1
|
Hou X, Zhang Y, Shi X, Duan W, Fu X, Liu J, Xiao K. TaCDPK1-5A positively regulates drought response through modulating osmotic stress responsive-associated processes in wheat (Triticum aestivum). PLANT CELL REPORTS 2024; 43:256. [PMID: 39375249 DOI: 10.1007/s00299-024-03344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
KEY MESSAGE Wheat TaCDPK1-5A plays critical roles in mediating drought tolerance through regulating osmotic stress-associated physiological processes. Calcium (Ca2+) acts as an essential second messenger in plant signaling pathways and impacts plant abiotic stress responses. This study reported the function of TaCDPK1-5A, a calcium-dependent protein kinase (CDPK) gene in T. aestivum, in mediating drought tolerance. TaCDPK1-5A sensitively responded to drought and exogenous abscisic acid (ABA) signaling, displaying induced transcripts in plants under drought and ABA treatments. Yeast two-hybrid and co-immunoprecipitation assays revealed that TaCDPK1-5A interacts with the mitogen-activated protein kinase TaMAPK4-7D whereas the latter with ABF transcription factor TaABF1-3A, suggesting that TaCDPK1-5A constitutes a signaling module with above partners to transduce signals initiated by drought/ABA stressors. Overexpression of TaCDPK1-5A, TaMAPK4-7D and TaABF1-3A enhanced plant drought adaptation by modulating the osmotic stress-related physiological indices, including increased osmolyte contents, enlarged root morphology, and promoted stomata closure. Yeast one-hybrid assays indicated the binding ability of TaABF1-3A with promoters of TaP5CS1-1B, TaPIN3-5A, and TaSLAC1-3-2A, the genes encoding P5CS enzyme, PIN-FORMED protein, and slow anion channel, respectively. ChIP-PCR and transcriptional activation assays confirmed that TaABF1-3A regulates these genes at transcriptional level. Moreover, transgene analysis indicated that these stress-responsive genes positively regulated proline biosynthesis (TaP5CS1-1B), root morphology (TaPIN3-5A), and stomata closing (TaSLAC1-3-2A) upon drought signaling. Positive correlations were observed between yield and the transcripts of TaCDPK1-5A signaling partners in wheat cultivars under drought condition, with haplotype TaCDPK1-5A-Hap1 contributing to improved drought tolerance. Our study concluded that TaCDPK1-5A positively regulates drought adaptation and is a valuable target for molecular breeding the drought-tolerant cultivars in T. aestivum.
Collapse
Affiliation(s)
- Xiaoyang Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Yongli Zhang
- National Key Laboratory of Wheat Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xinxin Shi
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Wanrong Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Xiaojin Fu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Jinzhi Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, People's Republic of China.
- College of Agronomy, Hebei Agricultural University, Baoding, People's Republic of China.
| |
Collapse
|
2
|
Ku YS, Cheng SS, Cheung MY, Law CH, Lam HM. The Re-Localization of Proteins to or Away from Membranes as an Effective Strategy for Regulating Stress Tolerance in Plants. MEMBRANES 2022; 12:membranes12121261. [PMID: 36557168 PMCID: PMC9788111 DOI: 10.3390/membranes12121261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/12/2023]
Abstract
The membranes of plant cells are dynamic structures composed of phospholipids and proteins. Proteins harboring phospholipid-binding domains or lipid ligands can localize to membranes. Stress perception can alter the subcellular localization of these proteins dynamically, causing them to either associate with or detach from membranes. The mechanisms behind the re-localization involve changes in the lipidation state of the proteins and interactions with membrane-associated biomolecules. The functional significance of such re-localization includes the regulation of molecular transport, cell integrity, protein folding, signaling, and gene expression. In this review, proteins that re-localize to or away from membranes upon abiotic and biotic stresses will be discussed in terms of the mechanisms involved and the functional significance of their re-localization. Knowledge of the re-localization mechanisms will facilitate research on increasing plant stress adaptability, while the study on re-localization of proteins upon stresses will further our understanding of stress adaptation strategies in plants.
Collapse
|
3
|
Foucher J, Ruh M, Préveaux A, Carrère S, Pelletier S, Briand M, Serre RF, Jacques MA, Chen NWG. Common bean resistance to Xanthomonas is associated with upregulation of the salicylic acid pathway and downregulation of photosynthesis. BMC Genomics 2020; 21:566. [PMID: 32811445 DOI: 10.21203/rs.3.rs-17010/v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Common bacterial blight (CBB) caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans is one of the major threats to common bean crops (Phaseolus vulgaris L.). Resistance to CBB is particularly complex as 26 quantitative resistance loci to CBB have been described so far. To date, transcriptomic studies after CBB infection have been very scarce and the molecular mechanisms underlying susceptibility or resistance are largely unknown. RESULTS We sequenced and annotated the genomes of two common bean genotypes being either resistant (BAT93) or susceptible (JaloEEP558) to CBB. Reciprocal BLASTp analysis led to a list of 20,787 homologs between these genotypes and the common bean reference genome (G19833), which provides a solid dataset for further comparative analyses. RNA-Seq after inoculation with X. phaseoli pv. phaseoli showed that the susceptible genotype initiated a more intense and diverse biological response than the resistant genotype. Resistance was linked to upregulation of the salicylic acid pathway and downregulation of photosynthesis and sugar metabolism, while susceptibility was linked to downregulation of resistance genes and upregulation of the ethylene pathway and of genes involved in cell wall modification. CONCLUSIONS This study helps better understanding the mechanisms occurring during the early colonization phase of common bean by Xanthomonas and unveils new actors potentially important for resistance and susceptibility to CBB. We discuss the potential link between the pathways induced during bean colonization and genes induced by transcription activator-like effectors (TALEs), as illustrated in other Xanthomonas pathovars.
