1
|
Thompson WA, Vijayan MM. Zygotic Exposure to Venlafaxine Disrupts the Circadian Locomotor Activity Behaviour in Zebrafish Larvae. J Pineal Res 2024; 76:e12984. [PMID: 38874070 DOI: 10.1111/jpi.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
The antidepressant venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is commonly prescribed to treat major depressive disorder and is found at high concentrations in the aquatic environment. Concerns have been raised related to the health of aquatic organisms in response to this nontargeted pharmaceutical exposure. For instance, we previously demonstrated that exposure to venlafaxine perturbs neurodevelopment, leading to behavioural alterations in zebrafish (Danio rerio). We also observed disruption in serotonin expression in the pineal and raphe, regions critical in regulating circadian rhythms, leading us to hypothesize that zygotic exposure to venlafaxine disrupts the circadian locomotor rhythm in larval zebrafish. To test this, we microinjected zebrafish embryos with venlafaxine (1 or 10 ng) and recorded the locomotor activity in 5-day-old larvae over a 24-h period. Venlafaxine deposition reduced larval locomotor activity during the light phase, but not during the dark phase of the diurnal cycle. The melatonin levels were higher in the dark compared to during the light photoperiod and this was not affected by embryonic venlafaxine deposition. Venlafaxine exposure also did not affect the transcript abundance of clock genes, including clock1a, bmal2, cry1a and per2, which showed a clear day/night rhythmicity. A notable finding was that exposure to luzindole, a melatonin receptor antagonist, decreased the locomotor activity in the control group in light, whereas the activity was higher in larvae raised from the venlafaxine-deposited embryos. Overall, zygotic exposure to venlafaxine disrupts the locomotor activity of larval zebrafish fish during the day, demonstrating the capacity of antidepressants to disrupt the circadian rhythms in behaviour. Our results suggest that disruption in melatonin signalling may be playing a role in the venlafaxine impact on circadian behaviour, but further investigation is required to elucidate the possible mechanisms in larval zebrafish.
Collapse
Affiliation(s)
- W Andrew Thompson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
2
|
Ye Y, Huang J, Li S, Li Y, Zhao Y. Effects of Dietary Melatonin on Antioxidant Capacity, Immune Defense, and Intestinal Microbiota in Red Swamp Crayfish (Procambarus clarkii). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:623-638. [PMID: 38814375 DOI: 10.1007/s10126-024-10326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
The aim of this study was to investigate the effects of melatonin (MT) feed supplementation on the antioxidant capacity, immune defense, and intestinal flora in Procambarus clarkii (P. clarkii). Six groups of P. clarkii were fed test feeds containing different levels of MT: 0 mg/kg (control), 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg for a duration of 2 months. The specific growth rate, hepatosomatic index, and condition factor were recorded highest in the test group of shrimp fed an MT concentration of 165.1 mg/kg. Compared to the control group, the rate of apoptosis was lower in hepatopancreas cells of P. clarkii supplemented with high concentrations of MT. Analyses of antioxidant capacity and immune-response-related enzymes in the hepatopancreas indicated that dietary supplementation of MT significantly augmented both the antioxidant system and immune responses. Dietary MT supplementation significantly increased the expression levels of antioxidant-immunity-related genes and decreased the expression levels of genes linked to apoptosis. Dietary MT was associated with an elevation in the abundance of the Firmicutes and a reduction in the abundance of the Proteobacteria in the intestines; besides, resulting in an increase in the abundance of beneficial bacteria, such as Lactobacilli. The broken-line model indicated that the suitable MT concentration was 154.09-157.09 mg/kg. MT supplementation enhanced the growth performance of P. clarkii, exerting a positive influence on the intestinal microbiota, and bolstered both immune response and disease resistance. Thus, this study offered novel perspectives regarding the application of dietary MT supplementation within the aquaculture field.
Collapse
Affiliation(s)
- Yucong Ye
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jiarong Huang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, 63 Chifeng Rd, Shanghai, 200092, China.
| | - Yunlong Zhao
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
3
|
Azpeleta C, Delgado MJ, Metz JR, Flik G, de Pedro N. Melatonin as an anti-stress signal: effects on an acute stress model and direct actions on interrenal tissue in goldfish. Front Endocrinol (Lausanne) 2024; 14:1291153. [PMID: 38260137 PMCID: PMC10800973 DOI: 10.3389/fendo.2023.1291153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Background Melatonin is a key hormone in regulation of circadian rhythms, and involved in many rhythmic functions, such as feeding and locomotor activity. Melatonin reportedly counteracts stress responses in many vertebrates, including fish. However, targets for this action of melatonin and underlying mechanisms remain unknown. Results This study reports potential anti-stress properties of melatonin in goldfish (Carassius auratus), with a focus on its effect on plasma cortisol, food intake, and locomotor activity, all of them involved in the responses to stress exposure. Indeed, acute injection of melatonin counteracted stress-induced hypercortisolinemia and reduced food intake. The reduced locomotor activity following melatonin treatment suggests a possible sedative role in fish. To assess whether this anti-stress effects of melatonin involve direct actions on interrenal tissue, in vitro cultures of head kidney (containing the interrenal cortisol-producing tissue) were carried out in presence of ACTH, melatonin, and luzindole, an antagonist of melatonin receptors. Melatonin in vitro reduced ACTH-stimulated cortisol release, an effect attenuated by luzindole; this suggests the presence of specific melatonin receptors in interrenal tissue. Conclusions Our data support a role for melatonin as an anti-stress signal in goldfish, and suggest that the interrenal tissue of teleosts may be a plausible target for melatonin action decreasing cortisol production.
