. Timely and accurate diagnosis as well as effective intervention of tumors play an essential role in the survival of patients. Genomic instability is the important foundation and feature of cancer, hence, in vivo oncogene imaging based on novel probes provides a valuable tool for the diagnosis of cancer at early-stage. However, the in vivo oncogene imaging is confronted with great challenge, due to the extremely low copies of oncogene in tumor cells. By combining with various novel activatable probes, the molecular imaging technologies provide a feasible approach to visualize oncogene in situ, and realize accurate treatment of tumor. This review aims to declare the design of nanoprobes responded to tumor associated DNA or RNA, and summarize their applications in detection and bioimaging for tumors. The significant challenges and prospective of oncogene-targeting nanoprobes towards tumors diagnosis are revealed as well.
Collapse
Affiliation(s)
- Wenyue Li
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Peisen Zhang
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Chuang Liu
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Yuping Xu
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Zhihua Gan
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China.
| | - Yi Hou
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China.
| |
Collapse
|
21
|
Feng D, Wang J, Shi X, Li D, Wei W, Han P. Membrane tension-mediated stiff and soft tumor subtypes closely associated with prognosis for prostate cancer patients. Eur J Med Res 2023; 28:172. [PMID: 37179366 PMCID: PMC10182623 DOI: 10.1186/s40001-023-01132-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is usually considered as cold tumor. Malignancy is associated with cell mechanic changes that contribute to extensive cell deformation required for metastatic dissemination. Thus, we established stiff and soft tumor subtypes for PCa patients from perspective of membrane tension. METHODS Nonnegative matrix factorization algorithm was used to identify molecular subtypes. We completed analyses using software R 3.6.3 and its suitable packages. RESULTS We constructed stiff and soft tumor subtypes using eight membrane tension-related genes through lasso regression and nonnegative matrix factorization analyses. We found that patients in stiff subtype were more prone to biochemical recurrence than those in soft subtype (HR 16.18; p < 0.001), which was externally validated in other three cohorts. The top ten mutation genes between stiff and soft subtypes were DNAH, NYNRIN, PTCHD4, WNK1, ARFGEF1, HRAS, ARHGEF2, MYOM1, ITGB6 and CPS1. E2F targets, base excision repair and notch signaling pathway were highly enriched in stiff subtype. Stiff subtype had significantly higher TMB and T cells follicular helper levels than soft subtype, as well as CTLA4, CD276, CD47 and TNFRSF25. CONCLUSIONS From the perspective of cell membrane tension, we found that stiff and soft tumor subtypes were closely associated with BCR-free survival for PCa patients, which might be important for the future research in the field of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
22
|
Li X, Zhou J, Wang X, Li C, Ma Z, Wan Q, Peng F. New advances in the research of clinical treatment and novel anticancer agents in tumor angiogenesis. Biomed Pharmacother 2023; 163:114806. [PMID: 37163782 DOI: 10.1016/j.biopha.2023.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
In 1971, Folkman proposed that tumors could be limited to very small sizes by blocking angiogenesis. Angiogenesis is the generation of new blood vessels from pre-existing vessels, considered to be one of the important processes in tumor growth and metastasis. Angiogenesis is a complex process regulated by various factors and involves many secreted factors and signaling pathways. Angiogenesis is important in the transport of oxygen and nutrients to the tumor during tumor development. Therefore, inhibition of angiogenesis has become an important strategy in the clinical management of many solid tumors. Combination therapies of angiogenesis inhibitors with radiotherapy and chemotherapy are often used in clinical practice. In this article, we will review common targets against angiogenesis, the most common and up-to-date anti-angiogenic drugs and clinical treatments in recent years, including active ingredients from chemical and herbal medicines.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jianbo Zhou
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunxi Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zifan Ma
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiaoling Wan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
23
|
Wang Z, Wang S, Jia Z, Hu Y, Cao D, Yang M, Liu L, Gao L, Qiu S, Yan W, Li Y, Luo J, Geng Y, Zhang J, Li Z, Wang X, Li M, Shao R, Liu Y. YKL-40 derived from infiltrating macrophages cooperates with GDF15 to establish an immune suppressive microenvironment in gallbladder cancer. Cancer Lett 2023; 563:216184. [PMID: 37088328 DOI: 10.1016/j.canlet.2023.216184] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Despite of the high lethality of gallbladder cancer (GBC), little is known regarding molecular regulation of the tumor immunosuppressive microenvironment. Here, we determined tumor expression levels of YKL-40 and the molecular mechanisms by which YKL-40 regulates escape of anti-tumor immune surveillance. We found that elevated expression levels of YKL-40 in plasma and tissue were correlated with tumor size, stage IV and lymph node metastasis. Single cell transcriptome analysis revealed that YKL-40 was predominantly derived from M2-like subtype of infiltrating macrophages. Blockade of M2-like macrophage differentiation of THP-1 cells with YKL-40 shRNA resulted in reprogramming to M1-like macrophages and restricting tumor development. YKL-40 induced tumor cell expression and secretion of growth differentiation factor 15 (GDF15), thus coordinating to promote PD-L1 expression mediated by PI3K, AKT and/or Erk activation. Interestingly, extracellular GDF15 inhibited intracellular expression of GDF15 that suppressed PD-L1 expression. Thus, YKL-40 disrupted the balance of pro- and anti-PD-L1 regulation to enhance expression of PD-L1 and inhibition of T cell cytotoxicity, leading to tumor immune evasion. The data suggest that YKL-40 and GDF15 could serve as diagnostic biomarkers and immunotherapeutic targets for GBC.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Ziheng Jia
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongyan Cao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Mingjie Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Li Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shimei Qiu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Weikang Yan
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Yiming Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jing Luo
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jingyun Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Zhizhen Li
- Department of Pharmacology and Biochemistry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rong Shao
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China; Department of Pharmacology and Biochemistry, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| |
Collapse
|
24
|
Erices JI, Bizama C, Niechi I, Uribe D, Rosales A, Fabres K, Navarro-Martínez G, Torres Á, San Martín R, Roa JC, Quezada-Monrás C. Glioblastoma Microenvironment and Invasiveness: New Insights and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24087047. [PMID: 37108208 PMCID: PMC10139189 DOI: 10.3390/ijms24087047] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain cancer in adults. Without treatment the mean patient survival is approximately 6 months, which can be extended to 15 months with the use of multimodal therapies. The low effectiveness of GBM therapies is mainly due to the tumor infiltration into the healthy brain tissue, which depends on GBM cells' interaction with the tumor microenvironment (TME). The interaction of GBM cells with the TME involves cellular components such as stem-like cells, glia, endothelial cells, and non-cellular components such as the extracellular matrix, enhanced hypoxia, and soluble factors such as adenosine, which promote GBM's invasiveness. However, here we highlight the role of 3D patient-derived glioblastoma organoids cultures as a new platform for study of the modeling of TME and invasiveness. In this review, the mechanisms involved in GBM-microenvironment interaction are described and discussed, proposing potential prognosis biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- José Ignacio Erices