Collapse
Affiliation(s)
- Justine Foucher
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Sébastien Carrère
- CNRS, UMR 2594, Laboratoire des Interactions Plantes-Microorganismes (LIPM), F-31326, Castanet-Tolosan, France
| | - Sandra Pelletier
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Martial Briand
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | | | - Marie-Agnès Jacques
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Nicolas W G Chen
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France.
| |
Collapse
|
4
|
Foucher J, Ruh M, Préveaux A, Carrère S, Pelletier S, Briand M, Serre RF, Jacques MA, Chen NWG. Common bean resistance to Xanthomonas is associated with upregulation of the salicylic acid pathway and downregulation of photosynthesis. BMC Genomics 2020; 21:566. [PMID: 32811445 PMCID: PMC7437933 DOI: 10.1186/s12864-020-06972-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Background Common bacterial blight (CBB) caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans is one of the major threats to common bean crops (Phaseolus vulgaris L.). Resistance to CBB is particularly complex as 26 quantitative resistance loci to CBB have been described so far. To date, transcriptomic studies after CBB infection have been very scarce and the molecular mechanisms underlying susceptibility or resistance are largely unknown. Results We sequenced and annotated the genomes of two common bean genotypes being either resistant (BAT93) or susceptible (JaloEEP558) to CBB. Reciprocal BLASTp analysis led to a list of 20,787 homologs between these genotypes and the common bean reference genome (G19833), which provides a solid dataset for further comparative analyses. RNA-Seq after inoculation with X. phaseoli pv. phaseoli showed that the susceptible genotype initiated a more intense and diverse biological response than the resistant genotype. Resistance was linked to upregulation of the salicylic acid pathway and downregulation of photosynthesis and sugar metabolism, while susceptibility was linked to downregulation of resistance genes and upregulation of the ethylene pathway and of genes involved in cell wall modification. Conclusions This study helps better understanding the mechanisms occurring during the early colonization phase of common bean by Xanthomonas and unveils new actors potentially important for resistance and susceptibility to CBB. We discuss the potential link between the pathways induced during bean colonization and genes induced by transcription activator-like effectors (TALEs), as illustrated in other Xanthomonas pathovars.
Collapse
Affiliation(s)
- Justine Foucher
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Sébastien Carrère
- CNRS, UMR 2594, Laboratoire des Interactions Plantes-Microorganismes (LIPM), F-31326, Castanet-Tolosan, France
| | - Sandra Pelletier
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Martial Briand
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | | | - Marie-Agnès Jacques
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Nicolas W G Chen
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France.
| |
Collapse
|
5
|
Resistance of Fritillaria imperialis to freezing stress through gene expression, osmotic adjustment and antioxidants. Sci Rep 2020; 10:10427. [PMID: 32591518 PMCID: PMC7319971 DOI: 10.1038/s41598-020-63006-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/21/2020] [Indexed: 12/30/2022] Open
Abstract
Plant survival in response to freezing stress depends on the efficient activation of tolerance mechanisms. Fritillaria imperialis exposure to freezing stress enhanced signalling molecules Ca2+ and H2O2 along with overexpression of Ca2+ signalling proteins (Ca2+ dependent protein kinases, CPK), followed by upregulation of NHX1 (Na+/H+ antiporter), LEA (late embryogenesis abundant proteins) and P5CS (1-pyrroline-5-carboxylate synthetase). Overexpression of OsCNGC6 was responsible for high accumulation Ca2+, Na+ and K+. The NHX1 gene product transported Na+ to vacuoles and increased cytosolic K+ content to re-establish ionic homeostasis under stress conditions. The reduced water potential of leaves was due to high accumulation of osmolytes and ions. No changes were observed in relative water content of leaves, which might be correlated with overexpression of the LEA gene, which protects against dehydration. High accumulation of H2O2 under freezing stress was responsible for activation of antioxidant systems involving SOD, phenols, anthocyanins, catalase and ascorbate peroxidase. Photosynthesis, suppressed in freezing-stressed plants, returned to normal levels after termination of freezing stress. Taken together, our findings suggest that Fritillaria efficiently tolerated freezing stress through induction of signalling mechanisms and overexpression of cold stress-responsive genes, and prevention of cold-induced water stress, oxidative stress and photosynthetic damage.