Collapse
Affiliation(s)
- Clara Azpeleta
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Mª Jesús Delgado
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Nuria de Pedro
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Amiya N, Matsuda E, Miyazaki Y, Nakano N, Kataoka M, Yamaji T, Amano M, Yoshinaga T. Circadian Rhythm and Endocrinological Control on the Swimming and Sand Burrowing Behaviors of Japanese Sand Lances Ammodytes spp. (Uranoscopiformes, Ammodytidae). Zoolog Sci 2023; 40:423-430. [PMID: 38064368 DOI: 10.2108/zs230053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 12/18/2023]
Abstract
In diurnal and nocturnal organisms, daily activity is regulated by the perception of environmental stimuli and circadian rhythms, which enable organisms to maintain their essential behaviors. The Japanese sand lances genus Ammodytes are coastal marine fish that exhibit unique nocturnal sand burrowing behavior. To elucidate the extrinsic and intrinsic regulation of this behavior and its endocrinological basis, we conducted a series of rearing experiments under various light conditions and hormone administrations. Under a light-dark photoperiod, the fish showed three types of behavior: sand buried, head-exposed from sand, and swimming/feeding. During the transition from dark to light periods, the fish first showed head exposure, followed by swimming and foraging, and buried themselves in the sand immediately after shifting to the dark period. Under constant light conditions, fish exhibited swimming behavior during the period corresponding to the acclimated light period. In addition, swimming did not occur under constant dark conditions but head exposure was observed at the time of the dark-light transition during acclimation. These observations indicate that the essential behavior of sand lances is regulated by both light and circadian rhythms. Subsequently, a melatonin-containing diet promoted the onset of burrowing in 10 to 120 min in a dose-dependent manner at 0.3-128 µg/g-diet, suggesting the direct behavioral regulation by this hormone. These findings suggest that the behavior of sand lances is strictly regulated by an intrinsic mechanism and that melatonin is a regulatory endocrine factor that induces burrowing behavior.
Collapse
Affiliation(s)
- Noriko Amiya
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan,
| | - Eri Matsuda
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Yoshiya Miyazaki
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Nayu Nakano
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Masaki Kataoka
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Taichi Yamaji
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Masafumi Amano
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Tatsuki Yoshinaga
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
5
|
Li Y, Yang Y, Li S, Ye Y, Du X, Liu X, Jiang Q, Che X. Effects of dietary melatonin on antioxidant and immune function of the Pacific white shrimp (Litopenaeus vannamei), as determined by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101146. [PMID: 37804799 DOI: 10.1016/j.cbd.2023.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Melatonin (MT) is regarded as an antioxidant and immunostimulant that can efficiently scavenge free radicals and activate antioxidant enzymes. The aim of this study was to investigate the effects of dietary MT on the growth performance and immune function of the Pacific white shrimp (Litopenaeus vannamei). Six groups of L. vannamei were supplemented with dietary MT at 0, 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg levels for 2 months. RNA-Seq analysis was performed to obtain transcriptome data of the control group and the group supplemented with dietary MT at 82.7 mg/kg BW. In total, 1220 DEGs (799 up-regulated and 421 down-regulated) were identified. Pathways and genes related to growth performance and immune function were verified by real-time quantitative polymerase chain reaction. The total hemocyte count, phagocytosis rate, and respiratory burst were significantly increased in the MT (82.7 mg/kg BW) group as compared to the control group. Analysis of antioxidant-related enzymes in the hepatopancreas showed that dietary MT (82.7 mg/kg BW) significantly increased activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase, while dietary MT at 41.2 mg/kg BW significantly increased activities of glutathione S-transferase, lysozyme (LZM), and phenoloxidase (PO). At the transcriptional level, dietary MT up-regulated expression levels of genes associated with antioxidant immunity and growth, which included PO, SOD, LZM, GPx, chitin synthase, ecdysone receptor, calcium-calmodulin dependent protein kinase I, and retinoid X receptor. In conclusion, dietary MT may improve the growth performance and immune function of L. vannamei to some extent.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
6
|
Vargas-Chacoff L, Nualart D, Vargas-Lagos C, Dann F, Muñoz JL, Pontigo JP. Tryptophan and Cortisol Modulate the Kynurenine and Serotonin Transcriptional Pathway in the Kidney of Oncorhynchus kisutch. Animals (Basel) 2023; 13:3562. [PMID: 38003180 PMCID: PMC10668775 DOI: 10.3390/ani13223562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Aquaculture fish are kept for long periods in sea cages or tanks. Consequently, accumulated stress causes the fish to present serious problems with critical economic losses. Fish food has been supplemented to reduce this stress, using many components as amino acids such as tryptophan. This study aims to determine the transcriptional effect of tryptophan and cortisol on primary cell cultures of salmon head and posterior kidney. Our results indicate activation of the kynurenine pathway and serotonin activity when stimulated with tryptophan and cortisol. An amount of 95% of tryptophan is degraded by the kynurenine pathway, indicating the relevance of knowing how this pathway is activated and if stress levels associated with fish culture trigger its activation. Additionally, it is essential to know the consequence of increasing kynurenic acid "KYNA" levels in the short and long term, and even during the fish ontogeny.
Collapse
Affiliation(s)
- Luis Vargas-Chacoff
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.N.); (F.D.)
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia 5090000, Chile
- Integrative Biology Group, Valdivia 5090000, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia 5090000, Chile
| | - Daniela Nualart
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.N.); (F.D.)
