1
|
Khan MR, Liao S, Wasim M, Farooq A, Wang Q, Wei Q. Synergetic effects of tetracycline hydrochloride incorporated regenerated cellulose acetate - Bacterial cellulose hybrid nanocomposite: Potential in biomedical application. Int J Biol Macromol 2024; 281:136563. [PMID: 39401627 DOI: 10.1016/j.ijbiomac.2024.136563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Litter from cigarette waste is a significant threat to organisms and ecosystems. However, this waste contains cellulose acetate (CA) that can be recycled into raw materials. In this study, recycled CA from cigarettes (CFCA) electrospun through electro-spinning technique and developed hybrid nanocomposite by incorporating CFCA in the fermentation media, followed by self-assembly of bacterial cellulose (BC). CFCA exhibit excessive hydrophobicity due to their high crystallinity and reorientation of hydrophobic groups. We aimed to improve the hydrophilic, thermal and mechanical properties of CFCA. We examined fiber morphology using a scanning electron microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction Analysis (XRD), thermogravimetric analysis (TGA), swelling capacity and mechanical properties. BC/CFCA showed higher swelling capacity, improved thermal properties, and good tensile strength compared to CFCA. Additionally, tetracycline hydrochloride (TC) was loaded into developed BC/CFCA matrix and evaluated in-vitro drug release, antibacterial activity and cytotoxicity. In-vitro drug release results showed that developed BC/CFCA can able to control TC release. In addition, prepared BC/CFCA-TC composites demonstrated excellent antibacterial activity against gram-positive and gram-negative bacteria. More importantly, BC/CFCA-TC composites exhibit good cytotoxicity on mouse fibroblast cells (L929). These characteristics of BC/CFCA-TC membranes indicate they may successfully serve as wound dressings and other medical biomaterials.
Collapse
Affiliation(s)
- Muhammad Rafique Khan
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Muhammad Wasim
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China; College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Amjad Farooq
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, China; School of Textile and Clothing, Qingdao University, Qingdao, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China.
| |
Collapse
|
2
|
Xie Y, Liu W, Yang Y, Shi M, Li J, Sun Y, Wang Y, Zhang J, Zheng Y. Fabrication of a modified bacterial cellulose with different alkyl chains and its prevention of abdominal adhesion. Int J Biol Macromol 2024; 273:133191. [PMID: 38880455 DOI: 10.1016/j.ijbiomac.2024.133191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Abdominal hernia mesh is a common product which is used for prevention of abdominal adhesion and repairing abdominal wall defect. Currently, designing and preparing a novel bio-mesh material with prevention of adhesion, promoting repair and good biocompatibility simultaneously remain a great bottleneck. In this study, a novel siloxane-modified bacterial cellulose (BC) was designed and fabricated by chemical vapor deposition silylation, then the effects of different alkyl chains length of siloxane on surface properties and cell behaviors were explored. The effect of preventing of abdominal adhesion and repairing abdominal wall defect in rats with the siloxane-modified BC was evaluated. As the grafted alkyl chains become longer, the surface of the siloxane-modified BC can be transformed from super hydrophilic to hydrophobic. In vivo results showed that BC-C16 had good long-term anti-adhesion effect, good tissue adaptability and histocompatibility, which is expected to be used as a new anti-adhesion hernia repair material in clinic.
Collapse
Affiliation(s)
- Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbo Liu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingying Yang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Miaojie Shi
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Junfei Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Sun
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yansen Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jian Zhang
- Shanghai Changzheng Hospital, 415 Fengyang Street, Shanghai 200003, China.
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Fatima Z, Fatima S, Muhammad G, Hussain MA, Raza MA, Amin M, Majeed A. Stimuli-responsive glucuronoxylan polysaccharide from quince seeds for biomedical, food packaging, and environmental applications. Int J Biol Macromol 2024; 273:133016. [PMID: 38876235 DOI: 10.1016/j.ijbiomac.2024.133016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Mucilage is a gelatinous mixture of polysaccharides secreted from the seed coat and/or pericarp of many plant seeds when soaked in water. Mucilage affected seed germination while maintaining hydration levels during scarcity. Cydonia oblonga (quince) seeds are natural hydrocolloids extruding biocompatible mucilage mainly composed of polysaccharides. Quince seed mucilage (QSM) has fascinated researchers due to its applications in the food and pharmaceutical industries. On a commercial scale, QSM preserved the sensory and physiochemical properties of various products such as yogurt, desserts, cakes, and burgers. QSM is responsive to salts, pH, and solvents and is mainly investigated as edible coatings in the food industry. In tablet formulations, modified and unmodified QSM as a binder sustained the release of various drugs such as cefixime, capecitabine, diclofenac sodium, theophylline, levosulpiride, diphenhydramine, metoprolol tartrate, and acyclovir sodium. QSM acted as a reducing and capping agent to prepare nanoparticles for good antimicrobial resistance, photocatalytic characteristics, and wound-healing potential. The present review discussed the extraction optimization, chemical composition, stimuli-responsiveness, and viscoelastic properties of mucilage. The potential of mucilage in edible films, tissue engineering, and water purification will also be discussed.
Collapse
Affiliation(s)
- Zain Fatima
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan
| | - Seerat Fatima
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan.
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Arshad Raza
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan
| | - Muhammad Amin
- Department of Chemistry, University of Lahore, Sargodha Campus, Pakistan
| | - Aamna Majeed
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan
| |
Collapse
|
4
|
Chattaraj S, Mitra D, Ganguly A, Thatoi H, Das Mohapatra PK. A critical review on the biotechnological potential of Brewers' waste: Challenges and future alternatives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100228. [PMID: 38450031 PMCID: PMC10915524 DOI: 10.1016/j.crmicr.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
In order to comply with the stringent discharge guidelines issued by governmental organizations to protect the ecosystem, the substantial amounts of effluent and sturdy wastes produced by the beer brewing process need to be discarded or handled in the most affordable and secure manner. Huge quantities of waste material released with each brew bestow a significant opportunity for the brewing sector to move towards sustainability. The concept of circular economy and the development of technological advancements in brewery waste processing have spurred interest to valorize brewery waste for implementation in various sectors of medical and food science, industrial science, and many more intriguing fields. Biotechnological methods for valorizing brewery wastes are showing a path towards green chemistry and are feasible and advantageous to environment. The study unfolds most recent prospectus for brewery waste usage and discusses major challenges with brewery waste treatment and valorization and offers suggestions for further work.
Collapse
Affiliation(s)
- Sourav Chattaraj
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal PIN - 733134, India
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Science, Siksha ‘O’ Anusandhan University, Kalinga Nagar, Bhubaneswar, Odisha 751 003, India
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal PIN - 733134, India
- Department of Microbiology, Graphic Era (Deemed to be University), 566/6, Bell Road, Clement Town, Dehradun, 248002 Uttarakhand, India
| | - Arindam Ganguly
- Department of Microbiology, Bankura Sammilani College, Bankura, West Bengal PIN - 722102, India
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Science, Siksha ‘O’ Anusandhan University, Kalinga Nagar, Bhubaneswar, Odisha 751 003, India
| | - Pradeep K. Das Mohapatra
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal PIN - 733134, India
| |
Collapse
|
5
|
Teng F, Wang W, Wang ZQ, Wang GX. Analysis of bioprinting strategies for skin diseases and injuries through structural and temporal dynamics: historical perspectives, research hotspots, and emerging trends. Biofabrication 2024; 16:025019. [PMID: 38350130 DOI: 10.1088/1758-5090/ad28f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
This study endeavors to investigate the progression, research focal points, and budding trends in the realm of skin bioprinting over the past decade from a structural and temporal dynamics standpoint. Scholarly articles on skin bioprinting were obtained from WoSCC. A series of bibliometric tools comprising R software, CiteSpace, HistCite, and an alluvial generator were employed to discern historical characteristics, evolution of active topics, and upcoming tendencies in the area of skin bioprinting. Over the past decade, there has been a consistent rise in research interest in skin bioprinting, accompanied by an extensive array of meaningful scientific collaborations. Concurrently, diverse dynamic topics have emerged during various periods, as substantiated by an aggregate of 22 disciplines, 74 keywords, and 187 references demonstrating citation bursts. Four burgeoning research subfields were discerned through keyword clustering-namely, #3 'in situbioprinting', #6 'vascular', #7 'xanthan gum', and #8 'collagen hydrogels'. The keyword alluvial map reveals that Module 1, including 'transplantation' etc, has primarily dominated the research module over the previous decade, maintaining enduring relevance despite annual shifts in keyword focus. Additionally, we mapped out the top six key modules from 2023 being 'silk fibroin nanofiber', 'system', 'ionic liquid', 'mechanism', and 'foot ulcer'. Three recent research subdivisions were identified via timeline visualization of references, particularly Clusters #0 'wound healing', #4 'situ mineralization', and #5 '3D bioprinter'. Insights derived from bibliometric analyses illustrate present conditions and trends in skin bioprinting research, potentially aiding researchers in pinpointing central themes and pioneering novel investigative approaches in this field.