Collapse
|
6
|
Zhao J, Quan P, Liu H, Li L, Qi S, Zhang M, Zhang B, Li H, Zhao Y, Ma B, Han M, Zhang H, Xing L. Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4699-4716. [PMID: 32078318 DOI: 10.1021/acs.jafc.9b07107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Long-term low-temperature conditioning (LT-LTC) decreases apple fruit quality, but the underlying physiological and molecular basis is relatively uncharacterized. We identified 12 clusters of differentially expressed genes (DEGs) involved in multiple biological processes (i.e., sugar, malic acid, fatty acid, lipid, complex phytohormone, and stress-response pathways). The expression levels of genes in sugar pathways were correlated with decreasing starch levels during LT-LTC. Specifically, starch-synthesis-related genes (e.g., BE, SBE, and GBSS genes) exhibited downregulated expression, whereas sucrose-metabolism-related gene expression levels were up- or downregulated. The expression levels of genes in the malic acid pathway (ALMT9, AATP1, and AHA2) were upregulated, as well as the content of malic acid in apple fruit during LT-LTC. A total of 151 metabolites, mainly related to amino acids and their isoforms, amines, organic acids, fatty acids, sugars, and polyols, were identified during LT-LTC. Additionally, 35 organic-acid-related metabolites grouped into three clusters, I (3), II (22), and III (10), increased in abundance during LT-LTC. Multiple phytohormones regulated the apple fruit chilling injury response. The ethylene (ET) and abscisic acid (ABA) levels increased at CS2 and CS3, and jasmonate (JA) levels also increased during LT-LTC. Furthermore, the expression levels of genes involved in ET, ABA, and JA synthesis and response pathways were upregulated. Finally, some key transcription factor genes (MYB, bHLH, ERF, NAC, and bZIP genes) related to the apple fruit cold acclimation response were differentially expressed. Our results suggest that the multilayered mechanism underlying apple fruit deterioration during LT-LTC is a complex, transcriptionally regulated process involving cell structures, sugars, lipids, hormones, and transcription factors.
Collapse
Affiliation(s)
- Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Pengkun Quan
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hangkong Liu
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Lei Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mengsheng Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Bo Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hao Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Baiquan Ma
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Haihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| |
Collapse
|
7
|
Zhang M, Liu Y, He Q, Chai M, Huang Y, Chen F, Wang X, Liu Y, Cai H, Qin Y. Genome-wide investigation of calcium-dependent protein kinase gene family in pineapple: evolution and expression profiles during development and stress. BMC Genomics 2020; 21:72. [PMID: 31973690 PMCID: PMC6979071 DOI: 10.1186/s12864-020-6501-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/16/2020] [Indexed: 11/25/2022] Open
Abstract
Background Calcium-dependent protein kinase (CPK) is one of the main Ca2+ combined protein kinase that play significant roles in plant growth, development and response to multiple stresses. Despite an important member of the stress responsive gene family, little is known about the evolutionary history and expression patterns of CPK genes in pineapple. Results Herein, we identified and characterized 17 AcoCPK genes from pineapple genome, which were unevenly distributed across eight chromosomes. Based on the gene structure and phylogenetic tree analyses, AcoCPKs were divided into four groups with conserved domain. Synteny analysis identified 7 segmental duplication events of AcoCPKs and 5 syntenic blocks of CPK genes between pineapple and Arabidopsis, and 8 between pineapple and rice. Expression pattern of different tissues and development stages suggested that several genes are involved in the functional development of plants. Different expression levels under various abiotic stresses also indicated that the CPK family underwent functional divergence during long-term evolution. AcoCPK1, AcoCPK3 and AcoCPK6, which were repressed by the abiotic stresses, were shown to be function in regulating pathogen resistance. Conclusions 17 AcoCPK genes from pineapple genome were identified. Our analyses provide an important foundation for understanding the potential roles of AcoCPKs in regulating pineapple response to biotic and abiotic stresses
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yanhui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Qing He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Mengnan Chai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Youmei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Fangqian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Yeqiang Liu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, China
| | - Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China.
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Center for Genomics and Biotechnology, College of Plant Protection, College of life science, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Atif RM, Shahid L, Waqas M, Ali B, Rashid MAR, Azeem F, Nawaz MA, Wani SH, Chung G. Insights on Calcium-Dependent Protein Kinases (CPKs) Signaling for Abiotic Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E5298. [PMID: 31653073 PMCID: PMC6862689 DOI: 10.3390/ijms20215298] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Abiotic stresses are the major limiting factors influencing the growth and productivity of plants species. To combat these stresses, plants can modify numerous physiological, biochemical, and molecular processes through cellular and subcellular signaling pathways. Calcium-dependent protein kinases (CDPKs or CPKs) are the unique and key calcium-binding proteins, which act as a sensor for the increase and decrease in the calcium (Ca) concentrations. These Ca flux signals are decrypted and interpreted into the phosphorylation events, which are crucial for signal transduction processes. Several functional and expression studies of different CPKs and their encoding genes validated their versatile role for abiotic stress tolerance in plants. CPKs are indispensable for modulating abiotic stress tolerance through activation and regulation of several genes, transcription factors, enzymes, and ion channels. CPKs have been involved in supporting plant adaptation under drought, salinity, and heat and cold stress environments. Diverse functions of plant CPKs have been reported against various abiotic stresses in numerous research studies. In this review, we have described the evaluated functions of plant CPKs against various abiotic stresses and their role in stress response signaling pathways.