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia 5090000, Chile
- Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt 5480000, Chile
| | - Carolina Vargas-Lagos
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Puerto Montt 5480000, Chile;
| | - Francisco Dann
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.N.); (F.D.)
| | - José Luis Muñoz
- Centro i~Mar, Universidad de los Lagos, Puerto Montt 5480000, Chile;
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt 5480000, Chile;
| |
Collapse
|
7
|
Samaras A. A Systematic Review and Meta-Analysis of Basal and Post-Stress Circulating Cortisol Concentration in an Important Marine Aquaculture Fish Species, European Sea Bass, Dicentrarchus labrax. Animals (Basel) 2023; 13:ani13081340. [PMID: 37106903 PMCID: PMC10135258 DOI: 10.3390/ani13081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND European sea bass is a species characterized by high and dispersed cortisol levels. The aim of the present study was to analyze all published data on basal and post-acute stress cortisol levels in this species. METHODS For this systematic review and meta-analysis the Web of Science and Scopus databases were searched for papers reporting plasma or serum cortisol levels in E. sea bass, without language or date restrictions. Data were extracted directly for the reported results and were analyzed separately for basal and post-acute stress levels, as well their standardized mean differences (SMD) using random-effects meta-analyses. RESULTS Of 407 unique records identified, 69 were eligible. Basal cortisol levels had a pooled effect of 88.7 ng mL-1 (n = 57), while post-acute stress levels were 385.9 ng mL-1 (n = 34). The average SMD between basal and post-stress was calculated to be 3.02 (n = 22). All analyses had a high between-study heterogeneity. Results for basal and post-stress levels were affected by the assay type and anesthesia prior to blood sampling. CONCLUSIONS Cortisol levels in E. sea bass are higher than most studied fish species and display large heterogeneity. Application of stress led to elevated cortisol levels in all studies examined. In all cases, sources of between-studies heterogeneity were identified.
Collapse
|
8
|
Peter MCS, Gayathry R, Simi S, Peter VS. Melatonin integrates multidimensional regulation of Na +/K +-ATPase in ionocytes and promotes stress and ease response in hypoxia-induced air-breathing fish: lessons from integrative approach. Front Physiol 2023; 13:1012729. [PMID: 36714310 PMCID: PMC9879292 DOI: 10.3389/fphys.2022.1012729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
As circadian regulator, melatonin is involved in many physiological processes including ionosmotic regulation in fishes. Na+/K+-ATPase (NKA), an ubiquitous Na+/K+ transporter in ionocyte epithelia that drives electrochemical Na+ gradients and systemic osmotic integration, is a target of stress in fish. However, it is not certain how melatonin regulates NKA functions in ionocyte epithelia and how it modulates the adaptive response such as stress and ease response in fish particularly in hypoxia condition. We, thus, examined the short-term in vivo action of melatonin on the dynamics of NKA regulation in branchial, renal and intestinal ionocytes of hypoxia-induced air-breathing fish (Anabas testudineus Bloch). Interestingly, we found a rise in plasma melatonin in fish when kept for 30 min of forced submergence in water and that indicates a role for melatonin in hypoxia tolerance. A fall in blood [Na+ , K+] occurred in these hypoxic fish which later showed a recovery after melatonin treatment. Similarly, melatonin favored the fall in NKA activity in branchial and renal epithelia of hypoxic fish, though it remarkably stimulated its activities in non-stressed fish. Likewise, melatonin that produced differential pattern of mRNA expression in nkaα1-subunit isoforms (nkaα1a, nkaα1b and nkaα1c) and melatonin receptor isoforms (mtnr1a, mtnr1bb, mtnr1bb x1x2 ) in the tested ionocyte epithelia, showed reversed expression in hypoxic fish. In addition, the rise in NKAα-protein abundance in branchial and renal epithelia of melatonin-treated hypoxic fish indicated a recovery action of melatonin. A higher NKAα-immunoreactivity was found in the immunohistochemical and immunofluorescent images of branchial ionocytes and renal proximal and distal ionocytes of hypoxic fish treated with melatonin. Furthermore, an activation of PKA and PKG-dependent phosphorylation was found in branchial epithelia of hypoxic fish. The generated integrative parabola model showed that melatonin has a maximum targeted action on NKA function in the renal epithelia, suggesting its lead role in the integration of ionosmotic balance during the recovery or ease response. Over all, the data indicate a multidimensional and preferential action of melatonin on NKA regulation in fish ionocytes that integrate the recovery action against hypoxia, thus pointing to a major role for melatonin in stress and ease response in this fish.
Collapse
Affiliation(s)
- M. C. Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology-ICEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, India,Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram, India,*Correspondence: M. C. Subhash Peter,
| | - R. Gayathry
- Inter-University Centre for Evolutionary and Integrative Biology-ICEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - S. Simi
- Inter-University Centre for Evolutionary and Integrative Biology-ICEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - Valsa S. Peter
- Inter-University Centre for Evolutionary and Integrative Biology-ICEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, India
| |
Collapse
|
9
|
Mardones O, Oyarzún-Salazar R, Labbé BS, Miguez JM, Vargas-Chacoff L, Muñoz JLP. Intestinal variation of serotonin, melatonin, and digestive enzymes activities along food passage time through GIT in Salmo salar fed with supplemented diets with tryptophan and melatonin. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111159. [PMID: 35114387 DOI: 10.1016/j.cbpa.2022.111159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022]
Abstract
In teleosts, peripheral serotonin (5-HT) and melatonin (MEL) are synthesised in the gastrointestinal tract (GIT) and regulate secretion and motility processes. Their production is regulated by diet and the passage of food through the GIT. This study aimed to evaluate how intestinal 5-HT, melatonin, and the activity of digestive enzymes varied with food passage time through GIT in Atlantic salmon (Salmo salar). We fed fish diets supplemented with tryptophan and melatonin (L-Trp 2.5% and MEL 0.01%) and measured the activity of digestive enzymes (amylase, lipase, and total protease) in the pyloric caeca, midgut, and hindgut at different times after feeding. 5-HT levels increased in all GIT portions and diets at 120 min post-intake and were highest in the pyloric caeca. Intestinal enzymatic activity was varied with diet, post-intake time and in different intestinal portions. In conclusion, food passage time directly affects GIT 5-HT secretion and digestive enzyme activity in S. salar, and diet composition regulates S. salar GIT function.
