1
|
Lima JCDS, da Silva Cavalcante E, Gonçalves CR, Lima-Junior SE, Cardoso CAL, Antonialli-Junior WF. Effect of Seasonal Variation on the Cuticular Chemical Composition of Atta laevigata (Smith 1858) (Hymenoptera: Formicidae). J Chem Ecol 2025; 51:15. [PMID: 39888559 DOI: 10.1007/s10886-025-01559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 02/01/2025]
Abstract
Cuticular hydrocarbons (CHCs) constitute an important class of chemical compounds present in the cuticular layer of insects, where their main functions are to prevent desiccation of the cuticle and as signals for intraspecific recognition. Studies concerning CHCs have shown a phenotypic flexibility of their composition, depending on environmental factors. However, the way that each of these factors influences this variation remains little explored. The aim of the present study was to evaluate the effects of environmental variations on the cuticular chemical composition of the ant Atta laevigata. Workers from four different colonies nesting in forest edge environments were collected over the course of a year, during the hot and humid and cold and dry seasons. The cuticular compounds were extracted and then analyzed by gas chromatography, revealing that the compounds of this species belonged to the classes of linear alkanes, mono, di and trimethyl alkanes, alkenes and alkadienes. Furthermore, the cuticular profile varied significantly among colonies of this species and between seasons, while intra-season variability was more significant during the hot and humid season. The observed temporal variation indicated that the numbers of compounds and the proportion of different types of CHC can vary according to the period of the year, however with a greater significant variation in colonies in the hot and humid season. These results showed that variations in environmental conditions, especially climate, can have decisive effects in the dynamics of cuticular chemistry.
Collapse
Affiliation(s)
- Jean Carlos Dos Santos Lima
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil.
| | - Elivelto da Silva Cavalcante
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Cristiano Ramos Gonçalves
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Sidnei Eduardo Lima-Junior
- Centro de Estudos em Recursos Naturais, Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - Claudia Andrea Lima Cardoso
- Centro de Estudos em Recursos Naturais, Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - William Fernando Antonialli-Junior
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| |
Collapse
|
2
|
Bian X, Zhao W, Qi Y, Peters R. Tail Tales: How Ecological Context Mediates Signal Effectiveness in a Lizard. Integr Zool 2025. [PMID: 39822147 DOI: 10.1111/1749-4877.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
Animal signals are complex, comprising multiple components influenced by ecological factors and viewing perspectives that together impact their overall effectiveness. Our study explores how these factors affect the efficacy of multi-component signals in the Qinghai toad-headed agama, Phrynocephalus vlangalii. Using 3D animations, we simulated natural environments to evaluate how tail coiling and tail lashing-two primary tail displays-vary in effectiveness from both conspecific and predator perspectives under different ecological conditions. Baseline comparisons showed no significant difference in effectiveness between tail coiling and tail lashing without environmental constraints, though side-on tail coiling was consistently more effective than front-on displays. When noise proximity was introduced, tail lashing was more effective when the noise source was nearby, but this advantage diminished with distance. Conversely, tail coiling maintained consistent effectiveness across varying noise proximities, especially from a side-on view. In complex habitats with diverse plant species and varying wind conditions, tail lashing proved more effective, particularly from a front-on perspective, while tail coiling excelled from a side-on view. From a predator's perspective, tail lashing was slightly more effective under low wind conditions at close distances, though its visibility decreased with higher wind speeds. These findings highlight the adaptive significance of multi-component signals and the critical role of signal orientation in enhancing communication. This research offers insights into the evolutionary pressures shaping animal communication strategies.
Collapse
Affiliation(s)
- Xue Bian
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wei Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yin Qi
- Biodiversity Conservation Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Richard Peters
- Animal Behaviour Group, Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Winiarski M, Madecka A, Yadav A, Borowska J, Wołyniak MR, Jędrzejewska-Szmek J, Kondrakiewicz L, Mankiewicz L, Chaturvedi M, Wójcik DK, Turzyński K, Puścian A, Knapska E. Information sharing within a social network is key to behavioral flexibility-Lessons from mice tested under seminaturalistic conditions. SCIENCE ADVANCES 2025; 11:eadm7255. [PMID: 39752499 PMCID: PMC11698118 DOI: 10.1126/sciadv.adm7255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/18/2024] [Indexed: 01/06/2025]
Abstract
Being part of a social structure offers chances for social learning vital for survival and reproduction. Nevertheless, studying the neural mechanisms of social learning under laboratory conditions remains challenging. To investigate the impact of socially transmitted information about rewards on individual behavior, we used Eco-HAB, an automated system monitoring the voluntary behavior of group-housed mice under seminaturalistic conditions. In these settings, male mice spontaneously form social networks, with individuals occupying diverse positions. We show that a rewarded group member's scent affects the ability of conspecifics to search for rewards in familiar and novel environments. The scent's impact depends on the animal's social position. Furthermore, disruption of neuronal plasticity in the prelimbic cortex (PL) disrupts the social networks and animals' interest in social information related to rewards; only the latter is blocked by the acute PL inhibition. This experimental design represents a cutting-edge approach to studying the brain mechanisms of social learning.
Collapse
Affiliation(s)
- Maciej Winiarski
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Madecka
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anjaly Yadav
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Borowska
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maria R. Wołyniak
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ludwika Kondrakiewicz
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Lech Mankiewicz
- Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Mayank Chaturvedi
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Daniel K. Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Faculty of Management and Social Communication, Jagiellonian University, 30-348 Cracow, Poland
| | - Krzysztof Turzyński
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Alicja Puścian
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Knapska
- Laboratory of Neurobiology of Emotions, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders–BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Ali AAB. Cuticular composition: An alternative taxonomic approach to differentiate between Argas arboreus and Argas persicus ticks (Acari: Argasidae). Vet Parasitol 2025; 333:110353. [PMID: 39561508 DOI: 10.1016/j.vetpar.2024.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Argas arboreus and A. persicus are blood sucking ectoparasites on domestic birds in Egypt. They cause anemia in birds, in addition to transmitting a variety of pathogens that leads to economical loss in the poultry industry. It is difficult for non-taxonomists to differentiate between these species because of minor morphological characters. Therefore, it is very important to identify tick species for developing a suitable strategy to reduce risks to poultry wealth. This study characterized the female cuticular hydrocarbons of two Argas species using gas chromatography-mass spectrometry. Sixty different hydrocarbons were exclusively identified in A. arboureus, whereas only 51 in A. persicus. Some of the hydrocarbon compounds were stage-specific ones that differentiate between two species. Others shared between all feeding stages of both species that improved they are closely related ones. Genetic variability recorded its maximum value between unfed stages of the two species, and similarity reached only 25 %. The present study provides the first chemotaxonomic data to differentiate between two closely related Argas species according to their cuticular hydrocarbons. Therefore, hydrocarbon composition seems to be a promising tool available as a taxonomic character, in addition improved that feeding stage was the susceptible one to be controlled.
Collapse
Affiliation(s)
- Asmaa Ali Baioumy Ali
- Zoology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
5
|
Loos HM, Schaal B, Pause BM, Smeets MAM, Ferdenzi C, Roberts SC, de Groot J, Lübke KT, Croy I, Freiherr J, Bensafi M, Hummel T, Havlíček J. Past, Present, and Future of Human Chemical Communication Research. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2025; 20:20-44. [PMID: 37669015 PMCID: PMC11720269 DOI: 10.1177/17456916231188147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Although chemical signaling is an essential mode of communication in most vertebrates, it has long been viewed as having negligible effects in humans. However, a growing body of evidence shows that the sense of smell affects human behavior in social contexts ranging from affiliation and parenting to disease avoidance and social threat. This article aims to (a) introduce research on human chemical communication in the historical context of the behavioral sciences; (b) provide a balanced overview of recent advances that describe individual differences in the emission of semiochemicals and the neural mechanisms underpinning their perception, that together demonstrate communicative function; and (c) propose directions for future research toward unraveling the molecular principles involved and understanding the variability in the generation, transmission, and reception of chemical signals in increasingly ecologically valid conditions. Achieving these goals will enable us to address some important societal challenges but are within reach only with the aid of genuinely interdisciplinary approaches.
Collapse
Affiliation(s)
- Helene M. Loos
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
| | - Benoist Schaal
- Development of Olfactory Cognition and Communication Lab, Centre des Sciences du Goût et de l’Alimentation, CNRS UMR 6265, Université de Bourgogne
| | - Bettina M. Pause
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | | | - Camille Ferdenzi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | | | | | - Katrin T. Lübke
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | - Ilona Croy
- Institute for Psychology, Friedrich-Schiller-Universität Jena
| | - Jessica Freiherr
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Moustafa Bensafi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden
| | | |
Collapse
|
6
|
Mercado E, Zhuo J. Do rodents smell with sound? Neurosci Biobehav Rev 2024; 167:105908. [PMID: 39343078 DOI: 10.1016/j.neubiorev.2024.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Chemosensation via olfaction is a critical process underlying social interactions in many different species. Past studies of olfaction in mammals often have focused on its mechanisms in isolation from other systems, limiting the generalizability of findings from olfactory research to perceptual processes in other modalities. Studies of chemical communication, in particular, have progressed independently of research on vocal behavior and acoustic communication. Those bioacousticians who have considered how sound production and reception might interact with olfaction often portray odors as cues to the kinds of vocalizations that might be functionally useful. In the olfaction literature, vocalizations are rarely mentioned. Here, we propose that ultrasonic vocalizations may affect what rodents smell by altering the deposition of inhaled particles and that rodents coordinate active sniffing with sound production specifically to enhance reception of pheromones. In this scenario, rodent vocalizations may contribute to a unique mode of active olfactory sensing, in addition to whatever roles they serve as social signals. Consideration of this hypothesis highlights the perceptual advantages that parallel coordination of multiple sensorimotor processes may provide to individuals exploring novel situations and environments, especially those involving dynamic social interactions.
