1
|
Ling EM, Lemos JRN, Hirani K, von Herrath M. Type 1 diabetes: immune pathology and novel therapeutic approaches. Diabetol Int 2024; 15:761-776. [PMID: 39469552 PMCID: PMC11512973 DOI: 10.1007/s13340-024-00748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/17/2024] [Indexed: 10/30/2024]
Abstract
Type 1 diabetes (T1D) is characterized by the progressive destruction of insulin-producing beta cells in the pancreas. Despite improvements in insulin monitoring techniques, there remains no cure for T1D. Individuals with T1D require lifelong insulin therapy and some develop life-threatening complications. T1D is a complex, multifactorial, autoimmune condition. Understanding why people get T1D and how it progresses has advanced our knowledge of the disease and led to the discovery of specific targets that can be therapeutically manipulated to halt or reverse the course of T1D. Scientists investigating the potential of immunotherapy treatment for the treatment have recently had some encouraging results. Teplizumab, an anti-CD3 monoclonal antibody that has been approved by the FDA, delays the onset of clinical T1D in patients ≥ 8 years of age with preclinical T1D and improves beta cell function. Therapies targeting beta cell health, vitality, and function are now thought to be an essential component of successful combination therapy for T1D. The idea that the beta cells themselves may influence their own destruction during the development of T1D is a notion that has recently been gaining acceptance in the field. Researchers have recently made remarkable strides in beta cell replacement therapy and beta cell regeneration techniques. This review offers a detailed exploration of the pathophysiological mechanisms of T1D. It discusses the intricate interplay of factors leading to T1D development and the innovative approaches being explored to discover new treatments and a cure for the millions of people living with T1D worldwide.
Collapse
Affiliation(s)
- Eleanor M. Ling
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
| | - Joana R. N. Lemos
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Khemraj Hirani
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Matthias von Herrath
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
2
|
Zeller I, Weiss A, Arnolds S, Schütte-Borkovec K, Arabi S, von dem Berge T, Casteels K, Hommel A, Kordonouri O, Larsson HE, Lundgren M, Rochtus A, Snape MD, Szypowka A, Vatish M, Winkler C, Bonifacio E, Ziegler AG. Infection episodes and islet autoantibodies in children at increased risk for type 1 diabetes before and during the COVID-19 pandemic. Infection 2024:10.1007/s15010-024-02312-y. [PMID: 38874748 DOI: 10.1007/s15010-024-02312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVES To determine the impact of the COVID-19 pandemic on the incidence rates of infection and islet autoimmunity in children at risk for type 1 diabetes. METHODS 1050 children aged 4 to 7 months with an elevated genetic risk for type 1 diabetes were recruited from Germany, Poland, Sweden, Belgium and the UK. Reported infection episodes and islet autoantibody development were monitored until age 40 months from February 2018 to February 2023. RESULTS The overall infection rate was 311 (95% Confidence Interval [CI], 304-318) per 100 person years. Infection rates differed by age, country, family history of type 1 diabetes, and period relative to the pandemic. Total infection rates were 321 per 100 person-years (95% CI 304-338) in the pre-pandemic period (until February 2020), 160 (95% CI 148-173) per 100 person-years in the first pandemic year (March 2020-February 2021; P < 0.001) and 337 (95% CI 315-363) per 100 person-years in subsequent years. Similar trends were observed for respiratory and gastrointestinal infections. Islet autoantibody incidence rates were 1.6 (95% CI 1.0-2.4) per 100 person-years in the pre-pandemic period, 1.2 (95% CI 0.8-1.9) per 100 person-years in the first pandemic year (P = 0.46), and 3.4 (95% CI 2.3-4.8) per 100 person-years in subsequent years (P = 0.005 vs. pre-pandemic year; P < 0.001 vs. first pandemic year). CONCLUSIONS The COVID-19 pandemic was associated with significantly altered infection patterns. Islet autoantibody incidence rates increased two-fold when infection rates returned to pre-pandemic levels.
Collapse
Affiliation(s)
- Ivo Zeller
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Heidemannstrasse 1, 80939, Munich, Germany
| | - Andreas Weiss
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Heidemannstrasse 1, 80939, Munich, Germany
| | - Stefanie Arnolds
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Heidemannstrasse 1, 80939, Munich, Germany
| | - Katharina Schütte-Borkovec
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Heidemannstrasse 1, 80939, Munich, Germany
| | - Sari Arabi
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Louvain, Belgium
- Department of Development and Regeneration, KU Leuven, Louvain, Belgium
| | - Angela Hommel
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Olga Kordonouri
- Kinder- Und Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Helena Elding Larsson
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Paediatrics, Skåne University Hospital, Malmö/Lund, Sweden
| | - Markus Lundgren
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - Anne Rochtus
- Department of Pediatrics, University Hospitals Leuven, Louvain, Belgium
- Department of Development and Regeneration, KU Leuven, Louvain, Belgium
| | - Matthew D Snape
- Oxford Vaccine Group, University of Oxford Department of Paediatrics, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, Oxford, UK
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Heidemannstrasse 1, 80939, Munich, Germany
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus, Faculty of Medicine, TU, Dresden, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Heidemannstrasse 1, 80939, Munich, Germany.
- Forschergruppe Diabetes E.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany.
- Forschergruppe Diabetes, School of Medicine, Klinikum Rechts Der Isar, Technical University Munich, Munich, Germany.
| |
Collapse
|
3
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Ziegler AG. The countdown to type 1 diabetes: when, how and why does the clock start? Diabetologia 2023:10.1007/s00125-023-05927-2. [PMID: 37231274 DOI: 10.1007/s00125-023-05927-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 05/27/2023]
Abstract
'The clock to type 1 diabetes has started when islet antibodies are first detected', commented George Eisenbarth with regard to the pathogenesis of type 1 diabetes. This review focuses on 'starting the clock', i.e. the initiation of pre-symptomatic islet autoimmunity/the first appearance of islet autoantibodies. In particular, this review addresses why susceptibility to developing islet autoimmunity is greatest in the first 2 years of life and why beta cells are a frequent target of the immune system during this fertile period. A concept for the development of beta cell autoimmunity in childhood is discussed and three factors are highlighted that contribute to this early predisposition: (1) high beta cell activity and potential vulnerability to stress; (2) high rates of and first exposures to infection; and (3) a heightened immune response, with a propensity for T helper type 1 (Th1) immunity. Arguments are presented that beta cell injury, accompanied by activation of an inflammatory immune response, precedes the initiation of autoimmunity. Finally, the implications for strategies aimed at primary prevention for a world without type 1 diabetes are discussed.
Collapse
Affiliation(s)
- Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany.
- Forschergruppe Diabetes, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany.
| |
Collapse
|
5
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Functional Impact of Risk Gene Variants on the Autoimmune Responses in Type 1 Diabetes. Front Immunol 2022; 13:886736. [PMID: 35603161 PMCID: PMC9114814 DOI: 10.3389/fimmu.2022.886736] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that develops in the interplay between genetic and environmental factors. A majority of individuals who develop T1D have a HLA make up, that accounts for 50% of the genetic risk of disease. Besides these HLA haplotypes and the insulin region that importantly contribute to the heritable component, genome-wide association studies have identified many polymorphisms in over 60 non-HLA gene regions that also contribute to T1D susceptibility. Combining the risk genes in a score (T1D-GRS), significantly improved the prediction of disease progression in autoantibody positive individuals. Many of these minor-risk SNPs are associated with immune genes but how they influence the gene and protein expression and whether they cause functional changes on a cellular level remains a subject of investigation. A positive correlation between the genetic risk and the intensity of the peripheral autoimmune response was demonstrated both for HLA and non-HLA genetic risk variants. We also observed epigenetic and genetic modulation of several of these T1D susceptibility genes in dendritic cells (DCs) treated with vitamin D3 and dexamethasone to acquire tolerogenic properties as compared to immune activating DCs (mDC) illustrating the interaction between genes and environment that collectively determines risk for T1D. A notion that targeting such genes for therapeutic modulation could be compatible with correction of the impaired immune response, inspired us to review the current knowledge on the immune-related minor risk genes, their expression and function in immune cells, and how they may contribute to activation of autoreactive T cells, Treg function or β-cell apoptosis, thus contributing to development of the autoimmune disease.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jaap Jan Zwaginga
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Bart O Roep
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tatjana Nikolic
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
How benign autoimmunity becomes detrimental in type 1 diabetes. Proc Natl Acad Sci U S A 2021; 118:2116508118. [PMID: 34697240 DOI: 10.1073/pnas.2116508118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
|
7
|
Tessier N, Moawad F, Amri N, Brambilla D, Martel C. Focus on the Lymphatic Route to Optimize Drug Delivery in Cardiovascular Medicine. Pharmaceutics 2021; 13:1200. [PMID: 34452161 PMCID: PMC8398144 DOI: 10.3390/pharmaceutics13081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
While oral agents have been the gold standard for cardiovascular disease therapy, the new generation of treatments is switching to other administration options that offer reduced dosing frequency and more efficacy. The lymphatic network is a unidirectional and low-pressure vascular system that is responsible for the absorption of interstitial fluids, molecules, and cells from the peripheral tissue, including the skin and the intestines. Targeting the lymphatic route for drug delivery employing traditional or new technologies and drug formulations is exponentially gaining attention in the quest to avoid the hepatic first-pass effect. The present review will give an overview of the current knowledge on the involvement of the lymphatic vessels in drug delivery in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Fatma Moawad
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nada Amri
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| |
Collapse
|
8
|
Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:1-80. [PMID: 33832648 DOI: 10.1016/bs.ircmb.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic β-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic β-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in β-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in β-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and β-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.
