1
|
Zhang RH, Chen T, Xiong QQ, Wang S, Chen GQ, Zhang WL, Yuan HF, Zhao YL, Liu T, Huang Y, Zhou M, Yang CL, Liao SG, Li YJ. Discovery of a potent anticancer agent against pancreatic ductal adenocarcinoma targeting FAK with DFG-out state and JAK/Aurora kinases. Eur J Med Chem 2025; 282:117059. [PMID: 39577230 DOI: 10.1016/j.ejmech.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer because of the difficulty in diagnosis and its resistance to chemotherapy. Focal adhesion kinase (FAK) is found overexpressed in PDAC, and targeting FAK has been proved to impede the progress of PDAC. However, most of FAK inhibitors were reported to bind with FAK in a DFG-in conformation, leading to a limited anti-tumor effect in clinical studies. Herein, to develop FAK inhibitors targeting the inactive DFG-out conformation, a series of large aromatic rings were selected to improve the interaction with Phe565 of the DFG motif. Compound 26 was designed to effectively inhibit FAK and the proliferation of PANC-1 cells with IC50 of 50.94 nM and 0.15 μM, respectively. Besides, compound 26 was proved to strongly suppress the proliferation, colony formation, migration, and invasion in FAK-overexpressing PDAC cells. This inhibitor was confirmed to induce the apoptosis and G2/M arrest in PANC-1 cells through the suppression of FAK/PI3K/Akt signal pathway. Meanwhile, compound 26 was found to simultaneously inhibit FAK with DFG-out conformation and JAK3/Aurora B (IC50 of 9.99 nM and 0.49 nM, respectively). In vivo, compound 26 effectively inhibited the tumorigenesis and metastasis of PDAC with desirable biosafety. Overall, these results suggested that compound 26 was a promising candidate for the treatment of PDAC.
Collapse
Affiliation(s)
- Rong-Hong Zhang
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Ting Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Qian-Qian Xiong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Shan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Guo-Qi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Wen-Li Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Hong-Fei Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Yong-Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.
| | - Cheng-Li Yang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.
| | - Yong-Jun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.
| |
Collapse
|
2
|
Li Y, Zhang Y, Zhang J, Zhan Z, Mao W. Development of novel focal adhesion kinase (FAK) inhibitors for targeting cancer: Structural insights and therapeutic potential. Eur J Med Chem 2024; 279:116913. [PMID: 39357313 DOI: 10.1016/j.ejmech.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase frequently overexpressed in various cancer cells, facilitating tumor growth through the regulation of cell adhesion, migration, and proliferation. Consequently, targeting FAK is considered a promising anti-tumor strategy, particularly for invasive cancers. Numerous potent small-molecule inhibitors have progressed to clinical trials. Among these, Defactinib is under evaluation for regulatory approval as a treatment for ovarian serous tumors. Furthermore, novel FAK inhibitors, including PROTACs, have emerged as key research focuses, anticipated to overcome the limitations of traditional inhibitors. In this Perspective, we highlight the protein structure, biological functions, relevant signaling pathways, and associations of FAK with cancer development. We also analyze the clinical status of FAK inhibitors, paying special attention to the various classes of FAK inhibitors, with detailed analyses of their chemical structures, structure-activity relationships (SARs), bioactivity profiles, selectivity profiles, and therapeutic potentials.
Collapse
Affiliation(s)
- Yingnan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Yuming Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China; West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| |
Collapse
|
3
|
Jin Y, Lee Y. Proteolysis Targeting Chimeras (PROTACs) in Breast Cancer Therapy. ChemMedChem 2024; 19:e202400267. [PMID: 39136599 PMCID: PMC11617661 DOI: 10.1002/cmdc.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Indexed: 10/16/2024]
Abstract
Breast cancer (BC) accounts for 30 % of cancer cases among women cancer patients globally, indicating the urgent need for the development of selective therapies targeting BCs. Recently, proteolysis-targeting chimera (PROTAC) has emerged as a promising strategy to target breast cancer. PROTAC is a chimeric molecule consisting of a target protein ligand, an E3 ligase ligand, and conjugating linkers, enabling it to facilitate the degradation of desired target proteins by recruiting E3 ligase in close proximity. Due to the catalytic behavior and direct degradation of BC-causing proteins, PROTAC could achieve high drug efficacy with low doses, drawing great attention for its potential as therapeutics. This review provides cases of the currently developed PROTACs targeting BCs depending on the type of BCs, limitations, and future perspectives of PROTAC in targeting BCs.
Collapse
Affiliation(s)
- Yerim Jin
- Department of ChemistryPusan National UniversityBusan46241Korea
| | - Yeongju Lee
- Department of ChemistryPusan National UniversityBusan46241Korea
| |
Collapse
|
4
|
Wu LW, Jang SJ, Shapiro C, Fazlollahi L, Wang TC, Ryeom SW, Moy RH. Diffuse Gastric Cancer: A Comprehensive Review of Molecular Features and Emerging Therapeutics. Target Oncol 2024; 19:845-865. [PMID: 39271577 PMCID: PMC11557641 DOI: 10.1007/s11523-024-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Diffuse-type gastric cancer (DGC) accounts for approximately one-third of gastric cancer diagnoses but is a more clinically aggressive disease with peritoneal metastases and inferior survival compared with intestinal-type gastric cancer (IGC). The understanding of the pathogenesis of DGC has been relatively limited until recently. Multiomic studies, particularly by The Cancer Genome Atlas, have better characterized gastric adenocarcinoma into molecular subtypes. DGC has unique molecular features, including alterations in CDH1, RHOA, and CLDN18-ARHGAP26 fusions. Preclinical models of DGC characterized by these molecular alterations have generated insight into mechanisms of pathogenesis and signaling pathway abnormalities. The currently approved therapies for treatment of gastric cancer generally provide less clinical benefit in patients with DGC. Based on recent phase II/III clinical trials, there is excitement surrounding Claudin 18.2-based and FGFR2b-directed therapies, which capitalize on unique biomarkers that are enriched in the DGC populations. There are numerous therapies targeting Claudin 18.2 and FGFR2b in various stages of preclinical and clinical development. Additionally, there have been preclinical advancements in exploiting unique therapeutic vulnerabilities in several models of DGC through targeting of the focal adhesion kinase (FAK) and Hippo pathways. These preclinical and clinical advancements represent a promising future for the treatment of DGC.
Collapse
Affiliation(s)
- Lawrence W Wu
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA
| | - Sung Joo Jang
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Cameron Shapiro
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra W Ryeom
- Division of Surgical Sciences, Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Ryan H Moy
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, 161 Fort Washington Avenue, Room 956, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Kwantwi LB, Tandoh T. Focal adhesion kinase-mediated interaction between tumor and immune cells in the tumor microenvironment: implications for cancer-associated therapies and tumor progression. Clin Transl Oncol 2024:10.1007/s12094-024-03723-x. [PMID: 39269597 DOI: 10.1007/s12094-024-03723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Focal adhesion kinase (FAK) expression has been linked to tumor growth, immunosuppression, metastasis, angiogenesis, and therapeutic resistance through kinase-dependent and kinase scaffolding functions in the nucleus and cytoplasm. Hence, targeting FAK alone or with other agents has gained attention as a potential therapeutic strategy. Moreover, mounting evidence shows that FAK activity can influence the tumor immune microenvironment crosstalk to support tumor progression. Recently, tumor immune microenvironment interaction orchestrators have shown to be promising therapeutic agents for cancer immunotherapies. Therefore, this review highlights how FAK regulates the tumor immune microenvironment interplay to promote tumor immune evasive mechanisms and their potential for combination therapies with standard cancer treatments.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| | - Theophilus Tandoh
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
6
|
Gao J, Cheng J, Xie W, Zhang P, Liu X, Wang Z, Zhang B. Prospects of focal adhesion kinase inhibitors as a cancer therapy in preclinical and early phase study. Expert Opin Investig Drugs 2024; 33:639-651. [PMID: 38676368 DOI: 10.1080/13543784.2024.2348068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION FAK, a nonreceptor cytoplasmic tyrosine kinase, plays a crucial role in tumor metastasis, drug resistance, tumor stem cell maintenance, and regulation of the tumor microenvironment. FAK has emerged as a promising target for tumor therapy based on both preclinical and clinical data. AREAS COVERED This paper aims to summarize the molecular mechanisms underlying FAK's involvement in tumorigenesis and progression. Encouraging results have emerged from ongoing clinical trials of FAK inhibitors. Additionally, we present an overview of clinical trials for FAK inhibitors, examining their potential as promising treatments. The pertinent studies gathered from databases including PubMed, ClinicalTrials.gov. EXPERT OPINION Since the first finding in 1990s, targeting FAK has became the focus of interests in many pharmaceutical companies. Through 30 years' discovery, the industry and academy gradually realized the features of FAK target which may not be a driver gene but a solid defense system for the cancer initiation and development. Currently, the ongoing clinical regimens involving FAK inhibition are all the combination strategies in which FAK inhibitors can further strengthen the cancer cell killing effects of other testing agents. The emerging positive signal in clinical trials foresee targeting FAK as class will be an effective mean to fight against cancers.
Collapse
Affiliation(s)
| | | | - Wanyu Xie
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Ping Zhang
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Xuebin Liu
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | - Zaiqi Wang
- InxMed (Shanghai) Co. Ltd, Shanghai, China
| | | |
Collapse
|
7
|
Pifer PM, Yang L, Kumar M, Xie T, Frederick M, Hefner A, Beadle B, Molkentine D, Molkentine J, Dhawan A, Abdelhakiem M, Osman AA, Leibowitz BJ, Myers JN, Pickering CR, Sandulache VC, Heymach J, Skinner HD. FAK Drives Resistance to Therapy in HPV-Negative Head and Neck Cancer in a p53-Dependent Manner. Clin Cancer Res 2024; 30:187-197. [PMID: 37819945 PMCID: PMC10767302 DOI: 10.1158/1078-0432.ccr-23-0964] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/21/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Radiation and platinum-based chemotherapy form the backbone of therapy in human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC). We have correlated focal adhesion kinase (FAK/PTK2) expression with radioresistance and worse outcomes in these patients. However, the importance of FAK in driving radioresistance and its effects on chemoresistance in these patients remains unclear. EXPERIMENTAL DESIGN We performed an in vivo shRNA screen using targetable libraries to identify novel therapeutic sensitizers for radiation and chemotherapy. RESULTS We identified FAK as an excellent target for both radio- and chemosensitization. Because TP53 is mutated in over 80% of HPV-negative HNSCC, we hypothesized that mutant TP53 may facilitate FAK-mediated therapy resistance. FAK inhibitor increased sensitivity to radiation, increased DNA damage, and repressed homologous recombination and nonhomologous end joining repair in mutant, but not wild-type, TP53 HPV-negative HNSCC cell lines. The mutant TP53 cisplatin-resistant cell line had increased FAK phosphorylation compared with wild-type, and FAK inhibition partially reversed cisplatin resistance. To validate these findings, we utilized an HNSCC cohort to show that FAK copy number and gene expression were associated with worse disease-free survival in mutant TP53, but not wild-type TP53, HPV-negative HNSCC tumors. CONCLUSIONS FAK may represent a targetable therapeutic sensitizer linked to a known genomic marker of resistance.