Collapse
Affiliation(s)
- Fei Teng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Wei Wang
- Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing 400042, People's Republic of China
| | - Zhi-Qiang Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Gui-Xue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
6
|
Ndlovu SP, Alven S, Hlalisa K, Aderibigbe BA. Cellulose Acetate-Based Wound Dressings Loaded with Bioactive Agents: Potential Scaffolds for Wound Dressing and Skin Regeneration. Curr Drug Deliv 2024; 21:1226-1240. [PMID: 37842887 DOI: 10.2174/0115672018262616231001191356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 10/17/2023]
Abstract
Wound healing and skin regeneration are major challenges in chronic wounds. Among the types of wound dressing products currently available in the market, each wound dressing material is designed for a specific wound type. Some of these products suffer from various shortcomings, such as poor antibacterial efficacy and mechanical performance, inability to provide a moist environment, poor permeability to oxygen and capability to induce cell migration and proliferation during the wound healing process. Hydrogels and nanofibers are widely reported wound dressings that have demonstrated promising capability to overcome these shortcomings. Cellulose acetate is a semisynthetic polymer that has attracted great attention in the fabrication of hydrogels and nanofibers. Loading bioactive agents such as antibiotics, essential oils, metallic nanoparticles, plant extracts, and honey into cellulose acetate-based nanofibers and hydrogels enhanced their biological effects, including antibacterial, antioxidant, and wound healing. This review reports cellulose acetate-based hydrogels and nanofibers loaded with bioactive agents for wound dressing and skin regeneration.
Collapse
Affiliation(s)
- Sindi P Ndlovu
- Department of Chemistry, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa
| | - Sibusiso Alven
- Department of Chemistry, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa
| | - Kula Hlalisa
- Department of Chemistry, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa
| |
Collapse
|
7
|
Pita-Vilar M, Concheiro A, Alvarez-Lorenzo C, Diaz-Gomez L. Recent advances in 3D printed cellulose-based wound dressings: A review on in vitro and in vivo achievements. Carbohydr Polym 2023; 321:121298. [PMID: 37739531 DOI: 10.1016/j.carbpol.2023.121298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 09/24/2023]
Abstract
Chronic wounds, especially diabetic ulcers, pose a significant challenge in regenerative medicine. Cellulose derivatives offer remarkable wound management properties, such as effective absorption and retention of wound exudates, maintaining an optimal moisture environment crucial for successful chronic wound regeneration. However, conventional dressings have limited efficacy in managing and healing these types of skin lesions, driving scientists to explore innovative approaches. The emergence of 3D printing has enabled personalized dressings that meet individual patient needs, improving the healing process and patient comfort. Cellulose derivatives meet the demanding requirements for biocompatibility, printability, and biofabrication necessary for 3D printing of biologically active scaffolds. However, the potential applications of nanocellulose and cellulose derivative-based inks for wound regeneration remain largely unexplored. Thus, this review provides a comprehensive overview of recent advancements in cellulose-based inks for 3D printing of personalized wound dressings. The composition and biofabrication approaches of cellulose-based wound dressings are thoroughly discussed, including the functionalization with bioactive molecules and antibiotics for improved wound regeneration. Similarly, the in vitro and in vivo performance of these dressings is extensively examined. In summary, this review aims to highlight the exceptional advantages and diverse applications of 3D printed cellulose-based dressings in personalized wound care.
Collapse
Affiliation(s)
- Maria Pita-Vilar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Leong MY, Kong YL, Harun MY, Looi CY, Wong WF. Current advances of nanocellulose application in biomedical field. Carbohydr Res 2023; 532:108899. [PMID: 37478689 DOI: 10.1016/j.carres.2023.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.
Collapse
Affiliation(s)
- M Y Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Y L Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - M Y Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - C Y Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - W F Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Prete S, Dattilo M, Patitucci F, Pezzi G, Parisi OI, Puoci F. Natural and Synthetic Polymeric Biomaterials for Application in Wound Management. J Funct Biomater 2023; 14:455. [PMID: 37754869 PMCID: PMC10531657 DOI: 10.3390/jfb14090455] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Biomaterials are at the forefront of the future, finding a variety of applications in the biomedical field, especially in wound healing, thanks to their biocompatible and biodegradable properties. Wounds spontaneously try to heal through a series of interconnected processes involving several initiators and mediators such as cytokines, macrophages, and fibroblasts. The combination of biopolymers with wound healing properties may provide opportunities to synthesize matrices that stimulate and trigger target cell responses crucial to the healing process. This review outlines the optimal management and care required for wound treatment with a special focus on biopolymers, drug-delivery systems, and nanotechnologies used for enhanced wound healing applications. Researchers have utilized a range of techniques to produce wound dressings, leading to products with different characteristics. Each method comes with its unique strengths and limitations, which are important to consider. The future trajectory in wound dressing advancement should prioritize economical and eco-friendly methodologies, along with improving the efficacy of constituent materials. The aim of this work is to give researchers the possibility to evaluate the proper materials for wound dressing preparation and to better understand the optimal synthesis conditions as well as the most effective bioactive molecules to load.
Collapse
Affiliation(s)
- Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Giuseppe Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
10
|
Arshad R, Razlansari M, Maryam Hosseinikhah S, Tiwari Pandey A, Ajalli N, Ezra Manicum AL, Thorat N, Rahdar A, Zhu Y, Tabish TA. Antimicrobial and anti-biofilm activities of bio-inspired nanomaterials for wound healing applications. Drug Discov Today 2023; 28:103673. [PMID: 37331691 DOI: 10.1016/j.drudis.2023.103673] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Chronic wounds are ubiquitously inhabited by bacteria, and they remain a challenge as they cause significant discomfort and because their treatment consumes huge clinical resources. To reduce the burden that chronic wounds place upon both patients and health services, a wide variety of approaches have been devised and investigated. Bioinspired nanomaterials have shown great success in wound healing when compared to existing approaches, showing better ability to mimic natural extracellular matrix (ECM) components and thus to promote cell adhesion, proliferation, and differentiation. Wound dressings that are based on bioinspired nanomaterials can be engineered to promote anti-inflammatory mechanisms and to inhibit the formation of microbial biofilms. We consider the extensive potential of bioinspired nanomaterials in wound healing, revealing a scope beyond that covered previously.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa.
| | - Nanasaheb Thorat
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
11
|
de Lima LF, Ferreira AL, Ranjan I, Collman RG, de Araujo WR, de la Fuente-Nunez C. A bacterial cellulose-based and low-cost electrochemical biosensor for ultrasensitive detection of SARS-CoV-2. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101476. [PMID: 38239909 PMCID: PMC10795702 DOI: 10.1016/j.xcrp.2023.101476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
COVID-19 has led to over 6.8 million deaths worldwide and continues to affect millions of people, primarily in low-income countries and communities with low vaccination coverage. Low-cost and rapid response technologies that enable accurate, frequent testing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are crucial for outbreak prevention and infectious disease control. Here we produce and characterize cellulose fibers naturally generated by the bacterium Gluconacetobacter hansenii as an alternative biodegradable substrate for manufacturing an eco-friendly diagnostic test for COVID-19. Using this green technology, we describe a novel and label-free potentiometric diagnostic test that can detect SARS-CoV-2 within 10 min and costs US$3.50 per unit. The test has bacterial cellulose (BC) as its substrate and a carbon-based electrode modified with graphene oxide and the human angiotensin-converting enzyme-2 (ACE2) as its receptor. Our device accurately and precisely detects emerging SARS-CoV-2 variants and demonstrates exceptional sensitivity, specificity, and accuracy for tested clinical nasopharyngeal/oropharyngeal (NP/OP) samples.