Collapse
|
9
|
Ke Q, Kroger CJ, Clark M, Tisch RM. Evolving Antibody Therapies for the Treatment of Type 1 Diabetes. Front Immunol 2021; 11:624568. [PMID: 33679717 PMCID: PMC7930374 DOI: 10.3389/fimmu.2020.624568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) is widely considered to be a T cell driven autoimmune disease resulting in reduced insulin production due to dysfunction/destruction of pancreatic β cells. Currently, there continues to be a need for immunotherapies that selectively reestablish persistent β cell-specific self-tolerance for the prevention and remission of T1D in the clinic. The utilization of monoclonal antibodies (mAb) is one strategy to target specific immune cell populations inducing autoimmune-driven pathology. Several mAb have proven to be clinically safe and exhibit varying degrees of efficacy in modulating autoimmunity, including T1D. Traditionally, mAb therapies have been used to deplete a targeted cell population regardless of antigenic specificity. However, this treatment strategy can prove detrimental resulting in the loss of acquired protective immunity. Nondepleting mAb have also been applied to modulate the function of immune effector cells. Recent studies have begun to define novel mechanisms associated with mAb-based immunotherapy that alter the function of targeted effector cell pools. These results suggest short course mAb therapies may have persistent effects for regaining and maintaining self-tolerance. Furthermore, the flexibility to manipulate mAb properties permits the development of novel strategies to target multiple antigens and/or deliver therapeutic drugs by a single mAb molecule. Here, we discuss current and potential future therapeutic mAb treatment strategies for T1D, and T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Clark M, Kroger CJ, Ke Q, Tisch RM. The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Front Immunol 2021; 11:615371. [PMID: 33603744 PMCID: PMC7884625 DOI: 10.3389/fimmu.2020.615371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
T cell receptor (TCR) signaling influences multiple aspects of CD4+ and CD8+ T cell immunobiology including thymic development, peripheral homeostasis, effector subset differentiation/function, and memory formation. Additional T cell signaling cues triggered by co-stimulatory molecules and cytokines also affect TCR signaling duration, as well as accessory pathways that further shape a T cell response. Type 1 diabetes (T1D) is a T cell-driven autoimmune disease targeting the insulin producing β cells in the pancreas. Evidence indicates that dysregulated TCR signaling events in T1D impact the efficacy of central and peripheral tolerance-inducing mechanisms. In this review, we will discuss how the strength and nature of TCR signaling events influence the development of self-reactive T cells and drive the progression of T1D through effects on T cell gene expression, lineage commitment, and maintenance of pathogenic anti-self T cell effector function.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells 2020; 9:cells9081835. [PMID: 32759843 PMCID: PMC7465050 DOI: 10.3390/cells9081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.
Collapse
|
12
|
Thomaidou S, Kracht MJL, van der Slik A, Laban S, de Koning EJ, Carlotti F, Hoeben RC, Roep BO, Zaldumbide A. β-Cell Stress Shapes CTL Immune Recognition of Preproinsulin Signal Peptide by Posttranscriptional Regulation of Endoplasmic Reticulum Aminopeptidase 1. Diabetes 2020; 69:670-680. [PMID: 31896552 DOI: 10.2337/db19-0984] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/28/2019] [Indexed: 11/13/2022]
Abstract
The signal peptide of preproinsulin is a major source for HLA class I autoantigen epitopes implicated in CD8 T cell (CTL)-mediated β-cell destruction in type 1 diabetes (T1D). Among them, the 10-mer epitope located at the C-terminal end of the signal peptide was found to be the most prevalent in patients with recent-onset T1D. While the combined action of signal peptide peptidase and endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) is required for processing of the signal peptide, the mechanisms controlling signal peptide trimming and the contribution of the T1D inflammatory milieu on these mechanisms are unknown. Here, we show in human β-cells that ER stress regulates ERAP1 gene expression at posttranscriptional level via the IRE1α/miR-17-5p axis and demonstrate that inhibition of the IRE1α activity impairs processing of preproinsulin signal peptide antigen and its recognition by specific autoreactive CTLs during inflammation. These results underscore the impact of ER stress in the increased visibility of β-cells to the immune system and position the IRE1α/miR-17 pathway as a central component in β-cell destruction processes and as a potential target for the treatment of autoimmune T1D.
Collapse
Affiliation(s)
- Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria J L Kracht
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arno van der Slik
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Sandra Laban
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Eelco J de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Francoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
13
|
Luo Z, Soläng C, Mejia‐Cordova M, Thorvaldson L, Blixt M, Sandler S, Singh K. Kinetics of immune cell responses in the multiple low-dose streptozotocin mouse model of type 1 diabetes. FASEB Bioadv 2019; 1:538-549. [PMID: 32123849 PMCID: PMC6996374 DOI: 10.1096/fba.2019-00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/12/2019] [Accepted: 07/19/2019] [Indexed: 12/30/2022] Open
Abstract
In type 1 diabetes (T1D), the insulin-producing β cells are destructed by immune mechanisms. It has been hypothesized that the very first immune response in T1D onset comes from innate immune cells, which further activates the adaptive immune cells to attack the islets. Despite intensive research on characterization of islet-infiltrating immune cells, the kinetics of different immune cells in multiple low-dose streptozotocin (MLDSTZ)-induced T1D mouse model is still much unclear. Therefore, we investigated the proportions of innate immune cells such as neutrophils, dendritic cells (DCs), plasmacytoid dendritic cells (pDCs), macrophages, natural killer (NK) cells, and adaptive immune cells (T and B lymphocytes) in thymi, pancreatic-draining lymph nodes, and spleens of MLDSTZ mice on days 3, 7, 10, and 21 after the first injection of STZ by flow cytometry. The proportions of DCs and B cells were increased from day 3, while the proportions of B-1a lymphocytes and interferon-γ+ cells among NK cells were increased, but NK cells were decreased on day 10 in MLDSTZ-treated mice, illustrating that the initial immune response is induced by DCs and B cells. Later, the proportions of T helper 1 and cytotoxic T cells were increased from day 7, suggesting that the innate immune cells precede adaptive immune cell response in MLDSTZ mice. Altogether, our data demonstrate a possible sequence of events regarding the involvement of DCs, pDCs, NK cells, B-1a lymphocytes, B, and T cells at the early stage of T1D development.
Collapse
Affiliation(s)
- Zhengkang Luo
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Charlotte Soläng
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | | | - Lina Thorvaldson
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Martin Blixt
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Stellan Sandler
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Kailash Singh
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
14
|
Mattner J, Mohammed JP, Fusakio ME, Giessler C, Hackstein CP, Opoka R, Wrage M, Schey R, Clark J, Fraser HI, Rainbow DB, Wicker LS. Genetic and functional data identifying Cd101 as a type 1 diabetes (T1D) susceptibility gene in nonobese diabetic (NOD) mice. PLoS Genet 2019; 15:e1008178. [PMID: 31199784 PMCID: PMC6568395 DOI: 10.1371/journal.pgen.1008178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic multi-factorial disorder characterized by the immune-mediated destruction of insulin-producing pancreatic beta cells. Variations at a large number of genes influence susceptibility to spontaneous autoimmune T1D in non-obese diabetic (NOD) mice, one of the most frequently studied animal models for human disease. The genetic analysis of these mice allowed the identification of many insulin-dependent diabetes (Idd) loci and candidate genes, one of them being Cd101. CD101 is a heavily glycosylated transmembrane molecule which exhibits negative-costimulatory functions and promotes regulatory T (Treg) function. It is abundantly expressed on subsets of lymphoid and myeloid cells, particularly within the gastrointestinal tract. We have recently reported that the genotype-dependent expression of CD101 correlates with a decreased susceptibility to T1D in NOD.B6 Idd10 congenic mice compared to parental NOD controls. Here we show that the knockout of CD101 within the introgressed B6-derived Idd10 region increased T1D frequency to that of the NOD strain. This loss of protection from T1D was paralleled by decreased Gr1-expressing myeloid cells and FoxP3+ Tregs and an enhanced accumulation of CD4-positive over CD8-positive T lymphocytes in pancreatic tissues. As compared to CD101+/+ NOD.B6 Idd10 donors, adoptive T cell transfers from CD101-/- NOD.B6 Idd10 mice increased T1D frequency in lymphopenic NOD scid and NOD.B6 Idd10 scid recipients. Increased T1D frequency correlated with a more rapid expansion of the transferred CD101-/- T cells and a lower proportion of recipient Gr1-expressing myeloid cells in the pancreatic lymph nodes. Fewer of the Gr1+ cells in the recipients receiving CD101-/- T cells expressed CD101 and the cells had lower levels of IL-10 and TGF-β mRNA. Thus, our results connect the Cd101 haplotype-dependent protection from T1D to an anti-diabetogenic function of CD101-expressing Tregs and Gr1-positive myeloid cells and confirm the identity of Cd101 as Idd10.
Collapse
Affiliation(s)
- Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Javid P Mohammed
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Michael E Fusakio
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Claudia Giessler
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carl-Philipp Hackstein
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Opoka
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Marius Wrage
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Schey
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Clark
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Heather I Fraser
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Russell MA, Redick SD, Blodgett DM, Richardson SJ, Leete P, Krogvold L, Dahl-Jørgensen K, Bottino R, Brissova M, Spaeth JM, Babon JAB, Haliyur R, Powers AC, Yang C, Kent SC, Derr AG, Kucukural A, Garber MG, Morgan NG, Harlan DM. HLA Class II Antigen Processing and Presentation Pathway Components Demonstrated by Transcriptome and Protein Analyses of Islet β-Cells From Donors With Type 1 Diabetes. Diabetes 2019; 68:988-1001. [PMID: 30833470 PMCID: PMC6477908 DOI: 10.2337/db18-0686] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes studies consistently generate data showing islet β-cell dysfunction and T cell-mediated anti-β-cell-specific autoimmunity. To explore the pathogenesis, we interrogated the β-cell transcriptomes from donors with and without type 1 diabetes using both bulk-sorted and single β-cells. Consistent with immunohistological studies, β-cells from donors with type 1 diabetes displayed increased Class I transcripts and associated mRNA species. These β-cells also expressed mRNA for Class II and Class II antigen presentation pathway components, but lacked the macrophage marker CD68. Immunohistological study of three independent cohorts of donors with recent-onset type 1 diabetes showed Class II protein and its transcriptional regulator Class II MHC trans-activator protein expressed by a subset of insulin+CD68- β-cells, specifically found in islets with lymphocytic infiltrates. β-Cell surface expression of HLA Class II was detected on a portion of CD45-insulin+ β-cells from donors with type 1 diabetes by immunofluorescence and flow cytometry. Our data demonstrate that pancreatic β-cells from donors with type 1 diabetes express Class II molecules on selected cells with other key genes in those pathways and inflammation-associated genes. β-Cell expression of Class II molecules suggests that β-cells may interact directly with islet-infiltrating CD4+ T cells and may play an immunopathogenic role.