Collapse
Affiliation(s)
- Phillip M. Pifer
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Liangpeng Yang
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bilaspur, Himachal Pradesh, India
| | - Tongxin Xie
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Mitchell Frederick
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Andrew Hefner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Beth Beadle
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - David Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jessica Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Annika Dhawan
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Mohamed Abdelhakiem
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Abdullah A. Osman
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Brian J. Leibowitz
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Curtis R. Pickering
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Vlad C. Sandulache
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - John Heymach
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Heath D. Skinner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Liu Y, Tong JB, Gao P, Fan XL, Xiao XC, Xing YC. Combining QSAR techniques, molecular docking, and molecular dynamics simulations to explore anti-tumor inhibitors targeting Focal Adhesion Kinase. J Biomol Struct Dyn 2024:1-17. [PMID: 38173145 DOI: 10.1080/07391102.2023.2301055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Focal Adhesion Kinase (FAK) is an important target for tumor therapy and is closely related to tumor cell genesis and progression. In this paper, we selected 46 FAK inhibitors with anticancer activity in the pyrrolo pyrimidine backbone to establish 3D/2D-QSAR models to explore the relationship between inhibitory activity and molecular structure. We have established two ideal models, namely, the Topomer CoMFA model (q 2 = 0.715, r 2 = 0.984) and the Holographic Quantitative Structure-Activity Relationship (HQSAR) model (q 2 = 0.707, r 2 = 0.899). Both models demonstrate excellent external prediction capabilities.Based on the QSAR results, we designed 20 structurally modified novel compounds, which were subjected to molecular docking and molecular dynamics studies, and the results showed that the new compounds formed many robust interactions with residues within the active pocket and could maintain stable binding to the receptor proteins. This study not only provides a powerful screening tool for designing novel FAK inhibitors, but also presents a series of novel FAK inhibitors with high micromolar activity that can be used for further characterization. It provides a reference for addressing the shortcomings of drug metabolism and drug resistance of traditional FAK inhibitors, as well as the development of novel clinically applicable FAK inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuan Liu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian-Bo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| | - Peng Gao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| | - Xuan-Lu Fan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| | - Xue-Chun Xiao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| | - Yi-Chaung Xing
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
9
|
Guo C, Li Q, Xiao J, Ma F, Xia X, Shi M. Identification of defactinib derivatives targeting focal adhesion kinase using ensemble docking, molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2023; 41:8654-8670. [PMID: 36281703 DOI: 10.1080/07391102.2022.2135601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
Abstract
Focal adhesion kinase (FAK) belongs to the nonreceptor tyrosine kinases, which selectively phosphorylate tyrosine residues on substrate proteins. FAK is associated with bladder, esophageal, gastric, neck, breast, ovarian and lung cancers. Thus, FAK has been considered as a potential target for tumor treatment. Currently, there are six adenosine triphosphate (ATP)-competitive FAK inhibitors tested in clinical trials but no approved inhibitors targeting FAK. Defactinib (VS-6063) is a second-generation FAK inhibitor with an IC50 of 0.6 nM. The binding model of VS-6063 with FAK may provide a reference model for developing new antitumor FAK-targeting drugs. In this study, the VS-6063/FAK binding model was constructed using ensemble docking and molecular dynamics simulations. Furthermore, the molecular mechanics/generalized Born (GB) surface area (MM/GBSA) method was employed to estimate the binding free energy between VS-6063 and FAK. The key residues involved in VS-6063/FAK binding were also determined using per-residue energy decomposition analysis. Based on the binding model, VS-6063 could be separated into seven regions to enhance its binding affinity with FAK. Meanwhile, 60 novel defactinib-based compounds were designed and verified using ensemble docking. Overall, the present study improves our understanding of the binding mechanism of human FAK with VS-6063 and provides new insights into future drug designs targeting FAK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chuan Guo
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qinxuan Li
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jiujia Xiao
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng Ma
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xun Xia
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Bates ME, Libring S, Reinhart-King CA. Forces exerted and transduced by cancer-associated fibroblasts during cancer progression. Biol Cell 2023; 115:e2200104. [PMID: 37224184 PMCID: PMC10757454 DOI: 10.1111/boc.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Although it is well-known that cancer-associated fibroblasts (CAFs) play a key role in regulating tumor progression, the effects of mechanical tissue changes on CAFs are understudied. Myofibroblastic CAFs (myCAFs), in particular, are known to alter tumor matrix architecture and composition, heavily influencing the mechanical forces in the tumor microenvironment (TME), but much less is known about how these mechanical changes initiate and maintain the myCAF phenotype. Additionally, recent studies have pointed to the existence of CAFs in circulating tumor cell clusters, indicating that CAFs may be subject to mechanical forces beyond the primary TME. Due to their pivotal role in cancer progression, targeting CAF mechanical regulation may provide therapeutic benefit. Here, we will discuss current knowledge and summarize existing gaps in how CAFs regulate and are regulated by matrix mechanics, including through stiffness, solid and fluid stresses, and fluid shear stress.
Collapse
Affiliation(s)
- Madison E Bates
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
11
|
Liu F, Wu Q, Dong Z, Liu K. Integrins in cancer: Emerging mechanisms and therapeutic opportunities. Pharmacol Ther 2023:108458. [PMID: 37245545 DOI: 10.1016/j.pharmthera.2023.108458] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Integrins are vital surface adhesion receptors that mediate the interactions between the extracellular matrix (ECM) and cells and are essential for cell migration and the maintenance of tissue homeostasis. Aberrant integrin activation promotes initial tumor formation, growth, and metastasis. Recently, many lines of evidence have indicated that integrins are highly expressed in numerous cancer types and have documented many functions of integrins in tumorigenesis. Thus, integrins have emerged as attractive targets for the development of cancer therapeutics. In this review, we discuss the underlying molecular mechanisms by which integrins contribute to most of the hallmarks of cancer. We focus on recent progress on integrin regulators, binding proteins, and downstream effectors. We highlight the role of integrins in the regulation of tumor metastasis, immune evasion, metabolic reprogramming, and other hallmarks of cancer. In addition, integrin-targeted immunotherapy and other integrin inhibitors that have been used in preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Fangfang Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Qiong Wu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zigang Dong
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| |
Collapse
|
12
|
Arima Y, Matsueda S, Saya H. Significance of Cancer-Associated Fibroblasts in the Interactions of Cancer Cells with the Tumor Microenvironment of Heterogeneous Tumor Tissue. Cancers (Basel) 2023; 15:cancers15092536. [PMID: 37174001 PMCID: PMC10177529 DOI: 10.3390/cancers15092536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor microenvironment (TME) plays a key role in cancer development and progression, as well as contributes to the therapeutic resistance and metastasis of cancer cells. The TME is heterogeneous and consists of multiple cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, and immune cells, as well as various extracellular components. Recent studies have revealed cross talk between cancer cells and CAFs as well as between CAFs and other TME cells, including immune cells. Signaling by transforming growth factor-β, derived from CAFs, has recently been shown to induce remodeling of tumor tissue, including the promotion of angiogenesis and immune cell recruitment. Immunocompetent mouse cancer models that recapitulate interactions of cancer cells with the TME have provided insight into the TME network and support the development of new anticancer therapeutic strategies. Recent studies based on such models have revealed that the antitumor action of molecularly targeted agents is mediated in part by effects on the tumor immune environment. In this review, we focus on cancer cell-TME interactions in heterogeneous tumor tissue, and we provide an overview of the basis for anticancer therapeutic strategies that target the TME, including immunotherapy.
Collapse
Affiliation(s)
- Yoshimi Arima
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| | - Satoko Matsueda
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| | - Hideyuki Saya
- Cancer Center, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
13
|
Butti R, Khaladkar A, Bhardwaj P, Prakasam G. Heterotypic signaling of cancer-associated fibroblasts in shaping the cancer cell drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:182-204. [PMID: 37065872 PMCID: PMC10099601 DOI: 10.20517/cdr.2022.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 03/29/2023]
Abstract
The context-dependent reciprocal interaction between the cancer cells and surrounding fibroblasts is imperative for regulating malignant potential, metabolic reprogramming, immunosuppression, and ECM deposition. However, recent evidence also suggests that cancer-associated fibroblasts induce chemoresistance in cancer cells to various anticancer regimens. Because of the protumorigenic function of cancer-associated fibroblasts, these stromal cell types have emerged as fascinating therapeutic targets for cancer. However, this notion was recently challenged by studies that targeted cancer-associated fibroblasts and highlighted the underlying heterogeneity by identifying a subset of these cells with tumor-restricting functions. Hence, it is imperative to understand the heterogeneity and heterotypic signaling of cancer-associated fibroblasts to target tumor-promoting signaling processes by sparing tumor-restricting ones. In this review, we discuss the heterogeneity and heterotypic signaling of cancer-associated fibroblasts in shaping drug resistance and also list the cancer-associated fibroblast-targeting therapeutics.