Collapse
Affiliation(s)
- Eduardo Mercado
- University at Buffalo, The State University of New York, USA.
| | | |
Collapse
|
7
|
Díaz-Morales M, Khallaf MA, Stieber R, Alali I, Hansson BS, Knaden M. The Ortholog Receptor Or67d in Drosophila Bipectinata is able to Detect Two Different Pheromones. J Chem Ecol 2024; 50:610-619. [PMID: 39294426 PMCID: PMC11543753 DOI: 10.1007/s10886-024-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
Sex pheromones play a crucial role in species recognition and reproductive isolation. Despite being largely species-specific in drosophilids, the mechanisms underlying pheromone detection, production, and their influence on mating behavior remain poorly understood. Here, we compare the chemical profiles of Drosophila bipectinata and D. melanogaster, the mating behaviors in both species, as well as the tuning properties of Or67d receptors, which are expressed by neurons in antennal trichoid sensilla at1. Through single sensillum recordings, we demonstrate that the D. bipectinata Or67d-ortholog exhibits similar sensitivity to cis-vaccenyl acetate (cVA) as compared to D. melanogaster but in addition also responds uniquely to (Z)-11-eicosen-1-yl-acetate (Z11-20:Ac), a compound exclusively produced by D. bipectinata males. Through courtship behavior assays we found that, surprisingly, perfuming the flies with Z11-20:Ac did not reveal any aphrodisiacal or anti-aphrodisiacal effects in mating assays. The behavioral relevance of at1 neuron channels in D. bipectinata compared to D. melanogaster seems to be restricted to its formerly shown function as an aggregation pheromone. Moreover, the non-specific compound cVA affected copulation negatively in D. bipectinata and could potentially act as a premating isolation barrier. As both ligands of Or67d seem to govern different behaviors in D. bipectinata, additional neurons detecting at least one of those compounds might be involved. These results underscore the complexity of chemical signaling in species recognition and raise intriguing questions about the evolutionary implications of pheromone detection pathways in Drosophila species.
Collapse
Affiliation(s)
- Melissa Díaz-Morales
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
- Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica
| | - Mohammed A Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut, Egypt
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, 13122, Berlin, Germany
| | - Regina Stieber
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ibrahim Alali
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany.
| |
Collapse
|
8
|
Rokni D, Ben-Shaul Y. Object-oriented olfaction: challenges for chemosensation and for chemosensory research. Trends Neurosci 2024; 47:834-848. [PMID: 39245626 DOI: 10.1016/j.tins.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Many animal species use olfaction to extract information about objects in their environment. Yet, the specific molecular signature that any given object emits varies due to various factors. Here, we detail why such variability makes chemosensory-mediated object recognition such a hard problem, and we propose that a major function of the elaborate chemosensory network is to overcome it. We describe previous work addressing different elements of the problem and outline future research directions that we consider essential for a full understanding of object-oriented olfaction. In particular, we call for extensive representation of olfactory object variability in chemical, behavioral, and electrophysiological analyses. While written with an emphasis on macrosmatic mammalian species, our arguments apply to all organisms that employ chemosensation to navigate complex environments.
Collapse
Affiliation(s)
- Dan Rokni
- Department of Medical Neurobiology, The Hebrew University Faculty of Medicine, Institute for Medical Research, Israel-Canada (IMRIC), Jerusalem, Israel.
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, The Hebrew University Faculty of Medicine, Institute for Medical Research, Israel-Canada (IMRIC), Jerusalem, Israel.
| |
Collapse
|
9
|
Qi H, Yu J, Shen Q, Cai M, Gao Q, Tang Q, Yi S. Identification and characterization of olfactory gene families in Macrobrachium rosenbergii based on full-length transcripts and genome sequences. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101299. [PMID: 39068906 DOI: 10.1016/j.cbd.2024.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The olfactory gene families include odorant binding proteins (OBPs), chemosensory proteins (CSPs), olfactory receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). To investigate the molecular function of olfactory perception in Macrobrachium rosenbergii, we integrated the full-length transcripts and whole-genome sequences to identify the olfactory gene families. In this study, a total of 38,955 full-length transcripts with an N50 length of 3383 bp were obtained through PacBio SMRT sequencing. Through the annotation of full-length transcripts and whole-genome sequences, several olfactory gene families were identified, including 18 MrORs, 16 MrIRs, 151 MrIGluRs (ionotropic glutamate receptors), 2 MrVIGluRs (variant ionotropic glutamate receptors) and 3 MrCRs (chemosensory receptors). Notably, the CRs were first identified in prawns and shrimps. Additionally, the olfactory gene families in M. nipponense were identified, comprising 4 MnORs, 21 MnIRs, 79 MnIGluRs, 5 MnVIGluRs, 1 MnGR and 1 MnOBP, using the available whole-genome sequences. Meanwhile, the external morphology of the chemical sensory organs of M. rosenbergii was explored, and the presence of plumose setae (PS), hard thorn setae (HTS), bamboo shoot setae (BSS), soft thorn setae (STS) and aesthetascs (AE) on the antennules, HTS and BSS on the second antennae, and PS on the pereiopods were observed by scanning electron microscope. This study provides valuable insights for future functional studies into the olfactory perception of crustaceans and establishes a theoretical basis for molecular design breeding in M. rosenbergii.
Collapse
Affiliation(s)
- Hangyu Qi
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Jiongying Yu
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qi Shen
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Miuying Cai
- Jiangsu Shufeng Prawn Breeding Co. LTD, Gaoyou 225654, China
| | - Quanxin Gao
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiongying Tang
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- School of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
10
|
Moore D, Liebig J. Innate and learned components of egg recognition in the ant Camponotus floridanus. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231837. [PMID: 39100179 PMCID: PMC11295788 DOI: 10.1098/rsos.231837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/13/2024] [Accepted: 05/01/2024] [Indexed: 08/06/2024]
Abstract
Insect societies discriminate against foreigners to avoid exploitation. In ants, helper workers only accept individuals with the familiar chemical cues of their colony. Similarly, unfamiliar eggs may get rejected at their first appearance in the nest. We investigated egg acceptance mechanisms by introducing different types of foreign eggs into worker groups of the ant Camponotus floridanus. Workers from established colonies familiar with queen-laid eggs always accepted eggs from highly fecund queens, but worker-laid eggs only after exposure for several weeks. Workers naive to eggs only rejected worker-laid eggs once they had prior exposure to eggs laid by highly fecund queens, suggesting that prior exposure to such eggs is necessary for discrimination. The general acceptance of eggs from highly fecund queens, irrespective of previous worker egg exposure, suggests an innate response to the queen pheromone these eggs carry. Workers learned to accept queen-laid eggs from different species, indicating high flexibility in learning egg-recognition cues. In incipient colonies with queen-laid eggs that carry a weak queen pheromone, worker-laid eggs were more likely to get accepted than queen-laid eggs from a different species, suggesting that the similarity of egg-recognition cues between the two types of C. floridanus eggs increases acceptance.
Collapse
Affiliation(s)
- Dani Moore
- School of Life Sciences, Arizona State University, Tempe, AZ85287, USA
| | - Juergen Liebig
- School of Life Sciences, Arizona State University, Tempe, AZ85287, USA
| |
Collapse
|
11
|
Alves Soares T, Caspers BA, Loos HM. Volatile organic compounds in preen oil and feathers - a review. Biol Rev Camb Philos Soc 2024; 99:1085-1099. [PMID: 38303487 DOI: 10.1111/brv.13059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
For a long time birds were assumed to be anosmic or at best microsmatic, with olfaction a poorly understood and seldom investigated part of avian physiology. The full viability of avian olfaction was first discovered through its functions in navigation and foraging. Subsequently, researchers have investigated the role of olfaction in different social and non-social contexts, including reproduction, kin recognition, predator avoidance, navigation and foraging. In parallel to the recognition of the importance of olfaction for avian social behaviour, there have been advances in the techniques and methods available for the sampling and analysis of trace volatiles and odourants, leading to insights into the chemistry underlying chemical communication in birds. This review provides (i) an overview of the current state of knowledge regarding the volatile chemical composition of preen oil and feathers, its phylogenetic coverage, chemical signatures and their potential functions, and (ii) a discussion of current methods used for the isolation and detection of volatiles. Finally, lines for future research are proposed.
Collapse
Affiliation(s)
- Tatjana Alves Soares
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestraße 9, Erlangen, 91054, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestraße 9, Erlangen, 91054, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, Freising, 85354, Germany
| |
Collapse
|
12
|
Li Y, Yan Z, Lin A, Yang X, Li X, Yin X, Li W, Li K. Epidermal oxysterols function as alarm substances in zebrafish. iScience 2024; 27:109660. [PMID: 38650983 PMCID: PMC11033690 DOI: 10.1016/j.isci.2024.109660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/12/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
Alarm substances signal imminent predation thread and enable anti-predation strategies. In shoaling fish, alarm cues diffuse from injured skins that induce intense fear and anti-predation behaviors in other members. While these "fear substances" are shown to be present in numerous fishes and thought to exist in roughly 8,000 Ostariophysan species, their chemical nature remains largely unknown. We posited that fish alarm cues comprise small compounds and induce specific behaviors characteristic of fish exposed to skin extracts. Using the behaviors as bioassays, we tracked the alarm function of zebrafish skin extract to two compounds, 24-methyl-5α-cholestane-3α,7α,12α,24,28-pentahydroxy 28-sulfate, an oxysterol sulfate, and 5α-cyprinol sulfate. At concentrations of less than one nanomolar, each compound induced anti-predator behaviors and increased cortisol levels in zebrafish. Their mixture, at the natural ratio, replicated the skin extract in eliciting the full suite of anti-predator behavior patterns. Our findings reveal a molecular mechanism whereby fish escape predation danger.
Collapse
Affiliation(s)
- Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Ocean, Yantai University, Yantai 264005, China
| | - Ainuo Lin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiuli Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Weiming Li
- Department of Fisheries & Wildlife, Michigan State University, Lansing, MI 48824, USA
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
13
|
LaDue CA, Snyder RJ. Asian elephants distinguish sexual status and identity of unfamiliar elephants using urinary odours. Biol Lett 2023; 19:20230491. [PMID: 38115746 PMCID: PMC10731322 DOI: 10.1098/rsbl.2023.0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Despite the ubiquity of odours in mammals, few studies have documented the natural olfactory abilities of many 'non-model' species such as the Asian elephant. As Asian elephants are endangered, we may apply odours to more effectively manage threatened populations. We implemented a habituation-discrimination paradigm for the first time in Asian elephants to test the ability of elephants to discriminate between unfamiliar male elephant urine, hypothesizing that elephants would successfully distinguish non-musth from musth urine and also distinguish identity between two closely related individuals. We conducted two bioassay series, exposing three female and three male zoo-housed elephants to the same urine sample (non-musth urine in the first series, and urine from an unfamiliar individual in the second) over 5 days. On the sixth day, we simultaneously presented each elephant with a novel sample (either musth urine or urine from a second unfamiliar individual) alongside the habituated urine sample, comparing rates of chemosensory response to each sample to indicate discrimination. All elephants successfully discriminated non-musth from musth urine, and also urine from two unfamiliar half-brothers. Our results further demonstrate the remarkable olfactory abilities of elephants with promising implications for conservation and management.