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carolina Bizama
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Ignacio Niechi
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Daniel Uribe
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Arnaldo Rosales
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Karen Fabres
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Giovanna Navarro-Martínez
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Ángelo Torres
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Talca 8370003, Chile
| | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Claudia Quezada-Monrás
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
25
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
26
|
Shi J, Tu H, Park J, Marjanovic M, Higham AM, Luckey NN, Cradock KA, Liu ZG, Boppart SA. Weakly supervised identification of microscopic human breast cancer-related optical signatures from normal-appearing breast tissue. BIOMEDICAL OPTICS EXPRESS 2023; 14:1339-1354. [PMID: 37078030 PMCID: PMC10110327 DOI: 10.1364/boe.480687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 05/03/2023]
Abstract
With the latest advancements in optical bioimaging, rich structural and functional information has been generated from biological samples, which calls for capable computational tools to identify patterns and uncover relationships between optical characteristics and various biomedical conditions. Constrained by the existing knowledge of the novel signals obtained by those bioimaging techniques, precise and accurate ground truth annotations can be difficult to obtain. Here we present a weakly supervised deep learning framework for optical signature discovery based on inexact and incomplete supervision. The framework consists of a multiple instance learning-based classifier for the identification of regions of interest in coarsely labeled images and model interpretation techniques for optical signature discovery. We applied this framework to investigate human breast cancer-related optical signatures based on virtual histopathology enabled by simultaneous label-free autofluorescence multiharmonic microscopy (SLAM), with the goal of exploring unconventional cancer-related optical signatures from normal-appearing breast tissues. The framework has achieved an average area under the curve (AUC) of 0.975 on the cancer diagnosis task. In addition to well-known cancer biomarkers, non-obvious cancer-related patterns were revealed by the framework, including NAD(P)H-rich extracellular vesicles observed in normal-appearing breast cancer tissue, which facilitate new insights into the tumor microenvironment and field cancerization. This framework can be further extended to diverse imaging modalities and optical signature discovery tasks.
Collapse
Affiliation(s)
- Jindou Shi
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright Street, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL 61801, USA
| | - Haohua Tu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright Street, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL 61801, USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green Street, Urbana, IL 61801, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green Street, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 506 S Mathews Avenue, Urbana, IL 61801, USA
| | - Anna M. Higham
- Carle Foundation Hospital, 611 W Park Street, Urbana, IL 61801, USA
| | | | | | - Z. George Liu
- Carle Foundation Hospital, 611 W Park Street, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N Wright Street, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green Street, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 506 S Mathews Avenue, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Bapat AS, O'Connor CH, Schwertfeger KL. Targeting the NF-κB pathway enhances responsiveness of mammary tumors to JAK inhibitors. Sci Rep 2023; 13:5349. [PMID: 37005447 PMCID: PMC10067805 DOI: 10.1038/s41598-023-32321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Interactions between tumor cells and the tumor microenvironment are critical for tumor growth, progression, and response to therapy. Effective targeting of oncogenic signaling pathways in tumors requires an understanding of how these therapies impact both tumor cells and cells within the tumor microenvironment. One such pathway is the janus kinase (JAK)/signal transducer and activator or transcription (STAT) pathway, which is activated in both breast cancer cells and in tumor associated macrophages. This study demonstrates that exposure of macrophages to JAK inhibitors leads to activation of NF-κB signaling, which results in increased expression of genes known to be associated with therapeutic resistance. Furthermore, inhibition of the NF-κB pathway improves the ability of ruxolitinib to reduce mammary tumor growth in vivo. Thus, the impact of the tumor microenvironment is an important consideration in studying breast cancer and understanding such mechanisms of resistance is critical to development of effective targeted therapies.
Collapse
Affiliation(s)
- Aditi S Bapat
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Christine H O'Connor
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
28
|
Kang Y, Yeo M, Choi H, Jun H, Eom S, Park SG, Yoon H, Kim E, Kang S. Lactate oxidase/vSIRPα conjugates efficiently consume tumor-produced lactates and locally produce tumor-necrotic H 2O 2 to suppress tumor growth. Int J Biol Macromol 2023; 231:123577. [PMID: 36758763 DOI: 10.1016/j.ijbiomac.2023.123577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Aggressive tumor formation often leads to excessive anaerobic glycolysis and massive production and accumulation of lactate in the tumor microenvironment (TME). To significantly curb lactate accumulation in TME, in this study, lactate oxidase (LOX) was used as a potential therapeutic enzyme and signal regulatory protein α variant (vSIRPα) as a tumor cell targeting ligand. SpyCatcher protein and SpyTag peptide were genetically fused to LOX and vSIRPα, respectively, to form SC-LOX and ST-vSIRPα and tumor-targeting LOX/vSIRPα conjugates were constructed via a SpyCatcher/SpyTag protein ligation system. LOX/vSIRPα conjugates selectively bound to the CD47-overexpressing mouse melanoma B16-F10 cells and effectively consumed lactate produced by the B16-F10 cells, generating adequate amounts of hydrogen peroxide (H2O2), which induces drastic necrotic tumor cell death. Local treatments of B16-F10 tumor-bearing mice with LOX/vSIRPα conjugates significantly suppressed B16-F10 tumor growth in vivo without any severe side effects. Tumor-targeting vSIRPα may allow longer retention of LOX in tumor sites, effectively consuming surrounding lactate in TME and locally generating adequate amounts of cytotoxic H2O2 to suppress tumor growth. The approach restraining the local lactate concentration and H2O2 in TME using LOX and vSIRPα could offer new opportunities for developing enzyme/targeting ligand conjugate-based therapeutic tools for tumor treatment.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mirae Yeo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
29
|
Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 2023; 41:404-420. [PMID: 36800999 DOI: 10.1016/j.ccell.2023.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
The tumor microenvironment (TME) is composed of many different cellular and acellular components that together drive tumor growth, invasion, metastasis, and response to therapies. Increasing realization of the significance of the TME in cancer biology has shifted cancer research from a cancer-centric model to one that considers the TME as a whole. Recent technological advancements in spatial profiling methodologies provide a systematic view and illuminate the physical localization of the components of the TME. In this review, we provide an overview of major spatial profiling technologies. We present the types of information that can be extracted from these data and describe their applications, findings and challenges in cancer research. Finally, we provide a future perspective of how spatial profiling could be integrated into cancer research to improve patient diagnosis, prognosis, stratification to treatment and development of novel therapeutics.