Collapse
Affiliation(s)
- Ramesh Butti
- Kidney Cancer Program, Simmons Comprehensive Cancer Centre, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Ashwini Khaladkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Bombay 400076, India
- Authors contributed equally
| | - Priya Bhardwaj
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
- Authors contributed equally
| | - Gopinath Prakasam
- Kidney Cancer Program, Simmons Comprehensive Cancer Centre, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
14
|
Sbrana FV, Fiordi B, Bordini J, Belloni D, Barbaglio F, Russo L, Scarfò L, Ghia P, Scielzo C. PYK2 is overexpressed in chronic lymphocytic leukaemia: A potential new therapeutic target. J Cell Mol Med 2023; 27:576-586. [PMID: 36747338 PMCID: PMC9930416 DOI: 10.1111/jcmm.17688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Chronic Lymphocytic Leukaemia (CLL) is the most common adult B-cell leukaemia and despite improvement in patients' outcome, following the use of targeted therapies, it remains incurable. CLL supportive microenvironment plays a key role in both CLL progression and drug resistance through signals that can be sensed by the main components of the focal adhesion complex, such as FAK and PYK2 kinases. Dysregulations of both kinases have been observed in several metastatic cancers, but their role in haematological malignancies is still poorly defined. We characterized FAK and PYK2 expression and observed that PYK2 expression is higher in leukaemic B cells and its overexpression significantly correlates with their malignant transformation. When targeting both FAK and PYK2 with the specific inhibitor defactinib, we observed a dose-response effect on CLL cells viability and survival. In vivo treatment of a CLL mouse model showed a decrease of the leukaemic clone in all the lymphoid organs along with a significant reduction of macrophages and of the spleen weight and size. Our results first define a possible prognostic value for PYK2 in CLL, and show that both FAK and PYK2 might become putative targets for both CLL and its microenvironment (e.g. macrophages), thus paving the way to an innovative therapeutic strategy.
Collapse
Affiliation(s)
- Francesca Vittoria Sbrana
- Malignant B cells biology and 3D modelling Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Benedetta Fiordi
- Malignant B cells biology and 3D modelling Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
- School of MedicineUniversità Vita‐Salute San RaffaeleMilanItaly
| | - Jessica Bordini
- B‐cell neoplasia Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Daniela Belloni
- B‐cell neoplasia Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Federica Barbaglio
- Malignant B cells biology and 3D modelling Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Luca Russo
- Malignant B cells biology and 3D modelling Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Lydia Scarfò
- School of MedicineUniversità Vita‐Salute San RaffaeleMilanItaly
- B‐cell neoplasia Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Paolo Ghia
- School of MedicineUniversità Vita‐Salute San RaffaeleMilanItaly
- B‐cell neoplasia Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Cristina Scielzo
- Malignant B cells biology and 3D modelling Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| |
Collapse
|
15
|
Sagara A, Miura S, Kobinata A, Naganawa R, Yaginuma S, Saito S, Saito R, Kominato H, Yumoto T, Sato F. COL8A1 enhances the invasion/metastasis in MDA-MB-231 cells via the induction of IL1B and MMP1 expression. Biochem Biophys Res Commun 2023; 642:145-153. [PMID: 36577251 DOI: 10.1016/j.bbrc.2022.12.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with a high probability of metastasis and a lack of specific targets and targeted therapeutics. Previously, we have reported that COL8A1, which is highly expressed in the mesenchymal stem-like (MSL) subtype of TNBC, facilitates TNBC growth via FAK/Src activation. Furthermore, we have found that COL8A1 enhances the invasion and metastasis of MDA-MB-231 cells, classified into MSL. However, the mechanism of invasion and metastasis by COL8A1 remains unclear. Here, we investigated the biological function of COL8A1 on the invasion and metastasis of MDA-MB-231 cells. METHODS The invasion and metastasis of MDA-MB-231 cells were evaluated using three-dimensional (3D) culture methods and xenograft mouse models. DNA microarray analysis examined the gene expression in COL8A1-overexpressing MDA-MB-231 cells and control cells. Gene expression was verified using RT-qPCR. RESULTS COL8A1-deficient cells showed little or no metastasis, whereas forced expression of COL8A1 in MDA-MB-231 cells, the MSL subtype of TNBC cell lines, significantly promoted distant metastasis after tumor resection. As with in vivo, 3D invasion assay revealed that COL8A1 increased the invasion capacity of MDA-MB-231 and Hs578T cells, classified into the MSL subtype of TNBC. DNA microarray analysis for COL8A1-overexpressing cells indicated that COL8A1 induces interleukin 1B (IL1B) and matrix metalloproteinase-1 (MMP1) expression, both of which are correlated with COL8A1 expression in the mesenchymal subtypes of TNBC, and the Kaplan-Meier plotter provided evidence that the prognosis in the MSL subtype was strongly associated with both gene expressions and COL8A1 expression. Pharmacological inhibitor treatment showed that COL8A1 regulated IL1B and MMP1 expression through a different pathway. Moreover, the knockdown of each gene expression reduced the invasion capacity of COL8A1-overexpressing MDA-MB-231 and Hs578T cells. CONCLUSION Our findings indicate that COL8A1-induced IL1B and MMP1 enhanced the invasion and metastasis of the MSL subtype of TNBC. Considering our previous findings that COL8A1 promotes tumor growth, COL8A1 may be a prognostic and practical therapeutic target in TNBC.
Collapse
Affiliation(s)
- Atsunobu Sagara
- Laboratory of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Shotaro Miura
- Laboratory of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Akinori Kobinata
- Laboratory of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Risa Naganawa
- Laboratory of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Saki Yaginuma
- Laboratory of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Suguru Saito
- Laboratory of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Rintaro Saito
- Laboratory of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hidenori Kominato
- Laboratory of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tetsuro Yumoto
- Laboratory of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Fumiaki Sato
- Laboratory of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
16
|
Peng K, Zhang F, Wang Y, Sahgal P, Li T, Zhou J, Liang X, Zhang Y, Sethi N, Liu T, Zhang H, Bass AJ. Development of Combination Strategies for Focal Adhesion Kinase Inhibition in Diffuse Gastric Cancer. Clin Cancer Res 2023; 29:197-208. [PMID: 36278961 PMCID: PMC9812865 DOI: 10.1158/1078-0432.ccr-22-1609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Diffuse gastric cancer (DGC) is an aggressive and frequently lethal subtype of gastric cancer. Because DGC often lacks genomic aberrations that indicate clear candidate therapeutic targets, it has been challenging to develop targeted therapies for this gastric cancer subtype. Our previous study highlighted the contribution of focal adhesion kinase (FAK) in the tumorigenesis of DGC and the potential efficacy of small-molecule FAK inhibitors. However, drug resistance to monotherapy often hinders the efficacy of treatment. EXPERIMENTAL DESIGN We generated a genome-scale library of open reading frames (ORF) in the DGC model of Cdh1-/-RHOAY42C/+ organoids to identify candidate mechanisms of resistance to FAK inhibition. Compensatory activated pathways were also detected following treatment with FAK inhibitors. Candidates were investigated by cotargeting in vitro and in vivo experiments using DGC. RESULTS We found that cyclin-dependent kinase 6 (CDK6) promoted FAK inhibitor resistance in ORF screen. In addition, FAK inhibitor treatment in DGC models led to compensatory MAPK pathway activation. Small-molecule CDK4/6 inhibitors or MAPK inhibitors effectively enhanced FAK inhibitor efficacy in vitro and in vivo. CONCLUSIONS Our data suggest that FAK inhibitors combined with MAPK inhibitors or CDK4/6 inhibitors warrant further testing in clinical trials for DGC.
Collapse
Affiliation(s)
- Ke Peng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Feifei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yichen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Pranshu Sahgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tianxia Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jin Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xiaoyan Liang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanxi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haisheng Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Adam J. Bass
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
17
|
Zhang J, Hu Z, Horta CA, Yang J. Regulation of epithelial-mesenchymal transition by tumor microenvironmental signals and its implication in cancer therapeutics. Semin Cancer Biol 2023; 88:46-66. [PMID: 36521737 DOI: 10.1016/j.semcancer.2022.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been implicated in various aspects of tumor development, including tumor invasion and metastasis, cancer stemness, and therapy resistance. Diverse stroma cell types along with biochemical and biophysical factors in the tumor microenvironment impinge on the EMT program to impact tumor progression. Here we provide an in-depth review of various tumor microenvironmental signals that regulate EMT in cancer. We discuss the molecular mechanisms underlying the role of EMT in therapy resistance and highlight new therapeutic approaches targeting the tumor microenvironment to impact EMT and tumor progression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zhimin Hu
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Calista A Horta
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Wang Q, Gallardo-Macias R, Vomhof-DeKrey EE, Gupta R, Golovko SA, Golovko MY, Oncel S, Gurvich VJ, Basson MD. A novel drug-like water-soluble small molecule Focal Adhesion Kinase (FAK) activator promotes intestinal mucosal healing. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100147. [PMID: 36632414 PMCID: PMC9827036 DOI: 10.1016/j.crphar.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) injure the proximal and distal gut by different mechanisms. While many drugs reduce gastrointestinal injury, no drug directly stimulates mucosal wound healing. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, induces epithelial sheet migration. We synthesized and evaluated a water-soluble FAK-activating small molecule, M64HCl, with drug-like properties. Monolayer wound closure and Western blots measured migration and FAK phosphorylation in Caco-2 cells, in vitro kinase assays established FAK activation, and pharmacologic tests assessed drug-like properties. 30 mg/kg/day M64HCl was administered in two murine small intestine injury models for 4 days. M64HCl (0.1-1000 nM) dose-dependently increased Caco-2 FAK-Tyr 397 phosphorylation, without activating Pyk2 and accelerated Caco-2 monolayer wound closure. M64HCl dose-responsively activates the FAK kinase domain vs. the non-salt M64, increasing the Vmax of ATP-binding. Pharmacologic tests suggested M64HCl has drug-like properties and is enterally absorbed. M64HCl 25 mg/kg/day continuous infusion promoted healing of ischemic jejunal ulcers and indomethacin-induced small intestinal injury in C57Bl/6 mice. M64HCl-treated mice exhibited smaller ulcers 4 days after ischemic ulcer induction or indomethacin injury. Renal histology and plasma creatinine were normal. Mild hepatic inflammatory changes and ALT elevation were similar among M64HCl-treated mice and controls. M64HCl was concentrated in kidney and gastrointestinal mucosa and functional nephrectomy studies suggested predominantly urinary excretion. Little toxicity was observed in vitro or in single-dose mouse toxicity studies until >1000x higher than effective concentrations. M64HCl, a water-soluble FAK activator, promotes epithelial restitution and intestinal mucosal healing and may be useful to treat gut mucosal injury.