Collapse
Affiliation(s)
- Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Luqman Shahid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Babar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Abdul Rehman Rashid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan.
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38040, Pakistan.
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia.
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190001, India.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
9
|
Caló G, Scheidegger D, Martínez-Noël GMA, Salerno GL. Ancient signal for nitrogen status sensing in the green lineage: Functional evidence of CDPK repertoire in Ostreococcus tauri. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:377-384. [PMID: 28710945 DOI: 10.1016/j.plaphy.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 05/08/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) regulate plant development and many stress signalling pathways through the complex cytosolic [Ca2+] signalling. The genome of Ostreococcus tauri (Ot), a model prasinophyte organism that is on the base of the green lineage, harbours three sequences homologous to those encoding plant CDPKs with the three characteristic conserved domains (protein kinase, autoregulatory/autoinhibitory, and regulatory domain). Phylogenetic and structural analyses revealed that putative OtCDPK proteins are closely related to CDPKs from other Chlorophytes. We functionally characterised the first marine picophytoeukaryote CDPK gene (OtCDPK1) and showed that the expression of the three OtCDPK genes is up-regulated by nitrogen depletion. We conclude that CDPK signalling pathway might have originated early in the green lineage and may play a key role in prasinophytes by sensing macronutrient changes in the marine environment.
Collapse
Affiliation(s)
- Gonzalo Caló
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Dana Scheidegger
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina
| | - Graciela L Salerno
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Centro de Investigaciones Biológicas, FIBA, 7600 Mar Del Plata, Argentina.
| |
Collapse
|
10
|
Pawełek A, Duszyn M, Świeżawska B, Szmidt-Jaworska A, Jaworski K. Transcriptional response of a novel HpCDPK1 kinase gene from Hippeastrum x hybr. to wounding and fungal infection. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:108-117. [PMID: 28609667 DOI: 10.1016/j.jplph.2017.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 05/08/2023]
Abstract
Calcium dependent protein kinases (CDPK) are well established plant sensor and effectors for calcium ions and participate in regulation of multiple abiotic and biotic stress responses in plant cells. Here we present the identification and characterization of a new CDPK kinase gene from bulbous plant Hippeastrum x hybr. and examine the role of this kinase in stress responses leading to phytoalexin (PA) production in plant tissues. In the previous research, it was shown that Hippeastrum bulbs mechanically wounded or infected with Peyronellaea curtisii (=Phoma narcissi) are inducted to an antifungal red substance synthesis. In this research, we demonstrated Ca2+ dependence of the phytoalexin production by wounded bulbs. Furthermore, the isolated HpCDPK1 cDNA for ORF was found to be 1596bp long and encoded 531 amino acid protein with CDPK kinase activity, as was shown by recombinant GST-HpCDPK1 enzyme production and analysis. HpCDPK1 transcript was present in all vegetative and chosen generative organs of Hippeastrum plant. The dynamics of the observed HpCDPK1 mRNA changes in bulbs depended on stressor type. The mechanical injury caused one wave of transcript increase while more complex transcript changes were observed within 48h after Peyronellaea inoculation. In plant bulbs already accumulating red phytoalexin, increases in HpCDPK1 mRNA level were observed at certain intervals within 48h whereas, in the case of fungal infection, only one big increment in the transcript amount at the 10th minute after inoculation was detected. The observed transcriptional response of HpCDPK1 gene to wounding and pathogen infection stress suggests a positive correlation with phytoalexin synthesis and maintenance in bulb tissues and puts more light on CDPK kinase role in the plant stress response regulation. This also bears some potential for understanding the mechanism of a phytoalexin formation.
Collapse
Affiliation(s)
- Agnieszka Pawełek
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Maria Duszyn
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Brygida Świeżawska
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Adriana Szmidt-Jaworska
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Krzysztof Jaworski
- Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| |
Collapse
|
11
|
Pawełek A, Szmidt-Jaworska A, Świeżawska B, Jaworski K. Genomic structure and promoter characterization of the CDPK kinase gene expressed during seed formation in Pharbitis nil. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:87-96. [PMID: 26546919 DOI: 10.1016/j.jplph.2015.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
CDPK kinases are a unique class of calcium sensor/responders that regulate many growth and developmental processes as well as stress responses of plants. PnCDPK1 kinase from Pharbitis nil is regulated by light and contributes to seed germination, seedling growth and flower formation. Following an earlier work in which we identified the PnCDPK1 coding sequence and a 330bp long 3'UTR (untranslated region), we present for the first time the genomic organization of PnCDPK1, including intron analysis and the gene copy number designation. We completed the research by identifying the 5'-flanking region of PnCDPK1 and analyzed it in silico, which led to the discovery of several cis-regulatory elements involved in light regulation, embryogenesis and seed development. The functional analysis of P. nil CDPK showed characterization of the PnCDPK1 transcript and PnCDPK protein level during seed formation and fruit maturation. The greatest amount of PnCDPK1 mRNA was present in the last stages of seed maturation. Moreover, two PnCDPK proteins of different molecular masses were discovered during fruit development, showing various protein accumulation and activity profile. The 56kDa protein dominated in the early stages of fruit development, whereas the smaller protein (52kDa) was prominent in the latter stages.