Collapse
Affiliation(s)
- Ofer Elhanani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raz Ben-Uri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Leeat Keren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Targeting Tumor Microenvironment Akt Signaling Represents a Potential Therapeutic Strategy for Aggressive Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24065471. [PMID: 36982542 PMCID: PMC10049397 DOI: 10.3390/ijms24065471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Effects of the tumor microenvironment (TME) stromal cells on progression in thyroid cancer are largely unexplored. Elucidating the effects and underlying mechanisms may facilitate the development of targeting therapy for aggressive cases of this disease. In this study, we investigated the impact of TME stromal cells on cancer stem-like cells (CSCs) in patient-relevant contexts where applying in vitro assays and xenograft models uncovered contributions of TME stromal cells to thyroid cancer progression. We found that TME stromal cells can enhance CSC self-renewal and invasiveness mainly via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. The disruption of Akt signaling could diminish the impact of TME stromal cells on CSC aggressiveness in vitro and reduce CSC tumorigenesis and metastasis in xenografts. Notably, disrupting Akt signaling did not cause detectable alterations in tumor histology and gene expression of major stromal components while it produced therapeutic benefits. In addition, using a clinical cohort, we discovered that papillary thyroid carcinomas with lymph node metastasis are more likely to have elevated Akt signaling compared with the ones without metastasis, suggesting the relevance of Akt-targeting. Overall, our results identify PI3K/Akt pathway-engaged contributions of TME stromal cells to thyroid tumor disease progression, illuminating TME Akt signaling as a therapeutic target in aggressive thyroid cancer.
Collapse
|
31
|
Yu J, Hua L, Cao X, Chen Q, Zeng X, Yuan Z, Wang Y. Construction of an individualized brain metabolic network in patients with advanced non-small cell lung cancer by the Kullback-Leibler divergence-based similarity method: A study based on 18F-fluorodeoxyglucose positron emission tomography. Front Oncol 2023; 13:1098748. [PMID: 36969017 PMCID: PMC10036828 DOI: 10.3389/fonc.2023.1098748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundLung cancer has one of the highest mortality rates of all cancers, and non-small cell lung cancer (NSCLC) accounts for the vast majority (about 85%) of lung cancers. Psychological and cognitive abnormalities are common in cancer patients, and cancer information can affect brain function and structure through various pathways. To observe abnormal brain function in NSCLC patients, the main purpose of this study was to construct an individualized metabolic brain network of patients with advanced NSCLC using the Kullback-Leibler divergence-based similarity (KLS) method.MethodsThis study included 78 patients with pathologically proven advanced NSCLC and 60 healthy individuals, brain 18F-FDG PET images of these individuals were collected and all patients with advanced NSCLC were followed up (>1 year) to confirm their overall survival. FDG-PET images were subjected to individual KLS metabolic network construction and Graph theoretical analysis. According to the analysis results, a predictive model was constructed by machine learning to predict the overall survival of NSLCL patients, and the correlation with the real survival was calculated.ResultsSignificant differences in the degree and betweenness distributions of brain network nodes between the NSCLC and control groups (p<0.05) were found. Compared to the normal group, patients with advanced NSCLC showed abnormal brain network connections and nodes in the temporal lobe, frontal lobe, and limbic system. The prediction model constructed using the abnormal brain network as a feature predicted the overall survival time and the actual survival time fitting with statistical significance (r=0.42, p=0.012).ConclusionsAn individualized brain metabolic network of patients with NSCLC was constructed using the KLS method, thereby providing more clinical information to guide further clinical treatment.
Collapse
Affiliation(s)
- Jie Yu
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lin Hua
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, Macau SAR, China
| | - Xiaoling Cao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Qingling Chen
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xinglin Zeng
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, Macau SAR, China
- *Correspondence: Zhen Yuan, ; Ying Wang,
| | - Ying Wang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
- *Correspondence: Zhen Yuan, ; Ying Wang,
| |
Collapse
|
32
|
Iwamoto S, Nishiyama M, Kawasaki M, Morito S, Sakumoto T, Toda S, Yamashita Y, Aoki S. Oral-specific microenvironments regulate cell behavior and anticancer drug sensitivity of tongue squamous cell carcinoma. Hum Cell 2023; 36:643-656. [PMID: 36715868 DOI: 10.1007/s13577-023-00866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Squamous cell carcinoma (SCC) is the most major malignant tumor of the tongue. The tongue exists at the air-liquid interface and is covered with saliva. In addition, the tongue constituent cells and tongue cancer are present under fluid flow stimulation due to the abundant capillary network and contraction of muscle tissue. Therefore, replicating both cell-cell interactions (the cellular microenvironment) and the aforementioned physical microenvironment is very important for understanding the kinetics of tongue SCC. To elucidate the effects of the cellular and physical microenvironment on tongue SCC and to investigate the relationships between these factors, we developed a collagen cell disc, with double dish under a rotational culture method to generate cancer-stroma interactions and to create fluid flow stimulation. Mesenchymal cells, NIH-3T3 cells and tongue-derived fibroblasts influenced the proliferative potential. Extracellular signal-regulated kinase and p38 signaling were regulated either synergistically or independently by cellular interactions and fluid flow stimulation, depending on the SCC cell type. The cell-cell interactions and fluid flow stimulation independently, synergistically or contradictorily affected the behavior of tongue SCC. Fluid flow stimulation synergistically enhanced the antiproliferative effect of cis-diamminedichloroplatinum on tongue SCC cells, but mesenchymal cells abolished the synergistic antiproliferative effect related to fluid flow stimulation. In conclusion, a reconstructed model was established to investigate the cellular and physical microenvironments of tongue SCC in vitro. The newly established system is a promising model for the development of further regimes to treat general oral cancer.