Collapse
Affiliation(s)
- Mark A Russell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Sambra D Redick
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - David M Blodgett
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
- Math and Science Division, Babson College, Wellesley, MA
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Pia Leete
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Lars Krogvold
- Pediatric Department, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Pediatric Department, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jason M Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Jenny Aurielle B Babon
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Chaoxing Yang
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Sally C Kent
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Alan G Derr
- Program in Bioinformatics, University of Massachusetts Medical School, Worcester, MA
| | - Alper Kucukural
- Program in Bioinformatics, University of Massachusetts Medical School, Worcester, MA
| | - Manuel G Garber
- Program in Bioinformatics, University of Massachusetts Medical School, Worcester, MA
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - David M Harlan
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
16
|
Rodriguez-Calvo T. Enterovirus infection and type 1 diabetes: unraveling the crime scene. Clin Exp Immunol 2018; 195:15-24. [PMID: 30307605 DOI: 10.1111/cei.13223] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Enteroviruses (EV) have been historically associated to type 1 diabetes. Definitive proof for their implication in disease development is lacking, but growing evidence suggests that they could be involved in beta cell destruction either directly by killing beta cells or indirectly by creating an exacerbated inflammatory response in the islets, capable of attracting autoreactive T cells to the 'scene of the crime'. Epidemiological and serological studies have been associated with the appearance of islet autoimmunity and EV RNA has been detected in prospective studies. In addition, the EV capsid protein has been detected in the islets of recent-onset type 1 diabetic donors, suggesting the existence of a low-grade EV infection that could become persistent. Increasing evidence in the field shows that a 'viral signature' exists in type 1 diabetes and involves interferon responses that could be sustained during prolonged periods. These include the up-regulation of markers such as protein kinase R (PKR), melanoma differentiation-associated protein 5 (MDA5), retinoic acid inducible gene I (RIG-I), myxovirus resistance protein (MxA) and human leukocyte antigen-I (HLA-I) and the release of chemokines able to attract immune cells to the islets leading to insulitis. In this scenario, the hyperexpression of HLA-I molecules would promote antigen presentation to autoreactive T cells, favoring beta cell recognition and, ultimately, destruction. In this review, an overview is provided of the standing evidence that implicates EVs in beta cell 'murder', the time-line of events is investigated from EV entry in the cell to beta cell death and possible accomplices are highlighted that might be involved in beta cell demise.
Collapse
Affiliation(s)
- T Rodriguez-Calvo
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
17
|
Abstract
OBJECTIVE The aim of this study was to identify the distinct pathological changes on the endocrine and exocrine pancreas of slowly progressive insulin-dependent diabetes mellitus (SPIDDM) or latent autoimmune diabetes in adults. METHODS The pancreases from 12 islet autoantibody-positive SPIDDM patients and 19 age-matched subjects with no diabetes were examined histologically for islet inflammation/insulitis, expressions of cytokines, and enterovirus VP1 protein, exocrine pancreatic inflammation, pancreatic ductal changes, major histocompatibility complex class I hyperexpression, and amylin-positive amyloid in the islets. RESULTS Insulitis dominant for CD8 T-cells and CD68 macrophages was observed in all SPIDDM cases irrespective of duration of diabetes and weight of residual beta cells. Major histocompatibility complex class I hyperexpression on residual beta cells was observed in SPIDDM. All SPIDDM exocrine pancreases showed extensive inflammation, dilated pancreatic ducts, and periductal fibrosis. As many as 75% (9/12) of pancreases had pancreatic intraepithelial neoplasia, which is assumed to be associated with ductal obstruction/narrowing and exocrine pancreatic inflammation, in SPIDDM. Amylin-positive amyloid deposition was not detected in SPIDDM. CONCLUSIONS Persistent insulitis with preserved beta cells and major histocompatibility complex class I hyperexpression and exocrine pancreatic inflammation with pancreatic intraepithelial neoplasia are distinct histological features of SPIDDM pancreas.
Collapse
|
18
|
Kroger CJ, Clark M, Ke Q, Tisch RM. Therapies to Suppress β Cell Autoimmunity in Type 1 Diabetes. Front Immunol 2018; 9:1891. [PMID: 30166987 PMCID: PMC6105696 DOI: 10.3389/fimmu.2018.01891] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is generally considered to be T cell-driven. Accordingly, most strategies of immunotherapy for T1D prevention and treatment in the clinic have targeted the T cell compartment. To date, however, immunotherapy has had only limited clinical success. Although certain immunotherapies have promoted a protective effect, efficacy is often short-term and acquired immunity may be impacted. This has led to the consideration of combining different approaches with the goal of achieving a synergistic therapeutic response. In this review, we will discuss the status of various T1D therapeutic strategies tested in the clinic, as well as possible combinatorial approaches to restore β cell tolerance.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
19
|
Hassan M, Raslan HM, Eldin HG, Mahmoud E, Elwajed HAEA. CD33 + HLA-DR - Myeloid-Derived Suppressor Cells Are Increased in Frequency in the Peripheral Blood of Type1 Diabetes Patients with Predominance of CD14 + Subset. Open Access Maced J Med Sci 2018. [PMID: 29531593 PMCID: PMC5839437 DOI: 10.3889/oamjms.2018.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION: Type 1 Diabetes Mellitus (T1D) is an autoimmune disease that results from the destruction of insulin-producing beta cells of the pancreas by autoreactive T cells. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that can potently suppress T cell responses. AIM: To detect the presence of MDSCs in T1D and compare their percentage in T1D versus healthy individuals. METHOD: Thirty T1D patients were included in the study. Diabetic patients with nephropathy (n = 18) and diabetic patients without nephropathy (n = 12). A control group of healthy individuals (n = 30) were also included. CD33+ and HLA-DR– markers were used to identify MDSCs by flow cytometry. CD14 positive and negative MDSCs subsets were also identified. RESULTS: MDSCs was significantly increased in T1D than the control group and diabetic patient with nephropathy compared to diabetic patients without nephropathy. M-MDSCs (CD14+ CD33+ HLA–DR−) were the most abundant MDSCs subpopulation in all groups, however their percentage decrease in T1D than the control group. CONCLUSION: MDSCs are increased in the peripheral blood of T1D with a predominance of the CD14+ MDSCs subset. Future studies are needed to test the immune suppression function of MDSCs in T1D.
Collapse
Affiliation(s)
- Mirhane Hassan
- Clinical and Chemical Pathology Department, National Research Center, Dokki, Egypt
| | - Hala M Raslan
- Internal Medicine Department, National Research Center, Dokki, Egypt
| | - Hesham Gamal Eldin
- Clinical and Chemical Pathology Department, National Research Center, Dokki, Egypt
| | - Eman Mahmoud
- Clinical and Chemical Pathology Department, National Research Center, Dokki, Egypt
| | | |
Collapse
|
20
|
Simeonovic CJ, Popp SK, Starrs LM, Brown DJ, Ziolkowski AF, Ludwig B, Bornstein SR, Wilson JD, Pugliese A, Kay TWH, Thomas HE, Loudovaris T, Choong FJ, Freeman C, Parish CR. Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans. PLoS One 2018; 13:e0191360. [PMID: 29415062 PMCID: PMC5802856 DOI: 10.1371/journal.pone.0191360] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstrated that heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shown to be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intra-islet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxide-induced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.
Collapse
Affiliation(s)
- Charmaine J. Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| | - Sarah K. Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lora M. Starrs
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Debra J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andrew F. Ziolkowski
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Barbara Ludwig
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany
| | - J. Dennis Wilson
- Department of Endocrinology, The Canberra Hospital, Woden, Australian Capital Territory, Australia
| | - Alberto Pugliese
- Diabetes Research Institute, Departments of Medicine, Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Thomas W. H. Kay
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Helen E. Thomas
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Thomas Loudovaris
- St Vincent’s Institute of Medical Research, Fitzroy, Melbourne, Victoria, Australia
| | - Fui Jiun Choong
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Craig Freeman
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christopher R. Parish
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
21
|
Odermarsky M, Pesonen E, Sorsa T, Lernmark Å, Pussinen PJ, Liuba P. HLA, infections and inflammation in early stages of atherosclerosis in children with type 1 diabetes. Acta Diabetol 2018; 55:41-47. [PMID: 29064046 PMCID: PMC5794827 DOI: 10.1007/s00592-017-1063-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/26/2017] [Indexed: 01/30/2023]
Abstract
AIMS This prospective study focuses on risk factors for arterial damage in children with type 1 diabetes (T1D). METHODS Eighty children and adolescents with T1D were investigated twice, approximately 2 years apart, for carotid artery intima-media thickness (cIMT) and compliance (CAC), flow-mediated dilatation (FMD) of the brachial artery, and plasma levels of matrix metalloproteinase (MMP)-8. All subjects were genotyped for HLA. The number of respiratory tract infections (RTI) during the past year was obtained by a questionnaire in 56 patients. RESULTS cIMT progression, defined as percentage (%) change of cIMT from baseline, correlated inversely with the % changes of both CAC (p = 0.04, r = - 0.3; n = 62) and FMD (p = 0.03, r = - 0.3; n = 47). In multivariate analysis, RTI frequency correlated significantly with cIMT progression irrespective of age, diabetes duration, BMI, and HbA1c (p = 0.03, r = 0.3). When patients were divided in relation to RTI, the association of DQ2/8 with cIMT progression remained significant in patients with over three infections/year (p = 0.04, r = 0.3). During follow-up, the group of DQ2/8 patients with hsCRP > 1 mg/l showed significantly higher levels of plasma MMP-8 than the non-DQ2/8 group. CONCLUSIONS The diabetes-risk genotype DQ2/8 and systemic inflammation contribute to pro-atherosclerotic vascular changes in children and adolescents with T1D.