Collapse
Affiliation(s)
- Agnieszka Pawełek
- Nicolaus Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland.
| | - Adriana Szmidt-Jaworska
- Nicolaus Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland
| | - Brygida Świeżawska
- Nicolaus Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland
| | - Krzysztof Jaworski
- Nicolaus Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland
| |
Collapse
|
12
|
Zhang YH, Rong JD, Chen LG, Chen LY, He TY, Zheng YS. Construction of cDNA library from Prunus campanulata leaves and preliminary expressed sequence tag (EST) analysis during cold stress. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Cai H, Cheng J, Yan Y, Xiao Z, Li J, Mou S, Qiu A, Lai Y, Guan D, He S. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum. FRONTIERS IN PLANT SCIENCE 2015; 6:737. [PMID: 26442050 PMCID: PMC4584942 DOI: 10.3389/fpls.2015.00737] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/29/2015] [Indexed: 05/09/2023]
Abstract
As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs) play important roles in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a genome wide comprehensive analysis of genes encoding CDPKs and CDPK-related protein kinases (CRKs) was performed in pepper, a total of 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CDPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the C. annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and 8 CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.
Collapse
Affiliation(s)
- Hanyang Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Junbin Cheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yan Yan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhuoli Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jiazhi Li
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Shaoliang Mou
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ailian Qiu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yan Lai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Shuilin He, National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
14
|
Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. Calcium-dependent protein kinases in plants: evolution, expression and function. PLANT & CELL PHYSIOLOGY 2014; 55:551-69. [PMID: 24363288 DOI: 10.1093/pcp/pct200] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in metabolism, osmosis, hormone response and stress signaling pathways. CPKs are a large multigene family of proteins that are present in all plants studied to date, as well as in protists, oomycetes and green algae, but are not found in animals and fungi. Despite the increasing evidence of the importance of CPKs in developmental and stress responses from various plants, a comprehensive genome-wide analysis of CPKs from algae to higher plants has not been undertaken. This paper describes the evolution of CPKs from green algae to plants using a broadly sampled phylogenetic analysis and demonstrates the functional diversification of CPKs based on expression and functional studies in different plant species. Our findings reveal that CPK sequence diversification into four major groups occurred in parallel with the terrestrial transition of plants. Despite significant expansion of the CPK gene family during evolution from green algae to higher plants, there is a high level of sequence conservation among CPKs in all plant species. This sequence conservation results in very little correlation between CPK evolutionary groupings and functional diversity, making the search for CPK functional orthologs a challenge.
Collapse
Affiliation(s)
- Gardette R Valmonte
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, New Zealand
| | | | | | | |
Collapse
|
15
|
Fu L, Yu X, An C. Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:202-210. [PMID: 24141028 DOI: 10.1007/s11738-013-1408-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/02/2013] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses.
Collapse
Affiliation(s)
- Liwen Fu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
16
|
Fu L, Yu X, An C. Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:202-10. [PMID: 24141028 DOI: 10.1016/j.plaphy.2013.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/02/2013] [Indexed: 05/04/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are crucial calcium sensors involved in plant responses to pathogen infection. Here, we report isolation and functional characterization of the pathogen-responsive rice OsCPK10 gene. The expression of OsCPK10 was strongly induced following treatment with a Magnaporthe grisea elicitor. Kinase activity assay showed that the functional OsCPK10 protein not only autophosphorylated, but also phosphorylated Casein in a calcium-dependent manner. Overexpression of constitutively active OsCPK10 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK10 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic lines was associated with activated expression of SA- and JA-related defense genes. Collectively, our results indicate that rice OsCPK10 is a crucial regulator in plant immune responses, and that it may regulate disease resistance by activating both SA- and JA-dependent defense responses.
Collapse
Affiliation(s)
- Liwen Fu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
17
|
Yang N, Peng C, Cheng D, Huang Q, Xu G, Gao F, Chen L. The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. Gene 2013; 521:32-7. [PMID: 23528224 DOI: 10.1016/j.gene.2013.03.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 11/17/2022]
Abstract
Genes involved in the calcium signalling pathway have a relationship with cold tolerance in many plants. The primary reaction to many different environmental stresses is an increase in the cytoplasmic Ca(2+) concentration. Such variations in the Ca(2+) concentration could change the activity of Ca(2+)-dependent protein functions, further regulating the expression of stress-related genes; therefore, the Ca(2+) signalling pathway is involved in the biological stress reaction. The expression of the calcium-modulated protein gene, calmodulin, in Antarctic notothenioid fish (Dissostichus mawsoni) accounts for 0.23% of all transcripts, which is a very high level of expression in this cold-water fish. To elucidate the function of calmodulin (CaM) from Antarctic notothenioid fishes, we introduced the calmodulin (CaM) gene into tobacco plants using a viral vector based on pea early browning virus (PEBV). RT-PCR and Western blot results confirmed that the CaM gene was over-expressed in tobacco. Under low-temperature stress, the CaM transgenic plants exhibited faster growth than wild-type plants. The physiological and biochemical effects of the high-level expression of CaM in tobacco were analysed, and the changes in the electrolyte leakage activity and malondialdehyde content showed that CaM over-expression in tobacco increased the cold tolerance of the plants. These results demonstrate that CaM can possibly be used to enhance the low-temperature tolerance of plants.