Collapse
Affiliation(s)
- Qinggang Wang
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, USA
| | - Ricardo Gallardo-Macias
- Institute for Therapeutics Discovery and Development and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, USA
| | - Emilie E. Vomhof-DeKrey
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, USA
| | - Rashmi Gupta
- Currently at Department of Biology, University of Maryland, USA
| | - Svetlana A. Golovko
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Vadim J. Gurvich
- Institute for Therapeutics Discovery and Development and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, USA
| | - Marc D. Basson
- Departments of Surgery, Biomedical Sciences, and Pathology, University of North Dakota School of Medicine and Health Sciences, USA
| |
Collapse
|
19
|
Wang-Gillam A, Lim KH, McWilliams R, Suresh R, Lockhart AC, Brown A, Breden M, Belle JI, Herndon J, Bogner SJ, Pedersen K, Tan B, Boice N, Acharya A, Abdiannia M, Gao F, Yoon HH, Zhu M, Trikalinos NA, Ratner L, Aranha O, Hawkins WG, Herzog BH, DeNardo DG. Defactinib, Pembrolizumab, and Gemcitabine in Patients with Advanced Treatment Refractory Pancreatic Cancer: A Phase I Dose Escalation and Expansion Study. Clin Cancer Res 2022; 28:5254-5262. [PMID: 36228156 PMCID: PMC9772237 DOI: 10.1158/1078-0432.ccr-22-0308] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/05/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Targeting focal adhesion kinase (FAK) renders checkpoint immunotherapy effective in pancreatic ductal adenocarcinoma (PDAC) mouse model. Defactinib is a highly potent oral FAK inhibitor that has a tolerable safety profile. PATIENTS AND METHODS We conducted a multicenter, open-label, phase I study with dose escalation and expansion phases. In dose escalation, patients with refractory solid tumors were treated at five escalating dose levels of defactinib and gemcitabine to identify a recommended phase II dose (RP2D). In expansion phase, patients with metastatic PDAC who progressed on frontline treatment (refractory cohort) or had stable disease (SD) after at least 4 months of standard gemcitabine/nab-paclitaxel (maintenance cohort) were treated at RP2D. Pre- and posttreatment tumor biopsies were performed to evaluate tumor immunity. RESULTS The triple drug combination was well-tolerated, with no dose-limiting toxicities. Among 20 treated patients with refractory PDAC, the disease control rate (DCR) was 80%, with one partial response (PR) and 15 SDs, and the median progression-free survival (PFS) and overall survival (OS) were 3.6 and 7.8 months, respectively. Among 10 evaluable patients in the maintenance cohort, DCR was 70% with one PR and six SDs. Three patients with SD came off study due to treatment- or disease-related complications. The median PFS and OS on study treatment were 5.0 and 8.3 months, respectively. CONCLUSIONS The combination of defactinib, pembrolizumab, and gemcitabine was well-tolerated and safe, had promising preliminary efficacy, and showed biomarker activity in infiltrative T lymphocytes. Efficacy of this strategy may require incorporation of more potent chemotherapy in future studies.
Collapse
Affiliation(s)
- Andrea Wang-Gillam
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kian-Huat Lim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert McWilliams
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester MN 55905, USA
| | - Rama Suresh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert C. Lockhart
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amberly Brown
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus Breden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jad I. Belle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Herndon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Savannah J. Bogner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katrina Pedersen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin Tan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas Boice
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abhi Acharya
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mina Abdiannia
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harry H. Yoon
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester MN 55905, USA
| | - Mojun Zhu
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester MN 55905, USA
| | - Nikolaos A. Trikalinos
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia Aranha
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William G. Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett H. Herzog
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
21
|
Zhang C, Zhu X, Li Y, Shao J, Xu H, Chen L, Dan Y, Jin H, He A. High expression of PYK2 is associated with poor prognosis and cancer progression in early-stage cervical carcinoma. Medicine (Baltimore) 2022; 101:e31178. [PMID: 36253980 PMCID: PMC9575807 DOI: 10.1097/md.0000000000031178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Proline-rich tyrosine kinase-2 (PYK2), also known as calcium dependent tyrosine kinase, regulates different signal transduction cascades that control cell proliferation, migration, and invasion. However, the role of PYK2 in cervical cancer remains to be elucidated. The current study retrospectively included 134 patients with cervical cancer from December 2007 to September 2014. PYK2 expression was detected in tissue microarray and cervical cancer cell lines. Statistical analysis was performed to evaluate its clinicopathological significance. Small interfering RNA (siRNA) was employed to suppress endogenous PYK2 expression in cervical cancer cells to observe the biological function. PYK2 expression was up-regulated in cervical cancer specimens compared with paired adjacent normal cervical tissue samples. Statistical analyses indicated that PYK2 expression might be an independent prognostic indicator for patients with early-stage cervical cancer. A nomogram model was constructed based on PYK2 expression and other clinicopathological risk factors, and it performed well in predicting patients survival. In cellular studies, down-regulation of PYK2 remarkably inhibited cellular proliferation, migration and invasion. PYK2 expression possessed the potential to serve as a novel prognostic marker in cervical cancer patients.
Collapse
Affiliation(s)
- Can Zhang
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xinghua Zhu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Nantong, China
| | - Yong Li
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jia Shao
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Haibo Xu
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Lei Chen
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Youli Dan
- Medical College of Nantong University, Nantong, China
| | - Hua Jin
- Cancer Research Centre Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Aiqin He
- Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
- *Correspondence: Aiqin He, Department of Gynecology Oncology, Affiliated Tumor Hospital of Nantong University, 30 Tongyang North Road, Nantong, 226300, China (e-mail: )
| |
Collapse
|
22
|
Focal adhesion kinase priming in pancreatic cancer, altering biomechanics to improve chemotherapy. Biochem Soc Trans 2022; 50:1129-1141. [PMID: 35929603 PMCID: PMC9444069 DOI: 10.1042/bst20220162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
The dense desmoplastic and fibrotic stroma is a characteristic feature of pancreatic ductal adenocarcinoma (PDAC), regulating disease progression, metastasis and response to treatment. Reciprocal interactions between the tumour and stroma are mediated by bidirectional integrin-mediated signalling, in particular by Focal Adhesion Kinase (FAK). FAK is often hyperactivated and overexpressed in aggressive cancers, promoting stromal remodelling and inducing tissue stiffness which can accelerate cancer cell proliferation, survival and chemoresistance. Therapeutic targeting of the PDAC stroma is an evolving area of interest for pre-clinical and clinical research, where a subtle reshaping of the stromal architecture prior to chemotherapy may prove promising in the clinical management of disease and overall patient survival. Here, we describe how transient stromal manipulation (or ‘priming’) via short-term FAK inhibition, rather than chronic treatment, can render PDAC cells exquisitely vulnerable to subsequent standard-of-care chemotherapy. We assess how our priming publication fits with the recent literature and describe in this perspective how this could impact future cancer treatment. This highlights the significance of treatment timing and warrants further consideration of anti-fibrotic therapies in the clinical management of PDAC and other fibrotic diseases.
Collapse
|
23
|
Wu X, Wang J, Liang Q, Tong R, Huang J, Yang X, Xu Y, Wang W, Sun M, Shi J. Recent progress on FAK inhibitors with dual targeting capabilities for cancer treatment. Biomed Pharmacother 2022; 151:113116. [PMID: 35598365 DOI: 10.1016/j.biopha.2022.113116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
Focal adhesion kinase (FAK, also known as PTK2) is a tyrosine kinase that regulates integrin and growth factor signaling pathways and is involved in the migration, proliferation and survival of cancer cells. FAK is a promising target for cancer treatment. Many small molecule FAK inhibitors have been identified and proven in both preclinical and clinical studies to be effective inhibitors of tumor growth and metastasis. There are many signaling pathways, such as those involving FAK, Src, AKT, MAPK, PI3K, and EGFR/HER-2, that provide survival signals in cancer cells. Dual inhibitors that simultaneously block FAK and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, the antitumor mechanisms and research status of dual inhibitors of FAK and other targets, such as Pyk2, IGF-IR, ALK, VEGFR-3, JAK2, EGFR, S6K1, and HDAC2, are summarized, providing new ideas for the development of effective FAK dual-target preparations.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
24
|
Fatherree JP, Guarin JR, McGinn RA, Naber SP, Oudin MJ. Chemotherapy-Induced Collagen IV Drives Cancer Cell Motility through Activation of Src and Focal Adhesion Kinase. Cancer Res 2022; 82:2031-2044. [PMID: 35260882 PMCID: PMC9381104 DOI: 10.1158/0008-5472.can-21-1823] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/15/2021] [Accepted: 03/04/2022] [Indexed: 01/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and deadly subtype of breast cancer, accounting for 30,000 cases annually in the United States. While there are several clinical trials ongoing to identify new agents to treat TNBC, the majority of patients with TNBC are treated with anthracycline- or taxane-based chemotherapies in the neoadjuvant setting, followed by surgical resection and adjuvant chemotherapy. While many patients respond well to this approach, as many as 25% will suffer local or metastatic recurrence within 5 years. Understanding the mechanisms that drive recurrence after chemotherapy treatment is critical to improving survival for patients with TNBC. It is well established that the extracellular matrix (ECM), which provides structure and support to tissues, is a major driver of tumor growth, local invasion, and dissemination of cancer cells to distant metastatic sites. In the present study, we show that decellularized ECM (dECM) obtained from chemotherapy-treated mice increases motility of treatment-naïve breast cancer cells compared with vehicle-treated dECM. Tandem-mass-tag proteomics revealed that anthracycline- and taxane-based chemotherapies induce drug-specific changes in tumor ECM composition. The basement membrane protein collagen IV was significantly upregulated in the ECM of chemotherapy-treated mice and patients treated with neoadjuvant chemotherapy. Collagen IV drove invasion via activation of Src and focal adhesion kinase signaling downstream of integrin α1 and α2, and inhibition of collagen IV-driven signaling decreased motility in chemotherapy-treated dECM. These studies provide a novel mechanism by which chemotherapy may induce metastasis via its effects on ECM composition. SIGNIFICANCE Cytotoxic chemotherapy induces significant changes in the composition of tumor ECM, inducing a more invasive and aggressive phenotype in residual tumor cells following chemotherapy.