Collapse
Affiliation(s)
- Shuhei Iwamoto
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.,Department of Oral Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Megumi Nishiyama
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Maki Kawasaki
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.,Department of Urology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Sayuri Morito
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Takehisa Sakumoto
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Shuji Toda
- Department of Pathology, Takagi Hospital, Okawa, Fukuoka, 831-8501, Japan
| | - Yoshio Yamashita
- Department of Oral Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Shigehisa Aoki
- Division of Pathology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| |
Collapse
|
33
|
Kang J, Su M, Xu Q, Wang C, Yuan X, Han Z. Tumour-stroma ratio is a valuable prognostic factor for oral tongue squamous cell carcinoma. Oral Dis 2023; 29:628-638. [PMID: 34455659 DOI: 10.1111/odi.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The objectives of this study were to estimate the prognostic value of the tumour-stroma ratio (TSR) and tumour budding (TB) in oral tongue squamous cell carcinoma (OTSCC) and to establish a reliable model to predict the outcome of OTSCC patients. METHODS A total of 103 patients surgically treated at our hospital were enrolled in this study. Chi-square tests, Kaplan-Meier analyses and Cox proportional hazards regression models were performed for statistical analysis. RESULTS Fifty-six patients were categorized as stroma-rich, and 47 patients were categorized as stroma-poor. Only pathological grade was associated with the TSR (p = 0.017). Kaplan-Meier analysis showed that stroma-rich, high-intensity budding and high risk groups were associated with worse prognosis. The Cox regression model showed that the TSR was an independent risk factor for OTSCC patients prognosis, and the high risk group was also related to poor prognosis (p < 0.05). TB was significantly associated with poor prognosis but was not an independent risk factor. CONCLUSIONS We found that patients in the stroma-rich group had a worse long-term prognosis. The TSR is an independent risk factor for OTSCC patients' outcome. In addition, a risk model that combined the TSR and TB proved to be valuable for predicting OTSCC patients' outcome.
Collapse
Affiliation(s)
- Jia Kang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ming Su
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Qiaoshi Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chong Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Yuan
- Department of Pathology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Moirangthem A, Gondaliya P, Yan IK, Sayyed AA, Driscoll J, Patel T. Extracellular vesicle‑mediated miR‑126‑3p transfer contributes to inter‑cellular communication in the liver tumor microenvironment. Int J Oncol 2023; 62:31. [PMID: 36660950 PMCID: PMC9851126 DOI: 10.3892/ijo.2023.5479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 10/24/2022] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles (EVs) and their contents are gaining recognition as important mediators of intercellular communication through the transfer of bioactive molecules, such as non‑coding RNA. The present study comprehensively assessed the microRNA (miRNA/miR) content within EVs released from HepG2 liver cancer (LC) cells and LX2 hepatic stellate cells (HSCs) and determined the contribution of EV miRNA to intercellular communication. Using both transwell and spheroid co‑cultures of LC cells and HSCs, miR‑126‑3p within EV was established as a mediator of HSC to LC cell communication that influenced tumor cell migration and invasion, as well as the growth of multicellular LC/HSC spheroids. Manipulation of miR‑126‑3p either by enforced expression using pre‑miR‑126‑3p or by inhibition using antimiR‑126‑3p did not alter tumor cell viability, proliferation or sensitivity to either sorafenib or regorafenib. By contrast, enforced expression of miR‑126‑3p decreased tumor‑cell migration. Knockdown of miR‑126‑3p in tumor cells increased disintegrin and metalloproteinase domain‑containing protein 9 (ADAM9) expression and in HSCs increased collagen‑1A1 accumulation with an increase in compactness of multicellular spheroids. Within LC/HSC spheroids, ADAM9 and vascular endothelial growth factor expression was increased by silencing of miR‑126‑3p but diminished with the restoration of miR‑126‑3p. These studies implicate miR‑126‑3p in functional effects on migration, invasion and spheroid growth of tumor cells in the presence of HSCs, and thereby demonstrate functional EV‑RNA‑based intercellular signaling between HSCs and LC cells that is directly relevant to tumor‑cell behavior.
Collapse
Affiliation(s)
| | | | - Irene K. Yan
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Adil Ali Sayyed
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Julia Driscoll
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
35
|
Azumi J, Takeda T, Shimada Y, Zhuang T, Tokuji Y, Sakamoto N, Aso H, Nakamura T. Organogermanium THGP Induces Differentiation into M1 Macrophages and Suppresses the Proliferation of Melanoma Cells via Phagocytosis. Int J Mol Sci 2023; 24:ijms24031885. [PMID: 36768216 PMCID: PMC9915250 DOI: 10.3390/ijms24031885] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
M1 macrophages are an important cell type related to tumor immunology and are known to phagocytose cancer cells. In previous studies, the organogermanium compound poly-trans-[(2-carboxyethyl)germasesquioxane] (Ge-132) and its hydrolysate, 3-(trihydroxygermyl) propanoic acid (THGP), have been reported to exert antitumor effects by activating NK cells and macrophages through the induction of IFN-γ activity in vivo. However, the detailed molecular mechanism has not been clarified. In this study, we found that macrophages differentiate into the M1 phenotype via NF-κB activation under long-term culture in the presence of THGP in vitro and in vivo. Furthermore, long-term culture with THGP increases the ability of RAW 264.7 cells to suppress B16 4A5 melanoma cell proliferation. These mechanisms indicate that THGP promotes the M1 polarization of macrophages and suppresses the expression of signal-regulatory protein alpha (SIRP-α) in macrophages and CD47 in cancers. Based on these results, THGP may be considered a new regulatory reagent that suppresses tumor immunity.