Collapse
Affiliation(s)
- Lucas F. de Lima
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
- These authors contributed equally
| | - André L. Ferreira
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
- These authors contributed equally
| | - Ishani Ranjan
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William R. de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Lead contact
| |
Collapse
|
12
|
Oliveira C, Sousa D, Teixeira JA, Ferreira-Santos P, Botelho CM. Polymeric biomaterials for wound healing. Front Bioeng Biotechnol 2023; 11:1136077. [PMID: 37576995 PMCID: PMC10415681 DOI: 10.3389/fbioe.2023.1136077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Skin indicates a person's state of health and is so important that it influences a person's emotional and psychological behavior. In this context, the effective treatment of wounds is a major concern, since several conventional wound healing materials have not been able to provide adequate healing, often leading to scar formation. Hence, the development of innovative biomaterials for wound healing is essential. Natural and synthetic polymers are used extensively for wound dressings and scaffold production. Both natural and synthetic polymers have beneficial properties and limitations, so they are often used in combination to overcome overcome their individual limitations. The use of different polymers in the production of biomaterials has proven to be a promising alternative for the treatment of wounds, as their capacity to accelerate the healing process has been demonstrated in many studies. Thus, this work focuses on describing several currently commercially available solutions used for the management of skin wounds, such as polymeric biomaterials for skin substitutes. New directions, strategies, and innovative technologies for the design of polymeric biomaterials are also addressed, providing solutions for deep burns, personalized care and faster healing.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Diana Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
- Department of Chemical Engineering, Faculty of Science, University of Vigo, Ourense, Spain
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| |
Collapse
|
13
|
Vasil'kov A, Butenko I, Naumkin A, Voronova A, Golub A, Buzin M, Shtykova E, Volkov V, Sadykova V. Hybrid Silver-Containing Materials Based on Various Forms of Bacterial Cellulose: Synthesis, Structure, and Biological Activity. Int J Mol Sci 2023; 24:ijms24087667. [PMID: 37108827 PMCID: PMC10142189 DOI: 10.3390/ijms24087667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Sustained interest in the use of renewable resources for the production of medical materials has stimulated research on bacterial cellulose (BC) and nanocomposites based on it. New Ag-containing nanocomposites were obtained by modifying various forms of BC with Ag nanoparticles prepared by metal-vapor synthesis (MVS). Bacterial cellulose was obtained in the form of films (BCF) and spherical BC beads (SBCB) by the Gluconacetobacter hansenii GH-1/2008 strain under static and dynamic conditions. The Ag nanoparticles synthesized in 2-propanol were incorporated into the polymer matrix using metal-containing organosol. MVS is based on the interaction of extremely reactive atomic metals formed by evaporation in vacuum at a pressure of 10-2 Pa with organic substances during their co-condensation on the cooled walls of a reaction vessel. The composition, structure, and electronic state of the metal in the materials were characterized by transmission and scanning electron microscopy (TEM, SEM), powder X-ray diffraction (XRD), small-angle X-ray scattering (SAXS) and X-ray photoelectron spectroscopy (XPS). Since antimicrobial activity is largely determined by the surface composition, much attention was paid to studying its properties by XPS, a surface-sensitive method, at a sampling depth about 10 nm. C 1s and O 1s spectra were analyzed self-consistently. XPS C 1s spectra of the original and Ag-containing celluloses showed an increase in the intensity of the C-C/C-H groups in the latter, which are associated with carbon shell surrounding metal in Ag nanoparticles (Ag NPs). The size effect observed in Ag 3d spectra evidenced on a large proportion of silver nanoparticles with a size of less than 3 nm in the near-surface region. Ag NPs in the BC films and spherical beads were mainly in the zerovalent state. BC-based nanocomposites with Ag nanoparticles exhibited antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli bacteria and Candida albicans and Aspergillus niger fungi. It was found that AgNPs/SBCB nanocomposites are more active than Ag NPs/BCF samples, especially against Candida albicans and Aspergillus niger fungi. These results increase the possibility of their medical application.
Collapse
Affiliation(s)
- Alexander Vasil'kov
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
| | - Ivan Butenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
- G.F. Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Alexander Naumkin
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
| | - Anastasiia Voronova
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
| | - Alexandre Golub
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
| | - Mikhail Buzin
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 119334 Moscow, Russia
| | - Eleonora Shtykova
- Shubnikov Institute of Crystallography, FSRC "Crystallography and Photonics" RAS, 119333 Moscow, Russia
| | - Vladimir Volkov
- Shubnikov Institute of Crystallography, FSRC "Crystallography and Photonics" RAS, 119333 Moscow, Russia
| | - Vera Sadykova
- G.F. Gause Institute of New Antibiotics, 119021 Moscow, Russia
| |
Collapse
|
14
|
Sheokand B, Vats M, Kumar A, Srivastava CM, Bahadur I, Pathak SR. Natural polymers used in the dressing materials for wound healing: Past, present and future. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Samyn P, Meftahi A, Geravand SA, Heravi MEM, Najarzadeh H, Sabery MSK, Barhoum A. Opportunities for bacterial nanocellulose in biomedical applications: Review on biosynthesis, modification and challenges. Int J Biol Macromol 2023; 231:123316. [PMID: 36682647 DOI: 10.1016/j.ijbiomac.2023.123316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Bacterial nanocellulose (BNC) is a natural polysaccharide produced as extracellular material by bacterial strains and has favorable intrinsic properties for primary use in biomedical applications. In this review, an update on state-of-the art and challenges in BNC production, surface modification and biomedical application is given. Recent insights in biosynthesis allowed for better understanding of governing parameters improving production efficiency. In particular, introduction of different carbon/nitrogen sources from alternative feedstock and industrial upscaling of various production methods is challenging. It is important to have control on the morphology, porosity and forms of BNC depending on biosynthesis conditions, depending on selection of bacterial strains, reactor design, additives and culture conditions. The BNC is intrinsically characterized by high water absorption capacity, good thermal and mechanical stability, biocompatibility and biodegradability to certain extent. However, additional chemical and/or physical surface modifications are required to improve cell compatibility, protein interaction and antimicrobial properties. The novel trends in synthesis include the in-situ culturing of hybrid BNC nanocomposites in combination with organic material, inorganic material or extracellular components. In parallel with toxicity studies, the applications of BNC in wound care, tissue engineering, medical implants, drug delivery systems or carriers for bioactive compounds, and platforms for biosensors are highlighted.
Collapse
Affiliation(s)
- Pieter Samyn
- SIRRIS, Department Innovations in Circular Economy, Leuven, Belgium.
| | - Amin Meftahi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran; Nanotechnology Research Center, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Sahar Abbasi Geravand
- Department of Technical & Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Hamideh Najarzadeh
- Department of Textile Engineering, Science And Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt; School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland.
| |
Collapse
|
16
|
A Comprehensive Review on Bio-Based Materials for Chronic Diabetic Wounds. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020604. [PMID: 36677658 PMCID: PMC9861360 DOI: 10.3390/molecules28020604] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Globally, millions of people suffer from poor wound healing, which is associated with higher mortality rates and higher healthcare costs. There are several factors that can complicate the healing process of wounds, including inadequate conditions for cell migration, proliferation, and angiogenesis, microbial infections, and prolonged inflammatory responses. Current therapeutic methods have not yet been able to resolve several primary problems; therefore, their effectiveness is limited. As a result of their remarkable properties, bio-based materials have been demonstrated to have a significant impact on wound healing in recent years. In the wound microenvironment, bio-based materials can stimulate numerous cellular and molecular processes that may enhance healing by inhibiting the growth of pathogens, preventing inflammation, and stimulating angiogenesis, potentially converting a non-healing environment to an appropriately healing one. The aim of this present review article is to provide an overview of the mechanisms underlying wound healing and its pathophysiology. The development of bio-based nanomaterials for chronic diabetic wounds as well as novel methodologies for stimulating wound healing mechanisms are also discussed.