Collapse
Affiliation(s)
- Jackson P. Fatherree
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Justinne R. Guarin
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Rachel A. McGinn
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts
| | - Stephen P. Naber
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts School of Engineering, Tufts University, Medford, Massachusetts.,Corresponding Author: Madeleine J. Oudin, Science & Engineering Complex, 200 College Avenue, Medford, MA 02155. Phone: 617-627-2580; E-mail:
| |
Collapse
|
25
|
Liao Y, Liu L, Yang J, Shi Z. ATX/LPA axis regulates FAK activation, cell proliferation, apoptosis, and motility in human pancreatic cancer cells. In Vitro Cell Dev Biol Anim 2022; 58:307-315. [PMID: 35426066 DOI: 10.1007/s11626-022-00660-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Previous studies implicated ATX/LPA axis as a potential driver of tumorigenesis and progression in pancreatic cancer. This study aimed to determine the existence of the autocrine pathway of ATX/LPA action in pancreatic cancer cells, and to elucidate its influence on focal adhesion kinase (FAK) activation, cellular proliferation, apoptosis, and migration. Firstly, we identified the lysophosphatidic acid (LPA) concentrations in cultured cell supernatant by ELISA and observed the effect of the autotaxin (ATX)-specific inhibitor S32826 on LPA concentrations. We found the existence of a certain concentration of LPA in cellular supernatant, which was significantly decreased by S32826 in a dose- and time-dependent manner. A maximum response was observed at 50 μM for 72 h. Secondly, the effect of S32826 on the protein expression and intracellular sublocalization of total FAK and phosphorylated FAK (pY397 FAK) was determined by Western blot and immunofluorescence staining. It was found that the expression of total FAK and pY397 FAK and their distribution along the cell membrane where adhesion structures are located were significantly decreased by S32826. Finally, we observed the influence of S32826 on cell proliferation, apoptosis, and migration by CCK-8 assay, flow cytometric analysis, and transwell migration assay. Results showed that cell viability and migration were significantly declined, and the proportions of apoptotic cells were significantly increased by S32826. This study verified the existence of autocrine regulation of LPA secretion via producing ATX by pancreatic cancer cells in vitro and the important role of LPA/ATX axis on FAK activation, cell proliferation, apoptosis, and motility.
Collapse
Affiliation(s)
- Yan Liao
- Department of Gastroenterology, Wuhan No.1 Hospital (Wuhan Integrated TCM and Western Medicine Hospital), No. 215, Zhongshan Road, Wuhan, 430022, Hubei, China
| | - Lei Liu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiayao Yang
- Department of Gastroenterology, Wuhan No.1 Hospital (Wuhan Integrated TCM and Western Medicine Hospital), No. 215, Zhongshan Road, Wuhan, 430022, Hubei, China
| | - Zhaohong Shi
- Department of Gastroenterology, Wuhan No.1 Hospital (Wuhan Integrated TCM and Western Medicine Hospital), No. 215, Zhongshan Road, Wuhan, 430022, Hubei, China.
| |
Collapse
|
26
|
Pomella S, Cassandri M, Braghini MR, Marampon F, Alisi A, Rota R. New Insights on the Nuclear Functions and Targeting of FAK in Cancer. Int J Mol Sci 2022; 23:ijms23041998. [PMID: 35216114 PMCID: PMC8874710 DOI: 10.3390/ijms23041998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed and activated in both adult and pediatric cancers, where it plays important roles in the regulation of pathogenesis and progression of the malignant phenotype. FAK exerts its functions in cancer by two different ways: a kinase activity in the cytoplasm, mainly dependent on the integrin signaling, and a scaffolding activity into the nucleus by networking with different gene expression regulators. For this reason, FAK has to be considered a target with high therapeutic values. Indeed, evidence suggests that FAK targeting could be effective, either alone or in combination, with other already available treatments. Here, we propose an overview of the novel insights about FAK’s structure and nuclear functions, with a special focus on the recent findings concerning the roles of this protein in cancer. Additionally, we provide a recent update on FAK inhibitors that are currently in clinical trials for patients with cancer, and discuss the challenge and future directions of drug-based anti-FAK targeted therapies.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy;
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
- Correspondence: (A.A.); (R.R.); Tel.: +39-06-68592186 (A.A.); +39-06-68592648 (R.R.)
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
- Correspondence: (A.A.); (R.R.); Tel.: +39-06-68592186 (A.A.); +39-06-68592648 (R.R.)
| |
Collapse
|
27
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
28
|
Leveraging cellular mechano-responsiveness for cancer therapy. Trends Mol Med 2021; 28:155-169. [PMID: 34973934 DOI: 10.1016/j.molmed.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022]
Abstract
Cells sense the biophysical properties of the tumor microenvironment (TME) and adopt these signals in their development, progression, and metastatic dissemination. Recent work highlights the mechano-responsiveness of cells in tumors and the underlying mechanisms. Furthermore, approaches to mechano-modulating diverse types of cell have emerged aiming to inhibit tumor growth and metastasis. These include targeting mechanosensitive machineries in cancer cells to induce apoptosis, intervening matrix stiffening incurred by cancer-associated fibroblasts (CAFs) in both primary and metastatic tumor sites, and modulating matrix mechanics to improve immune cell therapeutic efficacy. This review is envisaged to help scientists and clinicians in cancer research to advance understanding of the cellular mechano-responsiveness in TME, and to harness these concepts for cancer mechanotherapies.
Collapse
|
29
|
Wu Y, Li N, Ye C, Jiang X, Luo H, Zhang B, Zhang Y, Zhang Q. Focal adhesion kinase inhibitors, a heavy punch to cancer. Discov Oncol 2021; 12:52. [PMID: 35201485 PMCID: PMC8777493 DOI: 10.1007/s12672-021-00449-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Kinases are the ideal druggable targets for diseases and especially were highlighted on cancer therapy. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and its aberrant signaling extensively implicates in the progression of most cancer types, involving in cancer cell growth, adhesion, migration, and tumor microenvironment (TME) remodeling. FAK is commonly overexpressed and activated in a variety of cancers and plays as a targetable kinase in cancer therapy. FAK inhibitors already exhibited promising performance in preclinical and early-stage clinical trials. Moreover, substantial evidence has implied that targeting FAK is more effective in combination strategy, thereby reversing the failure of chemotherapies or targeted therapies in solid tumors. In the current review, we summarized the drug development progress, chemotherapy strategy, and perspective view for FAK inhibitors.
Collapse
Affiliation(s)
- Yueling Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Ning Li
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Chengfeng Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Xingmei Jiang
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Baoyuan Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Qingyu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
30
|
Ryzhakov G, Almuttaqi H, Corbin AL, Berthold DL, Khoyratty T, Eames HL, Bullers S, Pearson C, Ai Z, Zec K, Bonham S, Fischer R, Jostins-Dean L, Travis SPL, Kessler BM, Udalova IA. Defactinib inhibits PYK2 phosphorylation of IRF5 and reduces intestinal inflammation. Nat Commun 2021; 12:6702. [PMID: 34795257 PMCID: PMC8602323 DOI: 10.1038/s41467-021-27038-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, and has a key pathogenic function in gut inflammation, but how IRF5 is modulated is still unclear. Having performed a kinase inhibitor library screening in macrophages, here we identify protein-tyrosine kinase 2-beta (PTK2B/PYK2) as a putative IRF5 kinase. PYK2-deficient macrophages display impaired endogenous IRF5 activation, leading to reduction of inflammatory gene expression. Meanwhile, a PYK2 inhibitor, defactinib, has a similar effect on IRF5 activation in vitro, and induces a transcriptomic signature in macrophages similar to that caused by IRF5 deficiency. Finally, defactinib reduces pro-inflammatory cytokines in human colon biopsies from patients with ulcerative colitis, as well as in a mouse colitis model. Our results thus implicate a function of PYK2 in regulating the inflammatory response in the gut via the IRF5 innate sensing pathway, thereby opening opportunities for related therapeutic interventions for inflammatory bowel diseases and other inflammatory conditions.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Hannah Almuttaqi
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Alastair L Corbin
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Dorothée L Berthold
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Tariq Khoyratty
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Hayley L Eames
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Samuel Bullers
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Claire Pearson
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Zhichao Ai
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Kristina Zec
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Luke Jostins-Dean
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Simon P L Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Irina A Udalova
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom.
| |
Collapse
|
31
|
Cho H, Shin I, Yoon H, Jeon E, Lee J, Kim Y, Ryu S, Song C, Kwon NH, Moon Y, Kim S, Kim ND, Choi HG, Sim T. Identification of Thieno[3,2- d]pyrimidine Derivatives as Dual Inhibitors of Focal Adhesion Kinase and FMS-like Tyrosine Kinase 3. J Med Chem 2021; 64:11934-11957. [PMID: 34324343 DOI: 10.1021/acs.jmedchem.1c00459] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Focal adhesion kinase (FAK) is overexpressed in highly invasive and metastatic cancers. To identify novel FAK inhibitors, we designed and synthesized various thieno[3,2-d]pyrimidine derivatives. An intensive structure-activity relationship (SAR) study led to the identification of 26 as a lead. Moreover, 26, a multitargeted kinase inhibitor, possesses excellent potencies against FLT3 mutants as well as FAK. Gratifyingly, 26 remarkably inhibits recalcitrant FLT3 mutants, including F691L, that cause drug resistance. Importantly, 26 is superior to PF-562271 in terms of apoptosis induction, anchorage-independent growth inhibition, and tumor burden reduction in the MDA-MB-231 xenograft mouse model. Also, 26 causes regression of tumor growth in the MV4-11 xenograft mouse model, indicating that it could be effective against acute myeloid leukemia (AML). Finally, in an orthotopic mouse model using MDA-MB-231, 26 remarkably prevents metastasis of orthotopic tumors to lymph nodes. Taken together, the results indicate that 26 possesses potential therapeutic value against highly invasive cancers and relapsed AML.
Collapse
Affiliation(s)
- Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Injae Shin
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hojong Yoon
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunhye Jeon
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Younghoon Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - SeongShick Ryu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chiman Song
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Youngji Moon
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Nam Doo Kim
- Voronoibio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Hwan Geun Choi
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- B2Sbio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Taebo Sim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
32
|
Pang XJ, Liu XJ, Liu Y, Liu WB, Li YR, Yu GX, Tian XY, Zhang YB, Song J, Jin CY, Zhang SY. Drug Discovery Targeting Focal Adhesion Kinase (FAK) as a Promising Cancer Therapy. Molecules 2021; 26:molecules26144250. [PMID: 34299525 PMCID: PMC8308130 DOI: 10.3390/molecules26144250] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
FAK is a nonreceptor intracellular tyrosine kinase which plays an important biological function. Many studies have found that FAK is overexpressed in many human cancer cell lines, which promotes tumor cell growth by controlling cell adhesion, migration, proliferation, and survival. Therefore, targeting FAK is considered to be a promising cancer therapy with small molecules. Many FAK inhibitors have been reported as anticancer agents with various mechanisms. Currently, six FAK inhibitors, including GSK-2256098 (Phase I), VS-6063 (Phase II), CEP-37440 (Phase I), VS-6062 (Phase I), VS-4718 (Phase I), and BI-853520 (Phase I) are undergoing clinical trials in different phases. Up to now, there have been many novel FAK inhibitors with anticancer activity reported by different research groups. In addition, FAK degraders have been successfully developed through “proteolysis targeting chimera” (PROTAC) technology, opening up a new way for FAK-targeted therapy. In this paper, the structure and biological function of FAK are reviewed, and we summarize the design, chemical types, and activity of FAK inhibitors according to the development of FAK drugs, which provided the reference for the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Xiao-Jing Pang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Xiu-Juan Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Yuan Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Wen-Bo Liu
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Yin-Ru Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Guang-Xi Yu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Xin-Yi Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
| | - Yan-Bing Zhang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
| | - Jian Song
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| | - Sai-Yang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.-J.P.); (X.-J.L.); (Y.L.); (W.-B.L.); (Y.-B.Z.)