Collapse
Affiliation(s)
- Junya Azumi
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Japan
| | - Tomoya Takeda
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Japan
| | - Yasuhiro Shimada
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Japan
| | - Tao Zhuang
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8572, Japan
| | - Yoshihiko Tokuji
- Department of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen, Inada, Obihiro 080-8555, Japan
| | - Naoya Sakamoto
- Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Kita 10 Jo-Nishi 5, Kita, Sapporo 060-0810, Japan
| | - Hisashi Aso
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8572, Japan
| | - Takashi Nakamura
- Research Division, Asai Germanium Research Institute Co., Ltd., Suzuranoka 3-131, Hakodate 042-0958, Japan
- Correspondence: ; Tel.: +81-138-32-0032; Fax: +81-138-31-0132
| |
Collapse
|
36
|
Nisar N, Mir SA, Kareem O, Pottoo FH. Proteomics approaches in the identification of cancer biomarkers and drug discovery. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
37
|
Li HX, Wang SQ, Lian ZX, Deng SL, Yu K. Relationship between Tumor Infiltrating Immune Cells and Tumor Metastasis and Its Prognostic Value in Cancer. Cells 2022; 12:cells12010064. [PMID: 36611857 PMCID: PMC9818185 DOI: 10.3390/cells12010064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Tumor metastasis is an important reason for the difficulty of tumor treatment. Besides the tumor cells themselves, the tumor microenvironment plays an important role in the process of tumor metastasis. Tumor infiltrating immune cells (TIICs) are one of the main components of TME and plays an important role in every link of tumor metastasis. This article mainly reviews the role of tumor-infiltrating immune cells in epithelial mesenchymal transformation, extracellular matrix remodeling, tumor angiogenesis and formation of pre-metastatic niche. The value of TIICs in the prognosis of cervical cancer, lung cancer and breast cancer was also discussed. We believe that accurate prognosis of cancer treatment outcomes is conducive to further improving treatment regimens, determining personalized treatment strategies, and ultimately achieving successful cancer treatment. This paper elucidates the relationship between tumor and TIICs in order to explore the function of immune cells in different diseases and provide new ideas for the treatment of cancer.
Collapse
Affiliation(s)
- Huan-Xiang Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shu-Qi Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shou-Long Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.-L.D.); (K.Y.)
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (S.-L.D.); (K.Y.)
| |
Collapse
|
38
|
Meng J, Yu Z, Chen H, Yu X, Jiang M, Zeng XA, You J. Brucea javanica oil emulsion significantly improved the effect of anti-programmed cell death protein-1 immunotherapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154446. [PMID: 36182799 DOI: 10.1016/j.phymed.2022.154446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Brucea javanica oil (BJO) is the active substance extracted from the dry and mature fruit of Brucea javanica. Its pharmaceutical preparation, BJO emulsion (BJOE), is one of the most widely studied traditional Chinese medicine preparations for the treatment of malignancy. However, the unrevealed anti-tumor mechanism immensely limits further development of BJOE. PURPOSE In this study, we delved into the anti-tumor mechanism of commercial BJOE, including its influence on the tumor microenvironment (TME) and the treatment effect when combined with anti-programmed cell death protein-1 (PD-1) therapy. METHODS The cytotoxicity of BJOE was tested in different cells in vitro, and a Förster resonance energy transfer system was also constructed to predict the release behavior of BJOE in vivo. Then, a B16 melanoma mouse model was used to explore the combination of BJOE and anti-mouse PD-1 antibody therapy. In addition, mass cytometry was used to test the impact of both drugs on the TME. RESULTS Out data revealed that BJOE did not directly kill tumor cells in vitro. However, BJOE was mainly released at the tumor site, converting an immunosuppressive TME into an immune-activated state, and its combination with anti-PD-1 therapy significantly inhibited the growth of melanoma and prolonged the survival time of the mice due to an increase in cytotoxic T lymph (CD8+ T) and helper/inducible T lymph (CD4+ T) cells in lymph nodes and tumors. CONCLUSIONS Our work explored the anti-tumor mechanism of commercial BJOE and the regulation of cytokines by BJOE when it was combined with anti-PD-1 therapy in vivo. The combination of these therapies could increase the numbers of CD4+ T-cells, CD8+ T-cells, and effective natural killer cells and the ratio of MI/M2 macrophages in tumor tissues, promoting inflammatory activity and enhancing the anti-tumor effect. This study provides a theoretical basis for advancing the modern development of traditional Chinese medicine preparations and stands as a reference for clinically improving the efficacy of PD-1 antibodies.