Collapse
Affiliation(s)
- Na Yang
- College of Life Science, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhao Z, Tan L, Dang C, Zhang H, Wu Q, An L. Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant, Chorispora bungeana. BMC PLANT BIOLOGY 2012; 12:222. [PMID: 23171377 PMCID: PMC3571968 DOI: 10.1186/1471-2229-12-222] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/19/2012] [Indexed: 05/05/2023]
Abstract
BACKGROUND The plant tolerance mechanisms to low temperature have been studied extensively in the model plant Arabidopsis at the transcriptional level. However, few studies were carried out in plants with strong inherited cold tolerance. Chorispora bungeana is a subnival alpine plant possessing strong cold tolerance mechanisms. To get a deeper insight into its cold tolerance mechanisms, the transcriptome profiles of chilling-treated C. bungeana seedlings were analyzed by Illumina deep-sequencing and compared with Arabidopsis. RESULTS Two cDNA libraries constructed from mRNAs of control and chilling-treated seedlings were sequenced by Illumina technology. A total of 54,870 unigenes were obtained by de novo assembly, and 3,484 chilling up-regulated and 4,571 down-regulated unigenes were identified. The expressions of 18 out of top 20 up-regulated unigenes were confirmed by qPCR analysis. Functional network analysis of the up-regulated genes revealed some common biological processes, including cold responses, and molecular functions in C. bungeana and Arabidopsis responding to chilling. Karrikins were found as new plant growth regulators involved in chilling responses of C. bungeana and Arabidopsis. However, genes involved in cold acclimation were enriched in chilling up-regulated genes in Arabidopsis but not in C. bungeana. In addition, although transcription activations were stimulated in both C. bungeana and Arabidopsis, no CBF putative ortholog was up-regulated in C. bungeana while CBF2 and CBF3 were chilling up-regulated in Arabidopsis. On the other hand, up-regulated genes related to protein phosphorylation and auto-ubiquitination processes were over-represented in C. bungeana but not in Arabidopsis. CONCLUSIONS We conducted the first deep-sequencing transcriptome profiling and chilling stress regulatory network analysis of C. bungeana, a subnival alpine plant with inherited cold tolerance. Comparative transcriptome analysis suggests that cold acclimation is not a major chilling tolerance mechanism of C. bungeana. Activation of protein phosphorylation and ubiquitination may confer chilling tolerance to C. bungeana in a more rapid and flexible way than cold acclimation. Such differences may have contributed to the differences in cold tolerance between C. bungeana and Arabidopsis. The results presented in this paper will be informative for gene discovery and the molecular mechanisms related to plant cold tolerance.
Collapse
Affiliation(s)
- Zhiguang Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lingling Tan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chunyan Dang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hua Zhang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qingbai Wu
- State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lizhe An
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
19
|
Jaworski K, Pawełek A, Kopcewicz J, Szmidt-Jaworska A. The calcium-dependent protein kinase (PnCDPK1) is involved in Pharbitis nil flowering. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1578-85. [PMID: 22840323 DOI: 10.1016/j.jplph.2012.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 05/10/2023]
Abstract
Signaling pathways, and specifically the signaling pathway of calcium, have been widely implicated in the regulation of a variety of signals in plants. Calcium-dependent protein kinases (CDPKs) are essential sensor-transducers of calcium signaling pathways, the functional characterization of which is of great interest because they play important roles during growth and in response to a wide range of environmental and developmental stimuli. Here, we report the first evidence of transient and specific elevation of PnCDPK1 transcript level and enzyme activity following conversion of a leaf bud to a flower bud, as well as participation of PnCDPK1 in evocation and flower morphogenesis in Pharbitis nil. Fluorescence microscopy immunolocalization and biochemical analysis confirmed the presence of CDPK in shoot apexes. The protein level was low in leaves, vegetative apexes and increased significantly in apexes after a flowering long-induction night. In the vegetative apex, a very weak PnCDPK1 protein signal was accumulated prominently in the zone of the ground meristem and in external layers of tissues of the cortex. After the dark treatment, the signal in cells of the ground meristem was still present, but a significantly stronger signal appeared in epidermal cells, cortex tissue, and leaf primordium. At the onset of flower meristem development, the PnCDPK1 level diverged significantly. PnCDPK1 mRNA, protein level and enzyme activity were very low at the beginning of flower bud development and gradually increased in later stages, reaching the highest level in a fully open flower. Analysis of flower organs revealed that PnCDPK1 was accumulated mainly in petals and sepals rather than in pistils and stamens. Our results clearly indicate that PnCDPK1 is developmentally regulated and may be an important component in the signal transduction pathways for flower morphogenesis. Findings from this research are important for further dissecting mechanisms of flowering and functions of CDPKs in flowering plants.