Collapse
|
17
|
Sasmal PK, Ganguly S. Polymer in hemostasis and follow‐up wound healing. J Appl Polym Sci 2023. [DOI: 10.1002/app.53559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Somenath Ganguly
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| |
Collapse
|
18
|
Zhang S, Vanessa C, Khan A, Ali N, Malik S, Shah S, Bilal M, Yang Y, Akhter MS, Iqbal HMN. Prospecting cellulose fibre-reinforced composite membranes for sustainable remediation and mitigation of emerging contaminants. CHEMOSPHERE 2022; 305:135291. [PMID: 35760128 DOI: 10.1016/j.chemosphere.2022.135291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Many environmental pollutants caused by uncontrolled urbanization and rapid industrial growth have provoked serious concerns worldwide. These pollutants, including toxic metals, dyes, pharmaceuticals, pesticides, volatile organic compounds, and petroleum hydrocarbons, unenviably compromise the water quality and manifest a severe menace to aquatic entities and human beings. Therefore, it is of utmost importance to acquaint bio-nanocomposites with the capability to remove and decontaminate this extensive range of emerging pollutants. Recently, considerable emphasis has been devoted to developing low-cost novel materials obtained from natural resources accompanied by minimal toxicity to the environment. One such component is cellulose, naturally the most abundant organic polymer found in nature. Given bio-renewable sources, natural abundance, and impressive nanofibril arrangement, cellulose-reinforced composites are widely engineered and utilized for multiple applications, such as wastewater decontamination, energy storage devices, drug delivery systems, paper and pulp industries, construction industries, and adhesives, etc. Environmental remediation prospective is among the fascinating application of these cellulose-reinforced composites. This review discusses the structural attributes of cellulose, types of cellulose fibrils-based nano-biocomposites, preparatory techniques, and the potential of cellulose-based composites to remediate a diverse array of organic and inorganic pollutants in wastewater.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - ChansaKayeye Vanessa
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sumaira Shah
- Department of Botany, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Yong Yang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| |
Collapse
|
19
|
Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules 2022; 27:molecules27175580. [PMID: 36080341 PMCID: PMC9458019 DOI: 10.3390/molecules27175580] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic ulcers are among the main causes of morbidity and mortality due to the high probability of infection and sepsis and therefore exert a significant impact on public health resources. Numerous types of dressings are used for the treatment of skin ulcers-each with different advantages and disadvantages. Bacterial cellulose (BC) has received enormous interest in the cosmetic, pharmaceutical, and medical fields due to its biological, physical, and mechanical characteristics, which enable the creation of polymer composites and blends with broad applications. In the medical field, BC was at first used in wound dressings, tissue regeneration, and artificial blood vessels. This material is suitable for treating various skin diseases due its considerable fluid retention and medication loading properties. BC membranes are used as a temporary dressing for skin treatments due to their excellent fit to the body, reduction in pain, and acceleration of epithelial regeneration. BC-based composites and blends have been evaluated and synthesized both in vitro and in vivo to create an ideal microenvironment for wound healing. This review describes different methods of producing and handling BC for use in the medical field and highlights the qualities of BC in detail with emphasis on biomedical reports that demonstrate its utility. Moreover, it gives an account of biomedical applications, especially for tissue engineering and wound dressing materials reported until date. This review also includes patents of BC applied as a wound dressing material.
Collapse
|
20
|
Atila D, Karataş A, Keskin D, Tezcaner A. Pullulan hydrogel-immobilized bacterial cellulose membranes with dual-release of vitamin C and E for wound dressing applications. Int J Biol Macromol 2022; 218:760-774. [PMID: 35902017 DOI: 10.1016/j.ijbiomac.2022.07.160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Vitamin C&E (VtC&VtE)-loaded bilayer wound dressings were prepared using bacterial cellulose (BC) synthesized by Acetobacter species and pullulan (PUL). VtC-containing PUL hydrogels (100 μg/mL) were immobilized onto BC by crosslinking. BC/PUL-VtC was loaded with VtE (100 μM in ethanol) by immersion for 2 h. No delamination between the layers was observed via SEM. Despite the porous inner PUL side, the outer BC side exhibited nanofibrous morphology serving as barriers to prevent microorganism invasion. Equilibrium water content of BC/PUL was above 85 % due to the hydrogel characteristics of PUL side, suitable to absorb exudate in wound bed. PUL layer lost >90 % of its weight in simulated wound fluid and > 99 % in lysozyme solution within 14 days, mediating co-release of VtC&VtE. Thin BC side possessed adequate strength (⁓22 MPa) and strain (>30 %) to endure against tensile stress generated by bending on wound surface without rupture, whereas thick PUL side was flexible (>70 % strain) to fit into wound bed under compressive stress without causing harm. In vitro studies using L929 fibroblasts elucidated PUL side was anti-adhesive and removable. Synergistic effect of VtC&VtE on antioxidant activity, wound closure, and collagen synthesis was observed. Thus, BC/PUL-VtC/VtE hold promise as cheap and eco-friendly temporary wound dressing.
Collapse
Affiliation(s)
- Deniz Atila
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Ayten Karataş
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34758, Turkey
| | - Dilek Keskin
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
21
|
Kumar SP, Asokan Y, Balamurugan K, Harsha B. A review of wound dressing materials and its fabrication methods: emphasis on three-dimensional printed dressings. J Med Eng Technol 2022; 46:318-334. [PMID: 35212596 DOI: 10.1080/03091902.2022.2041750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A wound is a trauma caused by some adverse external or blunt forces that can damage the body tissues. Wound healing is a complex process that occurs post-injury which involves the revamping of the structure and function of damaged tissues. Scaffolds are engineered tissue structures manufactured using different materials and methods for facilitating the wound healing process. For external wounds, the antimicrobial property and ability to absorb moisture play an important role in the material selection of the scaffold. Among different methods that exist for designing scaffolds, three-dimensional printing has emerged as a promising technique wherein customised scaffolds can be designed. However, the literature on three-dimensional printed dressings is very much limited compared to conventional ones. Therefore, this review specifically focuses on the methods used to design the scaffolds with special emphasis on different three-dimensional printing techniques. It covers the process of external wound healing, different materials used in the fabrication of scaffolds, and their advantages and drawbacks.
Collapse
Affiliation(s)
- S Pravin Kumar
- Center for Healthcare Technologies, Department of Biomedical Engineering, Sri Sivasubramaniya Nadar college of Engineering, Chennai, India
| | - Yuvasri Asokan
- Center for Healthcare Technologies, Department of Biomedical Engineering, Sri Sivasubramaniya Nadar college of Engineering, Chennai, India
| | - Keerthana Balamurugan
- Center for Healthcare Technologies, Department of Biomedical Engineering, Sri Sivasubramaniya Nadar college of Engineering, Chennai, India
| | - B Harsha
- Center for Healthcare Technologies, Department of Biomedical Engineering, Sri Sivasubramaniya Nadar college of Engineering, Chennai, India
| |
Collapse
|
22
|
Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022; 10:3199-3241. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout history, natural biomaterials have benefited society. Nevertheless, in recent years, tailoring natural materials for diverse biomedical applications accompanied with sustainability has become the focus. With the progress in the field of materials science, novel approaches for the production, processing, and functionalization of biomaterials to obtain specific architectures have become achievable. This review highlights an immensely adaptable natural biomaterial, bacterial cellulose (BC). BC is an emerging sustainable biopolymer with immense potential in the biomedical field due to its unique physical properties such as flexibility, high porosity, good water holding capacity, and small size; chemical properties such as high crystallinity, foldability, high purity, high polymerization degree, and easy modification; and biological characteristics such as biodegradability, biocompatibility, excellent biological affinity, and non-biotoxicity. The structure of BC consists of glucose monomer units polymerized via cellulose synthase in β-1-4 glucan chains, creating BC nano fibrillar bundles with a uniaxial orientation. BC-based composites have been extensively investigated for diverse biomedical applications due to their similarity to the extracellular matrix structure. The recent progress in nanotechnology allows the further modification of BC, producing novel BC-based biomaterials for various applications. In this review, we strengthen the existing knowledge on the production of BC and BC composites and their unique properties, and highlight the most recent advances, focusing mainly on the delivery of active pharmaceutical compounds, tissue engineering, and wound healing. Further, we endeavor to present the challenges and prospects for BC-associated composites for their application in the biomedical field.
Collapse
Affiliation(s)
- Prachi Shrivastav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.,Bombay College of Pharmacy, Kolivery Village, Mathuradas Colony, Kalina, Vakola, Santacruz East, Mumbai, Maharashtra 400 098, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Gayatri Vaidya
- Department of Studies in Food Technology, Davangere University, Davangere 577007, Karnataka, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Ajeet Singh
- Department of Pharmaceutical Sciences, J.S. University, Shikohabad, Firozabad, UP 283135, India.