Collapse
Affiliation(s)
- Chase A. LaDue
- Oklahoma City Zoo and Botanical Garden, Oklahoma City, Oklahoma, USA
| | - Rebecca J. Snyder
- Oklahoma City Zoo and Botanical Garden, Oklahoma City, Oklahoma, USA
| |
Collapse
|
14
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
15
|
Al-Zahaby SA, Farag MR, Alagawany M, Taha HSA, Varoni MV, Crescenzo G, Mawed SA. Zinc Oxide Nanoparticles (ZnO-NPs) Induce Cytotoxicity in the Zebrafish Olfactory Organs via Activating Oxidative Stress and Apoptosis at the Ultrastructure and Genetic Levels. Animals (Basel) 2023; 13:2867. [PMID: 37760268 PMCID: PMC10525688 DOI: 10.3390/ani13182867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology has gained tremendous attention because of its crucial characteristics and wide biomedical applications. Although zinc oxide nanoparticles (ZnO-NPs) are involved in many industrial applications, researchers pay more attention to their toxic effects on living organisms. Since the olfactory epithelium is exposed to the external environment, it is considered the first organ affected by ZnO-NPs. Herein, we demonstrated the cytotoxic effect of ZnO-NPs on the olfactory organ of adult zebrafish after 60 days post-treatment. We opted for this period when fishes stop eating their diet from the aquarium, appear feeble, and cannot swim freely. Our study demonstrated that ZnO-NPs induced significant malformations of the olfactory rosettes at histological, ultrastructural, and genetic levels. At the ultrastructure level, the olfactory lamellae appeared collapsed, malformed, and twisted with signs of degeneration and loss of intercellular connections. In addition, ZnO-NPs harmed sensory receptor and ciliated cells, microvilli, rodlet, crypt, and Kappe cells, with hyper-activity of mucous secretion from goblet cells. At the genetic level, ZnO-NPs could activate the reactive oxygen species (ROS) synthesis expected by the down-regulation of mRNA expression for the antioxidant-related genes and up-regulation of DNA damage, cell growth arrest, and apoptosis. Interestingly, ZnO-NPs affected the odor sensation at 60 days post-treatment (60-dpt) more than at 30-dpt, severely damaging the olfactory epithelium and irreparably affecting the cellular repairing mechanisms. This induced a dramatically adverse effect on the cellular endoplasmic reticulum (ER), revealed by higher CHOP protein expression, that suppresses the antioxidant effect of Nrf2 and is followed by the induction of apoptosis via the up-regulation of Bax expression and down-regulation of Bcl-2 protein.
Collapse
Affiliation(s)
- Sheren A. Al-Zahaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Heba S. A. Taha
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | | | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| |
Collapse
|
16
|
Miaretsoa L, Torti V, Petroni F, Valente D, De Gregorio C, Ratsimbazafy J, Carosi M, Giacoma C, Gamba M. Behavioural Correlates of Lemur Scent-Marking in Wild Diademed Sifakas ( Propithecus diadema) in the Maromizaha Forest (Madagascar). Animals (Basel) 2023; 13:2848. [PMID: 37760248 PMCID: PMC10525727 DOI: 10.3390/ani13182848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Scent-marking through odours from excreta and glandular secretions is widespread in mammals. Among primates, diurnal group-living lemurs show different deployment modalities as part of their strategy to increase signal detection. We studied the diademed sifaka (Propithecus diadema) in the Maromizaha New Protected Area, Eastern Madagascar. We tested whether the scent-marking deposition occurred using a sequential rubbing of different body parts. We also tested if glands (i.e., deposition of glandular secretions) were more frequently rubbed than genital orifices (i.e., deposition of excreta) by comparing different kinds of rubbing behaviour. We then investigated if the depositor's rank and sex affected the sequence of rubbing behaviour, the height at which the scent-marking happened, and the tree part targeted. We found that glandular secretions were often deposited with urine, especially in dominant individuals. The probability of anogenital and chest marking was highest, but chest rubbing most frequently occurred in dominant males. Markings were deposited at similar heights across age and sex, and tree trunks were the most used substrate. Males exhibited long and more complex scent-marking sequences than females. Our results indirectly support the idea that diademed sifakas deploy a sex-dimorphic mixture of glandular secretions and excreta to increase the probability of signal detection by conspecifics.
Collapse
Affiliation(s)
- Longondraza Miaretsoa
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy (D.V.)
- Groupe d’Étude et de Recherche sur les Primates de Madagascar (GERP), Fort Duchesne, Antananarivo 101, Madagascar
| | - Valeria Torti
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy (D.V.)
| | - Flavia Petroni
- Department of Sciences, Roma Tre University, 00146 Rome, Italy (M.C.)
| | - Daria Valente
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy (D.V.)
| | - Chiara De Gregorio
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy (D.V.)
| | - Jonah Ratsimbazafy
- Groupe d’Étude et de Recherche sur les Primates de Madagascar (GERP), Fort Duchesne, Antananarivo 101, Madagascar
| | - Monica Carosi
- Department of Sciences, Roma Tre University, 00146 Rome, Italy (M.C.)
| | - Cristina Giacoma
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy (D.V.)
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy (D.V.)
| |
Collapse
|
17
|
Mangiacotti M, Fumagalli M, Casali C, Biggiogera M, Forneris F, Sacchi R. Carbonic anhydrase IV in lizard chemical signals. Sci Rep 2023; 13:14164. [PMID: 37644071 PMCID: PMC10465503 DOI: 10.1038/s41598-023-41012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
The evolution of chemical signals is subject to environmental constraints. A multicomponent signal may combine semiochemical molecules with supporting compounds able to enhance communication efficacy. Carbonic anhydrases (CAs) are ubiquitous enzymes catalysing the reversible hydration of carbon dioxide, a reaction involved in a variety of physiological processes as it controls the chemical environment of the different tissues or cellular compartments, thus contributing to the overall system homeostasis. CA-IV isoform has been recently identified by mass spectrometry in the femoral gland secretions (FG) of the marine iguana, where it has been hypothesized to contribute to the chemical stability of the signal, by regulating blend pH. Lizards, indeed, use FG to communicate by delivering the waxy secretion on bare substrate, where it is exposed to environmental stressors. Therefore, we expect that some molecules in the mixture may play supporting functions, enhancing the stability of the chemical environment, or even conferring homeostatic properties to the blend. CA-IV may well represent an important candidate to this hypothesized supporting/homeostatic function, and, therefore, we can expect it to be common in FG secretions of other lizard species. To evaluate this prediction and definitely validate CA identity, we analysed FG secretions of eight species of wall lizards (genus Podarcis), combining mass spectrometry, immunoblotting, immunocytochemistry, and transmission electron microscopy. We demonstrate CA-IV to actually occur in the FG of seven out of the eight considered species, providing an immunochemistry validation of mass-spectrometry identifications, and localizing the enzyme within the secretion mass. The predicted structure of the identified CA is compatible with the known enzymatic activity of CA-IV, supporting the hypothesis that CA play a signal homeostasis function and opening to new perspective about the role of proteins in vertebrate chemical communication.
Collapse
Affiliation(s)
- Marco Mangiacotti
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy.
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Roberto Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100, Pavia, Italy
| |
Collapse
|
18
|
Kiyokawa Y, Tamogami S, Ootaki M, Kahl E, Mayer D, Fendt M, Nagaoka S, Tanikawa T, Takeuchi Y. An appeasing pheromone ameliorates fear responses in the brown rat ( Rattus norvegicus). iScience 2023; 26:107081. [PMID: 37426349 PMCID: PMC10329171 DOI: 10.1016/j.isci.2023.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
The brown rat (Rattus norvegicus) is one of the major animals both in the laboratory and in urban centers. Brown rats communicate various types of information using pheromones, the chemicals that mediate intra-species communication in minute amounts. Therefore, analyses of pheromones would further our understanding of the mode of life of rats. We show that a minute amount of 2-methylbutyric acid (2-MB) released from the neck region can ameliorate fear responses both in laboratory rats and in wild brown rats. Based on these findings, we conclude that 2-MB is an appeasing pheromone in the brown rat. A better understanding of rats themselves would allow us to perform more effective ecologically based research on social skills and pest management campaigns with low animal welfare impacts, which might contribute to furthering the advancement of science and improving public health.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeyuki Tamogami
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masato Ootaki
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology & Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Dana Mayer
- Institute for Pharmacology and Toxicology & Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology & Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Satoru Nagaoka
- Daimaru Compound Chemical Co., Ltd, Nagano 381-1222, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, Ikari Shodoku Co., Ltd, Chiba 275-0024, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
19
|
Sun J, Liu WK, Ellsworth C, Sun Q, Pan Y, Huang YC, Deng WM. Integrating lipid metabolism, pheromone production and perception by Fruitless and Hepatocyte Nuclear Factor 4. SCIENCE ADVANCES 2023; 9:eadf6254. [PMID: 37390217 PMCID: PMC10313179 DOI: 10.1126/sciadv.adf6254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
Sexual attraction and perception are crucial for mating and reproductive success. In Drosophila melanogaster, the male-specific isoform of Fruitless (Fru), FruM, is a known master neuro-regulator of innate courtship behavior to control the perception of sex pheromones in sensory neurons. Here, we show that the non-sex-specific Fru isoform (FruCOM) is necessary for pheromone biosynthesis in hepatocyte-like oenocytes for sexual attraction. Loss of FruCOM in oenocytes resulted in adults with reduced levels of cuticular hydrocarbons (CHCs), including sex pheromones, and show altered sexual attraction and reduced cuticular hydrophobicity. We further identify Hepatocyte nuclear factor 4 (Hnf4) as a key target of FruCOM in directing fatty acid conversion to hydrocarbons. Fru or Hnf4 depletion in oenocytes disrupts lipid homeostasis, resulting in a sex-dimorphic CHC profile that differs from doublesex- and transformer-dependent CHC dimorphism. Thus, Fru couples pheromone perception and production in separate organs to regulate chemosensory communications and ensure efficient mating behavior.