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-R.L.); (G.-X.Y.); (X.-Y.T.)
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
- Correspondence: (J.S.); (C.-Y.J.); (S.-Y.Z.)
| |
Collapse
|
33
|
Comprehensive understanding of anchorage-independent survival and its implication in cancer metastasis. Cell Death Dis 2021; 12:629. [PMID: 34145217 PMCID: PMC8213763 DOI: 10.1038/s41419-021-03890-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Detachment is the initial and critical step for cancer metastasis. Only the cells that survive from detachment can develop metastases. Following the disruption of cell-extracellular matrix (ECM) interactions, cells are exposed to a totally different chemical and mechanical environment. During which, cells inevitably suffer from multiple stresses, including loss of growth stimuli from ECM, altered mechanical force, cytoskeletal reorganization, reduced nutrient uptake, and increased reactive oxygen species generation. Here we review the impact of these stresses on the anchorage-independent survival and the underlying molecular signaling pathways. Furthermore, its implications in cancer metastasis and treatment are also discussed.
Collapse
|
34
|
Brullo C, Tasso B. New Insights on Fak and Fak Inhibitors. Curr Med Chem 2021; 28:3318-3338. [PMID: 33143618 DOI: 10.2174/0929867327666201103162239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Focal adhesion kinase (Fak) is a cytoplasmic protein tyrosine kinase overexpressed and activated in different solid cancers; it has shown an important role in metastasis formation, cell migration, invasion and angiogenesis and consequently it has been proposed as a potential target in cancer therapy, particularly in a metastatic phase. In recent years, different investigations have highlighted the importance of new Fak inhibitors as potential anti-cancer drugs, but other studies evidenced its role in different pathologies related to the cardiac function or viral infection. METHODS An extensive bibliographic research (104 references) has been done concerning the structure of Fak, its importance in tumor development, but also in other pathologies currently under study. The compounds currently subjected to clinical studies were therefore treated using the appropriate databases. Finally, the main chemical scaffolds currently under preclinical investigation were analyzed, focusing on their molecular structures and on the activity structure relationships (SAR). RESULTS At the moment, only a few reversible ATP-competitive inhibitors are under investigation in pre-clinical studies and clinical trials. Other compounds, with different chemical scaffolds, are investigated to obtain more active and selective Fak inhibitors. This mini-review is a summary of different Fak functions in cancer and other pathologies; the compounds today in clinical trials and the recent chemical scaffolds (also included in patents) giving the most interesting results are investigated. In addition, PROTAC molecules are reported. CONCLUSION All reported results evidenced that additional studies are necessary to design and synthesize new selective and more active compounds, although promising information has been obtained from associations between Fak inhibitors and other different anti- cancer drugs. In addition, the other important roles evidenced, both at the nuclear level and in non-cancerous cells, make this protein an increasingly important target in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Chiara Brullo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| | - Bruno Tasso
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| |
Collapse
|
35
|
Wang F, Yang W, Li R, Sui Z, Cheng G, Zhou B. Molecular description of pyrimidine-based inhibitors with activity against FAK combining 3D-QSAR analysis, molecular docking and molecular dynamics. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Wang S, Zhang RH, Zhang H, Wang YC, Yang D, Zhao YL, Yan GY, Xu GB, Guan HY, Zhou YH, Cui DB, Liu T, Li YJ, Liao SG, Zhou M. Design, synthesis, and biological evaluation of 2,4-diamino pyrimidine derivatives as potent FAK inhibitors with anti-cancer and anti-angiogenesis activities. Eur J Med Chem 2021; 222:113573. [PMID: 34091209 DOI: 10.1016/j.ejmech.2021.113573] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 01/18/2023]
Abstract
A series of 2,4-diamino pyrimidine (DAPY) derivatives were designed, synthesized, and evaluated as inhibitors of focal adhesion kinase (FAK) with antitumor and anti-angiogenesis activities. Most compounds effectively suppressed the enzymatic activities of FAK, and the IC50s of 11b and 12f were 2.75 and 1.87 nM, respectively. 11b and 12f exhibited strong antiproliferative effects against seven human cancer cells, with IC50 values against two FAK-overexpressing pancreatic cancer cells (PANC-1 and BxPC-3) of 0.98 μM, 0.55 μM, and 0.11 μM, 0.15 μM, respectively. Moreover, 11b and 12f obviously suppressed the colony formation, migration, and invasion of PANC-1 cells in a dose-dependent manner. Meanwhile, these two compounds could induce the apoptosis of PANC-1 cells and arrest the cell cycle in G2/M phase according to the flow cytometry assay. Western blot revealed that 11b and 12f effectively inhibited the FAK/PI3K/Akt signal pathway and significantly decreased the expression of cyclin D1 and Bcl-2. In addition, compounds 11b and 12f potently inhibited the antiproliferative of HUVECs and obviously altered the cell morphology. 11b and 12f also significantly inhibited the migration, tube formation of HUVECs and severely impaired the angiogenesis in the zebrafish model. Overall, these results revealed the potential of compounds 11b and 12f as promising candidates for further preclinical studies.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Rong-Hong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, PR China; Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hong Zhang
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yu-Chan Wang
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Dan Yang
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yong-Long Zhao
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Guo-Yi Yan
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Henan University, Zhengzhou, PR China
| | - Guo-Bo Xu
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Huan-Yu Guan
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yan-Hua Zhou
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang, 550004, PR China
| | - Dong-Bing Cui
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang, 550004, PR China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yong-Jun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Shang-Gao Liao
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China.
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China.
| |
Collapse
|
37
|
Dawson JC, Serrels A, Stupack DG, Schlaepfer DD, Frame MC. Targeting FAK in anticancer combination therapies. Nat Rev Cancer 2021; 21:313-324. [PMID: 33731845 PMCID: PMC8276817 DOI: 10.1038/s41568-021-00340-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Focal adhesion kinase (FAK) is both a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signalling and cell migration, but FAK can also promote cell survival in response to stress. FAK is commonly overexpressed in cancer and is considered a high-value druggable target, with multiple FAK inhibitors currently in development. Evidence suggests that in the clinical setting, FAK targeting will be most effective in combination with other agents so as to reverse failure of chemotherapies or targeted therapies and enhance efficacy of immune-based treatments of solid tumours. Here, we discuss the recent preclinical evidence that implicates FAK in anticancer therapeutic resistance, leading to the view that FAK inhibitors will have their greatest utility as combination therapies in selected patient populations.
Collapse
Affiliation(s)
- John C Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Alan Serrels
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego Moores Cancer Centre, La Jolla, CA, USA
| | - David D Schlaepfer
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego Moores Cancer Centre, La Jolla, CA, USA
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
38
|
Mousson A, Legrand M, Steffan T, Vauchelles R, Carl P, Gies JP, Lehmann M, Zuber G, De Mey J, Dujardin D, Sick E, Rondé P. Inhibiting FAK-Paxillin Interaction Reduces Migration and Invadopodia-Mediated Matrix Degradation in Metastatic Melanoma Cells. Cancers (Basel) 2021; 13:cancers13081871. [PMID: 33919725 PMCID: PMC8070677 DOI: 10.3390/cancers13081871] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The focal adhesion kinase (FAK) is over-expressed in a variety of human tumors and is involved in many aspects of the metastatic process. This has led to the development of small inhibitors of FAK kinase function which are currently evaluated in clinical trials. We demonstrate here that this class of inhibitors, while decreasing melanoma cell migration, increases invadopodia activity in metastatic melanoma cells. Searching for an alternative strategy to inhibit the oncogenic activity of FAK, we show that inhibiting FAK scaffolding function using a small peptide altering FAK–paxillin interactions reduces both migration and invadopodia-mediated matrix degradation in metastatic melanoma cells. Abstract The nonreceptor tyrosine kinase FAK is a promising target for solid tumor treatment because it promotes invasion, tumor progression, and drug resistance when overexpressed. Investigating the role of FAK in human melanoma cells, we found that both in situ and metastatic melanoma cells strongly express FAK, where it controls tumor cells’ invasiveness by regulating focal adhesion-mediated cell motility. Inhibiting FAK in human metastatic melanoma cells with either siRNA or a small inhibitor targeting the kinase domain impaired migration but led to increased invadopodia formation and extracellular matrix degradation. Using FAK mutated at Y397, we found that this unexpected increase in invadopodia activity is due to the lack of phosphorylation at this residue. To preserve FAK–Src interaction while inhibiting pro-migratory functions of FAK, we found that altering FAK–paxillin interaction, with either FAK mutation in the focal adhesion targeting (FAT) domain or a competitive inhibitor peptide mimicking paxillin LD domains drastically reduces cell migration and matrix degradation by preserving FAK activity in the cytoplasm. In conclusion, our data show that targeting FAK–paxillin interactions could be a potential therapeutic strategy to prevent metastasis formation, and molecules targeting this interface could be alternative to inhibitors of FAK kinase activity which display unexpected effects.