Collapse
Affiliation(s)
- Jun Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhixin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hongying Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Yu
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 26 Huatuo Dajie, Benxi, Liaoning 117004, China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
39
|
Abolghasemi R, Ebrahimi-Barough S, Mohamadnia A, Ai J. Synergistic inhibitory effect of human umbilical cord matrix mesenchymal stem cells-conditioned medium and atorvastatin on MCF7 cancer cells viability and migration. Cell Tissue Bank 2022; 23:767-789. [PMID: 34988840 PMCID: PMC8730305 DOI: 10.1007/s10561-021-09984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/28/2021] [Indexed: 11/27/2022]
Abstract
Recent studies have demonstrated inhibitory effects of mesenchymal stem cells on breast tumors. Likewise, the emerging interest in statins as anticancer agents is based on their pleiotropic effects. In the present study, we investigated whether atorvastatin and umbilical cord matrix derived mesenchymal stem cells-conditioned medium affect the MCF7 cancer cells viability and interactions. We measured the viability of MCF7 cancer cells by MTT assay, flow cytometry, and quantitative real-time PCR. Two-dimensional culture and hanging drop aggregation assay illustrated the morphological changes. We traced the MCF7 migration via scratch-wound healing test and trans-well assay. The results showed the inhibition of cancer cell viability in all treated groups compared to the control group. The effect of atorvastatin and conditioned medium combination was significantly more than each substance separately. The morphological changes indicated apoptosis in treated cells. The annexin V/PI flow cytometry especially in the combination-treated group displayed decreasing in DNA synthesis and cell cycle arrest in G1 and G2/M phases. As well, the mRNA expressions of caspases 3, 8, 9, and Bcl-2 genes were along with extrinsic and intrinsic apoptosis pathways. Conditioned medium disrupted the connections between cancer cells, so the spheroids in three-dimensional configuration lost their order and dispersed. The migration of treated cells across the wound area and trans-well diminished, particularly by the conditioned medium and atorvastatin combination. There fore, the synergistic anti-proliferative and anti-motility effect of atorvastatin along with human umbilical cord mesenchymal stem cells-derived conditioned medium on MCF7 breast cancer cells have been proved. The results might lead the development of novel adjuvant anticancer therapeutics based on targeting or modifying the extracellular matrix to increase chemotherapy results or to prevent metastatic colonization. Schematic representation of "Synergistic Inhibitory Effect of Human Umbilical Cord Matrix Mesenchymal Stem Cells-Conditioned Medium and Atorvastatin on MCF7 Cancer Cells Viablity and Migration" by: Dr. Reyhaneh Abolghasemi, Dr. Somayeh Ebrahimi-barough, Proffesor. Jafar Ai.
Collapse
Affiliation(s)
- Reyhaneh Abolghasemi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Sim TM. Nanoparticle-assisted targeting of the tumour microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Liu Z, Xiang Y, Zheng Y, Kang X. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology. Front Immunol 2022; 13:1027124. [PMID: 36341334 PMCID: PMC9630919 DOI: 10.3389/fimmu.2022.1027124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 09/07/2024] Open
Abstract
Immune checkpoint blockade (ICB) has gained unparalleled success in the treatment of colorectal cancer (CRC). However, undesired side effects, unsatisfactory response rates, tumor metastasis, and drug resistance still hinder the further application of ICB therapy against CRC. Advancing ICB with nanotechnology can be game-changing. With the development of immuno-oncology and nanomaterials, various nanoplatforms have been fabricated to enhance the efficacy of ICB in CRC treatment. Herein, this review systematically summarizes these recent nano-strategies according to their mechanisms. Despite their diverse and complex designs, these nanoplatforms have four main mechanisms in enhancing ICB: 1) targeting immune checkpoint inhibitors (ICIs) to tumor foci, 2) increasing tumor immunogenicity, 3) remodeling tumor microenvironment, and 4) pre-sensitizing immune systems. Importantly, advantages of nanotechnology in CRC, such as innovating the mode-of-actions of ICB, modulating intestinal microbiome, and integrating the whole process of antigen presentation, are highlighted in this review. In general, this review describes the latest applications of nanotechnology for CRC immunotherapy, and may shed light on the future design of ICB platforms.
Collapse
Affiliation(s)
- Zefan Liu
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| | - Yucheng Xiang
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| | - Yaxian Zheng
- Department of Pharmacy, Third People’s Hospital of Chengdu, Chengdu, China
| | - Xin Kang
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| |
Collapse
|
42
|
Furia L, Pelicci S, Perillo F, Bolognesi MM, Pelicci PG, Facciotti F, Cattoretti G, Faretta M. Automated multimodal fluorescence microscopy for hyperplex spatial-proteomics: Coupling microfluidic-based immunofluorescence to high resolution, high sensitivity, three-dimensional analysis of histological slides. Front Oncol 2022; 12:960734. [PMCID: PMC9606676 DOI: 10.3389/fonc.2022.960734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
In situ multiplexing analysis and in situ transcriptomics are now providing revolutionary tools to achieve the comprehension of the molecular basis of cancer and to progress towards personalized medicine to fight the disease. The complexity of these tasks requires a continuous interplay among different technologies during all the phases of the experimental procedures. New tools are thus needed and their characterization in terms of performances and limits is mandatory to reach the best resolution and sensitivity. We propose here a new experimental pipeline to obtain an optimized costs-to-benefits ratio thanks to the alternate employment of automated and manual procedures during all the phases of a multiplexing experiment from sample preparation to image collection and analysis. A comparison between ultra-fast and automated immunofluorescence staining and standard staining protocols has been carried out to compare the performances in terms of antigen saturation, background, signal-to-noise ratio and total duration. We then developed specific computational tools to collect data by automated analysis-driven fluorescence microscopy. Computer assisted selection of targeted areas with variable magnification and resolution allows employing confocal microscopy for a 3D high resolution analysis. Spatial resolution and sensitivity were thus maximized in a framework where the amount of stored data and the total requested time for the procedure were optimized and reduced with respect to a standard experimental approach.