Collapse
Affiliation(s)
- Michal Odermarsky
- Department of Paediatric Cardiology, Paediatric Heart Center, Lund University and Skåne University Hospital, 22185, Lund, Sweden
| | - Erkki Pesonen
- Department of Paediatric Cardiology, Paediatric Heart Center, Lund University and Skåne University Hospital, 22185, Lund, Sweden
| | - Timo Sorsa
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Pirkko J Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Petru Liuba
- Department of Paediatric Cardiology, Paediatric Heart Center, Lund University and Skåne University Hospital, 22185, Lund, Sweden.
| |
Collapse
|
22
|
Clark M, Kroger CJ, Tisch RM. Type 1 Diabetes: A Chronic Anti-Self-Inflammatory Response. Front Immunol 2017; 8:1898. [PMID: 29312356 PMCID: PMC5743904 DOI: 10.3389/fimmu.2017.01898] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Inflammation is typically induced in response to a microbial infection. The release of proinflammatory cytokines enhances the stimulatory capacity of antigen-presenting cells, as well as recruits adaptive and innate immune effectors to the site of infection. Once the microbe is cleared, inflammation is resolved by various mechanisms to avoid unnecessary tissue damage. Autoimmunity arises when aberrant immune responses target self-tissues causing inflammation. In type 1 diabetes (T1D), T cells attack the insulin producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by in part altering central and peripheral tolerance inducing events. This results in the development and expansion of β cell-specific effector T cells (Teff) which mediate islet inflammation. Unlike protective immunity where inflammation is terminated, autoimmunity is sustained by chronic inflammation. In this review, we will highlight the key events which initiate and sustain T cell-driven pancreatic islet inflammation in nonobese diabetic mice and in human T1D. Specifically, we will discuss: (i) dysregulation of thymic selection events, (ii) the role of intrinsic and extrinsic factors that enhance the expansion and pathogenicity of Teff, (iii) defects which impair homeostasis and suppressor activity of FoxP3-expressing regulatory T cells, and (iv) properties of β cells which contribute to islet inflammation.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
23
|
Marroqui L, Dos Santos RS, Op de Beeck A, Coomans de Brachène A, Marselli L, Marchetti P, Eizirik DL. Interferon-α mediates human beta cell HLA class I overexpression, endoplasmic reticulum stress and apoptosis, three hallmarks of early human type 1 diabetes. Diabetologia 2017; 60:656-667. [PMID: 28062922 DOI: 10.1007/s00125-016-4201-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Three hallmarks of the pancreatic islets in early human type 1 diabetes are overexpression of HLA class I, endoplasmic reticulum (ER) stress and beta cell apoptosis. The mediators of these phenomena remain to be defined. The type I interferon IFNα is expressed in human islets from type 1 diabetes patients and mediates HLA class I overexpression. We presently evaluated the mechanisms involved in IFNα-induced HLA class I expression in human beta cells and determined whether this cytokine contributes to ER stress and apoptosis. METHODS IFNα-induced inflammation, ER stress and apoptosis were evaluated by RT-PCR, western blot, immunofluorescence and nuclear dyes, and proteins involved in type I interferon signalling were inhibited by small interfering RNAs. All experiments were performed in human islets or human EndoC-βH1 cells. RESULTS IFNα upregulates HLA class I, inflammation and ER stress markers in human beta cells via activation of the candidate gene TYK2, and the transcription factors signal transducer and activator of transcription 2 and IFN regulatory factor 9. Furthermore, it acts synergistically with IL-1β to induce beta cell apoptosis. CONCLUSIONS/INTERPRETATION The innate immune effects induced by IFNα may induce and amplify the adaptive immune response against human beta cells, indicating that IFNα has a central role in the early phases of diabetes.
Collapse
Affiliation(s)
- Laura Marroqui
- ULB Center for Diabetes Research, Campus Erasme, Université Libre de Bruxelles, Route de Lennik, 808-CP618, B-1070, Brussels, Belgium.
| | - Reinaldo S Dos Santos
- ULB Center for Diabetes Research, Campus Erasme, Université Libre de Bruxelles, Route de Lennik, 808-CP618, B-1070, Brussels, Belgium
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Campus Erasme, Université Libre de Bruxelles, Route de Lennik, 808-CP618, B-1070, Brussels, Belgium
| | - Alexandra Coomans de Brachène
- ULB Center for Diabetes Research, Campus Erasme, Université Libre de Bruxelles, Route de Lennik, 808-CP618, B-1070, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Campus Erasme, Université Libre de Bruxelles, Route de Lennik, 808-CP618, B-1070, Brussels, Belgium.
| |
Collapse
|
24
|
Newby BN, Mathews CE. Type I Interferon Is a Catastrophic Feature of the Diabetic Islet Microenvironment. Front Endocrinol (Lausanne) 2017; 8:232. [PMID: 28959234 PMCID: PMC5604085 DOI: 10.3389/fendo.2017.00232] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/25/2017] [Indexed: 01/01/2023] Open
Abstract
A detailed understanding of the molecular pathways and cellular interactions that result in islet beta cell (β cell) destruction is essential for the development and implementation of effective therapies for prevention or reversal of type 1 diabetes (T1D). However, events that define the pathogenesis of human T1D have remained elusive. This gap in our knowledge results from the complex interaction between genetics, the immune system, and environmental factors that precipitate T1D in humans. A link between genetics, the immune system, and environmental factors are type 1 interferons (T1-IFNs). These cytokines are well known for inducing antiviral factors that limit infection by regulating innate and adaptive immune responses. Further, several T1D genetic risk loci are within genes that link innate and adaptive immune cell responses to T1-IFN. An additional clue that links T1-IFN to T1D is that these cytokines are a known constituent of the autoinflammatory milieu within the pancreas of patients with T1D. The presence of IFNα/β is correlated with characteristic MHC class I (MHC-I) hyperexpression found in the islets of patients with T1D, suggesting that T1-IFNs modulate the cross-talk between autoreactive cytotoxic CD8+ T lymphocytes and insulin-producing pancreatic β cells. Here, we review the evidence supporting the diabetogenic potential of T1-IFN in the islet microenvironment.
Collapse
Affiliation(s)
- Brittney N. Newby
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Clayton E. Mathews,
| |
Collapse
|
25
|
Wedgwood KCA, Richardson SJ, Morgan NG, Tsaneva-Atanasova K. Spatiotemporal Dynamics of Insulitis in Human Type 1 Diabetes. Front Physiol 2016; 7:633. [PMID: 28082906 PMCID: PMC5186767 DOI: 10.3389/fphys.2016.00633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disease characterized by the selective destruction of the insulin secreting beta cells in the pancreas during an inflammatory phase known as insulitis. Patients with T1D are typically dependent on the administration of externally provided insulin in order to manage blood glucose levels. Whilst technological developments have significantly improved both the life expectancy and quality of life of these patients, an understanding of the mechanisms of the disease remains elusive. Animal models, such as the NOD mouse model, have been widely used to probe the process of insulitis, but there exist very few data from humans studied at disease onset. In this manuscript, we employ data from human pancreases collected close to the onset of T1D and propose a spatio-temporal computational model for the progression of insulitis in human T1D, with particular focus on the mechanisms underlying the development of insulitis in pancreatic islets. This framework allows us to investigate how the time-course of insulitis progression is affected by altering key parameters, such as the number of the CD20+ B cells present in the inflammatory infiltrate, which has recently been proposed to influence the aggressiveness of the disease. Through the analysis of repeated simulations of our stochastic model, which track the number of beta cells within an islet, we find that increased numbers of B cells in the peri-islet space lead to faster destruction of the beta cells. We also find that the balance between the degradation and repair of the basement membrane surrounding the islet is a critical component in governing the overall destruction rate of the beta cells and their remaining number. Our model provides a framework for continued and improved spatio-temporal modeling of human T1D.
Collapse
Affiliation(s)
- Kyle C. A. Wedgwood
- Centre for Biomedical Modelling and Analysis, University of ExeterExeter, UK
| | | | - Noel G. Morgan
- University of Exeter Medical School, University of ExeterExeter, UK
| | - Krasimira Tsaneva-Atanasova
- College for Engineering, Mathematics and Physical Sciences, University of ExeterExeter, UK
- Engineering and Physical Sciences Research Council Centre for Predictive Modelling in Healthcare, University of ExeterExeter, UK
| |
Collapse
|
26
|
Boldison J, Wong FS. Immune and Pancreatic β Cell Interactions in Type 1 Diabetes. Trends Endocrinol Metab 2016; 27:856-867. [PMID: 27659143 DOI: 10.1016/j.tem.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
The autoimmune destruction of the pancreatic islet β cells is due to a targeted lymphocyte attack. Different T cell subsets communicate with each other and with the insulin-producing β cells in this process, with evidence not only of damage to the tissue cells but also of lymphocyte regulation. Here we explore the various components of the immune response as well as the cellular interactions that are involved in causing or reducing immune damage to the β cells. We consider these in the light of the possibility that understanding them may help us identify therapeutic targets to reduce the damage and destruction leading to type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
27
|
Richardson SJ, Rodriguez-Calvo T, Gerling IC, Mathews CE, Kaddis JS, Russell MA, Zeissler M, Leete P, Krogvold L, Dahl-Jørgensen K, von Herrath M, Pugliese A, Atkinson MA, Morgan NG. Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes. Diabetologia 2016; 59:2448-2458. [PMID: 27506584 PMCID: PMC5042874 DOI: 10.1007/s00125-016-4067-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Human pancreatic beta cells may be complicit in their own demise in type 1 diabetes, but how this occurs remains unclear. One potentially contributing factor is hyperexpression of HLA class I antigens. This was first described approximately 30 years ago, but has never been fully characterised and was recently challenged as artefactual. Therefore, we investigated HLA class I expression at the protein and RNA levels in pancreases from three cohorts of patients with type 1 diabetes. The principal aims were to consider whether HLA class I hyperexpression is artefactual and, if not, to determine the factors driving it. METHODS Pancreas samples from type 1 diabetes patients with residual insulin-containing islets (n = 26) from the Network for Pancreatic Organ donors with Diabetes (nPOD), Diabetes Virus Detection study (DiViD) and UK recent-onset type 1 diabetes collections were immunostained for HLA class I isoforms, signal transducer and activator of transcription 1 (STAT1), NLR family CARD domain containing 5 (NLRC5) and islet hormones. RNA was extracted from islets isolated by laser-capture microdissection from nPOD and DiViD samples and analysed using gene-expression arrays. RESULTS Hyperexpression of HLA class I was observed in the insulin-containing islets of type 1 diabetes patients from all three tissue collections, and was confirmed at both the RNA and protein levels. The expression of β2-microglobulin (a second component required for the generation of functional HLA class I complexes) was also elevated. Both 'classical' HLA class I isoforms (i.e. HLA-ABC) as well as a 'non-classical' HLA molecule, HLA-F, were hyperexpressed in insulin-containing islets. This hyperexpression did not correlate with detectable upregulation of the transcriptional regulator NLRC5. However, it was strongly associated with increased STAT1 expression in all three cohorts. Islet hyperexpression of HLA class I molecules occurred in the insulin-containing islets of patients with recent-onset type 1 diabetes and was also detectable in many patients with disease duration of up to 11 years, declining thereafter. CONCLUSIONS/INTERPRETATION Islet cell HLA class I hyperexpression is not an artefact, but is a hallmark in the immunopathogenesis of type 1 diabetes. The response is closely associated with elevated expression of STAT1 and, together, these occur uniquely in patients with type 1 diabetes, thereby contributing to their selective susceptibility to autoimmune-mediated destruction.