Collapse
Affiliation(s)
- Antoine Mousson
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Marlène Legrand
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Tania Steffan
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Romain Vauchelles
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Plateforme PIQ, Faculté de Pharmacie, 67401 Illkirch, France;
| | - Philippe Carl
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Jean-Pierre Gies
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Maxime Lehmann
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Guy Zuber
- Université de Strasbourg, CNRS UMR7242, Intervention Chémobiologique, ESBS, 67412 Illkirch, France;
| | - Jan De Mey
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Denis Dujardin
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Emilie Sick
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Philippe Rondé
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
- Correspondence: ; Tel.: +33-3-6885-4184
| |
Collapse
|
39
|
Le Large TYS, Bijlsma MF, El Hassouni B, Mantini G, Lagerweij T, Henneman AA, Funel N, Kok B, Pham TV, de Haas R, Morelli L, Knol JC, Piersma SR, Kazemier G, van Laarhoven HWM, Giovannetti E, Jimenez CR. Focal adhesion kinase inhibition synergizes with nab-paclitaxel to target pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2021; 40:91. [PMID: 33750427 PMCID: PMC7941981 DOI: 10.1186/s13046-021-01892-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a very lethal disease, with minimal therapeutic options. Aberrant tyrosine kinase activity influences tumor growth and is regulated by phosphorylation. We investigated phosphorylated kinases as target in PDAC. Methods Mass spectrometry-based phosphotyrosine proteomic analysis on PDAC cell lines was used to evaluate active kinases. Pathway analysis and inferred kinase activity analysis was performed to identify novel targets. Subsequently, we investigated targeting of focal adhesion kinase (FAK) in vitro with drug perturbations in combination with chemotherapeutics used against PDAC. Tyrosine phosphoproteomics upon treatment was performed to evaluate signaling. An orthotopic model of PDAC was used to evaluate the combination of defactinib with nab-paclitaxel. Results PDAC cell lines portrayed high activity of multiple receptor tyrosine kinases to various degree. The non-receptor kinase, FAK, was identified in all cell lines by our phosphotyrosine proteomic screen and pathway analysis. Targeting of this kinase with defactinib validated reduced phosphorylation profiles. Additionally, FAK inhibition had anti-proliferative and anti-migratory effects. Combination with (nab-)paclitaxel had a synergistic effect on cell proliferation in vitro and reduced tumor growth in vivo. Conclusions Our study shows high phosphorylation of several oncogenic receptor tyrosine kinases in PDAC cells and validated FAK inhibition as potential synergistic target with Nab-paclitaxel against this devastating disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01892-z.
Collapse
Affiliation(s)
- T Y S Le Large
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.,Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - M F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - B El Hassouni
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - G Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.,OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC-Start-Up, Fondazione Pisana per la Scienza, Pisa, Italy
| | - T Lagerweij
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, The Netherlands
| | - A A Henneman
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - N Funel
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - B Kok
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - T V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - R de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - L Morelli
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - J C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - S R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - G Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, The Netherlands
| | - H W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - E Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands. .,Cancer Pharmacology Lab, AIRC-Start-Up, Fondazione Pisana per la Scienza, Pisa, Italy.
| | - C R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Rybakova Y, Gonzalez JT, Bogorad R, Chauhan VP, Dong YL, Whittaker CA, Zatsepin T, Koteliansky V, Anderson DG. Identification of a long non-coding RNA regulator of liver carcinoma cell survival. Cell Death Dis 2021; 12:178. [PMID: 33589614 PMCID: PMC7884843 DOI: 10.1038/s41419-021-03453-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
Genomic studies have significantly improved our understanding of hepatocellular carcinoma (HCC) biology and have led to the discovery of multiple protein-coding genes driving hepatocarcinogenesis. In addition, these studies have identified thousands of new non-coding transcripts deregulated in HCC. We hypothesize that some of these transcripts may be involved in disease progression. Long non-coding RNAs are a large class of non-coding transcripts which participate in the regulation of virtually all cellular functions. However, a majority of lncRNAs remain dramatically understudied. Here, we applied a pooled shRNA-based screen to identify lncRNAs essential for HCC cell survival. We validated our screening results using RNAi, CRISPRi, and antisense oligonucleotides. We found a lncRNA, termed ASTILCS, that is critical for HCC cell growth and is overexpressed in tumors from HCC patients. We demonstrated that HCC cell death upon ASTILCS knockdown is associated with apoptosis induction and downregulation of a neighboring gene, protein tyrosine kinase 2 (PTK2), a crucial protein for HCC cell survival. Taken together, our study describes a new, non-coding RNA regulator of HCC.
Collapse
Affiliation(s)
- Yulia Rybakova
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - John T Gonzalez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Roman Bogorad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Vikash P Chauhan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Yize L Dong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | | | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
41
|
Rigiracciolo DC, Cirillo F, Talia M, Muglia L, Gutkind JS, Maggiolini M, Lappano R. Focal Adhesion Kinase Fine Tunes Multifaced Signals toward Breast Cancer Progression. Cancers (Basel) 2021; 13:645. [PMID: 33562737 PMCID: PMC7915897 DOI: 10.3390/cancers13040645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer represents the most common diagnosed malignancy and the main leading cause of tumor-related death among women worldwide. Therefore, several efforts have been made in order to identify valuable molecular biomarkers for the prognosis and prediction of therapeutic responses in breast tumor patients. In this context, emerging discoveries have indicated that focal adhesion kinase (FAK), a non-receptor tyrosine kinase, might represent a promising target involved in breast tumorigenesis. Of note, high FAK expression and activity have been tightly correlated with a poor clinical outcome and metastatic features in several tumors, including breast cancer. Recently, a role for the integrin-FAK signaling in mechanotransduction has been suggested and the function of FAK within the breast tumor microenvironment has been ascertained toward tumor angiogenesis and vascular permeability. FAK has been also involved in cancer stem cells (CSCs)-mediated initiation, maintenance and therapeutic responses of breast tumors. In addition, the potential of FAK to elicit breast tumor-promoting effects has been even associated with the capability to modulate immune responses. On the basis of these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. Here, we recapitulate the multifaceted action exerted by FAK and its prognostic significance in breast cancer. Moreover, we highlight the recent clinical evidence regarding the usefulness of FAK inhibitors in the treatment of breast tumors.
Collapse
Affiliation(s)
- Damiano Cosimo Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Jorge Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| |
Collapse
|
42
|
Groendyke BJ, Nabet B, Mohardt ML, Zhang H, Peng K, Koide E, Coffey CR, Che J, Scott DA, Bass AJ, Gray NS. Discovery of a Pyrimidothiazolodiazepinone as a Potent and Selective Focal Adhesion Kinase (FAK) Inhibitor. ACS Med Chem Lett 2021; 12:30-38. [PMID: 33488961 DOI: 10.1021/acsmedchemlett.0c00338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
Focal adhesion kinase (FAK) is a tyrosine kinase with prominent roles in protein scaffolding, migration, angiogenesis, and anchorage-independent cell survival and is an attractive target for the development of cancer therapeutics. However, current FAK inhibitors display dual kinase inhibition and/or significant activity on several kinases. Although multitargeted activity is at times therapeutically advantageous, such behavior can also lead to toxicity and confound chemical-biology studies. We report a novel series of small molecules based on a tricyclic pyrimidothiazolodiazepinone core that displays both high potency and selectivity for FAK. Structure-activity relationship (SAR) studies explored modifications to the thiazole, diazepinone, and aniline "tail," which identified lead compound BJG-03-025. BJG-03-025 displays potent biochemical FAK inhibition (IC50 = 20 nM), excellent kinome selectivity, activity in 3D-culture breast and gastric cancer models, and favorable pharmacokinetic properties in mice. BJG-03-025 is a valuable chemical probe for evaluation of FAK-dependent biology.
Collapse
Affiliation(s)
- Brian J. Groendyke
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mikaela L. Mohardt
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Haisheng Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ke Peng
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eriko Koide
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Calvin R. Coffey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - David A. Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Adam J. Bass
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
43
|
The Crosstalk between FAK and Wnt Signaling Pathways in Cancer and Its Therapeutic Implication. Int J Mol Sci 2020; 21:ijms21239107. [PMID: 33266025 PMCID: PMC7730291 DOI: 10.3390/ijms21239107] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Focal adhesion kinase (FAK) and Wnt signaling pathways are important contributors to tumorigenesis in several cancers. While most results come from studies investigating these pathways individually, there is increasing evidence of a functional crosstalk between both signaling pathways during development and tumor progression. A number of FAK-Wnt interactions are described, suggesting an intricate, context-specific, and cell type-dependent relationship. During development for instance, FAK acts mainly upstream of Wnt signaling; and although in intestinal homeostasis and mucosal regeneration Wnt seems to function upstream of FAK signaling, FAK activates the Wnt/β-catenin signaling pathway during APC-driven intestinal tumorigenesis. In breast, lung, and pancreatic cancers, FAK is reported to modulate the Wnt signaling pathway, while in prostate cancer, FAK is downstream of Wnt. In malignant mesothelioma, FAK and Wnt show an antagonistic relationship: Inhibiting FAK signaling activates the Wnt pathway and vice versa. As the identification of effective Wnt inhibitors to translate in the clinical setting remains an outstanding challenge, further understanding of the functional interaction between Wnt and FAK could reveal new therapeutic opportunities and approaches greatly needed in clinical oncology. In this review, we summarize some of the most relevant interactions between FAK and Wnt in different cancers, address the current landscape of Wnt- and FAK-targeted therapies in different clinical trials, and discuss the rationale for targeting the FAK-Wnt crosstalk, along with the possible translational implications.
Collapse
|
44
|
Zhang Y, Liu S, Zhou S, Yu D, Gu J, Qin Q, Cheng Y, Sun X. Focal adhesion kinase: Insight into its roles and therapeutic potential in oesophageal cancer. Cancer Lett 2020; 496:93-103. [PMID: 33038490 DOI: 10.1016/j.canlet.2020.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Oesophageal cancer is associated with high morbidity and mortality rates because it is highly invasive and prone to recurrence and metastasis, with a five-year survival rate of <20%. Therefore, there is an urgent need for new methods aimed at improving therapeutic intervention. Several studies have shown that targeted therapy may be effective for the treatment of oesophageal cancer. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase with kinase activity and scaffolding function, could be overexpressed in a variety of solid tumours, including oesophageal cancer. FAK participates in survival, proliferation, progression, adhesion, invasion, migration, epithelial-to-mesenchymal transition, angiogenesis, DNA damage repair, and other biological processes through multiple signalling pathways in cancer cells. It plays an important role in the occurrence and development of tumours and has been linked to the prognosis of oesophageal cancer. FAK has been suggested as a potential therapeutic target in oesophageal cancer; thus, the combination of FAK inhibitors with chemotherapy, radiotherapy, and immunotherapy is expected to prolong the survival of patients. This paper presents a brief overview of the structure of FAK and its potential role in oesophageal cancer, providing a rationale for the future application of FAK inhibitors in the treatment of the disease.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Shu Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Shu Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Dandan Yu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Junjie Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Qin Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Yu Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China.
| |
Collapse
|
45
|
Contartese D, Salamanna F, Veronesi F, Fini M. Relevance of humanized three-dimensional tumor tissue models: a descriptive systematic literature review. Cell Mol Life Sci 2020; 77:3913-3944. [PMID: 32285137 PMCID: PMC11104864 DOI: 10.1007/s00018-020-03513-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Despite numerous advances in tumor screening, diagnosis, and treatment, to date, tumors remain one of the leading causes of death, principally due to metastasis and the physiological damage produced by tumor growth. Among the main limits related to the study of tumor physiology there is the complex and heterogeneity nature of its environment and the absence of relevant, simple and inexpensive models able to mimic the biological processes occurring in patients allowing the correct clinical translation of results. To enhance the understanding of the mechanisms of tumors and to develop and evaluate new therapeutic approaches the set-up of advanced and alternative models is mandatory. One of the more translational approaches seems to be the use of humanized three-dimensional (3D) tissue culture. This model allows to accurately mimic tumor morphology and biology, maintaining the native microenvironment without any manipulation. However, little is still known on the real clinical relevance of these models for the study of tumor mechanisms and for the screening of new therapy. The aim of this descriptive systematic literature review was to evaluate and summarize the current knowledge on human 3D tumor tissue culture models. We reviewed the strategies employed by researchers to set-up these systems, also considering the different approaches and culture conditions used. All these aspects greatly contribute to the existing knowledge on tumors, providing a specific link to clinical scenarios and making the humanized 3D tumor tissue models a more attractive tool both for researchers and clinicians.