Collapse
Affiliation(s)
- Jie Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Kan Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qian Sun
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Mangiacotti M, Baeckens S, Fumagalli M, Martín J, Scali S, Sacchi R. Protein-lipid Association in Lizard Chemical Signals. Integr Org Biol 2023; 5:obad016. [PMID: 37228571 PMCID: PMC10205002 DOI: 10.1093/iob/obad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Chemical communication in terrestrial vertebrates is often built on complex blends, where semiochemical and structural compounds may form an integrated functional unit. In lizards, many species have specialized epidermal glands whose secretions are waxy, homogeneous blends of lipids and proteins, both active in communication. The intimate co-occurrence of such compounds allows us to hypothesize that they should undergo a certain degree of covariation, considering both their semiochemical role and the support-to-lipid function hypothesized for the protein fraction. In order to assess the occurrence and level of protein-lipid covariation, we compared the composition and complexity of the two fractions in the femoral gland secretions of 36 lizard species, combining phylogenetically-informed analysis with tandem mass spectrometry. We found the composition and complexity of the two fractions to be strongly correlated. The composition of the protein fraction was mostly influenced by the relative proportion of cholestanol, provitamin D3, stigmasterol, and tocopherol, while the complexity of the protein pattern increased with that of lipids. Additionally, two identified proteins (carbonic anhydrase and protein disulfide isomerase) increased their concentration as provitamin D3 became more abundant. Although our approach does not allow us to decrypt the functional relations between the proteinaceous and lipid components, nor under the semiochemical or structural hypothesis, the finding that the proteins involved in this association were enzymes opens up to new perspectives about protein role: They may confer dynamic properties to the blend, making it able to compensate predictable variation of the environmental conditions. This may expand the view about proteins in the support-to-lipid hypothesis, from being a passive and inert component of the secretions to become an active and dynamic one, thus providing cues for future research.
Collapse
Affiliation(s)
| | - S Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, 9000 Gent, Belgium
| | - M Fumagalli
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - J Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - S Scali
- Sezione Erpetologia, Museo di Storia Naturale di Milano, Corso Venezia 55, IT-20121 Milano, Italy
| | - R Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100 Pavia, Italy
| |
Collapse
|
21
|
D'Aniello B, Pinelli C, Scandurra A, Di Lucrezia A, Aria M, Semin GR. When are puppies receptive to emotion-induced human chemosignals? The cases of fear and happiness. Anim Cogn 2023:10.1007/s10071-023-01771-4. [PMID: 37010698 DOI: 10.1007/s10071-023-01771-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
We report an observational, double-blind, experimental study that examines the effects of human emotional odors on puppies between 3 and 6 months and adult dogs (one year and upwards). Both groups were exposed to control, human fear, and happiness odors in a between subjects' design. The duration of all behaviors directed to the apparatus, the door, the owner, a stranger, and stress behaviors was recorded. A discriminant analysis showed that the fear odor activates consistent behavior patterns for both puppies and adult dogs. However, no behavioral differences between the control and happiness odor conditions were found in the case of puppies. In contrast, adult dogs reveal distinctive patterns for all three odor conditions. We argue that responses to human fear chemosignals systematically influence the behaviors displayed by puppies and adult dogs, which could be genetically prefigured. In contrast, the effects of happiness odors constitute cues that require learning during early socialization processes, which yield consistent patterns only in adulthood.
Collapse
Affiliation(s)
- Biagio D'Aniello
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences & Technologies, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Anna Scandurra
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Alfredo Di Lucrezia
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Massimo Aria
- Department of Economics and Statistics, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Gün R Semin
- William James Center for Research, ISPA-Instituto Universitario, 1149-041, Lisbon, Portugal.
- Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
22
|
Yang B, Wang J, Zheng X, Wang X. Nematode Pheromones: Structures and Functions. Molecules 2023; 28:2409. [PMID: 36903652 PMCID: PMC10005090 DOI: 10.3390/molecules28052409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Pheromones are chemical signals secreted by one individual that can affect the behaviors of other individuals within the same species. Ascaroside is an evolutionarily conserved family of nematode pheromones that play an integral role in the development, lifespan, propagation, and stress response of nematodes. Their general structure comprises the dideoxysugar ascarylose and fatty-acid-like side chains. Ascarosides can vary structurally and functionally according to the lengths of their side chains and how they are derivatized with different moieties. In this review, we mainly describe the chemical structures of ascarosides and their different effects on the development, mating, and aggregation of nematodes, as well as how they are synthesized and regulated. In addition, we discuss their influences on other species in various aspects. This review provides a reference for the functions and structures of ascarosides and enables their better application.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
23
|
Brown bear skin-borne secretions display evidence of individuality and age-sex variation. Sci Rep 2023; 13:3163. [PMID: 36823208 PMCID: PMC9950453 DOI: 10.1038/s41598-023-29479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Scent originates from excretions and secretions, and its chemical complexity in mammals translates into a diverse mode of signalling. Identifying how information is encoded can help to establish the mechanisms of olfactory communication and the use of odours as chemical signals. Building upon existing behavioural and histological literature, we examined the chemical profile of secretions used for scent marking by a solitary, non-territorial carnivore, the brown bear (Ursus arctos). We investigated the incidence, abundance, and uniqueness of volatile organic compounds (VOCs) from cutaneous glandular secretions of 12 wild brown bears collected during late and post-breeding season, and assessed whether age-sex class, body site, and individual identity explained profile variation. VOC profiles varied in the average number of compounds, compound incidence, and compound abundance by age-sex class and individual identity (when individuals were grouped by sex), but not by body site. Mature males differed from other age-sex classes, secreting fewer compounds on average with the least variance between individuals. Compound uniqueness varied by body site and age for both males and females and across individuals. Our results indicate that brown bear skin-borne secretions may facilitate age-sex class and individual recognition, which can contribute towards further understanding of mating systems and social behaviour.
Collapse
|
24
|
Lacalle-Bergeron L, Goterris-Cerisuelo R, Beltran J, Sancho JV, Navarro-Moreno C, Martinez-Garcia F, Portolés T. Untargeted metabolomics approach using UHPLC-IMS-QTOF MS for surface body samples to identify low-volatility chemosignals related to maternal care in mice. Talanta 2023; 258:124389. [PMID: 36867958 DOI: 10.1016/j.talanta.2023.124389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
The present study is focused on the determination of low-volatile chemosignals excreted or secreted by mouse pups in their early days of life involved in maternal care induction in mice adult females. Untargeted metabolomics was employed to differentiate between samples collected with swabs from facial and anogenital area from neonatal mouse pups receiving maternal care (first two weeks of life) and the elder mouse pups in the weaning period (4th week old). The sample extracts were analysed by ultra-high pressure liquid chromatography (UHPLC) coupled to ion mobility separation (IMS) in combination with high resolution mass spectrometry (HRMS). After data processing with Progenesis QI and multivariate statistical analysis, five markers present in the first two weeks of mouse pups life and putatively involved in materno-filial chemical communication were tentatively identified: arginine, urocanic acid, erythro-sphingosine (d17:1), sphingosine (d18:1) and sphinganine. The four-dimensional data and the tools associated to the additional structural descriptor obtained by IMS separation were of great help in the compound identification. The results demonstrated the great potential of UHPLC-IMS-HRMS based untargeted metabolomics to identity putative pheromones in mammals.
Collapse
Affiliation(s)
- Leticia Lacalle-Bergeron
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071, Castellón de la Plana, Spain
| | - Rafael Goterris-Cerisuelo
- Laboratory of Functional Neuroanatomy (Unitat Mixta NeuroFun-UV-UJI), Predepartamental Unit of Medicine, Universitat Jaume I, Av. Sos Baynat S/N, 12071, Castellón de la Plana, Spain
| | - Joaquin Beltran
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071, Castellón de la Plana, Spain
| | - Juan Vicente Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071, Castellón de la Plana, Spain
| | - Cinta Navarro-Moreno
- Laboratory of Functional Neuroanatomy (Unitat Mixta NeuroFun-UV-UJI), Predepartamental Unit of Medicine, Universitat Jaume I, Av. Sos Baynat S/N, 12071, Castellón de la Plana, Spain
| | - Fernando Martinez-Garcia
- Laboratory of Functional Neuroanatomy (Unitat Mixta NeuroFun-UV-UJI), Predepartamental Unit of Medicine, Universitat Jaume I, Av. Sos Baynat S/N, 12071, Castellón de la Plana, Spain
| | - Tania Portolés
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
25
|
Sun J, Liu WK, Ellsworth C, Sun Q, Pan YF, Huang YC, Deng WM. Integrating lipid metabolism, pheromone production and perception by Fruitless and Hepatocyte nuclear factor 4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529767. [PMID: 36865119 PMCID: PMC9980076 DOI: 10.1101/2023.02.23.529767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Sexual attraction and perception, governed by separate genetic circuits in different organs, are crucial for mating and reproductive success, yet the mechanisms of how these two aspects are integrated remain unclear. In Drosophila , the male-specific isoform of Fruitless (Fru), Fru M , is known as a master neuro-regulator of innate courtship behavior to control perception of sex pheromones in sensory neurons. Here we show that the non-sex specific Fru isoform (Fru COM ) is necessary for pheromone biosynthesis in hepatocyte-like oenocytes for sexual attraction. Loss of Fru COM in oenocytes resulted in adults with reduced levels of the cuticular hydrocarbons (CHCs), including sex pheromones, and show altered sexual attraction and reduced cuticular hydrophobicity. We further identify Hepatocyte nuclear factor 4 ( Hnf4 ) as a key target of Fru COM in directing fatty acid conversion to hydrocarbons in adult oenocytes. fru - and Hnf4 -depletion disrupts lipid homeostasis, resulting in a novel sex-dimorphic CHC profile, which differs from doublesex - and transformer -dependent sexual dimorphism of the CHC profile. Thus, Fru couples pheromone perception and production in separate organs for precise coordination of chemosensory communication that ensures efficient mating behavior. Teaser Fruitless and lipid metabolism regulator HNF4 integrate pheromone biosynthesis and perception to ensure robust courtship behavior.