Collapse
Affiliation(s)
- Sarah J Richardson
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| | | | - Ivan C Gerling
- Department of Medicine, University of Tennessee, Memphis, TN, USA
| | - Clayton E Mathews
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - John S Kaddis
- Department of Information Sciences, City of Hope, Duarte, CA, USA
| | - Mark A Russell
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Marie Zeissler
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Pia Leete
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Lars Krogvold
- Paediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Paediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
28
|
Lundberg M, Krogvold L, Kuric E, Dahl-Jørgensen K, Skog O. Expression of Interferon-Stimulated Genes in Insulitic Pancreatic Islets of Patients Recently Diagnosed With Type 1 Diabetes. Diabetes 2016; 65:3104-10. [PMID: 27422384 DOI: 10.2337/db16-0616] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/08/2016] [Indexed: 11/13/2022]
Abstract
A primary insult to the pancreatic islets of Langerhans, leading to the activation of innate immunity, has been suggested as an important step in the inflammatory process in type 1 diabetes (T1D). The aim of this study was to examine whether interferon (IFN)-stimulated genes (ISGs) are overexpressed in human T1D islets affected with insulitis. By using laser capture microdissection and a quantitative PCR array, 23 of 84 examined ISGs were found to be overexpressed by at least fivefold in insulitic islets from living patients with recent-onset T1D, participating in the Diabetes Virus Detection (DiViD) study, compared with islets from organ donors without diabetes. Most of the overexpressed ISGs, including GBP1, TLR3, OAS1, EIF2AK2, HLA-E, IFI6, and STAT1, showed higher expression in the islet core compared with the peri-islet area containing the surrounding immune cells. In contrast, the T-cell attractant chemokine CXCL10 showed an almost 10-fold higher expression in the peri-islet area than in the islet, possibly partly explaining the localization of T cells mainly to this region. In conclusion, insulitic islets from recent-onset T1D subjects show overexpression of ISGs, with an expression pattern similar to that seen in islets infected with virus or exposed to IFN-γ/interleukin-1β or IFN-α.
Collapse
Affiliation(s)
- Marcus Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Enida Kuric
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Sullivan KD, Lewis HC, Hill AA, Pandey A, Jackson LP, Cabral JM, Smith KP, Liggett LA, Gomez EB, Galbraith MD, DeGregori J, Espinosa JM. Trisomy 21 consistently activates the interferon response. eLife 2016; 5:e16220. [PMID: 27472900 PMCID: PMC5012864 DOI: 10.7554/elife.16220] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Although it is clear that trisomy 21 causes Down syndrome, the molecular events acting downstream of the trisomy remain ill defined. Using complementary genomics analyses, we identified the interferon pathway as the major signaling cascade consistently activated by trisomy 21 in human cells. Transcriptome analysis revealed that trisomy 21 activates the interferon transcriptional response in fibroblast and lymphoblastoid cell lines, as well as circulating monocytes and T cells. Trisomy 21 cells show increased induction of interferon-stimulated genes and decreased expression of ribosomal proteins and translation factors. An shRNA screen determined that the interferon-activated kinases JAK1 and TYK2 suppress proliferation of trisomy 21 fibroblasts, and this defect is rescued by pharmacological JAK inhibition. Therefore, we propose that interferon activation, likely via increased gene dosage of the four interferon receptors encoded on chromosome 21, contributes to many of the clinical impacts of trisomy 21, and that interferon antagonists could have therapeutic benefits.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Hannah C Lewis
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
| | - Amanda A Hill
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
| | - Ahwan Pandey
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Leisa P Jackson
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Joseph M Cabral
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
| | - L Alexander Liggett
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
| | - Eliana B Gomez
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - James DeGregori
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, United States
- Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, United States
- Section of Hematology, University of Colorado School of Medicine, Aurora, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, United States
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
30
|
Ruhrman-Shahar N, Torres-Ruiz J, Rotman-Pikielny P, Levy Y. Autoimmune reaction after anti-tetanus vaccination—description of four cases and review of the literature. Immunol Res 2016; 65:157-163. [DOI: 10.1007/s12026-016-8822-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Leete P, Willcox A, Krogvold L, Dahl-Jørgensen K, Foulis AK, Richardson SJ, Morgan NG. Differential Insulitic Profiles Determine the Extent of β-Cell Destruction and the Age at Onset of Type 1 Diabetes. Diabetes 2016; 65:1362-9. [PMID: 26858360 DOI: 10.2337/db15-1615] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/20/2016] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) results from a T cell-mediated destruction of pancreatic β-cells following the infiltration of leukocytes (including CD8(+), CD4(+), and CD20(+) cells) into and around pancreatic islets (insulitis). Recently, we reported that two distinct patterns of insulitis occur in patients with recent-onset T1D from the U.K. and that these differ principally in the proportion of infiltrating CD20(+) B cells (designated CD20Hi and CD20Lo, respectively). We have now extended this analysis to include patients from the Network for Pancreatic Organ Donors with Diabetes (U.S.) and Diabetes Virus Detection (DiViD) study (Norway) cohorts and confirm that the two profiles of insulitis occur more widely. Moreover, we show that patients can be directly stratified according to their insulitic profile and that those receiving a diagnosis before the age of 7 years always display the CD20Hi profile. By contrast, individuals who received a diagnosis beyond the age of 13 years are uniformly defined as CD20Lo. This implies that the two forms of insulitis are differentially aggressive and that patients with a CD20Hi profile lose their β-cells at a more rapid rate. In support of this, we also find that the proportion of residual insulin-containing islets (ICIs) increases in parallel with age at the onset of T1D. Importantly, those receiving a diagnosis in, or beyond, their teenage years retain ∼40% ICIs at diagnosis, implying that a functional deficit rather than an absolute β-cell loss may be causal for disease onset in these patients. We conclude that appropriate patient stratification will be critical for correct interpretation of the outcomes of intervention therapies targeted to islet-infiltrating immune cells in T1D.
Collapse
Affiliation(s)
- Pia Leete
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Abby Willcox
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alan K Foulis
- Department of Pathology, National Health Service Greater Glasgow and Clyde, Southern General Hospital, Glasgow, U.K
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K.
| |
Collapse
|
32
|
Abstract
Type 1 diabetes is a multifactorial disease in which genetic and environmental factors play a key role. The triggering event is still obscure, and so are many of the immune events that follow. In this brief review, we discuss the possible role of potential environmental factors and which triggers are believed to have a role in the disease. In addition, as the disease evolves, beta cells are lost and this occurs in a very heterogeneous fashion. Our knowledge of how beta cell mass declines and our view of the disease’s pathogenesis are also debated. We highlight the major hallmarks of disease, among which are MHC-I (major histocompatibility complex class I) expression and insulitis. The dependence versus independence of antigen for the immune infiltrate is also discussed, as both the influence from bystander T cells and the formation of neo-epitopes through post-translational modifications are thought to influence the course of the disease. As human studies are proliferating, our understanding of the disease’s pathogenesis will increase exponentially. This article aims to shed light on some of the burning questions in type 1 diabetes research.
Collapse
Affiliation(s)
- Gustaf Christoffersson
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037, USA
| | - Teresa Rodriguez-Calvo
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037, USA
| | - Matthias von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037, USA; Novo Nordisk Diabetes Research & Development Center, Seattle, Washington, 98109, USA
| |
Collapse
|
33
|
Expression of human leukocyte antigen class I in endocrine and exocrine pancreatic tissue at onset of type 1 diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:129-38. [PMID: 25524212 DOI: 10.1016/j.ajpath.2014.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 02/08/2023]
Abstract
The cause of type 1 diabetes remains unknown. To dissect the link between hyperexpression of human leukocyte antigen (HLA) class I on the islet cells, we examined its expression in subjects with recent-onset type 1 diabetes. IHC showed seemingly pronounced hyperexpression in subjects with recent-onset type 1 diabetes, as well as in some nondiabetic subjects. In all subjects, HLA class I expression on exocrine tissue was low. However, no difference in the level of HLA class I expression was found between islet and exocrine tissue using Western blot, flow cytometry, real-time quantitative PCR, or RNA sequencing analyses. Also, the level of HLA class I expression on the messenger level was not increased in islets from subjects with recent-onset type 1 diabetes compared with that in nondiabetic subjects. Consistently, the HLA class I specific enhanceosome (NLRC5) and related transcription factors, as well as interferons, were not enhanced in islets from recent-onset type 1 diabetic subjects. In conclusion, a discrepancy in HLA class I expression in islets assessed by IHC was observed compared with that using quantitative techniques showing similar expression of HLA class I in islets and exocrine tissue in subjects with recent-onset type 1 diabetes, nor could any differences be found between type 1 diabetic and nondiabetic subjects. Results presented provide important clues for a better understanding on how this complex disease develops.
Collapse
|
34
|
Abstract
No treatment to halt the progressive loss of insulin-producing beta-cells in type 1 diabetes mellitus has yet been clinically introduced. Strategies tested have at best only transiently preserved beta-cell function and in many cases with obvious side effects of drugs used. Several studies have suggested that mesenchymal stromal cells exert strong immunomodulatory properties with the capability to prevent or halt diabetes development in animal models of type 1 diabetes. A multitude of mechanisms has been forwarded to exert this effect. Recently, we translated this strategy into a first clinical phase I/IIa trial and observed no side effects, and preserved or even increased C-peptide responses to a mixed meal tolerance test during the first year after treatment. Future blinded, larger studies, with extended follow-up, are clearly of interest to investigate this treatment concept.