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Larissa Souza Amaral
- Department of Bioengineering (USP ALUMNI), University of São Paulo (USP), Av. Trabalhador São Carlense, 400, 13566590, São Carlos (SP), Brazil
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| |
Collapse
|
23
|
Multiwalled carbon nanotubes functionalized bacterial cellulose as an efficient healing material for diabetic wounds. Int J Biol Macromol 2022; 203:256-267. [PMID: 35093443 DOI: 10.1016/j.ijbiomac.2022.01.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/03/2022] [Accepted: 01/23/2022] [Indexed: 12/22/2022]
Abstract
The unique pool of features makes bacterial cellulose (BC) a robust platform to tailor its functionalities. Herein, the BC matrix was reinforced with multiwalled carbon nanotubes (MWCNT) to control infection and accelerate the healing process of diabetic wounds. The prepared BC-MWCNT composite film was characterized and antibacterial activity was assessed. Further, the in-vivo wound healing activity was performed and temporal expression of interleukin (IL-1α), tumor necrosis factor (TNF-α), vascular endothelial growth factor (VEGF) and platelets derived growth factor (PDGF) was quantitatively measured by real-time PCR. The characterization results confirmed the reinforcement of the BC matrix with MWCNT. The composite film showed antibacterial activity against all the tested strains. Moreover, the macroscopic analysis of the wound demonstrated faster closure of the diabetic wound in BC-MWCNT group (99% healing) as compared to negative control (77%) in 21 days. Histological studies further supported the results where complete reepithelization of the epidermis and healthy granulation tissue were observed in BC-MWCNT treated group. Molecular studies revealed that BC-MWCNT group showed relatively lesser expression of pro-inflammatory cytokines IL-1α and TNF-α and higher expression of VEGF than control that may have favored the faster healing. This study suggested that the tailorable properties of BC can be exploited to develop composites with potential applications in diabetic wound healing.
Collapse
|
24
|
Evaluation of wet nanocellulose membranes produced by different bacterial strains for healing full-thickness skin defects. Carbohydr Polym 2022; 285:119218. [DOI: 10.1016/j.carbpol.2022.119218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 12/17/2022]
|
25
|
Jana S, Das P, Mukherjee J, Banerjee D, Ghosh PR, Kumar Das P, Bhattacharya RN, Nandi SK. Waste-derived biomaterials as building blocks in the biomedical field. J Mater Chem B 2022; 10:489-505. [PMID: 35018942 DOI: 10.1039/d1tb02125g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments in the biomedical arena have led to the fabrication of innovative biomaterials by utilizing bioactive molecules obtained from biological wastes released from fruit and beverage processing industries, and fish, meat, and poultry industries. These biological wastes that end up in water bodies as well as in landfills are an affluent source of animal- and plant-derived proteins, bio ceramics and polysaccharides such as collagens, gelatins, chitins, chitosans, eggshell membrane proteins, hydroxyapatites, celluloses, and pectins. These bioactive molecules have been intricately designed into scaffolds and dressing materials by utilizing advanced technologies for drug delivery, tissue engineering, and wound healing relevance. These biomaterials are environment-friendly, biodegradable, and biocompatible, and show excellent tissue regeneration attributes. Additionally, being cost-effective they can reduce the burden on the healthcare system as well as provide a sustainable solution to waste management. In this review, the current trends in the utilization of plant and animal waste-derived biomaterials in various biomedical fields are considered along with a separate section on their applications as xenografts.
Collapse
Affiliation(s)
- Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Piyali Das
- Department of Microbiology, School of Life Sciences and Biotechnology, Adamas University, Barasat, West Bengal 700126, India
| | - Joydip Mukherjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Dipak Banerjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Pradip Kumar Das
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | | | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| |
Collapse
|
26
|
Batool JA, Rehman K, Qader A, Akash MSH. Biomedical applications of carbohydrate-based polyurethane: From biosynthesis to degradation. Curr Pharm Des 2022; 28:1669-1687. [PMID: 35040410 DOI: 10.2174/1573412918666220118113546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
The foremost common natural polymers are carbohydrate-based polymers or polysaccharides, having a long chain of monosaccharide or disaccharide units linked together via a glycosidic linkage to form a complex structure. There are several uses of carbohydrate-based polymers in biomedical sector due to its attractive features including less toxicity, biocompatibility, biodegradability, high reactivity, availability, and relatively inexpensive. The aim of our study was to explore the synthetic approaches for the preparation of numerous carbohydrate-based polyurethanes (PUs) and their wide range of pharmaceutical and biomedical applications. The data summarized in this study shows that the addition of carbohydrates in the structural skeleton of PUs not only improve their suitability but also effect the applicability for employing them in biological applications. Carbohydrate-based units are incorporated into the PUs, which is the most convenient method for the synthesis of novel biocompatible and biodegradable carbohydrate-based PUs to use in various biomedical applications.
Collapse
Affiliation(s)
- Jahan Ara Batool
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Qader
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
27
|
Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int J Biol Macromol 2021; 192:298-322. [PMID: 34634326 DOI: 10.1016/j.ijbiomac.2021.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Today, chronic wound care and management can be regarded as a clinically critical issue. However, the limitations of current approaches for wound healing have encouraged researchers and physicians to develop more efficient alternative approaches. Advances in tissue engineering and regenerative medicine have resulted in the development of promising approaches that can accelerate wound healing and improve the skin regeneration rate and quality. The design and fabrication of scaffolds that can address the multifactorial nature of chronic wound occurrence and provide support for the healing process can be considered an important area requiring improvement. In this regard, polysaccharide-based scaffolds have distinctive properties such as biocompatibility, biodegradability, high water retention capacity and nontoxicity, making them ideal for wound healing applications. Their tunable structure and networked morphology could facilitate a number of functions, such as controlling their diffusion, maintaining wound moisture, absorbing a large amount of exudates and facilitating gas exchange. In this review, the wound healing process and the influential factors, structure and properties of carbohydrate polymers, physical and chemical crosslinking of polysaccharides, scaffold fabrication techniques, and the use of polysaccharide-based scaffolds in skin tissue engineering and wound healing applications are discussed.
Collapse
|
28
|
Jantarat C, Muenraya P, Srivaro S, Nawakitrangsan A, Promsornpason K. Comparison of drug release behavior of bacterial cellulose loaded with ibuprofen and propranolol hydrochloride. RSC Adv 2021; 11:37354-37365. [PMID: 35496416 PMCID: PMC9043831 DOI: 10.1039/d1ra07761a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to investigate the drug release behavior from bacterial cellulose (BC). Ibuprofen and propranolol hydrochloride were used as model drugs to represent low and highly water soluble drugs. The drug was loaded into the BC by immersing the partially swollen BC in a solution of drug concentrations ranging from 0.05 to 0.5 mg mL-1 and then drying by two different methods: air-drying and freeze-drying. The results showed that the type of drug and the drying method influenced the drug loading efficiency and drug release behavior. For ibuprofen, high drug loading efficiency was found when loading the drug into BC at low concentration and vice versa for propranolol hydrochloride. The drug-loaded BC prepared by the freeze-drying method showed a sustained release regardless of drug type and drug-loaded amount. The sustained release followed the Higuchi and Korsmeyer-Peppas models. On the other hand, when using the air-drying method, BC loaded with ibuprofen showed immediate release at every drug-loaded amount. However, BC loaded with propranolol hydrochloride showed immediate release at the high drug-loaded amount but showed sustained release at the low drug-loaded amount. The release of drug from a drug-loaded BC prepared by air-drying method tended to follow first-order kinetics. In conclusion, the drug loading concentration and the drying method in the drug-loaded BC preparation influenced the drug release characteristics of the BC-based drug delivery system.