Collapse
Affiliation(s)
- Jie Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Kan Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qian Sun
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yu-Feng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
26
|
The Evanescent Bouquet of Individual Bear Fingerprint. Animals (Basel) 2023; 13:ani13020220. [PMID: 36670761 PMCID: PMC9854677 DOI: 10.3390/ani13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The evanescent and invisible communication carried by chemical signals, pheromones, or signature mixtures or, as we prefer, the pheromonal individual fingerprint, between members of the same species is poorly studied in mammals, mainly because of the lack of identification of the molecules. The difference between pheromones and the pheromonal individual fingerprint is that the former generate stereotyped innate responses while the latter requires learning, i.e., different receivers can learn different signature mixtures from the same individual. Furthermore, pheromones are usually produced by a particular gland, while the pheromonal individual fingerprint is the entire bouquet produced by the entire secreting gland of the body. In the present study, we aim to investigate the pheromonal individual fingerprint of brown bears in northern Italy. We collected the entire putative pheromone bouquet from all production sites in free-ranging bears and analyzed the entire crude extract to profile the individual fingerprint according to species-, sex- and subjective-specific characteristics. We were able to putatively characterize the brown bears' pheromonal individual fingerprints and compare them with the partial pheromone identifications published by other studies. This work is a step forward in the study of the complexity of chemical communication, particularly in a solitary endangered species.
Collapse
|
27
|
Jacobs LF. The PROUST hypothesis: the embodiment of olfactory cognition. Anim Cogn 2023; 26:59-72. [PMID: 36542172 PMCID: PMC9877075 DOI: 10.1007/s10071-022-01734-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
The extension of cognition beyond the brain to the body and beyond the body to the environment is an area of debate in philosophy and the cognitive sciences. Yet, these debates largely overlook olfaction, a sensory modality used by most animals. Here, I use the philosopher's framework to explore the implications of embodiment for olfactory cognition. The philosopher's 4E framework comprises embodied cognition, emerging from a nervous system characterized by its interactions with its body. The necessity of action for perception adds enacted cognition. Cognition is further embedded in the sensory inputs of the individual and is extended beyond the individual to information stored in its physical and social environments. Further, embodiment must fulfill the criterion of mutual manipulability, where an agent's cognitive state is involved in continual, reciprocal influences with its environment. Cognition cannot be understood divorced from evolutionary history, however, and I propose adding evolved, as a fifth term to the 4E framework. We must, therefore, begin at the beginning, with chemosensation, a sensory modality that underlies purposive behavior, from bacteria to humans. The PROUST hypothesis (perceiving and reconstructing odor utility in space and time) describers how olfaction, this ancient scaffold and common denominator of animal cognition, fulfills the criteria of embodied cognition. Olfactory cognition, with its near universal taxonomic distribution as well as the near absence of conscious representation in humans, may offer us the best sensorimotor system for the study of embodiment.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720-1650 USA
| |
Collapse
|
28
|
Mechin V, Asproni P, Bienboire-Frosini C, Cozzi A, Chabaud C, Arroub S, Mainau E, Nagnan-Le Meillour P, Pageat P. Inflammation interferes with chemoreception in pigs by altering the neuronal layout of the vomeronasal sensory epithelium. Front Vet Sci 2022; 9:936838. [PMID: 36172609 PMCID: PMC9510685 DOI: 10.3389/fvets.2022.936838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Chemical communication is widely used by animals to exchange information in their environment, through the emission and detection of semiochemicals to maintain social organization and hierarchical rules in groups. The vomeronasal organ (VNO) is one of the main detectors of these messages, and its inflammation has been linked to behavioral changes because it potentially prevents molecule detection and, consequently, the translation of the signal into action. Our previous study highlighted the link between the intensity of vomeronasal sensory epithelium (VNSE) inflammation, probably induced by farm contaminant exposure, and intraspecific aggression in pigs. The aim of this study was to evaluate the cellular and molecular changes that occur during vomeronasalitis in 76 vomeronasal sensorial epithelia from 38 intensive-farmed pigs. Histology was used to evaluate the condition of each VNO and classify inflammation as healthy, weak, moderate, or strong. These data were compared to the thickness of the sensorial epithelium and the number of type 1 vomeronasal receptor cells using anti-Gαi2 protein immunohistochemistry (IHC) and analysis. The presence of odorant-binding proteins (OBPs) in the areas surrounding the VNO was also analyzed by IHC and compared to inflammation intensity since its role as a molecule transporter to sensory neurons has been well-established. Of the 76 samples, 13 (17%) were healthy, 31 (41%) presented with weak inflammation, and 32 (42%) presented with moderate inflammation. No severe inflammation was observed. Epithelial thickness and the number of Gαi2+ cells were inversely correlated with inflammation intensity (Kruskal–Wallis and ANOVA tests, p < 0.0001), while OBP expression in areas around the VNO was increased in inflamed VNO (Kruskal–Wallis test, p = 0.0094), regardless of intensity. This study showed that inflammation was associated with a reduction in the thickness of the sensory epithelium and Gαi2+ cell number, suggesting that this condition can induce different degrees of neuronal loss. This finding could explain how vomeronasalitis may prevent the correct functioning of chemical communication, leading to social conflict with a potential negative impact on welfare, which is one of the most important challenges in pig farming.
Collapse
Affiliation(s)
- Violaine Mechin
- Tissue Biology and Chemical Communication Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
- *Correspondence: Violaine Mechin
| | - Pietro Asproni
- Tissue Biology and Chemical Communication Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| | - Cécile Bienboire-Frosini
- Molecular Biology and Chemical Communication Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| | - Alessandro Cozzi
- Research and Education Board, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| | - Camille Chabaud
- Molecular Biology and Chemical Communication Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| | - Sana Arroub
- Statistics and Data Management Service, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| | - Eva Mainau
- Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Patrick Pageat
- Research and Education Board, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| |
Collapse
|
29
|
Zhang L, Bian Z, Liu Q, Deng B. Dealing With Stress in Cats: What Is New About the Olfactory Strategy? Front Vet Sci 2022; 9:928943. [PMID: 35909687 PMCID: PMC9334771 DOI: 10.3389/fvets.2022.928943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Domestic cats are descended from solitary wild species and rely heavily on the olfaction system and chemical signals for daily activities. Cats kept as companion animals may experience stress due to a lack of predictability in their physical or social environment. The olfactory system is intimately connected to the brain regions controlling stress response, thus providing unique opportunities for olfactory strategies to modify stress and related behavioral problems in cats. However, the olfactory intervention of stress in cats has been mainly focused on several analog chemical signals and studies often provide inconsistent and non-replicable results. Supportive evidence in the literature for the potentially effective olfactory stimuli (e.g., cheek and mammary gland secretions, and plant attractants) in treating stress in cats was reviewed. Limitations with some of the work and critical considerations from studies with natural or negative results were discussed as well. Current findings sometimes constitute weak evidence of a reproducible effect of cat odor therapy for stress. The welfare application of an olfactory stimulus in stress alleviation requires a better understanding of its biological function in cats and the mechanisms at play, which may be achieved in future studies through methodological improvement (e.g., experiment pre-registration and appropriate control setting) and in-depth investigation with modern techniques that integrate multisource data. Contributions from individual and environmental differences should be considered for the stress response of a single cat and its sensitivity to olfactory manipulation. Olfactory strategies customized for specific contexts and individual cats can be more effective in improving the welfare of cats in various stressful conditions.
Collapse
|
30
|
Protein profiles from used nesting material, saliva, and urine correspond with social behavior in group housed male mice, Mus musculus. J Proteomics 2022; 266:104685. [PMID: 35843598 DOI: 10.1016/j.jprot.2022.104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022]
Abstract
Current understanding of how odors impact intra-sex social behavior is based on those that increase intermale aggression. Yet, odors are often promoted to reduce fighting among male laboratory mice. It has been shown that a cage of male mice contains many proteins used for identification purposes. However, it is unknown if these proteins relate to social behavior or if they are uniformly produced across strains. This study aimed to compare proteomes from used nesting material and three sources (sweat, saliva, and urine) from three strains and compare levels of known protein odors with rates of social behavior. Used nesting material samples from each cage were analyzed using LC-MS/MS. Sweat, saliva, and urine samples from each cage's dominant and subordinate mouse were also analyzed. Proteomes were assessed using principal component analyses and compared to behavior by calculating correlation coefficients between PC scores and behavior proportions. Twenty-one proteins from nesting material either correlated with affiliative behavior or negatively correlated with aggression. Notably, proteins from the major urinary protein family, odorant binding protein family, and secretoglobin family displayed at least one of these patterns, making them candidates for future work. These findings provide preliminary information about how proteins can influence male mouse behavior. SIGNIFICANCE: Research on how olfactory signals influence same sex social behavior is primarily limited to those that promote intermale aggression. However, exploring how olfaction modulates a more diverse behavioral repertoire will improve our foundational understanding of this sensory modality. In this proteome analysis we identified a short list of protein signals that correspond to lower rates of aggression and higher rates of socio-positive behavior. While this study is only correlational, it sets a foundation for future work that can identify protein signals that directly influence social behavior and potentially identify new murine pheromones.
Collapse
|
31
|
Hernández-Fernández A, Torre IG. Compression principle and Zipf's Law of brevity in infochemical communication. Biol Lett 2022; 18:20220162. [PMID: 35892209 PMCID: PMC9326285 DOI: 10.1098/rsbl.2022.0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Compression has been presented as a general principle of animal communication. Zipf's Law of brevity is a manifestation of this postulate and can be generalized as the tendency of more frequent communicative elements to be shorter. Previous works supported this claim, showing evidence of Zipf's Law of brevity in animal acoustical communication and human language. However, a significant part of the communicative effort in biological systems is carried out in other transmission channels, such as those based on infochemicals. To fill this gap, we seek, for the first time, evidence of this principle in infochemical communication by analysing the statistical tendency of more frequent infochemicals to be chemically shorter and lighter. We analyse data from the largest and most comprehensive open-access infochemical database known as Pherobase, recovering Zipf's Law of brevity in interspecific communication (allelochemicals) but not in intraspecific communication (pheromones). Moreover, these results are robust even when addressing different magnitudes of study or mathematical approaches. Therefore, different dynamics from the compression principle would dominate intraspecific chemical communication, defying the universality of Zipf's Law of brevity. To conclude, we discuss the exception found for pheromones in the light of other potential communicative paradigms such as pressures on successful communication or the Handicap principle.