Collapse
Affiliation(s)
- Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Box 571, 75123, Uppsala, Sweden,
| | | | | |
Collapse
|
35
|
Atkinson MA, von Herrath M, Powers AC, Clare-Salzler M. Current concepts on the pathogenesis of type 1 diabetes--considerations for attempts to prevent and reverse the disease. Diabetes Care 2015; 38:979-88. [PMID: 25998290 PMCID: PMC4439528 DOI: 10.2337/dc15-0144] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL Department of Pediatrics, University of Florida, Gainesville, FL
| | - Matthias von Herrath
- La Jolla Institute for Allergy and Immunology, San Diego, CA Novo Nordisk R&D Center, Seattle, WA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, TN Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN VA Tennessee Valley Healthcare System, Nashville, TN
| | | |
Collapse
|
36
|
Reddy S, Zeng N, Al-Diery H, Jung D, Yeu C, Joret MO, Merrilees MJ, Wu F. Analysis of peri-islet CD45-positive leucocytic infiltrates in long-standing type 1 diabetic patients. Diabetologia 2015; 58:1024-35. [PMID: 25687234 DOI: 10.1007/s00125-015-3519-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS The role of peri-islet CD45-positive leucocytes, as one component of insulitis, in beta cell death during human type 1 diabetes remains unclear. We undertook a case study, comparing and quantifying leucocytes in the peri- and intra-islet areas in insulin-positive and -negative islets, to assess whether peri-islet leucocytes are pathogenic to beta cells during type 1 diabetes. METHODS Pancreatic sections from 12 diabetic patients (0.25-12 years of disease) and 13 non-diabetic individuals with and without autoantibodies were triple-immunostained for islet leucocytes, insulin and glucagon cells. Islets were graded for insulitis, enumerated and mapped for the spatial distribution of leucocytes in peri- and intra-islet areas in relation to insulin- and glucagon-immunopositive cells. RESULTS In the non-diabetic autoantibody-negative group, the percentage of islets with insulitis was either absent or <1% in five out of eight cases and ranged from 1.3% to 19.4% in three cases. In the five non-diabetic autoantibody-positive cases, it varied from 1.5% to 16.9%. In the diabetic group, it was <1% in one case and 1.1-26.9% in 11 cases, with insulitis being absent in 68% of insulin-positive islets. Peri-islet leucocytes were more numerous than intra-islet leucocytes in islets with insulin positivity. Increasing numbers of exocrine leucocytes in non-diabetic autoantibody-positive and diabetic donors were also present. CONCLUSIONS/INTERPRETATION The prominence of peri-islet leucocytes in insulin-positive islets in most long-standing diabetic individuals suggests that they may be pathogenic to residual beta cells. Increasing numbers of leucocytes in the exocrine region may also participate in the pathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Shiva Reddy
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand,
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Maurice Morillon Y, Martin A, Gojanovich G, Wang B, Tisch R. Reestablishing T Cell Tolerance by Antibody-Based Therapy in Type 1 Diabetes. Arch Immunol Ther Exp (Warsz) 2015; 63:239-50. [PMID: 25790749 DOI: 10.1007/s00005-015-0336-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/02/2015] [Indexed: 01/06/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which the insulin-producing β cells are selectively destroyed. β cell-specific T cells are considered to be the major mediators of pathology. Accordingly, most immunotherapies tested in the clinic to date have focused on reestablishing self-tolerance within the T cell compartment. Monoclonal antibodies (Ab) targeting a variety of lymphocyte surface proteins have demonstrated benefits in preclinical and clinical settings. Indeed, the use of Ab to target T cells directly or indirectly has proven to be an effective strategy to rapidly suppress β cell autoimmunity and establish tissue-specific, long-term tolerance in rodent T1D models. In this review, we describe a number of these Ab-based immunotherapies, discuss associated immune regulatory mechanisms, and highlight results obtained in T1D clinical trials.
Collapse
Affiliation(s)
- Y Maurice Morillon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | | | | | | | | |
Collapse
|
38
|
Skärstrand H, Krupinska E, Haataja TJK, Vaziri-Sani F, Lagerstedt JO, Lernmark Å. Zinc transporter 8 (ZnT8) autoantibody epitope specificity and affinity examined with recombinant ZnT8 variant proteins in specific ZnT8R and ZnT8W autoantibody-positive type 1 diabetes patients. Clin Exp Immunol 2015; 179:220-9. [PMID: 25178386 PMCID: PMC4298399 DOI: 10.1111/cei.12448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Variant-specific zinc transporter 8 autoantibodies (ZnT8A) against either arginine (R) or tryptophan (W) at amino acid (aa) position 325 of the zinc transporter 8 (ZnT8) has been identified in type 1 diabetes (T1D) patients. Reciprocal cross-over tests revealed differences in half-maximal binding to indicate variable affinity of patient ZnT8 autoantibodies. Insufficient recombinant ZnT8 variant proteins have precluded detailed analyses of ZnT8 autoantibody affinity. The aims in the present study were to (i) generate recombinant ZnT8R- and ZnT8W-aa275-369 proteins; (ii) test the ZnT8R- and ZnT8W-aa275-369 proteins in reciprocal competitive radiobinding assays (RBA) against ZnT8R- and ZnT8W-aa268-369 labelled with (35) S-methionine; and (iii) determine the specificity and affinity of sera specific for either ZnT8 arginine (R) or ZnT8 tryptophan (W) autoantibodies in newly diagnosed T1D patients. The results demonstrate, first, that it was possible to produce recombinant human MBP-ZnT8-aa275-369 protein purified to homogeneity for RBA reciprocal competition experiments. Secondly, high-titre ZnT8WA sera diluted to half maximal binding showed significant specificity for respective variants of either ZnT8R or ZnT8W. Thirdly, ZnT8WA-positive sera showed high affinity for ZnT8W compared to ZnT8RA for ZnT8R. These data demonstrate that T1D patients may have single amino acid-specific autoantibodies directed against either ZnT8R or ZnT8W and that the autoantibody affinity to the respective variant may be different. Further studies are needed to assess the mechanisms by which variant-specific ZnT8A of variable affinity develop and their possible role in the pathogenic process leading to the clinical onset of T1D.
Collapse
Affiliation(s)
- H Skärstrand
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
Wu J, Yang X, Chen B, Xu X. Pancreas β cell regeneration and type 1 diabetes (Review). Exp Ther Med 2014; 9:653-657. [PMID: 25667609 PMCID: PMC4316911 DOI: 10.3892/etm.2014.2163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 11/24/2014] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus, which may cause hyperglycemia and a number of complications, mostly results from a deficiency of β cell mass (type 1 diabetes) or a limitation of β cell function (type 2 diabetes). Currently, enhancing β cell regeneration and increasing cell proliferation have not only been described in experimental diabetes models, but have also been proven to improve outcomes for patients with diabetes. Therefore, understanding the mechanisms controlling the development and regeneration of β cells in the human pancreas may be helpful for the treatment of β cell-deficient disease. In this review, we first introduce the various cell types in the adult pancreas and thereby clarify their functions and origins. Then, the known mechanisms of β cell development and expansion in the normal human pancreas are described. The potential mechanisms of β cell regeneration, including β cell self-replication, neogenesis from non-β cell precursors and transdifferentiation from α cells, are discussed in the next part. Finally, the ability of the pancreas to regenerate mature β cells is explored in pathological conditions, including type 1 diabetes, chronic pancreatitis and persistent hyperinsulinemic hypoglycemia of infancy.
Collapse
Affiliation(s)
- Jinxiao Wu
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| | - Xiyan Yang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Bin Chen
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| | - Xiuping Xu
- Department of Endocrinology, Beijing Army General Hospital, Beijing 100700, P.R. China
| |
Collapse
|
40
|
Wang Y, Xiao Y, Zhong L, Ye D, Zhang J, Tu Y, Bornstein SR, Zhou Z, Lam KSL, Xu A. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes. Diabetes 2014; 63:4239-48. [PMID: 25092677 DOI: 10.2337/db14-0480] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting from the self-destruction of insulin-producing β-cells. Reduced neutrophil counts have been observed in patients with T1D. However, the pathological roles of neutrophils in the development of T1D remain unknown. Here we show that circulating protein levels and enzymatic activities of neutrophil elastase (NE) and proteinase 3 (PR3), both of which are neutrophil serine proteases stored in neutrophil primary granules, were markedly elevated in patients with T1D, especially those with disease duration of less than 1 year. Furthermore, circulating NE and PR3 levels increased progressively with the increase of the positive numbers and titers of the autoantibodies against β-cell antigens. An obvious elevation of NE and PR3 was detected even in those autoantibody-negative patients. Increased NE and PR3 in T1D patients are closely associated with elevated formation of neutrophil extracellular traps. By contrast, the circulating levels of α1-antitrypsin, an endogenous inhibitor of neutrophil serine proteases, are decreased in T1D patients. These findings support an early role of neutrophil activation and augmented neutrophil serine proteases activities in the pathogenesis of β-cell autoimmunity and also suggest that circulating NE and PR3 may serve as sensitive biomarkers for the diagnosis of T1D.
Collapse
Affiliation(s)
- Yudong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yang Xiao
- Diabetes Center, Institute of Metabolism and Endocrinology, Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Ling Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dewei Ye
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Jialiang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yiting Tu
- Diabetes Center, Institute of Metabolism and Endocrinology, Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | | | - Zhiguang Zhou
- Diabetes Center, Institute of Metabolism and Endocrinology, Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Karen S L Lam
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China Department of Medicine, The University of Hong Kong, Hong Kong, China Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Arif S, Leete P, Nguyen V, Marks K, Nor NM, Estorninho M, Kronenberg-Versteeg D, Bingley PJ, Todd JA, Guy C, Dunger DB, Powrie J, Willcox A, Foulis AK, Richardson SJ, de Rinaldis E, Morgan NG, Lorenc A, Peakman M. Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes. Diabetes 2014; 63:3835-45. [PMID: 24939426 PMCID: PMC4207393 DOI: 10.2337/db14-0365] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022]
Abstract
Studies in type 1 diabetes indicate potential disease heterogeneity, notably in the rate of β-cell loss, responsiveness to immunotherapies, and, in limited studies, islet pathology. We sought evidence for different immunological phenotypes using two approaches. First, we defined blood autoimmune response phenotypes by combinatorial, multiparameter analysis of autoantibodies and autoreactive T-cell responses in 33 children/adolescents with newly diagnosed diabetes. Multidimensional cluster analysis showed two equal-sized patient agglomerations characterized by proinflammatory (interferon-γ-positive, multiautoantibody-positive) and partially regulated (interleukin-10-positive, pauci-autoantibody-positive) responses. Multiautoantibody-positive nondiabetic siblings at high risk of disease progression showed similar clustering. Additionally, pancreas samples obtained post mortem from a separate cohort of 21 children/adolescents with recently diagnosed type 1 diabetes were examined immunohistologically. This revealed two distinct types of insulitic lesions distinguishable by the degree of cellular infiltrate and presence of B cells that we termed "hyper-immune CD20Hi" and "pauci-immune CD20Lo." Of note, subjects had only one infiltration phenotype and were partitioned by this into two equal-sized groups that differed significantly by age at diagnosis, with hyper-immune CD20Hi subjects being 5 years younger. These data indicate potentially related islet and blood autoimmune response phenotypes that coincide with and precede disease. We conclude that different immunopathological processes (endotypes) may underlie type 1 diabetes, carrying important implications for treatment and prevention strategies.