Collapse
Affiliation(s)
- Krzysztof Jaworski
- Nicolaus Copernicus University, Gagarina St. 9, PL 87-100 Torun, Poland.
| | | | | | | |
Collapse
|
20
|
Fu SF, Tsai TM, Chen YR, Liu CP, Haiso LJ, Syue LH, Yeh HH, Huang HJ. Characterization of the early response of the orchid, Phalaenopsis amabilis, to Erwinia chrysanthemi infection using expression profiling. PHYSIOLOGIA PLANTARUM 2012; 145:406-25. [PMID: 22268629 DOI: 10.1111/j.1399-3054.2012.01582.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Erwinia chrysanthemi is a devastating bacterial pathogen in Phalaenopsis amabilis and causes soft-rotting disease by secretion of cell wall-degrading enzymes. However, the molecular mechanisms underlying the interaction of P. amabilis with E. chrysanthemi remain elusive. In this study, early molecular events of the plant in response to the pathogen attack were investigated. The alteration in reactive oxygen species accumulation and peroxidase activity occurred at the site of infection. Subsequently, a systematic sequencing of expressed sequence tags (ESTs) using suppression subtractive hybridization (SSH) was performed to obtain the first global picture of the assembly of genes involved in the pathogenesis. The majority of the SSH clones showed a high identity with genes coding for proteins that have known roles in redox homeostasis, responses to pathogens and metabolism. A notable number of the SSH clones were those encoding WRKY, MYB and basic leucine zipper transcription factors, indicating the stimulation of intracellular signal transduction. An orchid gene encoding trans-2-enoyl-CoA reductase (ECR) was the most abundant transcripts in the EST library. ECR is an enzyme catalyzing the very long chain fatty acids (VLCFAs) biosynthesis, and the full-length cDNA of the ECR gene (PaECR1) was obtained. Functional analysis of PaECR1 was conducted by virus-induced gene silencing to knock down the gene expression in P. amabilis. The PaECR1-silenced plants were more susceptible to E. chrysanthemi infection, implying potential roles for VLCFAs in the pathogenesis. In summary, the pathogen-responsive gene expression profiles facilitated a more comprehensive view of the molecular events that underlie this economically important plant-pathogen interaction.
Collapse
Affiliation(s)
- Shih-Feng Fu
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
CHEN S, LIU GS, WANG YY, SUN YH, CHEN J. Cloning of a Calcium-Dependent Protein Kinase Gene NtCDPK12, and Its Induced Expression by High-Salt and Drought in Nicotiana tabacum. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60185-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Structure and Function of CDPK: A Sensor Responder of Calcium. CODING AND DECODING OF CALCIUM SIGNALS IN PLANTS 2011. [DOI: 10.1007/978-3-642-20829-4_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Das R, Pandey GK. Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genomics 2010; 11:2-13. [PMID: 20808518 PMCID: PMC2851112 DOI: 10.2174/138920210790217981] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/07/2009] [Accepted: 07/07/2009] [Indexed: 11/30/2022] Open
Abstract
Perception of stimuli and activation of a signaling cascade is an intrinsic characteristic feature of all living organisms. Till date, several signaling pathways have been elucidated that are involved in multiple facets of growth and development of an organism. Exposure to unfavorable stimuli or stress condition activates different signaling cascades in both plants and animal. Being sessile, plants cannot move away from an unfavorable condition, and hence activate the molecular machinery to cope up or adjust against that particular stress condition. In plants, role of calcium as second messenger has been studied in detail in both abiotic and biotic stress signaling. Several calcium sensor proteins such as calmodulin (CaM), calcium dependent protein kinases (CDPK) and calcinuerin B-like (CBL) were discovered to play a crucial role in abiotic stress signaling in plants. Unlike CDPK, CBL and CaM are calcium-binding proteins, which do not have any protein kinase enzyme activity and interact with a target protein kinase termed as CBL-interacting protein kinase (CIPK) and CaM kinases respectively. Genome sequence analysis of Arabidopsis and rice has led to the identification of multigene familes of these calcium signaling protein kinases. Individual and global gene expression analysis of these protein kinase family members has been analyzed under several developmental and different abiotic stress conditions. In this review, we are trying to overview and emphasize the expressional analysis of calcium signaling protein kinases under different abiotic stress and developmental stages, and linking the expression to possible function for these kinases.