Collapse
Affiliation(s)
- Antoni Hernández-Fernández
- Complexity and Quantitative Linguistics Lab, Institut de Ciències de l'Educació, Universitat Politècnica de Catalunya, Av. Doctor Marañón 44-50, Barcelona 08028, Catalonia, Spain
| | - Iván G Torre
- Language and Speech Laboratory, Universidad del País Vasco, Justo Vélez de Elorriaga Kalea, 1, 01006 Vitoria, Spain.,Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2-4, 28040 Madrid, Spain
| |
Collapse
|
32
|
Jiang J, Su S, Lai T, Feng W, Li F, Tian C, Gao Y, Munganga BP, Tang Y, Xu P. Recognition of Gonadal Development in Eriocheir sinensis Based on the Impulse of Love at First Sight. Front Physiol 2022; 13:793699. [PMID: 35574457 PMCID: PMC9091178 DOI: 10.3389/fphys.2022.793699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Given the difficulty in identifying individuals with different degrees of ovarian development, we developed a new device utilizing the hypothesis of mutual attraction behavior between male and female crabs with mature gonads by releasing the sexual pheromone so they could be examined. From a total of 40 female crabs, 10 were isolated within half an hour. Histological analysis showed that the ovaries of crabs in the isolated group were in stage IV, while those of the control groups were in stage III. In addition, progesterone (PROG) in experimental groups was significantly reduced compared with the control group (p < 0.05), but no significant difference was detected in estradiol (E2). In response to the different developmental stages, hemolymph biochemical indices and the determination of gonadal fatty acids profiles were explored. The results indicated only C18:4 showed a significant difference between these two groups. A transcriptome was generated to determine the genes involved in the mutual attraction process; differentially expressed genes (DEGs) were significantly related to gonadal development. Therefore, the device can be used to isolate Chinese mitten crabs with stage IV ovarian development.
Collapse
Affiliation(s)
- Jingjing Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Ting Lai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Wenrong Feng
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Feifan Li
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Can Tian
- National Demonstration Center for Expermental Fisherise Science Education, Shanghai Ocean University, Shanghai, China
| | - Yang Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | | | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
33
|
Gouzerh F, Buatois B, Hervé MR, Mancini M, Maraver A, Dormont L, Thomas F, Ganem G. Odours of cancerous mouse congeners: detection and attractiveness. Biol Open 2022; 11:275010. [PMID: 35403195 PMCID: PMC9065363 DOI: 10.1242/bio.059208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Chemical communication plays a major role in social interactions. Cancer, by inducing changes in body odours, may alter interactions between individuals. In the framework of research targeting non-invasive methods to detect early stages of cancer development, this study asked whether untrained mice could detect odour changes in cancerous congeners. If yes, were they able to detect cancer at an early developmental stage? Did it influence female preference? Did variations in volatile organic components of the odour source paralleled mice behavioural responses? We used transgenic mice strains developing or not lung cancer upon antibiotic ingestion. We sampled soiled bedding of cancerous mice (CC) and not cancerous mice (NC), at three experimental conditions: before (T0), early stage (T2) and late stage (T12) of cancer development. Habituation/generalisation and two-way preference tests were performed where soiled beddings of CC and NC mice were presented to wild-derived mice. The composition and relative concentration of volatile organic components (VOC) in the two stimuli types were analysed. Females did not show directional preference at any of the experimental conditions, suggesting that cancer did not influence their choice behaviour. Males did not discriminate between CC and NC stimuli at T0 but did so at T2 and T12, indicating that wild-derived mice could detect cancer at an early stage of development. Finally, although the VOC bouquet differed between CC and NC it did not seem to parallel the observed behavioural response suggesting that other types of odorant components might be involved in behavioural discrimination between CC and NC mice. Summary: Male mice could discriminate the smell of cancerous congeners even when the tumour was hardly detectable by other means; however, females did not discriminate against the smell of males carrying cancerous tumours. Odorant molecules other than volatile organic compounds analysed here might explain the observed behaviour.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/ MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.,CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Bruno Buatois
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Maxime R Hervé
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France
| | | | | | - Laurent Dormont
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Frédéric Thomas
- CREEC/ MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Guila Ganem
- Institut des Sciences de l'Evolution, ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
34
|
Jacobs LF. How the evolution of air breathing shaped hippocampal function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200532. [PMID: 34957846 PMCID: PMC8710879 DOI: 10.1098/rstb.2020.0532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
To make maps from airborne odours requires dynamic respiratory patterns. I propose that this constraint explains the modulation of memory by nasal respiration in mammals, including murine rodents (e.g. laboratory mouse, laboratory rat) and humans. My prior theories of limbic system evolution offer a framework to understand why this occurs. The answer begins with the evolution of nasal respiration in Devonian lobe-finned fishes. This evolutionary innovation led to adaptive radiations in chemosensory systems, including the emergence of the vomeronasal system and a specialization of the main olfactory system for spatial orientation. As mammals continued to radiate into environments hostile to spatial olfaction (air, water), there was a loss of hippocampal structure and function in lineages that evolved sensory modalities adapted to these new environments. Hence the independent evolution of echolocation in bats and toothed whales was accompanied by a loss of hippocampal structure (whales) and an absence of hippocampal theta oscillations during navigation (bats). In conclusion, models of hippocampal function that are divorced from considerations of ecology and evolution fall short of explaining hippocampal diversity across mammals and even hippocampal function in humans. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA
| |
Collapse
|
35
|
Villamayor PR, Gullón J, Yáñez U, Sánchez M, Sánchez-Quinteiro P, Martínez P, Quintela L. Assessment of Biostimulation Methods Based on Chemical Communication in Female Doe Reproduction. Animals (Basel) 2022; 12:308. [PMID: 35158632 PMCID: PMC8833788 DOI: 10.3390/ani12030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Biostimulation is an animal management practice that helps improve reproductive parameters by modulating animal sensory systems. Chemical signals, mostly known as pheromones, have a great potential in this regard. This study was conducted to determine the influence of short-term female rabbit exposure to different conditions, mainly pheromone-mediated, on reproductive parameters of inseminated does. Groups of 60 females/each were exposed to (1) female urine, (2) male urine, (3) seminal plasma and (4) female-female (F-F) separated, just before artificial insemination, and compared to a 'golden method' female-female interaction. The following reproductive parameters were analyzed for each group: receptivity (vulvar color), fertility (kindling rate), prolificacy and number of born alive and dead kits/litter. Our results showed that the biostimulation methods employed in this experiment did not significantly improve any of the analyzed parameters. However, female doe exposure to urine, especially to male urine, showed no significant higher fertility values (95.4%) when compared to the rest of the experimental conditions (on average 92.4%). Female-female interaction before artificial insemination, which is a common practice in rabbit farms, showed similar results as not establishing social interaction (F-F separated), which suggests that F-F interaction could be replaced by F-F separated, therefore avoiding unnecessary animal management and time cost. On the other hand, fertility ranges were lower for animals with a pale vulvar color whereas no differences were noticed among the other three colors which measure receptivity (pink, red, purple), thus suggesting that these three colors could be grouped together. Future studies should aim at determining potential chemical cues/pheromones released through bodily secretions that influence reproduction in rabbits, therefore contributing to animal welfare and to a natural image of animal production.
Collapse
Affiliation(s)
- Paula R. Villamayor
- Department of Genetics, Veterinary Faculty, Universidade de Santiago de Compostela (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain;
- Department of Anatomy, Animal Production and Veterinary Clinic Science, Veterinary Faculty (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain;
| | - Julián Gullón
- COGAL SL, Cuniculture Company, 36530 Rodeiro, Spain; (J.G.); (M.S.)
| | - Uxía Yáñez
- Unit of Reproduction, Department of Animal Pathology, Veterinary Faculty (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain; (U.Y.); (L.Q.)
| | - María Sánchez
- COGAL SL, Cuniculture Company, 36530 Rodeiro, Spain; (J.G.); (M.S.)
| | - Pablo Sánchez-Quinteiro
- Department of Anatomy, Animal Production and Veterinary Clinic Science, Veterinary Faculty (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain;
| | - Paulino Martínez
- Department of Genetics, Veterinary Faculty, Universidade de Santiago de Compostela (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain;
| | - Luis Quintela
- Unit of Reproduction, Department of Animal Pathology, Veterinary Faculty (USC), Avda Carballo Calero s/n, 27002 Lugo, Spain; (U.Y.); (L.Q.)
| |
Collapse
|
36
|
Robertson SA, Martin GB. Perspective: Re-defining “Pheromone” in a Mammalian Context to Encompass Seminal Fluid. Front Vet Sci 2022; 8:819246. [PMID: 35127886 PMCID: PMC8811212 DOI: 10.3389/fvets.2021.819246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/28/2021] [Indexed: 01/21/2023] Open
Abstract
The classical view of “pheromone”—an air-borne chemical signal—is challenged by the camelids in which ovulation is triggered by ß-nerve growth factor carried in seminal plasma, effectively extending the pheromone concept to a new medium. We propose further extension of “pheromone” to include a separate class of seminal fluid molecules that acts on the female reproductive tract to enhance the prospect of pregnancy. These molecules include transforming growth factor-ß, 19-OH prostaglandins, various ligands of Toll-like receptor-4 (TLR4), and cyclic ADP ribose hydrolase (CD38). They modulate the immune response to “foreign” male-derived histocompatibility antigens on both sperm and the conceptus, determine pre-implantation embryo development, and then promote implantation by increasing uterine receptivity to the embryo. The relative abundance of these immunological molecules in seminal plasma determines the strength and quality of the immune tolerance that is generated in the female. This phenomenon has profound implications in reproductive biology because it provides a pathway, independent of the fertilizing sperm, by which paternal factors can influence the likelihood of reproductive success, as well as the phenotype and health status of offspring. Moreover, the female actively participates in this exchange—information in seminal fluid is subject to “cryptic female choice,” a process by which females interrogate the reproductive fitness of prospective mates and invest reproductive resources accordingly. These processes participate in driving the evolution of male accessory glands, ensuring optimal female reproductive investment and maximal progeny fitness. An expanded pheromone concept will avoid a constraint in our understanding of mammalian reproductive biology.