Collapse
Affiliation(s)
- Sefina Arif
- Department of Immunobiology, King's College London School of Medicine, London, U.K
| | - Pia Leete
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Vy Nguyen
- Department of Immunobiology, King's College London School of Medicine, London, U.K
| | - Katherine Marks
- Department of Immunobiology, King's College London School of Medicine, London, U.K
| | | | - Megan Estorninho
- Department of Immunobiology, King's College London School of Medicine, London, U.K
| | | | - Polly J Bingley
- School of Clinical Sciences, University of Bristol, Bristol, U.K
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Addenbrooke's Hospital, University of Cambridge, Cambridge, U.K
| | - Catherine Guy
- University Department of Paediatrics, Addenbrooke's Hospital, Cambridge, U.K
| | - David B Dunger
- University Department of Paediatrics, Addenbrooke's Hospital, Cambridge, U.K
| | - Jake Powrie
- Department of Diabetes and Endocrinology, Guy's & St Thomas' Hospital NHS Foundation Trust, London, U.K
| | - Abby Willcox
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Alan K Foulis
- Greater Glasgow and Clyde Pathology Department, Southern General Hospital, Glasgow, U.K
| | - Sarah J Richardson
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Emanuele de Rinaldis
- National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, London, U.K
| | - Noel G Morgan
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, Devon, U.K
| | - Anna Lorenc
- National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, London, U.K
| | - Mark Peakman
- Department of Immunobiology, King's College London School of Medicine, London, U.K.
| |
Collapse
|
42
|
Segovia-Gamboa N, Rodríguez-Arellano ME, Rangel-Cruz R, Sánchez-Díaz M, Ramírez-Reyes JC, Faradji R, González-Domínguez É, Sánchez-Torres C. Tolerogenic dendritic cells induce antigen-specific hyporesponsiveness in insulin- and glutamic acid decarboxylase 65-autoreactive T lymphocytes from type 1 diabetic patients. Clin Immunol 2014; 154:72-83. [PMID: 24993292 DOI: 10.1016/j.clim.2014.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 12/19/2022]
Abstract
Tolerogenic dendritic cells (tDC) constitute a promising therapy for autoimmune diseases, since they can anergize T lymphocytes recognizing self-antigens. Patients with type 1 diabetes mellitus (T1D) have autoreactive T cells against pancreatic islet antigens (insulin, glutamic acid decarboxylase 65 -GAD65-). We aimed to determine the ability of tDC derived from T1D patients to inactivate their insulin- and GAD65-reactive T cells. CD14+ monocytes and CD4+CD45RA- effector/memory lymphocytes were isolated from 25 patients. Monocyte-derived DC were generated in the absence (control, cDC) or presence of IL-10 and TGF-β1 (tDC), and loaded with insulin or GAD65. DC were cultured with T lymphocytes (primary culture), and cell proliferation and cytokine secretion were determined. These lymphocytes were rechallenged with insulin-, GAD65- or candidin-pulsed cDC (secondary culture) to assess whether tDC rendered T cells hyporesponsive to further stimulation. In the primary cultures, tDC induced significant lower lymphocyte proliferation and IL-2 and IFN-γ secretion than cDC; in contrast, tDC induced higher IL-10 production. Lymphocytes from 60% of patients proliferated specifically against insulin or GAD65 (group 1), whereas 40% did not (group 2). Most patients from group 1 had controlled glycemia. The secondary cultures showed tolerance induction to insulin or GAD65 in 14 and 10 patients, respectively. A high percentage of these patients (70-80%) belonged to group 1. Importantly, tDC induced antigen-specific T-cell hyporesponsiveness, since the responses against unrelated antigens were unaffected. These results suggest that tDC therapy against multiple antigens might be useful in a subset of T1D patients.
Collapse
Affiliation(s)
- Norma Segovia-Gamboa
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV-IPN). Av. I.P.N. 2508, C.P. 07360, Mexico City, Mexico
| | | | - Rafael Rangel-Cruz
- Department of Endocrinology, Hospital Regional "Lic. Adolfo López Mateos", ISSSTE, Av. Universidad 1321, Mexico City, Mexico
| | - Moisés Sánchez-Díaz
- Department of Pediatrics, Hospital Regional "Lic. Adolfo López Mateos", ISSSTE, Av. Universidad 1321, Mexico City, Mexico
| | - Julio César Ramírez-Reyes
- Department of Pediatrics, Hospital Regional "Lic. Adolfo López Mateos", ISSSTE, Av. Universidad 1321, Mexico City, Mexico
| | - Raquel Faradji
- Medicina Interna, Asociación Médica, Centro Médico ABC, Sur 136 #116, Mexico City, Mexico
| | - Érika González-Domínguez
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV-IPN). Av. I.P.N. 2508, C.P. 07360, Mexico City, Mexico
| | - Carmen Sánchez-Torres
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV-IPN). Av. I.P.N. 2508, C.P. 07360, Mexico City, Mexico.
| |
Collapse
|
43
|
Atkinson MA. Pancreatic biopsies in type 1 diabetes: revisiting the myth of Pandora's box. Diabetologia 2014; 57:656-9. [PMID: 24442510 PMCID: PMC7322791 DOI: 10.1007/s00125-013-3159-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 01/23/2023]
Abstract
Over a century ago, inquisitive physicians made remarkable discoveries regarding pancreatic pathology in individuals with diabetes, including those who were likely afflicted with the type 1 (autoimmune) form of the disease. Those studies of post-mortem tissues noted unique anatomical changes in islet architecture as well as the presence of unusual cellular infiltrates. In the time since, investigations of pancreatic pathology have, with near uniformity, been restricted to analysis of organs obtained post-mortem. While clearly beneficial for addressing questions of the disorder's pathogenesis, concern exists regarding potential artefacts that might occur through analysis of tissues that have been recovered hours, often many hours, following death. Beyond this, studies of tissues obtained long after the diagnosis of type 1 diabetes may not disclose important physiological events occurring at onset or even earlier in the natural history of disease, before symptomatic hyperglycaemia. To this end, Krogvold and colleagues (in this issue of Diabetologia, doi: 10.1007/s00125-013-3155-y) undertook a potentially high-reward strategy involving pancreatic biopsy in living adults with recent-onset type 1 diabetes. Procedures were performed under informed consent, undertaken based on recent improvements in laparoscopic techniques, and carried out by individuals with considerable surgical experience. These efforts were terminated for ethical reasons following the occurrence of serious complications (including post-operative bleeding and pancreatic leakage). The experience lends itself to analogy with the Greek myth of Pandora's box where curiosity, in terms of a desire to see what resided inside a closed container, unleashed a series of ills on humans once the container was opened. In considering the moral of that myth, one must question whether the secrets of the pancreas in those living with type 1 diabetes should, for now, remain a mystery as the process of manipulating that organ for the purpose of curiosity does not occur without harm.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610-0275, USA,
| |
Collapse
|
44
|
Salem HH, Trojanowski B, Fiedler K, Maier HJ, Schirmbeck R, Wagner M, Boehm BO, Wirth T, Baumann B. Long-term IKK2/NF-κB signaling in pancreatic β-cells induces immune-mediated diabetes. Diabetes 2014; 63:960-75. [PMID: 24296718 DOI: 10.2337/db13-1037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes is a multifactorial inflammatory disease in genetically susceptible individuals characterized by progressive autoimmune destruction of pancreatic β-cells initiated by yet unknown factors. Although animal models of type 1 diabetes have substantially increased our understanding of disease pathogenesis, heterogeneity seen in human patients cannot be reflected by a single model and calls for additional models covering different aspects of human pathophysiology. Inhibitor of κB kinase (IKK)/nuclear factor-κB (NF-κB) signaling is a master regulator of inflammation; however, its role in diabetes pathogenesis is controversially discussed by studies using different inhibition approaches. To investigate the potential diabetogenic effects of NF-κB in β-cells, we generated a gain-of-function model allowing conditional IKK2/NF-κB activation in β-cells. A transgenic mouse model that expresses a constitutively active mutant of human IKK2 dependent on Pdx-1 promoter activity (IKK2-CA(Pdx-1)) spontaneously develops full-blown immune-mediated diabetes with insulitis, hyperglycemia, and hypoinsulinemia. Disease development involves a gene expression program mimicking virus-induced diabetes and allergic inflammatory responses as well as increased major histocompatibility complex class I/II expression by β-cells that could collectively promote diabetes development. Potential novel diabetes candidate genes were also identified. Interestingly, animals successfully recovered from diabetes upon transgene inactivation. Our data give the first direct evidence that β-cell-specific IKK2/NF-κB activation is a potential trigger of immune-mediated diabetes. Moreover, IKK2-CA(Pdx-1) mice provide a novel tool for studying critical checkpoints in diabetes pathogenesis and mechanisms governing β-cell degeneration/regeneration.
Collapse
Affiliation(s)
- Heba H Salem
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Type 1 diabetes is a multifactorial disease resulting from a complex interplay between host genetics, the immune system and the environment, that culminates in the destruction of insulin-producing beta cells. The incidence of type 1 diabetes is increasing at an alarming rate, especially in children under the age of 5 (Gepts in Diabetes 14(10):619-613, 1965; Foulis et al. in Lancet 29(5):267-274, 1986; Gamble, Taylor and Cumming in British Medical Journal 4(5887):260-262 1973). Genetic predisposition, although clearly important, cannot explain this rise, and so, it has been proposed that changes in the 'environment' and/or changes in 'how we respond to our environment' must contribute to this rising incidence. In order to gain an improved understanding of the factors influencing the disease process, it is important, firstly, to focus on the organ at the centre of the illness-the pancreas. This review summarises our knowledge of the pathology of the endocrine pancreas in human type 1 diabetes and, in particular, explores the progression of this understanding over the past 25 years.