Collapse
Affiliation(s)
- O Mardones
- Centro de Investigación y Desarrollo i~mar, Universidad de los Lagos, Puerto Montt, Chile
| | - R Oyarzún-Salazar
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap-IDEAL, Universidad Austral de Chile, Valdivia, Chile
| | - B S Labbé
- Centro de Investigación y Desarrollo i~mar, Universidad de los Lagos, Puerto Montt, Chile; Programa de Magister en Ciencias, mención manejo, Producción, Manejo y Conservación de Recursos Naturales, Universidad de Los Lagos, Puerto Montt, Chile
| | - J M Miguez
- Laboratorio de Fisiología de Peces, Facultad de Biología, Universidade Vigo, Vigo, Spain
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap-IDEAL, Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile.
| | - J L P Muñoz
- Centro de Investigación y Desarrollo i~mar, Universidad de los Lagos, Puerto Montt, Chile.
| |
Collapse
|
10
|
Sahu S, Biswas P, Singh SK, Patel AB, Barman AS, Pandey PK. Reproductive and immuno-biochemical response of silver barb (Barbonymus gonionotus) fed dietary l-tryptophan. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Teixeira C, Rodrigues P, Serrão P, Figueira L, Guimarães L, Teles LO, Peres H, Carvalho AP. Dietary tryptophan supplementation does not affect growth but increases brain serotonin level and modulates the expression of some liver genes in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1541-1558. [PMID: 34370152 DOI: 10.1007/s10695-021-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
This study aimed at assessing the effects of the dietary tryptophan (Trp) supplementation on growth and feed utilization, brain serotonin content, and expression of selected liver genes (involved in the liver serotonin pathway, protein synthesis degradation, and antioxidant activity) in zebrafish. A growth trial was conducted with zebrafish juveniles fed five experimental isoproteic (40%DM) and isolipidic (8%DM) fishmeal-based diets containing graded levels of Trp: a Trp-non-supplemented diet (diet Trp0, with 0.22% Trp) and four Trp-supplemented diets containing 2-16 times higher Trp content (diets Trp2, Trp4, Trp8, and Trp16 with 0.40, 0.91, 2.02, and 3.34% Trp, respectively). Diets were tested in quadruplicate, with fish being fed twice a day, 6 days a week for 6 weeks to apparent visual satiation. At the end of the trial, growth performance and feed utilization were assessed, and fish from all experimental groups were sampled for whole-body composition analysis. In addition, fish fed low (Trp0), medium (Trp4), and high (Trp16) Trp diets were also sampled for analysis of brain serotonin content and liver gene expression. Tested tryptophan levels did not influence growth performance nor feed intake. However, values of energy and nitrogen retention as well as body energy content indicate a better feed utilization with diets containing around 0.9% and 2.0% DM Trp. Brain serotonin content increased with increasing dietary tryptophan levels. In addition, regarding liver genes, dietary treatment had a modulatory effect on the expression of Htr1aa and Htr2cl1 genes (encoding for serotonin receptors), TPH1a gene (encoding for tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of serotonin from tryptophan), TOR gene (involved in protein synthesis), and Keap1 gene (involved in antioxidant responses).
Collapse
Affiliation(s)
- Cláudia Teixeira
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal.
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal.
| | - Pedro Rodrigues
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Paula Serrão
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Luís Figueira
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Laura Guimarães
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Luís Oliva Teles
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Helena Peres
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - António Paulo Carvalho
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| |
Collapse
|
12
|
Effects of Duodenal 5-Hydroxytryptophan Perfusion on Melatonin Synthesis in GI Tract of Sheep. Molecules 2021; 26:molecules26175275. [PMID: 34500708 PMCID: PMC8433724 DOI: 10.3390/molecules26175275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study is to investigate the potential effects of 5-hydroxytryptophan (5-HTP) duodenal perfusion on melatonin (MT) synthesis in the gastrointestinal (GI) tract of sheep. 5-hydroxytryptophan is a precursor in the melatonin synthetic pathway. The results showed that this method significantly increased melatonin production in the mucosa of all segments in GI tract including duodenum, jejunum, ileum, cecum and colon. The highest melatonin level was identified in the colon and this indicates that the microbiota located in the colon may also participate in the melatonin production. In addition, portion of the melatonin generated by the GI tract can pass the liver metabolism and enters the circulation via portal vein. The current study provides further evidence to support that GI tract is the major site for melatonin synthesis and the GI melatonin also contributes to the circulatory melatonin level since plasma melatonin concentrations in 5-HTP treated groups were significantly higher than those in the control group. In conclusion, the results show that 10–50 mg of 5-HTP flowing into the duodenum within 6 h effectively improve the production of melatonin in the GI tract and melatonin concentration in sheep blood circulation during the day.