Collapse
Affiliation(s)
- Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Simone Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Giorgio Cattoretti
- Department of Medicine and Surgery, Università di Milano-Bicocca, Monza, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- *Correspondence: Mario Faretta,
| |
Collapse
|
43
|
Shi J, Sun S, Xing S, Huang C, Huang Y, Wang Q, Xue X, Chen Z, Wang Y, Huang Z. Fraxinellone inhibits progression of glioblastoma via regulating the SIRT3 signaling pathway. Biomed Pharmacother 2022; 153:113416. [DOI: 10.1016/j.biopha.2022.113416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
|
44
|
Inflammatory Indexes as Prognostic Factors of Survival in Geriatric Patients with Hepatocellular Carcinoma: A Case Control Study of Eight Slovak Centers. J Clin Med 2022; 11:jcm11144183. [PMID: 35887947 PMCID: PMC9318669 DOI: 10.3390/jcm11144183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background and Aims: Hepatocellular cancer (HCC) often occurs in geriatric patients. The aim of our study was to compare overall survival and progression-free survival between geriatric patients (>75 years) and patients younger than 75 years and to identify predictive factors of survival in geriatric patients with HCC. Material and Methods: We performed a retrospective analysis of patients with HCC diagnosed in Slovakia between 2010−2016. Cases (HCC patients ≥75 years) were matched to controls (HCC patients <74 years) based on the propensity score (gender, BCLC stage and the first-line treatment). Results: We included 148 patients (84 men, 57%) with HCC. There were no differences between cases and controls in the baseline characteristics. The overall survival in geriatric patients with HCC was comparable to younger controls (p = 0.42). The one-, two-, and three-year overall survival was 42% and 31%, 19% and 12%, and 12% and 9% in geriatric patients and controls, respectively (p = 0.2, 0.4, 0.8). Similarly, there was no difference in the one- and two-year progression-free survival: 28% and 18% vs. 10% and 7% in geriatric HCC patients and controls, respectively (p = 0.2, 1, -). There was no case−control difference between geriatric HCC patients and younger HCC controls in the overall survival in the subpopulation of patients with no known comorbidities (p = 0.5), one and two comorbidities (p = 0.49), and three or more comorbidities (p = 0.39). Log (CRP), log (NLR), log (PLR), and log (SII) were all associated with the three-year survival in geriatric HCC patients in simple logistic regression analyses. However, this time, only log (NLR) remained associated even after controlling for the age and BCLC confounding (OR 5.32, 95% CI 1.43−28.85). Conclusions. We found no differences in overall survival and progression-free survival between older and younger HCC patients. Parameters of subclinical inflammation predict prognosis in geriatric patients with HCC. A limitation of the study is small number of the treated patients; therefore, further investigation is warranted.
Collapse
|
45
|
Azab AE, Alesawy MS, Eldehna WM, Elwan A, Eissa IH. New [1,2,4]triazolo[4,3-c]quinazoline derivatives as vascular endothelial growth factor receptor-2 inhibitors and apoptosis inducers: Design, synthesis, docking, and antiproliferative evaluation. Arch Pharm (Weinheim) 2022; 355:e2200133. [PMID: 35822666 DOI: 10.1002/ardp.202200133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
In continuation of our previous efforts in the field of design and synthesis of vascular endothelial growth factor receptor (VEGFR)-2 inhibitors, a new series of [1,2,4]triazolo[4,3-c]quinazoline derivatives were designed and synthesized as modified analogs of some reported VEGFR-2 inhibitors. The synthesized compounds were designed to have the essential pharmacophoric features of VEGFR-2 inhibitors. Antiproliferative activities of the synthesized compounds were investigated against two tumor cell lines (HepG2 and HCT-116) using sorafenib as a positive control. Compound 10k emerged as the most promising antiproliferative agent with IC50 values of 4.88 and 5.21 µM against HepG2 and HCT-116 cells, respectively. Also, it showed the highest inhibitory activity against VEGFR-2 with an IC50 value of 53.81 nM compared to sorafenib (IC50 = 44.34 nM). Cell cycle analysis revealed that compound 10k can arrest HepG2 cells at both the S and G2/M phases. In addition, this compound produced a tenfold increase in apoptotic cells compared to the control. Furthermore, the effect of compound 10k on the expression level of BAX, Bcl-2, and caspase-3 was assessed. This compound caused a 3.35-fold increase in BAX expression levels and a 1.25-fold reduction in Bcl-2 expression levels. The BAX/Bcl-2 ratio was calculated to be 4.57, indicating a promising apoptotic effect. It also showed a significant increase in the level of caspase-3 (4.12-fold) compared to the control cells. In silico docking, absorption, distribution, metabolism, excretion, and toxicity, and toxicity studies were performed for the synthesized compounds to investigate their binding patterns against the proposed biological target (VEGFR-2) and to assess the drug-likeness characters.
Collapse
Affiliation(s)
- Ahmed E Azab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.,School of Biotechnology, Badr University in Cairo, Cairo, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
46
|
Halder J, Pradhan D, Biswasroy P, Rai VK, Kar B, Ghosh G, Rath G. Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer. J Drug Target 2022; 30:1055-1075. [PMID: 35786242 DOI: 10.1080/1061186x.2022.2095389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Breast cancer (BC) is the deadliest malignant disorder globally, with a significant mortality rate. The development of tolerance throughout cancer treatment and non-specific targeting limits the drug's response. Currently, nano therapy provides an interdisciplinary area for imaging, diagnosis, and targeted drug delivery for BC. Several overexpressed biomarkers, proteins, and receptors are identified in BC, which can be potentially targeted by using nanomaterial for drug/gene/immune/photo-responsive therapy and bio-imaging. In recent applications, magnetic iron oxide nanoparticles (IONs) have shown tremendous attention to the researcher because they combine selective drug delivery and imaging functionalities. IONs can be efficaciously functionalised for potential application in BC therapy and diagnosis. In this review, we explored the current application of IONs in chemotherapeutics delivery, gene delivery, immunotherapy, photo-responsive therapy, and bio-imaging for BC based on their molecular mechanism. In addition, we also highlighted the effect of IONs' size, shape, dimension, and functionalization on BC targeting and imaging. To better comprehend the functionalization potential of IONs, this paper provides an outline of BC cellular development. IONs for BC theranostic are also reviewed based on their clinical significance and future aspects.