Collapse
Affiliation(s)
- D Contartese
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Francesca Salamanna
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy.
| | - F Veronesi
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - M Fini
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
46
|
Lorusso G, Rüegg C, Kuonen F. Targeting the Extra-Cellular Matrix-Tumor Cell Crosstalk for Anti-Cancer Therapy: Emerging Alternatives to Integrin Inhibitors. Front Oncol 2020; 10:1231. [PMID: 32793493 PMCID: PMC7387567 DOI: 10.3389/fonc.2020.01231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network composed of a multitude of different macromolecules. ECM components typically provide a supportive structure to the tissue and engender positional information and crosstalk with neighboring cells in a dynamic reciprocal manner, thereby regulating tissue development and homeostasis. During tumor progression, tumor cells commonly modify and hijack the surrounding ECM to sustain anchorage-dependent growth and survival, guide migration, store pro-tumorigenic cell-derived molecules and present them to enhance receptor activation. Thereby, ECM potentially supports tumor progression at various steps from initiation, to local growth, invasion, and systemic dissemination and ECM-tumor cells interactions have long been considered promising targets for cancer therapy. Integrins represent key surface receptors for the tumor cell to sense and interact with the ECM. Yet, attempts to therapeutically impinge on these interactions using integrin inhibitors have failed to deliver anticipated results, and integrin inhibitors are still missing in the emerging arsenal of drugs for targeted therapies. This paradox situation should urge the field to reconsider the role of integrins in cancer and their targeting, but also to envisage alternative strategies. Here, we review the therapeutic targets implicated in tumor cell adhesion to the ECM, whose inhibitors are currently in clinical trials and may offer alternatives to integrin inhibition.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
47
|
Jin W. The Role of Tyrosine Kinases as a Critical Prognostic Parameter and Its Targeted Therapies in Ewing Sarcoma. Front Cell Dev Biol 2020; 8:613. [PMID: 32754598 PMCID: PMC7381324 DOI: 10.3389/fcell.2020.00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (ES) is a rare, highly aggressive, bone, or soft tissue-associated tumor. Although this sarcoma often responds well to initial chemotherapy, 40% of the patients develop a lethal recurrence of the disease, with death recorded in 75-80% of patients with metastatic ES within 5 years, despite receiving high-dose chemotherapy. ES is genetically well-characterized, as indicated by the EWS-FLI1 fusion protein encoded as a result of chromosomal translocation in 80-90% of patients with ES, as well as in ES-related cancer cell lines. Recently, tyrosine kinases have been identified in the pathogenesis of ES. These tyrosine kinases, acting as oncoproteins, are associated with the clinical pathogenesis, metastasis, acquisition of self-renewal traits, and chemoresistance of ES, through the activation of various intracellular signaling pathways. This review describes the recent progress related to cellular and molecular functional roles of tyrosine kinases in the progression of ES.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
48
|
Coy S, Rashid R, Stemmer-Rachamimov A, Santagata S. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol 2020; 139:643-665. [PMID: 31161239 PMCID: PMC7038792 DOI: 10.1007/s00401-019-02029-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022]
Abstract
Neurofibromatosis type II (NF2) is a tumor predisposition syndrome characterized by the development of distinctive nervous system lesions. NF2 results from loss-of-function alterations in the NF2 gene on chromosome 22, with resultant dysfunction of its protein product merlin. NF2 is most commonly associated with the development of bilateral vestibular schwannomas; however, patients also have a predisposition to development of other tumors including meningiomas, ependymomas, and peripheral, spinal, and cranial nerve schwannomas. Patients may also develop other characteristic manifestations such as ocular lesions, neuropathies, meningioangiomatosis, and glial hamartia. NF2 has a highly variable clinical course, with some patients exhibiting a severe phenotype and development of multiple tumors at an early age, while others may be nearly asymptomatic throughout their lifetime. Despite the high morbidity associated with NF2 in severe cases, management of NF2-associated lesions primarily consists of surgical resection and treatment of symptoms, and there are currently no FDA-approved systemic therapies that address the underlying biology of the syndrome. Refinements to the diagnostic criteria of NF2 have been proposed over time due to increasing understanding of clinical and molecular data. Large-population studies have demonstrated that some features such as the development of gliomas and neurofibromas, currently included as diagnostic criteria, may require further clarification and modification. Meanwhile, burgeoning insights into the molecular biology of NF2 have shed light on the etiology and highly variable severity of the disease and suggested numerous putative molecular targets for therapeutic intervention. Here, we review the clinicopathologic features of NF2, current understanding of the molecular biology of NF2, particularly with regard to central nervous system lesions, ongoing therapeutic studies, and avenues for further research.
Collapse
Affiliation(s)
- Shannon Coy
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rumana Rashid
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
| | - Anat Stemmer-Rachamimov
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Sandro Santagata
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA.
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Laboratory for Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA.
- Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
49
|
Mohanty A, Pharaon RR, Nam A, Salgia S, Kulkarni P, Massarelli E. FAK-targeted and combination therapies for the treatment of cancer: an overview of phase I and II clinical trials. Expert Opin Investig Drugs 2020; 29:399-409. [DOI: 10.1080/13543784.2020.1740680] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Atish Mohanty
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Rebecca R Pharaon
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Arin Nam
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Sabrina Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Erminia Massarelli
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
50
|
de Jonge MJA, Steeghs N, Lolkema MP, Hotte SJ, Hirte HW, van der Biessen DAJ, Abdul Razak AR, De Vos FYFL, Verheijen RB, Schnell D, Pronk LC, Jansen M, Siu LL. Phase I Study of BI 853520, an Inhibitor of Focal Adhesion Kinase, in Patients with Advanced or Metastatic Nonhematologic Malignancies. Target Oncol 2020; 14:43-55. [PMID: 30756308 PMCID: PMC6407740 DOI: 10.1007/s11523-018-00617-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Overexpression/activation of focal adhesion kinase (FAK) in human malignancies has led to its evaluation as a therapeutic target. We report the first-in-human phase I study of BI 853520, a novel, potent, highly selective FAK inhibitor. OBJECTIVE Our objectives were to identify the maximum tolerated dose (MTD), and to evaluate safety, pharmacokinetics (PK), pharmacodynamics (PD), biomarker expression, and preliminary activity. PATIENTS AND METHODS The study comprised a standard 3 + 3 dose-escalation phase followed by an expansion phase in patients with selected advanced, nonhematologic malignancies. RESULTS Thirty-three patients received BI 853520 in the dose-escalation phase; the MTD was 200 mg once daily (QD). Dose-limiting toxicities included proteinuria and fatigue, both of which were grade 3. Preliminary PK data supported QD dosing. In the expansion cohort, 63 patients received BI 853520 200 mg QD. Drug-related adverse events (AEs) in > 10% of patients included proteinuria (57%), nausea (57%), fatigue (51%), diarrhea (48%), vomiting (40%), decreased appetite (19%), and peripheral edema (16%). Most AEs were grade 1-2; grade 3 proteinuria, reported in 13 patients (21%), was generally reversible upon treatment interruption. Nineteen patients underwent dose reduction due to AEs, and three drug-related serious AEs were reported, none of which were fatal. Preliminary PD analysis indicated target engagement. Of 63 patients, 49 were evaluable; 17 (27%) achieved a best response of stable disease (4 with 150 + days), and 32 (51%) patients had progressive disease. CONCLUSIONS BI 853520 has a manageable and acceptable safety profile, favorable PK, and modest antitumor activity at an MTD of 200 mg QD in patients with selected advanced nonhematologic malignancies. CLINICALTRIALS. GOV IDENTIFIER NCT01335269.
Collapse
Affiliation(s)
- Maja J A de Jonge
- Department of Internal Oncology, Erasmus Medical Centre Cancer Institute, Dr. Molenwaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 12, 11066 CX, Amsterdam, The Netherlands
| | - Martijn P Lolkema
- Department of Internal Oncology, Erasmus Medical Centre Cancer Institute, Dr. Molenwaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Medical Oncology, University Medical Center Utrecht, Utrecht Cancer Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Sebastien J Hotte
- Division of Medical Oncology, Juravinski Cancer Centre, 3rd Floor, 699 Concession Street, Hamilton, ON, L8V 5C2, Canada
| | - Hal W Hirte
- Division of Medical Oncology, Juravinski Cancer Centre, 3rd Floor, 699 Concession Street, Hamilton, ON, L8V 5C2, Canada
| | - Diane A J van der Biessen
- Department of Internal Oncology, Erasmus Medical Centre Cancer Institute, Dr. Molenwaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Albiruni R Abdul Razak
- Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Avenue, Suite 5-718, Toronto, ON, M5G 2M9, Canada
| | - Filip Y F L De Vos
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht Cancer Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Remy B Verheijen
- Department of Medical Oncology and Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 12, 11066 CX, Amsterdam, The Netherlands
| | - David Schnell
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str 65, 88397, Biberach, Germany
| | - Linda C Pronk
- Clinical Development Oncology, Boehringer Ingelheim España S.A., Parque Empresarial Alvento, Via de los Poblados, 1 Planta Baja-Edif. B Ofic. A y C, 28033, Madrid, Spain
| | - Monique Jansen
- Medical Department, Boehringer Ingelheim BV, Comeniusstraat 6, 1817 MS Alkmaar, PO Box 8037, 1802 KA, Aklmaar, The Netherlands
| | - Lillian L Siu
- Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Avenue, Suite 5-718, Toronto, ON, M5G 2M9, Canada
| |
Collapse
|