Collapse
Affiliation(s)
- Sarah A. Robertson
- The Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Graeme B. Martin
- UWA School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Graeme B. Martin
| |
Collapse
|
37
|
Schulte LM, Martel A, Cruz-Elizalde R, Ramírez-Bautista A, Bossuyt F. Love bites: male frogs (Plectrohyla, Hylidae) use teeth scratching to deliver sodefrin precursor-like factors to females during amplexus. Front Zool 2021; 18:59. [PMID: 34823558 PMCID: PMC8613984 DOI: 10.1186/s12983-021-00445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efficient transfer of chemical signals is important for successful mating in many animal species. Multiple evolutionary lineages of animals evolved direct sex pheromone transmission during traumatic mating-the wounding of the partner with specialized devices-which helps to avoid signal loss to the environment. Although such direct transmission modes of so-called allohormone pheromones are well-documented in invertebrates, they are considered rare in vertebrates. Males of several species of the frog genus Plectrohyla (Hylidae, Anura) have elongated teeth and develop swollen lips during the breeding season. Here we investigated the possibility that these structures are used to scratch the females' skin and apply allohormone pheromones during traumatic mating in several Plectrohyla species. RESULTS Our behavioural observations revealed that males press their upper jaw onto the females' dorsum during amplexus, leaving small skin scratches with their teeth. Histological examinations of the males' lips identified specialized mucus glands, resembling known amphibian pheromone glands. Whole-transcriptome sequencing of these breeding glands showed high expression of sodefrin precursor-like factor (SPF) proteins, which are known to have a pheromone function in multiple amphibian species. CONCLUSIONS Our study suggests SPF delivery via traumatic mating in several anuran species: the males have specialized breeding glands in the lips for production and secretion and use their elongated teeth as wounding devices for application. We hypothesize that these SPF proteins end up in the females' circulatory system, where understanding their exact function will require further molecular, physiological and behavioural testing.
Collapse
Affiliation(s)
- Lisa M Schulte
- Department of Wildlife-/Zoo-Animal-Biology and Systematics, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.
| | - An Martel
- Wildlife Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Raciel Cruz-Elizalde
- Laboratorio de Zoología, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de Las Ciencias S/N, Santa Fe Juriquilla, C. P. 76230, Querétaro, Mexico
| | - Aurelio Ramírez-Bautista
- Laboratorio de Ecología de Poblaciones, Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas E Ingeniería, Universidad Autónoma del Estado de Hidalgo, Km 4.5 carretera Pachuca-Tulancingo, 42184, Mineral de La Reforma, Hidalgo, Mexico
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
38
|
|
39
|
Lourie E, Schiffner I, Toledo S, Nathan R. Memory and Conformity, but Not Competition, Explain Spatial Partitioning Between Two Neighboring Fruit Bat Colonies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.732514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spatial partitioning between neighboring colonies is considered a widespread phenomenon in colonial species, reported mainly in marine birds. Partitioning is suspected to emerge due to various processes, such as competition, diet specialization, memory, information transfer, or even “foraging cultures.” Yet, empirical evidence from other taxa, and studies that tease apart the relative contribution of the processes underlying partitioning, remain scarce, mostly due to insufficiently detailed movement data. Here, we used high-resolution movement tracks (at 0.125 Hz) of 107 individuals belonging to two neighboring colonies of the Egyptian fruit bat (Rousettus aegyptiacus), a highly gregarious central-place forager, using the ATLAS reverse-GPS system in the Hula Valley, Israel. Based on comparisons between agent-based mechanistic models and observed spatial partitioning patterns, we found high levels of partitioning of both area and tree resources (<11% overlap) that were stable across different fruiting seasons. Importantly, partitioning could not have emerged if the bats’ movement was only limited by food availability and travel distances, as most commonly hypothesized. Rather than density-dependent or between-colony competition, memory, and, to a lesser extent, conformity in tree-use explain how partitioning develops. Elucidating the mechanisms that shape spatial partitioning among neighboring colonies in the wild under variable resource conditions is important for understanding the ecology and evolution of inter-group coexistence, space use patterns and sociality.
Collapse
|
40
|
Mangiacotti M, Baeckens S, Scali S, Martín J, Van Damme R, Sacchi R. Evolutionary and biogeographical support for species-specific proteins in lizard chemical signals. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The species-specific components of animal signals can facilitate species recognition and reduce the risks of mismatching and interbreeding. Nonetheless, empirical evidence for species-specific components in chemical signals is scarce and mostly limited to insect pheromones. Based on the proteinaceous femoral gland secretions of 36 lizard species (Lacertidae), we examine the species-specific component potential of proteins in lizard chemical signals. By quantitative comparison of the one-dimensional electrophoretic patterns of the protein fraction from femoral gland secretions, we first reveal that the protein composition is species specific, accounting for a large part of the observed raw variation and allowing us to discriminate species on this basis. Secondly, we find increased protein pattern divergence in sympatric, closely related species. Thirdly, lizard protein profiles show a low phylogenetic signal, a recent and steep increase in relative disparity and a high rate of evolutionary change compared with non-specifically signal traits (i.e. body size and shape). Together, these findings provide support for the species specificity of proteins in the chemical signals of a vertebrate lineage.
Collapse
Affiliation(s)
- Marco Mangiacotti
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- Museo di Storia Naturale di Milano, Milano, Italy
| | - Simon Baeckens
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | | | - José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Raoul Van Damme
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Roberto Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
41
|
Reproductive adaption as a survival strategy to life in an arid environment: The terrestrial crustacean Hemilepistus reaumurii as a model. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Tang J, Poirier AC, Duytschaever G, Moreira LAA, Nevo O, Melin AD. Assessing urinary odours across the oestrous cycle in a mouse model using portable and benchtop gas chromatography-mass spectrometry. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210172. [PMID: 34540244 PMCID: PMC8411304 DOI: 10.1098/rsos.210172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/09/2021] [Indexed: 05/06/2023]
Abstract
For female mammals, communicating the timing of ovulation is essential for reproduction. Olfactory communication via volatile organic compounds (VOCs) can play a key role. We investigated urinary VOCs across the oestrous cycle using laboratory mice. We assessed the oestrous stage through daily vaginal cytology and analysed urinary VOCs using headspace gas chromatography-mass spectrometry (GC-MS), testing a portable GC-MS against a benchtop system. We detected 65 VOCs from 40 samples stored in VOC traps and analysed on a benchtop GC-MS, and 15 VOCs from 90 samples extracted by solid-phase microextraction (SPME) and analysed on a portable GC-MS. Only three compounds were found in common between the two techniques. Urine collected from the fertile stages of the oestrous cycle had increased quantities of a few notable VOCs compared with urine from non-fertile stages. These VOCs may be indicators of fertility. However, we did not find significant differences in chemical composition among oestrous stages. It is possible that changes in VOC abundance were too small to be detected by our analytical methods. Overall, the use of VOC traps combined with benchtop GC-MS was the more successful of the two methods, yet portable GC-MS systems may still have utility for some in situ applications.
Collapse
Affiliation(s)
- Jia Tang
- Department of Anthropology and Archaeology, University of Calgary, Canada
| | - Alice C. Poirier
- Department of Anthropology and Archaeology, University of Calgary, Canada
| | - Gwen Duytschaever
- Department of Anthropology and Archaeology, University of Calgary, Canada
| | - Laís A. A. Moreira
- Department of Anthropology and Archaeology, University of Calgary, Canada
| | - Omer Nevo
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Germany
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, Canada
- Department of Medical Genetics, University of Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Canada
| |
Collapse
|
43
|
Weiss K, Schneider JM. Family-specific chemical profiles provide potential kin recognition cues in the sexually cannibalistic spider Argiope bruennichi. Biol Lett 2021; 17:20210260. [PMID: 34343436 DOI: 10.1098/rsbl.2021.0260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kin recognition, the ability to detect relatives, is important for cooperation, altruism and also inbreeding avoidance. A large body of research on kin recognition mechanisms exists for vertebrates and insects, while little is known for other arthropod taxa. In spiders, nepotism has been reported in social and solitary species. However, there are very few examples of kin discrimination in a mating context, one coming from the orb-weaver Argiope bruennichi. Owing to effective mating plugs and high rates of sexual cannibalism, both sexes of A. bruennichi are limited to a maximum of two copulations. Males surviving their first copulation can either re-mate with the current female (monopolizing paternity) or leave and search for another. Mating experiments have shown that males readily mate with sisters but are more likely to leave after one short copulation as compared with unrelated females, allowing them to search for another mate. Here, we ask whether the observed behaviour is based on chemical cues. We detected family-specific cuticular profiles that qualify as kin recognition cues. Moreover, correlations in the relative amounts of some of the detected substances between sexes within families indicate that kin recognition is likely based on subsets of cuticular substances, rather than entire profiles.
Collapse
Affiliation(s)
- Katharina Weiss
- Institute of Zoology, University of Hamburg, D-20146 Hamburg, Germany
| | - Jutta M Schneider
- Institute of Zoology, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|
44
|
Abstract
Although previous research demonstrates that skin-associated archaea are rarely detected within human skin microbiome data, exist at relatively low abundance, and are primarily affiliated with the Methanobacteriota and Halobacteriota phyla, other studies suggest that archaea are consistently detected and relatively abundant on human skin, with skin “archaeomes” dominated by putative ammonia oxidizers of the Nitrososphaeria class (Thermoproteota phylum, formerly Thaumarchaeota). Here, we evaluated new and existing 16S rRNA gene sequence data sourced from mammalian skin and skin-associated surfaces and generated with two commonly used universal prokaryotic primer sets to assess archaeal prevalence, relative abundance, and taxonomic distribution. Archaeal 16S rRNA gene sequences were detected in only 17.5% of 1,688 samples by high-throughput sequence data, with most of the archaeon-positive samples associated with nonhuman mammalian skin. Only 5.9% of human-associated skin sample data sets contained sequences affiliated with archaeal 16S rRNA genes. When detected, the relative abundance of sequences affiliated with archaeal amplicon sequence variants (ASVs) was less than 1% for most mammalian skin samples and did not exceed 2% for any samples. Although several computer keyboard microbial profiles were dominated by Nitrososphaeria sequences, all other skin microbiome data sets tested were primarily composed of sequences affiliated with Methanobacteriota and Halobacteriota phyla. Our findings revise downward recent estimates of human skin archaeal distributions and relative abundances, especially those affiliated with the Nitrososphaeria, reflecting a limited and infrequent archaeal presence within the mammalian skin microbiome. IMPORTANCE The current state of research on mammalian skin-associated archaea is limited, with the few papers focusing on potential skin archaeal communities often in disagreement with each other. As such, there is no consensus on the prevalence or taxonomic composition of archaea on mammalian skin. Mammalian skin health is in part influenced by its complex microbiota and consortium of bacteria and potential archaea. Without a clear foundational analysis and characterization of the mammalian skin archaeome, it will be difficult for future research to explore the potential impact of skin-associated archaea on skin health and function. The current work provides a much-needed analysis of the mammalian skin archaeome and contributes to building a foundation from which further discussion and exploration of the skin archaeome might continue.