Collapse
Affiliation(s)
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
| |
Collapse
|
24
|
Cloning and Expression of Calcium-Dependent Protein Kinase (CDPK) Gene Family in Common Tobacco (Nicotiana tabacum). ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(08)60358-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Expression profiling of a novel calcium-dependent protein kinase gene, LeCPK2, from tomato (Solanum lycopersicum) under heat and pathogen-related hormones. Biosci Biotechnol Biochem 2009; 73:2427-31. [PMID: 19897910 DOI: 10.1271/bbb.90385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A full-length cDNA LeCPK2 (GenBank GQ205414) from tomato (Solanum lycopersicum) encoding a calcium-dependent protein kinase (CDPK) was cloned by in silico cloning using NtCPK5 (AY971376) as a virtual probe. The deduced amino acid sequence of LeCPK2 contained the kinase, autoinhibitory, and calmodulin-like domains typical of CDPKs. Expression profiling indicated that LeCPK2 expressed predominantly in flowers and responded divergently to heat and cold stress, in which obvious mRNA accumulation was detected at 4 h under 42 degrees C stress, but no change in LeCPK2 mRNA levels was observed in 6 h at 4 degrees C. Mechanical wounding and phytohormones including ethylene, methyl jasmonate, and salicylic acid were also observed to arouse the expression of LeCPK2 in a similar pattern. mRNA accumulation was enhanced at 30 min and reached a maximum at 3 h, followed by a decrease to the normal level. All the results suggest that LeCPK2 is a novel versatile isoform of tomato CDPKs.
Collapse
|
26
|
Li DM, Staehelin C, Zhang YS, Peng SL. Identification of genes differentially expressed in Mikania micrantha during Cuscuta campestris infection by suppression subtractive hybridization. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1423-35. [PMID: 19328592 DOI: 10.1016/j.jplph.2009.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 02/06/2009] [Accepted: 02/07/2009] [Indexed: 05/07/2023]
Abstract
The influence of Cuscuta campestris on its host Mikania micrantha has been studied with respect to biomass accumulation, physiology and ecology. Molecular events of this parasitic plant-plant interaction are poorly understood, however. In this study, we identified novel genes from M. micrantha induced by C. campestris infection. Genes expressed upon parasitization by C. campestris at early post-penetration stages were investigated by construction and characterization of subtracted cDNA libraries from shoots and stems of M. micrantha. Three hundred and three presumably up-regulated expressed sequence tags (ESTs) were identified and classified in functional categories, such as "metabolism", "cell defence and stress", "transcription factor", "signal transduction", "transportation" and "photosynthesis". In shoots and stems of infected M. micrantha, genes associated with defence responses and cell wall modifications were induced, confirming similar data from other parasitic plant-plant interactions. However, gene expression profiles in infected shoots and stems were found to be different. Compared to infected shoots, more genes induced in response to biotic and abiotic stress factors were identified in infected stems. Furthermore, database comparisons revealed a notable number of M. micrantha ESTs that matched genes with unknown function. Expression analysis by quantitative real-time RT-PCR of 21 genes (from different functional categories) showed significantly increased levels for 13 transcripts in response to C. campestris infection. In conclusion, this study provides an overview of genes from parasitized M. micrantha at early post-penetration stages. The acquired data form the basis for a molecular understanding of host reactions in response to parasitic plants.
Collapse
Affiliation(s)
- Dong-Mei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | |
Collapse
|
27
|
Li AL, Zhu YF, Tan XM, Wang X, Wei B, Guo HZ, Zhang ZL, Chen XB, Zhao GY, Kong XY, Jia JZ, Mao L. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2008; 66:429-43. [PMID: 18185910 DOI: 10.1007/s11103-007-9281-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/21/2007] [Indexed: 05/05/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are crucial sensors of calcium concentration changes in plant cells under diverse endogenous and environmental stimuli. We identified 20 CDPK genes from bread wheat and performed a comprehensive study on their structural, functional and evolutionary characteristics. Full-length cDNA sequences of 14 CDPKs were obtained using various approaches. Wheat CDPKs were found to be similar to their counterparts in rice in genomic structure, GC content, subcellular localization, and subgroup classification. Divergence time estimation of wheat CDPK gene pairs and wheat-rice orthologs suggested that most duplicated genes already existed in the common ancestor of wheat and rice. The number of CDPKs in diploid wheat genome was estimated to be at least 26, a number close to that in rice, Arabidopsis, and poplar. However, polymorphism among EST sequences uncovered transcripts of all three homoeologous alleles for 13 out of 20 CDPKs. Thus, the hexaploid wheat should have 2-3 fold more CDPK genes expressing in their cells than the diploid species. Wheat CDPK genes were found to respond to various biotic and abiotic stimuli, including cold, hydrogen peroxide (H(2)O(2)), salt, drought, powdery mildew (Blumeria graminis tritici, Bgt), as well as phytohormones abscisic acid (ABA) and gibberellic acid (GA). Each CDPK gene often responded to multiple treatments, suggesting that wheat CDPKs are converging points for multiple signal transduction pathways. The current work represents the first comprehensive study of CDPK genes in bread wheat and provides a foundation for further functional study of this important gene family in Triticeae.
Collapse
Affiliation(s)
- Ai-Li Li
- National Key Facility of Crop Gene Resources and Genetic Improvement (NFCRI), Key Laboratory of Crop Germplasm & Biotechnology, Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|