Collapse
|
13
|
El-Haroun H, Ewida SF, Mohamed WMY, Bashandy MA. Atypical Antipsychotic Lumateperone Effects on the Adrenal Gland With Possible Beneficial Effect of Quercetin Co-administration. Front Physiol 2021; 12:674550. [PMID: 34276400 PMCID: PMC8279776 DOI: 10.3389/fphys.2021.674550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia remains one of the most chronic and highly disabling mental disorders. Lumateperone is a recent FDA-approved atypical antipsychotic drug for the treatment of schizophrenia. However, the internal FDA pathologist raised concerns regarding pigment deposition associated with degeneration in different tissue in animal studies with lumateperone treatment. The adrenal gland may be implicated in lumateperone side effects, and quercetin may have the ability to fulfill this treatment gap. To prove this hypothesis, 40 male guinea pigs were used and divided into four groups; control, quercetin-treated, lumateperone-treated, and quercetin/lumateperone cotreated orally for 28 consecutive days. Behavioral forced swim (FST) and open field (OF) tests were done at the end of treatment. Retro-orbital blood samples were taken to assess hormones: adrenocorticotropic hormone (ACTH), cortisol, dehydroepiandrosterone acetate (DHEA), and aldosterone, along with an assessment of oxidative stress parameters: malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD). Adrenal glands were extracted for histopathological assessment with H&E, Mallory trichome staining, immunostaining, and electron microscopy studies. Lumateperone-treated group showed a significant reduction in the activity in FST and OF with histopathological deterioration in adrenal secretory function and structure and increased expression of interleukin-6 (IL-6), CASPASE-3, collagen deposition, and decreased proliferating cell nuclear antigen (PCNA). Cytoplasmic vacuolation, pyknosis of the nuclei, increase in the lysosome, lipofuscin pigment, and cellular infiltration with diminishing in the number of secretory granules could all be observed in lumateperone-treated group. Coadministration of quercetin and lumateperone showed improvement of the previously deteriorated parameters. Quercetin had a prophylactic effect against lumateperone depressive-like effect on animal behavior and its possible adrenal damage. Conceptual framework for the proposed mechanism of action of coadministration of quercetin and lumateperone. ![]()
Collapse
Affiliation(s)
- Hala El-Haroun
- Department of Histology, Faculty of Medicine, Menoufia University, Shebin El-kom, Egypt
| | - Suzy Fayez Ewida
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebin El-kom, Egypt
| | - Wael M Y Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El-kom, Egypt.,Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Pahang, Malaysia
| | - Manar Ali Bashandy
- Department of Anatomy Faculty of Medicine, Menoufia University, Shebin El-kom, Egypt
| |
Collapse
|
14
|
Nisembaum LG, Martin P, Lecomte F, Falcón J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J Neuroendocrinol 2021; 33:e12955. [PMID: 33769643 DOI: 10.1111/jne.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
Part of the life cycle of several fish species includes important salinity changes, as is the case for the sea bass (Dicentrarchus labrax) or the Atlantic salmon (Salmo salar). Salmo salar juveniles migrate downstream from their spawning sites to reach seawater, where they grow and become sexually mature. The process of preparation enabling juveniles to migrate downstream and physiologically adapt to seawater is called smoltification. Daily and seasonal variations of photoperiod and temperature play a role in defining the timing of smoltification, which may take weeks to months, depending on the river length and latitude. Smoltification is characterised by a series of biochemical, physiological and behavioural changes within the neuroendocrine axis. This review discusses the current knowledge and gaps related to the neuroendocrine mechanisms that mediate the effects of light and temperature on smoltification. Studies performed in S. salar and other salmonids, as well as in other species undergoing important salinity changes, are reviewed, and a particular emphasis is given to the pineal hormone melatonin and its possible role in osmoregulation. The daily and annual variations of plasma melatonin levels reflect corresponding changes in external photoperiod and temperature, which suggests that the hormonal time-keeper melatonin might contribute to controlling smoltification. Here, we review studies on (i) the impact of pinealectomy and/or melatonin administration on smoltification; (ii) melatonin interactions with hormones involved in osmoregulation (e.g., prolactin, growth hormone and cortisol); (iii) the presence of melatonin receptors in tissues involved in osmoregulation; and (iv) the impacts of salinity changes on melatonin receptors and circulating melatonin levels. Altogether, these studies show evidence indicating that melatonin interacts with the neuroendocrine pathways controlling smoltification, although more information is needed to clearly decipher its mechanisms of action.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Frédéric Lecomte
- Ministère des Forêts, de la Faune et des Parcs, Direction de l'expertise sur la faune aquatique, Québec, Canada
| | - Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 7208, SU, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
15
|
Yasmin F, Sutradhar S, Das P, Mukherjee S. Gut melatonin: A potent candidate in the diversified journey of melatonin research. Gen Comp Endocrinol 2021; 303:113693. [PMID: 33309697 DOI: 10.1016/j.ygcen.2020.113693] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023]
Abstract
After being discovered from the bovine pineal gland by Aaron Lerner and co-workers in the year 1958, various distinguished researchers have reported melatonin (5-methoxy-N-acetyl-tryptamine) from several extra-pineal sources, including the gastrointestinal tract (GIT). In the year 1974, Raikhlin and Kvetnoy first detected this molecule in the gastrointestinal tissue. Later, within the last 45 years, many renowned investigators found that the GIT is a rich source of melatonin, in addition to the pineal gland. In the carp gut, the estimation of Arylalkylamine-N-acetyltransferase (AANAT) mRNA/protein levels, which is the rate-determining enzyme for melatonin biosynthesis in the pineal gland, confirmed the endogenous synthesis of melatonin. The remarkable feature of the pineal gland melatonin is its rhythmic synthesis with a peak at dark-phase and lowest at light-phase in synchronization with seasonal environmental light-dark (LD) cycle. Recent studies on carp demonstrated that the melatonin concentrations and the AANAT protein intensities in different gut segments underwent significant daily fluctuations. However, compared to the melatonin rhythm in the pineal gland, the melatonin profiles in gut tissue displayed daily rhythm in parallel with the feeding cycle of the carp, irrespective of LD conditions of the environment. Notably, in carp, the temporal pattern of the gut melatoninergic system found to vary with the environmental non-photic signal(s), such as food entrainment factors (viz. availability of food, timing of food supply, number(s) of feed per day, quality of food) those act as the most dependable synchronizer(s) in daily rhythm characteristics of gut melatonin and AANAT. Thereby in this review, it appears meaningful to highlight the existing data on the mode of synthesis of melatonin in cells of the digestive tract, and most importantly, the regulation of its synthesis. Finally, in comparison with the dynamic actions of melatonin derived from the pineal gland, this review will lead to underline the role of gut-derived melatonin in a variety of physiological functions.