Collapse
|
45
|
Keenan TF, McLellan WA, Rommel SA, Costidis AM, Harms CA, Thewissen 'HJ, Rotstein DS, Gay MD, Potter CW, Taylor AR, Wang Y, Pabst DA. Gross and histological morphology of the cervical gill slit gland of the pygmy sperm whale (Kogia breviceps). Anat Rec (Hoboken) 2021; 305:688-703. [PMID: 34288509 DOI: 10.1002/ar.24707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/14/2021] [Indexed: 11/11/2022]
Abstract
Odontocete cetaceans have undergone profound modifications to their integument and sensory systems and are generally thought to lack specialized exocrine glands that in terrestrial mammals function to produce chemical signals (Thewissen & Nummela, 2008). Keenan-Bateman et al. (2016, 2018), though, introduced an enigmatic exocrine gland, associated with the false gill slit pigmentation pattern in Kogia breviceps. These authors provided a preliminary description of this cervical gill slit gland in their helminthological studies of the parasitic nematode, Crassicauda magna. This study offers the first detailed gross and histological description of this gland and reports upon key differences between immature and mature individuals. Investigation reveals it is a complex, compound tubuloalveolar gland with a well-defined duct that leads to a large, and expandable central chamber, which in turn leads to two caudally projecting diverticula. All regions of the gland contain branched tubular and alveolar secretory regions, although most are found in the caudal diverticula, where the secretory process is holocrine. The gland lies between slips of cutaneous muscle, and is innervated by lamellar corpuscles, resembling Pacinian's corpuscles, suggesting that its secretory product may be actively expressed into the environment. Mature K. breviceps display larger gland size, and increased functional activity in glandular tissues, as compared to immature individuals. These results demonstrate that the cervical gill slit gland of K. breviceps shares morphological features of the specialized, chemical signaling, exocrine glands of terrestrial members of the Cetartiodactyla.
Collapse
Affiliation(s)
- Tiffany F Keenan
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - William A McLellan
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Sentiel A Rommel
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | | | - Craig A Harms
- Center for Marine Sciences and Technology, North Carolina State University, Morehead City, North Carolina
| | - 'Hans' Jgm Thewissen
- Department of Anatomy/Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | | | - Mark D Gay
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Charles W Potter
- Department of Vertebrate Zoology, Smithsonian Institution, National Museum of Natural History, Washington, District of Columbia, USA
| | - Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Ying Wang
- University of North Carolina Wilmington, Department of Chemistry and Biochemistry, Wilmington, North Carolina
| | - D Ann Pabst
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| |
Collapse
|
46
|
Large-scale characterization of sex pheromone communication systems in Drosophila. Nat Commun 2021; 12:4165. [PMID: 34230464 PMCID: PMC8260797 DOI: 10.1038/s41467-021-24395-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/11/2021] [Indexed: 11/08/2022] Open
Abstract
Insects use sex pheromones as a reproductive isolating mechanism to attract conspecifics and repel heterospecifics. Despite the profound knowledge of sex pheromones, little is known about the coevolutionary mechanisms and constraints on their production and detection. Using whole-genome sequences to infer the kinship among 99 drosophilids, we investigate how phylogenetic and chemical traits have interacted at a wide evolutionary timescale. Through a series of chemical syntheses and electrophysiological recordings, we identify 52 sex-specific compounds, many of which are detected via olfaction. Behavioral analyses reveal that many of the 43 male-specific compounds are transferred to the female during copulation and mediate female receptivity and/or male courtship inhibition. Measurement of phylogenetic signals demonstrates that sex pheromones and their cognate olfactory channels evolve rapidly and independently over evolutionary time to guarantee efficient intra- and inter-specific communication systems. Our results show how sexual isolation barriers between species can be reinforced by species-specific olfactory signals. Despite the profound knowledge of sex pheromones, little is known about the coevolutionary mechanisms and constraints on their production and detection. Whole-genome sequences from 99 drosophilids, with chemical and behavioural data, show that sex pheromones and their cognate olfactory channels evolve rapidly and independently.
Collapse
|
47
|
Bytheway JP, Johnstone KC, Price CJ, Banks PB. A mechanistic understanding of prebaiting to improve interaction with wildlife management devices. PEST MANAGEMENT SCIENCE 2021; 77:3107-3115. [PMID: 33638268 DOI: 10.1002/ps.6343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Prebaiting is a technique involving early deployment of 'unarmed' devices (e.g. baits and traps) to increase efficacy of wildlife management. Although commonly used, the mechanisms by which prebaiting works are poorly understood. We propose three mechanisms by which prebaiting may increase device interaction probabilities; (1) overcoming neophobia towards novel devices, (2) a 'trickle in' effect increasing time for animals to encounter devices; and (3) social information transfer about rewards associated with devices. We conducted a survey of 100 articles to understand how prebaiting has been used. We then tested our proposed prebaiting mechanisms using a global pest (black rats, Rattus rattus) examining how uniquely marked free-living rats responded to a common yet novel monitoring technique (tracking tunnels). RESULTS No studies in our dataset tested how prebaiting functioned. Most studies (61%) did not propose a mechanism for prebaiting, but overcoming neophobia was most commonly mentioned. We only found partial support for the overcoming neophobia hypothesis in our field test. We found the dominant mechanism operating in our system to be the 'trickle in' effect with the proportion of individuals visiting the device increasing over time. We found no support for social information transfer as a mechanism of prebaiting. CONCLUSION Applying a mechanistic understanding of how prebaiting functions will improve the efficacy of management devices. Our results suggest that prebaiting allows time for more rats to encounter a device, hence surveys in our system would benefit from long prebaiting periods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jenna P Bytheway
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Kyla C Johnstone
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Catherine J Price
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
48
|
Kogo H, Maeda N, Kiyokawa Y, Takeuchi Y. Rats do not consider all unfamiliar strains to be equivalent. Behav Processes 2021; 190:104457. [PMID: 34216685 DOI: 10.1016/j.beproc.2021.104457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
Humans show distinct social behaviours when we recognise social similarity in opponents that are members of the same social group. However, little attention has been paid to the role of social similarity in non-human animals. In the Wistar subject rats, the presence of an unfamiliar Wistar rat mitigated stress responses, suggesting the importance of social similarity in this stress-buffering phenomenon. We subsequently found that the presence of unfamiliar Sprague-Dawley (SD) or Long-Evans (LE) rats, but not an unfamiliar Fischer 344 (F344) rat, similarly mitigated stress responses in the subject rats. It is therefore possible that the subject rats recognised social similarity to unfamiliar SD and LE rats. In this study, we demonstrated that the Wistar subject rats were capable of categorizing unfamiliar rats based on their strain, and that the Wistar subjects showed a preference for unfamiliar Wistar, SD, and LE rats over F344 rats. However, the subject rats did not show a preference among Wistar, SD, and LE rats. In addition, the results were not due to an aversion to F344 rats, and preference was not affected when anaesthetised rats were presented to the subject rats. The findings suggested that rats recognise social similarity to certain unfamiliar strains of rats.
Collapse
Affiliation(s)
- Hiroki Kogo
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naori Maeda
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
49
|
Bansal R, Nagel M, Stopkova R, Sofer Y, Kimchi T, Stopka P, Spehr M, Ben-Shaul Y. Do all mice smell the same? Chemosensory cues from inbred and wild mouse strains elicit stereotypic sensory representations in the accessory olfactory bulb. BMC Biol 2021; 19:133. [PMID: 34182994 PMCID: PMC8240315 DOI: 10.1186/s12915-021-01064-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background For many animals, chemosensory cues are vital for social and defensive interactions and are primarily detected and processed by the vomeronasal system (VNS). These cues are often inherently associated with ethological meaning, leading to stereotyped behaviors. Thus, one would expect consistent representation of these stimuli across different individuals. However, individuals may express different arrays of vomeronasal sensory receptors and may vary in the pattern of connections between those receptors and projection neurons in the accessory olfactory bulb (AOB). In the first part of this study, we address the ability of individuals to form consistent representations despite these potential sources of variability. The second part of our study is motivated by the fact that the majority of research on VNS physiology involves the use of stimuli derived from inbred animals. Yet, it is unclear whether neuronal representations of inbred-derived stimuli are similar to those of more ethologically relevant wild-derived stimuli. Results First, we compared sensory representations to inbred, wild-derived, and wild urine stimuli in the AOBs of males from two distinct inbred strains, using them as proxies for individuals. We found a remarkable similarity in stimulus representations across the two strains. Next, we compared AOB neuronal responses to inbred, wild-derived, and wild stimuli, again using male inbred mice as subjects. Employing various measures of neuronal activity, we show that wild-derived and wild stimuli elicit responses that are broadly similar to those from inbred stimuli: they are not considerably stronger or weaker, they show similar levels of sexual dimorphism, and when examining population-level activity, cluster with inbred mouse stimuli. Conclusions Despite strain-specific differences and apparently random connectivity, the AOB can maintain stereotypic sensory representations for broad stimulus categories, providing a substrate for common stereotypical behaviors. In addition, despite many generations of inbreeding, AOB representations capture the key ethological features (i.e., species and sex) of wild-derived and wild counterparts. Beyond these broad similarities, representations of stimuli from wild mice are nevertheless distinct from those elicited by inbred mouse stimuli, suggesting that laboratory inbreeding has indeed resulted in marked modifications of urinary secretions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01064-7.
Collapse
Affiliation(s)
- Rohini Bansal
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Romana Stopkova
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Pavel Stopka
- BIOCEV group, Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
50
|
Soares ERP, Sguarizi-Antonio D, Michelutti KB, Torres VO, Cardoso CAL, Antonialli-Junior WF. Intraspecific variation of cuticular hydrocarbons in the eusocial wasp Polybia sericea (Hymenoptera: Vespidae). CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00355-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|