Collapse
Affiliation(s)
- Chutima Jantarat
- Drug and Cosmetics Excellence Center, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Poowadon Muenraya
- Drug and Cosmetics Excellence Center, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Suthon Srivaro
- Center of Excellence in Wood and Biomaterials, School of Engineering and Technology, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University Soi Chula 12, Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | | | | |
Collapse
|
29
|
Salama A, Abouzeid RE, Owda ME, Cruz-Maya I, Guarino V. Cellulose-Silver Composites Materials: Preparation and Applications. Biomolecules 2021; 11:1684. [PMID: 34827681 PMCID: PMC8615592 DOI: 10.3390/biom11111684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 01/05/2023] Open
Abstract
Cellulose has received great attention owing to its distinctive structural features, exciting physico-chemical properties, and varied applications. The combination of cellulose and silver nanoparticles currently allows to fabricate different promising functional nanocomposites with unique properties. The current work offers a wide and accurate overview of the preparation methods of cellulose-silver nanocomposite materials, also providing a punctual discussion of their potential applications in different fields (i.e., wound dressing, high-performance textiles, electronics, catalysis, sensing, antimicrobial filtering, and packaging). In particular, different preparation methods of cellulose/silver nanocomposites based on in situ thermal reduction, blending and dip-coating, or additive manufacturing techniques were thoroughly described. Hence, the correlations among the structure and physico-chemical properties in cellulose/silver nanocomposites were investigated in order to better control the final properties of the nanocomposites and analyze the key points and limitations of the current manufacturing approaches.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Ragab E. Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Medhat E. Owda
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra D’Oltremare, Pad 20, V. J.F. Kennedy 54, 80125 Naples, Italy;
| |
Collapse
|
30
|
Bacterial Cellulose as a Potential Bio-Scaffold for Effective Re-Epithelialization Therapy. Pharmaceutics 2021; 13:pharmaceutics13101592. [PMID: 34683885 PMCID: PMC8540158 DOI: 10.3390/pharmaceutics13101592] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
Currently, there are several therapeutic approaches available for wound injury management. However, a better understanding of the underlying mechanisms of how biomaterials affect cell behavior is needed to develop potential repair strategies. Bacterial cellulose (BC) is a bacteria-produced biopolymer with several advantageous qualities for skin tissue engineering. The aim here was to investigate BC-based scaffold on epithelial regeneration and wound healing by examining its effects on the expression of scavenger receptor-A (SR-A) and underlying macrophage behavior. Full-thickness skin wounds were generated on Sprague-Dawley rats and the healing of these wounds, with and without BC scaffolds, was examined over 14 days using Masson’s trichome staining. BC scaffolds displayed excellent in vitro biocompatibility, maintained the stemness function of cells and promoted keratinocyte differentiation of cells, which are vital in maintaining and restoring the injured epidermis. BC scaffolds also exhibited positive in vivo effects on the wound microenvironment, including improved skin extracellular matrix deposition and controlled excessive inflammation by reduction of SR-A expression. Furthermore, BC scaffold significantly enhanced epithelialization by stimulating the balance of M1/M2 macrophage re-programming for beneficial tissue repair relative to that of collagen material. These findings suggest that BC-based materials are promising products for skin injury repair.
Collapse
|
31
|
Stanescu PO, Radu IC, Leu Alexa R, Hudita A, Tanasa E, Ghitman J, Stoian O, Tsatsakis A, Ginghina O, Zaharia C, Shtilman M, Mezhuev Y, Galateanu B. Novel chitosan and bacterial cellulose biocomposites tailored with polymeric nanoparticles for modern wound dressing development. Drug Deliv 2021; 28:1932-1950. [PMID: 34550033 PMCID: PMC8462918 DOI: 10.1080/10717544.2021.1977423] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dressing biomaterials play a key role in wound management keeping a moisture medium and protecting against external factors. Natural and synthetic materials could be used as dressings where chitosan and bacterial cellulose is one of the most important solutions. These biopolymers have been used for wound dressing based on their non-toxic, biodegradable, and biocompatible features. In this study, biocomposites based on bacterial cellulose and chitosan membranes tailored with antimicrobial loaded poly(N-isopropylacrylamide)/polyvinyl alcohol nanoparticles were prepared. Core-shell polymeric nanoparticles, bacterial cellulose/chitosan membranes, and biocomposites were independently loaded with silver sulfadiazine, a well-known sulfonamide antibacterial agent used in the therapy of mild-to-moderate infections for sensitive organisms. The chemistry, structure, morphology, and size distribution were investigated by Fourier transformed infrared spectroscopy (FTIR-ATR), RAMAN spectroscopy, Scanning electron (SEM) and Transmission electron microscopy (TEM), and Dynamic light scattering (DLS). In vitro release behaviors of silver sulfadiazine from polymeric nanoparticles and biocomposites were investigated. The biological investigations revealed good biocompatibility of both the nanoparticles and the biocomposites in terms of human dermal fibroblasts viability and proliferation potential. Finally, the drug-loaded polymeric biomaterials showed promising characteristics, proving their high potential as an alternative support to develop a biocompatible and antibacterial wound dressing.
Collapse
Affiliation(s)
- Paul-Octavian Stanescu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Ionut-Cristian Radu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Rebeca Leu Alexa
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Eugenia Tanasa
- Department of Physics, University Politehnica of Bucharest, Bucharest, Romania
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Oana Stoian
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Octav Ginghina
- Department of Surgery, "Sf. Ioan" Clinical Emergency Hospital, Bucharest, Romania.,Department II, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Catalin Zaharia
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Mikhail Shtilman
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Yaroslav Mezhuev
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
32
|
Recent Advances in Cellulose-Based Structures as the Wound-Healing Biomaterials: A Clinically Oriented Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Application of wound-healing/dressing biomaterials is amongst the most promising approaches for wound repair through protection from pathogen invasion/contamination, maintaining moisture, absorbing exudates, modulating inflammation, and facilitating the healing process. A wide range of materials are used to fabricate wound-healing/dressing biomaterials. Active wound-healing/dressings are next-generation alternatives for passive biomaterials, which provide a physical barrier and induce different biological activities, such as antibacterial, antioxidant, and proliferative effects. Cellulose-based biomaterials are particularly promising due to their tunable physical, chemical, mechanical, and biological properties, accessibility, low cost, and biocompatibility. A thorough description and analysis of wound-healing/dressing structures fabricated from cellulose-based biomaterials is discussed in this review. We emphasize and highlight the fabrication methods, applied bioactive molecules, and discuss the obtained results from in vitro and in vivo models of cellulose-based wound-healing biomaterials. This review paper revealed that cellulose-based biomaterials have promising potential as the wound-dressing/healing materials and can be integrated with various bioactive agents. Overall, cellulose-based biomaterials are shown to be effective and sophisticated structures for delivery applications, safe and multi-customizable dressings, or grafts for wound-healing applications.
Collapse
|
33
|
Zhou Y, Liu G, Huang H, Wu J. Advances and impact of arginine-based materials in wound healing. J Mater Chem B 2021; 9:6738-6750. [PMID: 34346479 DOI: 10.1039/d1tb00958c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In studies on wound-dressing materials, bioactive materials have been developed rapidly to accelerate wound healing. In recent years, scientists have studied arginine as a bioactive component due to its excellent biosafety, antimicrobial properties and therapeutic effects on wound healing. Surprisingly, arginine therapy is also used under specific pathological conditions, such as diabetes and trauma/hemorrhagic shock. Due to the broad utilization of arginine-assisted therapy, we present the unique properties of arginine for healing lesions of damaged tissue and examined multiple arginine-based systems for the application of wound healing. This review shows that arginine-based therapy can be separated in two categories: direct supplemental approaches of free arginine, and indirect approaches based on arginine derivatives in which modified arginine can be released after biodegradation. Using these two pathways, arginine-based therapy may prove to be a promising strategy in the development of wound curative treatments.
Collapse
Affiliation(s)
- Yang Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | | | | | | |
Collapse
|
34
|
Azimi B, Milazzo M, Danti S. Cellulose-Based Fibrous Materials From Bacteria to Repair Tympanic Membrane Perforations. Front Bioeng Biotechnol 2021; 9:669863. [PMID: 34164386 PMCID: PMC8215662 DOI: 10.3389/fbioe.2021.669863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Perforation is the most common illness of the tympanic membrane (TM), which is commonly treated with surgical procedures. The success rate of the treatment could be improved by novel bioengineering approaches. In fact, a successful restoration of a damaged TM needs a supporting biomaterial or scaffold able to meet mechano-acoustic properties similar to those of the native TM, along with optimal biocompatibility. Traditionally, a large number of biological-based materials, including paper, silk, Gelfoam®, hyaluronic acid, collagen, and chitosan, have been used for TM repair. A novel biopolymer with promising features for tissue engineering applications is cellulose. It is a highly biocompatible, mechanically and chemically strong polysaccharide, abundant in the environment, with the ability to promote cellular growth and differentiation. Bacterial cellulose (BC), in particular, is produced by microorganisms as a nanofibrous three-dimensional structure of highly pure cellulose, which has thus become a popular graft material for wound healing due to a number of remarkable properties, such as water retention, elasticity, mechanical strength, thermal stability, and transparency. This review paper provides a comprehensive overview of the current experimental studies of BC, focusing on the application of BC patches in the treatment of TM perforations. In addition, computational approaches to model cellulose and TM are summarized, with the aim to synergize the available tools toward the best design and exploitation of BC patches and scaffolds for TM repair and regeneration.