Collapse
Affiliation(s)
- Farha Yasmin
- Fish Biology and Endocrinology Laboratory, Department of Zoology, University of North Bengal, Darjeeling-734013, India
| | - Sona Sutradhar
- Fish Biology and Endocrinology Laboratory, Department of Zoology, University of North Bengal, Darjeeling-734013, India
| | - Poulami Das
- Fish Biology and Endocrinology Laboratory, Department of Zoology, University of North Bengal, Darjeeling-734013, India
| | - Sourav Mukherjee
- Fish Biology and Endocrinology Laboratory, Department of Zoology, University of North Bengal, Darjeeling-734013, India.
| |
Collapse
|
16
|
Song Y, Song X, Wu M, Pang Y, Shi A, Shi X, Niu C, Cheng Y, Yang X. The protective effects of melatonin on survival, immune response, digestive enzymes activities and intestinal microbiota diversity in Chinese mitten crab (Eriocheir sinensis) exposed to glyphosate. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108845. [PMID: 32777465 DOI: 10.1016/j.cbpc.2020.108845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Glyphosate is one of the most widely used pesticides, which can cause toxicity to aquatic animals. In this study, the survival rate, immune response, digestive enzyme activities, and the intestinal microbiota diversity of Chinese mitten crab (Eriocheir sinensis) were evaluated after 14 days of exposure to glyphosate (48.945 mg/L from 50% 96 h LC50 value) and melatonin feeding (80 mg/kg). The results showed that MT significantly improved the survival rate, antibacterial capacity of E. sinensis (P < 0.05). After exposure to glyphosate, the expression of Hsp60, Hsp70 and Hsp90 in cranial ganglia and thoracic ganglia was decreased significantly, but MT significantly raised the expression of these proteins (P < 0.05). Glyphosate significantly decreased lipase activity compared with the control group (P < 0.05), while melatonin significantly increased the lipase, amylase and trypsin activities (P < 0.05). Melatonin significantly increased the Chao1 and Shannon index and the relative abundance of Proteobacteria and Bacteroidetes (P < 0.05). This study shows that melatonin has a protective effect on the glyphosate exposed E. sinensis.
Collapse
Affiliation(s)
- Yameng Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaozhe Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Mengyao Wu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yangyang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Aoya Shi
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xingliang Shi
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Chao Niu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
17
|
Nisembaum LG, Martin P, Fuentes M, Besseau L, Magnanou E, McCormick SD, Falcón J. Effects of a temperature rise on melatonin and thyroid hormones during smoltification of Atlantic salmon, Salmo salar. J Comp Physiol B 2020; 190:731-748. [PMID: 32880666 DOI: 10.1007/s00360-020-01304-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 11/28/2022]
Abstract
Smoltification prepares juvenile Atlantic salmon (Salmo salar) for downstream migration. Dramatic changes characterize this crucial event in the salmon's life cycle, including increased gill Na+/K+-ATPase activity (NKA) and plasma hormone levels. The triggering of smoltification relies on photoperiod and is modulated by temperature. Both provide reliable information, to which fish have adapted for thousands of years, that allows deciphering daily and calendar time. Here we studied the impact of different photoperiod (natural, sustained winter solstice) and temperature (natural, ~ + 4° C) combinations, on gill NKA, plasma free triiodothyronine (T3) and thyroxine (T4), and melatonin (MEL; the time-keeping hormone), throughout smoltification. We also studied the impact of temperature history on pineal gland MEL production in vitro. The spring increase in gill NKA was less pronounced in smolts kept under sustained winter photoperiod and/or elevated temperature. Plasma thyroid hormone levels displayed day-night variations, which were affected by elevated temperature, either independently from photoperiod (decrease in T3 levels) or under natural photoperiod exclusively (increase in T4 nocturnal levels). Nocturnal MEL secretion was potentiated by the elevated temperature, which also altered the MEL profile under sustained winter photoperiod. Temperature also affected pineal MEL production in vitro, a response that depended on previous environmental acclimation of the organ. The results support the view that the salmon pineal is a photoperiod and temperature sensor, highlight the complexity of the interaction of these environmental factors on the endocrine system of S. salar, and indicate that climate change might compromise salmon's time "deciphering" during smoltification, downstream migration and seawater residence.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France.