Collapse
Affiliation(s)
- Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, EX2 5DW, Devon, UK,
| | | | | |
Collapse
|
46
|
Jörns A, Arndt T, Meyer zu Vilsendorf A, Klempnauer J, Wedekind D, Hedrich HJ, Marselli L, Marchetti P, Harada N, Nakaya Y, Wang GS, Scott FW, Gysemans C, Mathieu C, Lenzen S. Islet infiltration, cytokine expression and beta cell death in the NOD mouse, BB rat, Komeda rat, LEW.1AR1-iddm rat and humans with type 1 diabetes. Diabetologia 2014; 57:512-21. [PMID: 24310561 DOI: 10.1007/s00125-013-3125-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/08/2013] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Research on the pathogenesis of type 1 diabetes relies heavily on good animal models. The aim of this work was to study the translational value of animal models of type 1 diabetes to the human situation. METHODS We compared the four major animal models of spontaneous type 1 diabetes, namely the NOD mouse, BioBreeding (BB) rat, Komeda rat and LEW.1AR1-iddm rat, by examining the immunohistochemistry and in situ RT-PCR of immune cell infiltrate and cytokine pattern in pancreatic islets, and by comparing findings with human data. RESULTS After type 1 diabetes manifestation CD8(+) T cells, CD68(+) macrophages and CD4(+) T cells were observed as the main immune cell types with declining frequency, in infiltrated islets of all diabetic pancreases. IL-1β and TNF-α were the main proinflammatory cytokines in the immune cell infiltrate in NOD mice, BB rats and LEW.1AR1-iddm rats, as well as in humans. The Komeda rat was the exception, with IFN-γ and TNF-α being the main cytokines. In addition, IL-17 and IL-6 and the anti-inflammatory cytokines IL-4, IL-10 and IL-13 were found in some infiltrating immune cells. Apoptotic as well as proliferating beta cells were observed in infiltrated islets. In healthy pancreases no proinflammatory cytokine expression was observed. CONCLUSIONS/INTERPRETATION With the exception of the Komeda rat, the animal models mirror very well the situation in humans with type 1 diabetes. Thus animal models of type 1 diabetes can provide meaningful information on the disease processes in the pancreas of patients with type 1 diabetes.
Collapse
Affiliation(s)
- Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, 30623, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Activation profile of dorsal root ganglia Iba-1 (+) macrophages varies with the type of lesion in rats. Acta Histochem 2013; 115:840-50. [PMID: 23701965 DOI: 10.1016/j.acthis.2013.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/30/2022]
Abstract
The interactions between neurons, immune and immune-like glial cells can initiate the abnormal processes that underlie neuropathic pain. In the peripheral nervous system the resident macrophages may play an important role. In this study we investigated in experimental adult Sprague-Dawley rats how Iba-1 (ionized calcium binding adaptor molecule 1) (+) resident macrophages in the dorsal root ganglion (DRG) are activated after a spinal nerve ligation (SNL) or streptozotocin (STZ)-induced diabetes. The activation profile was defined by comparing the responses of resident macrophages against microglia in the spinal cord as they share a common origin. After SNL, the Iba-1 (+) macrophages in L5 DRG reached their activation peak 5 days later, clustered as satellite cells around large A-neurons, expressed the MHC-II marker, but did not show p-p38 and p-ERK1/2 activation and did not secrete IL-18. After STZ-induced diabetes, the Iba-1 (+) macrophages reached their activation peak 1 week later in L4 and L5 DRG, remained scattered between neurons, expressed the MHC-II marker only in L5 DRG, did not show p-p38 and p-ERK1/2 activation and did not secrete any of the investigated cytokines/chemokines. These responses suggest that depending on the type of lesion DRG Iba-1 (+) resident macrophages have different activation mechanisms, which are dissimilar to those in microglia.
Collapse
|
48
|
Valle A, Giamporcaro GM, Scavini M, Stabilini A, Grogan P, Bianconi E, Sebastiani G, Masini M, Maugeri N, Porretti L, Bonfanti R, Meschi F, De Pellegrin M, Lesma A, Rossini S, Piemonti L, Marchetti P, Dotta F, Bosi E, Battaglia M. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes 2013; 62:2072-7. [PMID: 23349491 PMCID: PMC3661622 DOI: 10.2337/db12-1345] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human type 1 diabetes (T1D) is an autoimmune disease associated with major histocompatibility complex polymorphisms, β-cell autoantibodies, and autoreactive T cells. However, there is increasing evidence that innate cells may also play critical roles in T1D. We aimed to monitor peripheral immune cells in early stages of T1D (i.e., in healthy autoantibody-positive subjects) and in more advanced phases of the disease (i.e., at disease onset and years after diagnosis). We found a mild but significant and reproducible peripheral neutropenia that both precedes and accompanies the onset of T1D. This reduction was not due to peripheral neutrophil cell death, impaired differentiation, or the presence of anti-neutrophil antibodies. Neutrophils were observed by electron microscopy and immunohistochemical analysis in the exocrine pancreas of multiorgan donors with T1D (both at onset and at later stages of the disease) and not in that of multiorgan donors with type 2 diabetes or nondiabetic donors. These pancreas-infiltrating neutrophils mainly localized at the level of very small blood vessels. Our findings suggest the existence of a hitherto unrecognized clinical phenotype that might reflect unexplored pathogenic pathways underlying T1D.
Collapse
Affiliation(s)
- Andrea Valle
- San Raffaele Scientific Institute, Diabetes Research Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Gian Maria Giamporcaro
- San Raffaele Scientific Institute, Diabetes Research Institute, Milan, Italy
- Tor-Vergata University, Rome, Italy
| | - Marina Scavini
- San Raffaele Scientific Institute, Diabetes Research Institute, Milan, Italy
- Department of Internal Medicine, San Raffaele Hospital, Milan, Italy
| | - Angela Stabilini
- San Raffaele Scientific Institute, Diabetes Research Institute, Milan, Italy
| | - Pauline Grogan
- Department of Internal Medicine, San Raffaele Hospital, Milan, Italy
- TrialNet Clinical Center, San Raffaele Hospital, Milan, Italy
| | - Eleonora Bianconi
- Department of Internal Medicine, San Raffaele Hospital, Milan, Italy
- TrialNet Clinical Center, San Raffaele Hospital, Milan, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Internal Medicine, Endocrine and Metabolic Sciences, and Biochemistry, University of Siena; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Matilde Masini
- Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | - Norma Maugeri
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Milan, Italy
| | - Laura Porretti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Interdepartmental Center of Cytometry, Milan, Italy
| | - Riccardo Bonfanti
- San Raffaele Scientific Institute, Diabetes Research Institute, Milan, Italy
- Department of Paediatrics and Neonatology, San Raffaele Hospital, Milan, Italy
| | - Franco Meschi
- Department of Paediatrics and Neonatology, San Raffaele Hospital, Milan, Italy
| | | | - Arianna Lesma
- Department of Urology, San Raffaele Hospital, Milan, Italy
| | - Silvano Rossini
- Department of Immunohematology and Transfusion Medicine, San Raffaele Hospital, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Scientific Institute, Diabetes Research Institute, Milan, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, and Unit of Endocrinology and Metabolism of Transplantation, Azienda Ospedaliera Univeristaria Pisana, Pisa, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Internal Medicine, Endocrine and Metabolic Sciences, and Biochemistry, University of Siena; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Emanuele Bosi
- San Raffaele Scientific Institute, Diabetes Research Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- TrialNet Clinical Center, San Raffaele Hospital, Milan, Italy
| | - Manuela Battaglia
- San Raffaele Scientific Institute, Diabetes Research Institute, Milan, Italy
- TrialNet Clinical Center, San Raffaele Hospital, Milan, Italy
- Corresponding author: Manuela Battaglia,
| |
Collapse
|
49
|
Schneider DA, von Herrath MG. Viruses and Type 1 diabetes: a dynamic labile equilibrium. DIABETES MANAGEMENT (LONDON, ENGLAND) 2013; 3:217-223. [PMID: 24634696 PMCID: PMC3949992 DOI: 10.2217/dmt.13.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) results from the specific immune-mediated destruction of the insulin-producing β-cells of the pancreas. In genetically susceptible individuals, a still undetermined initiating 'hit' triggers a cascade of events that eventually leads to autoreactive CD8 T cells infiltrating the pancreatic islets and, subsequently, destroying them. There is increasing evidence that viruses, especially enteroviruses, are major environmental candidates; however, despite decades of investigation, we still lack certainty with regard to the causation of T1D. Moreover, studies in animal models of diabetes suggest a protective role of certain enteroviral infections upon diabetes contraction, making the quest for viral involvement in T1D even more difficult. Analyzing the foundation and the results of the most current work in the field, this article gives a brief overview of current knowledge, as well as providing an outlook for future directions.
Collapse
Affiliation(s)
- Darius A Schneider
- Center for Type 1 Diabetes Research, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
50
|
McCall KD, Schmerr MJ, Thuma JR, James CBL, Courreges MC, Benencia F, Malgor R, Schwartz FL. Phenylmethimazole suppresses dsRNA-induced cytotoxicity and inflammatory cytokines in murine pancreatic beta cells and blocks viral acceleration of type 1 diabetes in NOD mice. Molecules 2013; 18:3841-58. [PMID: 23535518 PMCID: PMC6269916 DOI: 10.3390/molecules18043841] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 02/28/2013] [Accepted: 03/22/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence supports a role for viruses in the pathogenesis of type 1 diabetes mellitus (T1DM). Activation of dsRNA-sensing pathways by viral dsRNA induces the production of inflammatory cytokines and chemokines that trigger beta cell apoptosis, insulitis, and autoimmune-mediated beta cell destruction. This study was designed to evaluate and describe potential protective effects of phenylmethimazole (C10), a small molecule which blocks dsRNA-mediated signaling, on preventing dsRNA activation of beta cell apoptosis and the inflammatory pathways important in the pathogenesis of T1DM. We first investigated the biological effects of C10, on dsRNA-treated pancreatic beta cells in culture. Cell viability assays, quantitative real-time PCR, and ELISAs were utilized to evaluate the effects of C10 on dsRNA-induced beta cell cytotoxicity and cytokine/chemokine production in murine pancreatic beta cells in culture. We found that C10 significantly impairs dsRNA-induced beta cell cytotoxicity and up-regulation of cytokines and chemokines involved in the pathogenesis of T1DM, which prompted us to evaluate C10 effects on viral acceleration of T1DM in NOD mice. C10 significantly inhibited viral acceleration of T1DM in NOD mice. These findings demonstrate that C10 (1) possesses novel beta cell protective activity which may have potential clinical relevance in T1DM and (2) may be a useful tool in achieving a better understanding of the role that dsRNA-mediated responses play in the pathogenesis of T1DM.
Collapse
Affiliation(s)
- Kelly D McCall
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | | | | | | | | | | | | | | |
Collapse
|