Collapse
Affiliation(s)
- Bahareh Azimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Mario Milazzo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Serena Danti
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| |
Collapse
|
35
|
|
36
|
Lebaudy E, Fournel S, Lavalle P, Vrana NE, Gribova V. Recent Advances in Antiinflammatory Material Design. Adv Healthc Mater 2021; 10:e2001373. [PMID: 33052031 DOI: 10.1002/adhm.202001373] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Implants and prostheses are widely used to replace damaged tissues or to treat various diseases. However, besides the risk of bacterial or fungal infection, an inflammatory response usually occurs. Here, recent progress in the field of anti-inflammatory biomaterials is described. Different materials and approaches are used to decrease the inflammatory response, including hydrogels, nanoparticles, implant surface coating by polymers, and a variety of systems for anti-inflammatory drug delivery. Complex multifunctional systems dealing with inflammation, microbial infection, bone regeneration, or angiogenesis are also described. New promising stimuli-responsive systems, such as pH- and temperature-responsive materials, are also being developed that would enable an "intelligent" antiinflammatory response when the inflammation occurs. Together, different approaches hold promise for creation of novel multifunctional smart materials allowing better implant integration and tissue regeneration.
Collapse
Affiliation(s)
- Eloïse Lebaudy
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| | - Sylvie Fournel
- Université de Strasbourg CNRS 3Bio team Laboratoire de Conception et Application de Molécules Bioactives UMR 7199 Faculté de Pharmacie 74 route du Rhin Illkirch Cedex 67401 France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg 67100 France
| | | | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| |
Collapse
|
37
|
Bacterial Nanocellulose in Dentistry: Perspectives and Challenges. Molecules 2020; 26:molecules26010049. [PMID: 33374301 PMCID: PMC7796422 DOI: 10.3390/molecules26010049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial cellulose (BC) is a natural polymer that has fascinating attributes, such as biocompatibility, low cost, and ease of processing, being considered a very interesting biomaterial due to its options for moldability and combination. Thus, BC-based compounds (for example, BC/collagen, BC/gelatin, BC/fibroin, BC/chitosan, etc.) have improved properties and/or functionality, allowing for various biomedical applications, such as artificial blood vessels and microvessels, artificial skin, and wounds dressing among others. Despite the wide applicability in biomedicine and tissue engineering, there is a lack of updated scientific reports on applications related to dentistry, since BC has great potential for this. It has been used mainly in the regeneration of periodontal tissue, surgical dressings, intraoral wounds, and also in the regeneration of pulp tissue. This review describes the properties and advantages of some BC studies focused on dental and oral applications, including the design of implants, scaffolds, and wound-dressing materials, as well as carriers for drug delivery in dentistry. Aligned to the current trends and biotechnology evolutions, BC-based nanocomposites offer a great field to be explored and other novel features can be expected in relation to oral and bone tissue repair in the near future.
Collapse
|
38
|
Soleymani Eil Bakhtiari S, Karbasi S, Toloue EB. Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. Int J Biol Macromol 2020; 166:986-998. [PMID: 33152357 DOI: 10.1016/j.ijbiomac.2020.10.255] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 01/13/2023]
Abstract
As a member of the polyhydroxyalkanoate (PHAs) family, Poly(3-hydroxybutyrate) (PHB) has attracted much attention for a variety of medical applications because of its desirable properties such as high biocompatibility, nontoxic degradation products and high mechanical strength in comparison to other polymers in different fields including tissue engineering. There are different approaches such as making PHB alloy scaffolds, using PHB as a coating for ceramic-based scaffolds and producing composite scaffolds by using a mixture of PHB with ceramic particles utilized to improve hydrophobicity, degradation rate and brittleness. In this review, different applications of PHB, its alloys and composites in tissue engineering are explained based on the common methods of fabrication such as polymeric sponge replication, electrospinning and salt leaching.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Elahe Bahremandi Toloue
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
39
|
Cancelliere R, Zurlo F, Micheli L, Melino S. Vegetable waste scaffolds for 3D-stem cell proliferating systems and low cost biosensors. Talanta 2020; 223:121671. [PMID: 33303135 DOI: 10.1016/j.talanta.2020.121671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023]
Abstract
Vegetable wastes represent an inexpensive and sustainable source of valuable bioproducts for several applications. Natural micro-porous and fibrous materials can be obtained from a very cheap and abundant cellulosic bio-waste. Here we demonstrated that vegetable waste derivatives can be suitable as scaffolds for biosensors and 3D cell growth. Many studies have been addressed to fabricate biocompatible 3D scaffolds for mammalian stem cells cultures and develop novel systems able to reproduce the complexity of the in vivo microenvironment. Many of these products are proprietary, expensive or require chemical synthesis. The recycling and revaluation of vegetable derived tissues to fabricate scaffolds for analytical biosensors 3D stem cell cultures platforms may represent a very low-cost approach for toxicological and environmental analyses. In this approach, potential applications of vegetable-derived tissue for biosensing and 3D stem cell cultures were investigated. Micro-structured scaffolds from stalk of broccoli, named BrcS, were either functionalized for production of enzymatic 3D-biosensors or preconditioned to be used them as 3D-scaffolds for human mesenchymal stem cells cultures. The conditions to fabricate 3D-biosensors and scaffolds for cell growth were here optimized studying all analytical parameters and demonstrating the feasibility to combine these two properties for an innovative solution to ennoble vegetable wastes.
Collapse
Affiliation(s)
- Rocco Cancelliere
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Francesca Zurlo
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy.
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy; CIMER Center for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 0166, Rome, Italy.
| |
Collapse
|
40
|
Azimi B, Maleki H, Zavagna L, De la Ossa JG, Linari S, Lazzeri A, Danti S. Bio-Based Electrospun Fibers for Wound Healing. J Funct Biomater 2020; 11:E67. [PMID: 32971968 PMCID: PMC7563280 DOI: 10.3390/jfb11030067] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Being designated to protect other tissues, skin is the first and largest human body organ to be injured and for this reason, it is accredited with a high capacity for self-repairing. However, in the case of profound lesions or large surface loss, the natural wound healing process may be ineffective or insufficient, leading to detrimental and painful conditions that require repair adjuvants and tissue substitutes. In addition to the conventional wound care options, biodegradable polymers, both synthetic and biologic origin, are gaining increased importance for their high biocompatibility, biodegradation, and bioactive properties, such as antimicrobial, immunomodulatory, cell proliferative, and angiogenic. To create a microenvironment suitable for the healing process, a key property is the ability of a polymer to be spun into submicrometric fibers (e.g., via electrospinning), since they mimic the fibrous extracellular matrix and can support neo- tissue growth. A number of biodegradable polymers used in the biomedical sector comply with the definition of bio-based polymers (known also as biopolymers), which are recently being used in other industrial sectors for reducing the material and energy impact on the environment, as they are derived from renewable biological resources. In this review, after a description of the fundamental concepts of wound healing, with emphasis on advanced wound dressings, the recent developments of bio-based natural and synthetic electrospun structures for efficient wound healing applications are highlighted and discussed. This review aims to improve awareness on the use of bio-based polymers in medical devices.
Collapse
Affiliation(s)
- Bahareh Azimi
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
- Department of Civil and Industrial Engineering, University of Pisa, 56126 Pisa, Italy
| | - Homa Maleki
- Department of Carpet, University of Birjand, Birjand 9717434765, Iran
| | - Lorenzo Zavagna
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
| | | | | | - Andrea Lazzeri
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
- Department of Civil and Industrial Engineering, University of Pisa, 56126 Pisa, Italy
| | - Serena Danti
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
- Department of Civil and Industrial Engineering, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
41
|
Naomi R, Bt Hj Idrus R, Fauzi MB. Plant- vs. Bacterial-Derived Cellulose for Wound Healing: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6803. [PMID: 32961877 PMCID: PMC7559319 DOI: 10.3390/ijerph17186803] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
Abstract
Cellulose is a naturally existing element in the plant's cell wall and in several bacteria. The unique characteristics of bacterial cellulose (BC), such as non-toxicity, biodegradability, hydrophilicity, and biocompatibility, together with the modifiable form of nanocellulose, or the integration with nanoparticles, such as nanosilver (AgNP), all for antibacterial effects, contributes to the extensive usage of BC in wound healing applications. Due to this, BC has gained much demand and attention for therapeutical usage over time, especially in the pharmaceutical industry when compared to plant cellulose (PC). This paper reviews the progress of related research based on in vitro, in vivo, and clinical trials, including the overall information concerning BC and PC production and its mechanisms in wound healing. The physicochemical differences between BC and PC have been clearly summarized in a comparison table. Meanwhile, the latest Food and Drug Administration (FDA) approved BC products in the biomedical field are thoroughly discussed with their applications. The paper concludes on the need for further investigations of BC in the future, in an attempt to make BC an essential wound dressing that has the ability to be marketable in the global marketplace.