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, 43300, Chanteuges, France
| | - Michael Fuentes
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Stephen D McCormick
- S.O. Conte Anadromous Fish Research Laboratory, U.S. Geological Survey, Leetown Science Center, Turners Falls, MA, USA
| | - Jack Falcón
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France.,Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS 7208, UPMC, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris Cedex, France
| |
Collapse
|
18
|
|
19
|
Khan NA, Sharma J, Chakrabarti R. The study of ameliorative effect of dietary supplementation of vitamin C, vitamin E, and tryptophan on Labeo rohita (Cyprinidae) fry exposed to intense light. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1153-1165. [PMID: 30847628 DOI: 10.1007/s10695-019-00626-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The stress ameliorating effect of dietary supplementation of vitamin C, vitamin E, and tryptophan on rohu Labeo rohita fry was evaluated. Rohu fry (1.1 ± 0.03 g) were cultured under five different feeding regimes: enriched with 0.08% vitamin C (D1), 0.02% vitamin E (D2), 1.42% tryptophan (D3), a combination of these three ingredients at similar doses (D4), and control diet (D5). Rohu fry of D5 were divided into two groups-exposed to experimental light (D5FL) and ambient light (114 ± 4 lx, D5AL). All fry (except D5AL) were exposed at light intensity of 3442 ± 648 lx. Feeding of rohu with enriched diets significantly (P < 0.05) enhanced the survival rate and average weight. A 15-25% higher survival and 1.3-1.8-fold higher average weight were recorded in rohu fed with enriched diet compared to D5FL treatment. Supplementation of vitamin C in diet (D1) of rohu resulted in 4.1-fold and 6.9-fold higher nitric oxide synthase and reduced glutathione (GSH) levels, respectively compared to the D5FL treatment. The tryptophan-enriched diet (D3) showed 5.8-fold higher melatonin and 4.4-fold lower cortisol levels in rohu compared to the D5FL treatment. Significantly (P < 0.05) higher nitric oxide synthase, GSH and melatonin, and lower cortisol, glucose, thiobarbituric acid reactive substances, carbonyl protein, glutathione S-transferase, and glutathione peroxidase levels were found in D4 diet fed rohu compared to the other treatments. Reduced level of stress in D4 treatment resulted in best performance of rohu in terms of less swimming activity and higher survival and growth compared to the other treatments.
Collapse
Affiliation(s)
- Nawaz Alam Khan
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - JaiGopal Sharma
- Department of Biotechnology, Delhi Technological University, Bawana Road, Delhi, 110042, India
| | - Rina Chakrabarti
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
20
|
Azeredo R, Machado M, Martos-Sitcha JA, Martínez-Rodríguez G, Moura J, Peres H, Oliva-Teles A, Afonso A, Mancera JM, Costas B. Dietary Tryptophan Induces Opposite Health-Related Responses in the Senegalese Sole ( Solea senegalensis) Reared at Low or High Stocking Densities With Implications in Disease Resistance. Front Physiol 2019; 10:508. [PMID: 31118899 PMCID: PMC6504696 DOI: 10.3389/fphys.2019.00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
High rearing densities are typical conditions of both inland and onshore intensive aquaculture units. Despite obvious drawbacks, this strategy is nonetheless used to increase production profits. Such conditions inflict stress on fish, reducing their ability to cope with disease, bringing producers to adopt therapeutic strategies. In an attempt to overcome deleterious effects of chronic stress, Senegalese sole, Solea senegalensis, held at low (LD) or high density (HD) were fed tryptophan-supplemented diets with final tryptophan content at two (TRP2) or four times (TRP4) the requirement level, as well as a control and non-supplemented diet (CTRL) for 38 days. Fish were sampled at the end of the feeding trial for evaluation of their immune status, and mortalities were recorded following intra-peritoneal infection with Photobacterium damselae subsp. piscicida. Blood was collected for analysis of the hematological profile and innate immune parameters in plasma. Pituitary and hypothalamus were sampled for the assessment of neuro-endocrine-related gene expression. During the feeding trial, fish fed TRP4 and held at LD conditions presented higher mortalities, whereas fish kept at HD seemed to benefit from this dietary treatment, as disease resistance increased over that of CTRL-fed fish. In accordance, cortisol level tended to be higher in fish fed both supplemented diets at LD compared to fish fed CTRL, but was lower in fish fed TRP4 than in those fed TRP2 under HD condition. Together with lower mRNA levels of proopiomelanocortin observed with both supplementation levels, these results suggest that higher levels of tryptophan might counteract stress-induced cortisol production, thereby rendering fish better prepared to cope with disease. Data regarding sole immune status showed no clear effects of tryptophan on leucocyte numbers, but TRP4-fed fish displayed inhibited alternative complement activity (ACH50) when held at LD, as opposed to their HD counterparts whose ACH50 was higher than that of CTRL-fed fish. In conclusion, while dietary tryptophan supplementation might have harmful effects in control fish, it might prove to be a promising strategy to overcome chronic stress-induced disease susceptibility in farmed Senegalese sole.