Collapse
Affiliation(s)
- Jitu Halder
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Deepak Pradhan
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Prativa Biswasroy
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Biswakanth Kar
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Ghosh
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Rath
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
47
|
Zhang H, Yan X, Zhang Y, Bao C, Li C. An oxygen-economical nano-photosensitizer with a high photodynamic therapeutic outcome via simultaneous reduction of the cellular respiration and oxygen depletion of PDT. J Mater Chem B 2022; 10:4623-4631. [PMID: 35647782 DOI: 10.1039/d2tb00309k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of photodynamic nanomedicines that can alleviate intratumoral oxygen deficiency during photodynamic therapy (PDT) is of great significance for improving the therapeutic outcome of solid tumors characterized by severe hypoxia. Massive oxygen consumption due to vigorous cellular respiration, i.e., mitochondrial-associated oxidative phosphorylation (OXPHOS), is another major cause of severe tumor hypoxia in addition to insufficient oxygen supply. Moreover, oxygen depletion during PDT further exacerbates the shortage of intratumoral oxygen. In this work, we engineered a novel oxygen-economical nano-photosensitizer via co-encapsulation of an OXPHOS inhibitor (ATO) and a newly developed type-I photosensitizer (IPS) into a polymeric micelle of PEG-b-PCL. By controlling the length of hydrophobic PCL segments, we successfully optimized the micelle size to around 30 nm for enhanced tumor penetration. The orchestration of the two functional components, ATO and IPS, can simultaneously hinder the two major tumor oxygen-consuming pathways, where ATO targets mitochondrial complex III to inhibit cellular respiration, while IPS generates ROS through a low oxygen-consuming type-I photochemical pathway, enabling remarkable PDT efficacies in both hypoxic cells and a 4T1 tumor-bearing BALB/c mouse model. This work sheds new light on the construction of nano-photosensitizers to rejuvenate PDT against hypoxic solid tumors.
Collapse
Affiliation(s)
- Hao Zhang
- School of Material Science and Engineering, Tiangong University, No. 399 BinShuiXi Road, Tianjin 300387, China.
| | - Xiaosa Yan
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Yongkang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Chenlu Bao
- School of Material Science and Engineering, Tiangong University, No. 399 BinShuiXi Road, Tianjin 300387, China.
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
48
|
The effect of mesenchymal stromal cells ın the microenvironment on cancer development. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:114. [PMID: 35674854 DOI: 10.1007/s12032-022-01703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
Inflammatory signals secreted from the tumor microenvironment are thought to promote tumor growth and survival. It has been reported that stromal cells in the tumor microenvironment have similar characteristics to tumor-associated cells. In addition miRNAs play critical roles in various diseases, including cancer. In this study, we aimed to investigate the effects of co-culture of cancer cells and stromal cells isolated from normal and malignant breast tissue on each other and the possible effects of miRNAs on these interactions. The characterized stromal cells were co-cultured with an MDA-MB-231 cancer cell line. The proliferation capacity of the experimental groups was evaluated using the WST-1 assay. The expression of breast cancer-specific miRNAs and related genes were assessed by real-time PCR. ELISA assay was performed to determine the concentration of some cytokines and chemokines. We found that the microenvironment plays an important role in the development of cancer, confirming the changes in the expression of oncogenic and tumor suppressor miRNA and their target genes after co-culture with malignant stromal cells. As a result of the studies, specific gene expressions of related signaling pathways were detected in correlation with miRNA changes and the effects of tumor microenvironment on tumorigenesis were revealed in detail. miRNAs have been shown to play an important role in cancer development in recent studies. The idea that these small molecules can be used in diagnosis and treatment is becoming stronger day by day. We believe that new treatment approaches involving the tumor microenvironment and using miRNAs as markers are promising.
Collapse
|
49
|
Artificial Intelligence-Based Tissue Phenotyping in Colorectal Cancer Histopathology Using Visual and Semantic Features Aggregation. MATHEMATICS 2022. [DOI: 10.3390/math10111909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tissue phenotyping of the tumor microenvironment has a decisive role in digital profiling of intra-tumor heterogeneity, epigenetics, and progression of cancer. Most of the existing methods for tissue phenotyping often rely on time-consuming and error-prone manual procedures. Recently, with the advent of advanced technologies, these procedures have been automated using artificial intelligence techniques. In this paper, a novel deep histology heterogeneous feature aggregation network (HHFA-Net) is proposed based on visual and semantic information fusion for the detection of tissue phenotypes in colorectal cancer (CRC). We adopted and tested various data augmentation techniques to avoid computationally expensive stain normalization procedures and handle limited and imbalanced data problems. Three publicly available datasets are used in the experiments: CRC tissue phenotyping (CRC-TP), CRC histology (CRCH), and colon cancer histology (CCH). The proposed HHFA-Net achieves higher accuracies than the state-of-the-art methods for tissue phenotyping in CRC histopathology images.
Collapse
|
50
|
Kakarla M, ChallaSivaKanaka S, Dufficy MF, Gil V, Filipovich Y, Vickman R, Crawford SE, Hayward SW, Franco OE. Ephrin B Activate Src Family Kinases in Fibroblasts Inducing Stromal Remodeling in Prostate Cancer. Cancers (Basel) 2022; 14:2336. [PMID: 35565468 PMCID: PMC9102363 DOI: 10.3390/cancers14092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Through stromal-epithelial interactions, carcinoma associated fibroblasts (CAF) play a critical role in tumor growth and progression. Activation of erythrophoyetin-producing human hepatocellular (Eph) receptors has been implicated in cancer. Eph receptor interactions with Ephrin ligands lead to bidirectional signals in the recipient and effector cells. The consequences of continuous reverse Ephrin signaling activation in fibroblasts on prostate cancer (PCa) is unknown. When compared to benign prostate fibroblast, CAF displayed higher expression of Ephrin B1, B2, and B3 ligands (EFNB1, EFNB2, and EFNB3). In this study, we found that continuous activation of EFNB1 and EFNB3 in a benign human prostate stromal cell line (BHPrS1) increased the expression of CAF markers and induced a CAF phenotype. BHPrS1EFNB1 and BHPrS1EFNB3 displayed a pro-tumorigenic secretome with multiple effects on neovascularization, collagen deposition, and cancer cell proliferation, overall increasing tumorigenicity of a premalignant prostate epithelial cell line BPH1 and PCa cell line LNCaP, both in vitro and in vivo. Inhibition of Src family kinases (SFK) in BHPrS1EFNB1 and BHPrS1EFNB3 suppressed EFNB-induced ɑ-SMA (Alpha-smooth muscle actin) and TN-C (Tenascin-C) in vitro. Our study suggests that acquisition of CAF characteristics via SFK activation in response to increased EFNB ligands could promote carcinogenesis via modulation of TME in PCa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Chicago, IL 60201, USA; (M.K.); (S.C.); (M.F.D.); (V.G.); (Y.F.); (R.V.); (S.E.C.); (S.W.H.)
| |
Collapse
|