Collapse
Affiliation(s)
- Ruth Naomi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.N.); (R.B.H.I.)
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.N.); (R.B.H.I.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.N.); (R.B.H.I.)
| |
Collapse
|
42
|
Gomes NO, Carrilho E, Machado SAS, Sgobbi LF. Bacterial cellulose-based electrochemical sensing platform: A smart material for miniaturized biosensors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136341] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
|
44
|
Bacterial Cellulose as a Versatile Platform for Research and Development of Biomedical Materials. Processes (Basel) 2020. [DOI: 10.3390/pr8050624] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The unique pool of features found in intracellular and extracellular bacterial biopolymers attracts a lot of research, with bacterial cellulose (BC) being one of the most versatile and common. BC is an exopolysaccharide consisting solely of cellulose, and the variation in the production process can vary its shape or even its composition when compounding is applied in situ. Together with ex situ modification pathways, including specialised polymers, particles or exclusively functional groups, BC provides a robust platform that yields complex multifunctional compounds that go far beyond ultra-high purity, intrinsic hydrophilicity, mechanical strength and biocompatibility to introduce bioactive, (pH, thermal, electro) responsive, conductive and ‘smart’ properties. This review summarises the research outcomes in BC-medical applications, focusing mainly on data from the past decade (i.e., 2010–2020), with special emphasis on BC nanocomposites as materials and devices applicable in medicine. The high purity and unique structural/mechanical features, in addition to its capacity to closely adhere to irregular skin surfaces, skin tolerance, and demonstrated efficacy in wound healing, all stand as valuable attributes advantageous in topical drug delivery. Numerous studies prove BC compatibility with various human cells, with modifications even improving cell affinity and viability. Even BC represents a physical barrier that can reduce the penetration of bacteria into the tissue, but in its native form does not exhibit antimicrobial properties, therefore carious modifications have been made or specific compounds added to confer antimicrobial or anti-inflammatory properties. Progress in the use of BC-compounds as wound dressings, vascular grafts, and scaffolds for the treatment of cartilage, bone and osteochondral defects, the role as a basement membrane in blood-brain barrier models and many more are discussed to particular extent, emphasising the need for BC compounding to meet specific requirements.
Collapse
|
45
|
Aritonang HF, Kamea OE, Koleangan H, Wuntu AD. Biotemplated synthesis of Ag-ZnO nanoparticles/bacterial cellulose nanocomposites for photocatalysis application. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1738470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Henry F. Aritonang
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Olivia E. Kamea
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Harry Koleangan
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Audy D. Wuntu
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| |
Collapse
|
46
|
Emerging Sustainable Nanostructured Materials Facilitated by Herbal Bioactive Agents for Edible Food Packaging. FOOD ENGINEERING SERIES 2020. [DOI: 10.1007/978-3-030-44552-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Isikci Koca E, Bozdag G, Cayli G, Kazan D, Cakir Hatir P. Thermoresponsive hydrogels based on renewable resources. J Appl Polym Sci 2019. [DOI: 10.1002/app.48861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Elif Isikci Koca
- Istanbul Arel University, Faculty of Engineering and Architecture, Biomedical Engineering Department 34537 Istanbul Turkey
| | - Gülnihal Bozdag
- Marmara University, Faculty of Engineering, Bioengineering Department 34722 Istanbul Turkey
| | - Gökhan Cayli
- Istanbul University‐Cerrahpasa University, Faculty of Engineering, Department of Engineering Sciences 34320 Istanbul Turkey
| | - Dilek Kazan
- Marmara University, Faculty of Engineering, Bioengineering Department 34722 Istanbul Turkey
| | - Pinar Cakir Hatir
- Istanbul Arel University, Faculty of Engineering and Architecture, Biomedical Engineering Department 34537 Istanbul Turkey
| |
Collapse
|
48
|
Song JE, Silva C, Cavaco-Paulo AM, Kim HR. Functionalization of Bacterial Cellulose Nonwoven by Poly(fluorophenol) to Improve Its Hydrophobicity and Durability. Front Bioeng Biotechnol 2019; 7:332. [PMID: 31803730 PMCID: PMC6873104 DOI: 10.3389/fbioe.2019.00332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/29/2019] [Indexed: 11/13/2022] Open
Abstract
The present study aims to improve the hydrophobicity and durability of bacterial cellulose (BC) nonwoven by functionalization with poly(fluorophenol). To this end, laccase was first entrapped onto BC and then used to polymerize the fluorophenol {4-[4-(trifluoromethyl) phenoxy] phenol} in-situ. The polymerization of fluorophenol by laccase was confirmed through 1H NMR and MALDI-TOF analyses. The effect of poly(fluorophenol) on BC nonwoven was determined by evaluation of the surface hydrophobicity and olephobicity properties such as water contact angle (WCA), oil contact angle (OCA), surface energy and water/oil absorption time. After BC functionalization with poly(fluorophenol) (20 mM), the WCA increased from 54.5 ± 1.2° to 120 ± 1.5° while the surface energy decreased (11.58 ± 1.4 mN/m). The OCA was also increased from 46.5 ± 2.5° to 87 ± 2° along to the decrease of surface energy (8.7 ± 1.5°). X-ray photoelectron spectroscopy (XPS) analysis confirmed an increase in the fluorine content in BC from 5.27 to 17.57%. The findings confirmed the polymerization of fluorophenol by laccase and its entrapment onto a BC nanofiber structure. The durability of the functionalization with poly(fluorophenol) was confirmed by evaluating the washing fastness, tensile strength after washing and dimensional stability. The results indicate that the functionalized BC nonwoven had higher tensile strength (×10 times) and better dimensional stability (30%) than the non-functionalized BC nonwoven material.
Collapse
Affiliation(s)
- Ji Eun Song
- Human Convergence Technology Group, Korea Institute of Industrial Technology, Ansan, South Korea
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Hye Rim Kim
- Department of Clothing and Textiles, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
49
|
Arikibe JE, Lata R, Kuboyama K, Ougizawa T, Rohindra D. pH‐Responsive Studies of Bacterial Cellulose /Chitosan Hydrogels Crosslinked with Genipin: Swelling and Drug Release Behaviour. ChemistrySelect 2019. [DOI: 10.1002/slct.201902290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Joachim E. Arikibe
- School of Biological and Chemical SciencesFaculty of Science Technology and EnvironmentThe University of the South Pacific, Suva, Fiji
| | - Roselyn Lata
- School of Biological and Chemical SciencesFaculty of Science Technology and EnvironmentThe University of the South Pacific, Suva, Fiji
| | - Keiichi Kuboyama
- Department of Materials Science and EngineeringTokyo Institute of Technology, 2–12-1-S8-33, O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Toshiaki Ougizawa
- Department of Materials Science and EngineeringTokyo Institute of Technology, 2–12-1-S8-33, O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - David Rohindra
- School of Biological and Chemical SciencesFaculty of Science Technology and EnvironmentThe University of the South Pacific, Suva, Fiji
| |
Collapse
|
50
|
Rezaie F, Momeni-Moghaddam M, Naderi-Meshkin H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment. INT J LOW EXTR WOUND 2019; 18:247-261. [PMID: 31257948 DOI: 10.1177/1534734619859214] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skin as a mechanical barrier between the inner and outer environment of our body protects us against infection and electrolyte loss. This organ consists of 3 layers: the epidermis, dermis, and hypodermis. Any disruption in the integrity of skin leads to the formation of wounds, which are divided into 2 main categories: acute wounds and chronic wounds. Generally, acute wounds heal relatively faster. In contrast to acute wounds, closure of chronic wounds is delayed by 3 months after the initial insult. Treatment of chronic wounds has been one of the most challenging issues in the field of regenerative medicine, promoting scientists to develop various therapeutic strategies for a fast, qualified, and most cost-effective treatment modality. Here, we reviewed more recent approaches, including the development of stem cell therapy, tissue-engineered skin substitutes, and skin equivalents, for the healing of complex wounds.
Collapse
Affiliation(s)
- Fahimeh Rezaie
- Hakim Sabzevari University, Sabzevar, Iran.,Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | | | - Hojjat Naderi-Meshkin
- Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|