Collapse
Affiliation(s)
- Rita Azeredo
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Marina Machado
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Juan A Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina, University of Cádiz, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Institute of Marine Sciences of Andalusia, Spanish National Research Council, Cádiz, Spain
| | - Joana Moura
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Helena Peres
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Aires Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - António Afonso
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Juan M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina, University of Cádiz, Cádiz, Spain
| | - Benjamín Costas
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Kumar P, Pal A, Sahu N, Jha AK, Kumar N, Christina L, Priya P. Dietary L-Tryptophan potentiates non-specific immunity in Labeo rohita fingerlings reared under elevated temperature. J Therm Biol 2018; 74:55-62. [DOI: 10.1016/j.jtherbio.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 02/17/2018] [Accepted: 03/10/2018] [Indexed: 01/06/2023]
|
22
|
Zhang C, Yang XZ, Xu MJ, Huang GY, Zhang Q, Cheng YX, He L, Ren HY. Melatonin Promotes Cheliped Regeneration, Digestive Enzyme Function, and Immunity Following Autotomy in the Chinese Mitten Crab, Eriocheir sinensis. Front Physiol 2018; 9:269. [PMID: 29623051 PMCID: PMC5875391 DOI: 10.3389/fphys.2018.00269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
In the pond culture of juvenile Eriocheir sinensis, a high limb-impairment rate seriously affects the culture success. Therefore, it is particularly important to artificially promote limb regeneration. This study evaluated the effects of melatonin on cheliped regeneration, digestive ability, and immunity, as well as its relationship with the eyestalk. It was found that the injection of melatonin significantly increased the limb regeneration rate compared with the saline group (P < 0.05). The qRT-PCR results of growth-related genes showed that the level of EcR-mRNA (ecdysteroid receptor) and Chi-mRNA (chitinase) expression was significantly increased following the melatonin injection, while the expression of MIH-mRNA (molt-inhibiting hormone) was significantly decreased (P < 0.05). Melatonin significantly increased lipase activity (P < 0.05). We observed that the survival rates of limb-impaired and unilateral eyestalk-ablated crabs were substantially improved following melatonin treatment, whereas the survival of the unilateral eyestalk-ablated crabs was significantly decreased compared with the control group (P < 0.05). Furthermore, the results of serum immune and antioxidant capacity revealed that melatonin significantly increased the total hemocyte counts (THC), hemocyanin content, total antioxidant capacity (T-AOC), acid phosphatase (ACP), and glutathione peroxidase activity (GSH-Px), whereas the immune-related parameters were significantly decreased in eyestalk-ablated crabs (P < 0.05). Therefore, these findings indicate that melatonin exerts a protective effect on organism injury, which could promote limb regeneration by up-regulating the expression of growth-related genes, improve digestive enzyme activity, and strengthen the immune response, particularly antioxidant capacity.
Collapse
Affiliation(s)
- Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiao-Zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Min-Jie Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Gen-Yong Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Qian Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yong-Xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hong-Yu Ren
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, China.,Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
23
|
Abdelaleem SA, Hassan OA, Ahmed RF, Zenhom NM, Rifaai RA, El-Tahawy NF. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study. J Toxicol 2017; 2017:9815853. [PMID: 29279713 PMCID: PMC5723970 DOI: 10.1155/2017/9815853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022] Open
Abstract
Tramadol is a synthetic, centrally acting analgesic. It is the most consumed narcotic drug that is prescribed in the world. Tramadol abuse has dramatically increased in Egypt. Long term use of tramadol can induce endocrinopathy. So, the aim of this study was to analyze the adrenal insufficiency induced by long term use of tramadol in experimental animals and also to assess its withdrawal effects through histopathological and biochemical genetic study. Forty male albino rats were used in this study. The rats were divided into 4 groups (control group, tramadol-treated group, and withdrawal groups). Tramadol was given to albino rats at a dose of 80 mg/kg body weight for 3 months and after withdrawal periods (7-15 days) rats were sacrificed. Long term use of tramadol induced severe histopathological changes in adrenal glands. Tramadol decreased the levels of serum cortisol and DHEAS hormones. In addition, it increased the level of adrenal MDA and decreased the genetic expression of glutathione peroxidase and thioredoxin reductase in adrenal gland tissues. All these changes started to return to normal after withdrawal of tramadol. Thus, it was confirmed that long term use of tramadol can induce severe adrenal insufficiency.
Collapse
Affiliation(s)
| | - Osama A. Hassan
- Forensic Medicine & Toxicology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rasha F. Ahmed
- Biochemistry Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nagwa M. Zenhom
- Biochemistry Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rehab A. Rifaai
- Histology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | | |
Collapse
|
24
|
Azeredo R, Machado M, Guardiola FA, Cerezuela R, Afonso A, Peres H, Oliva-Teles A, Esteban MA, Costas B. Local immune response of two mucosal surfaces of the European seabass, Dicentrarchus labrax, fed tryptophan- or methionine-supplemented diets. FISH & SHELLFISH IMMUNOLOGY 2017; 70:76-86. [PMID: 28882794 DOI: 10.1016/j.fsi.2017.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Immune responses relies on an adequate provision of multiple nutrients that sustain the synthesis of key effector molecules. These needs are depicted in the already reported increase of circulating free amino acids in fish under stressful conditions. Since aquaculture and the inherent fish welfare are an emergent call, the immunomodulatory effects of amino acids on gut- and skin-associated lymphoid tissues of the European seabass (Dicentrarchus labrax) were studied under unstressed conditions and after an inflammatory insult. To achieve this goal, fish were distributed in duplicate tanks (fifteen fish per tank) and were fed for 14 days with methionine or tryptophan-supplemented diets at 2× dietary requirement level (MET and TRP, respectively) or a control diet meeting the amino acids requirement levels (CTRL). Afterwards, samples of skin and posterior gut were collected from 6 fish per dietary treatment for the assessment of the immune status while the remaining animals were intraperitoneally-injected with inactivated Photobacterium damselae subsp. piscicida and subsequently sampled either 4 or 24 h post-injection. The immune status of both mucosal surfaces was poorly affected, although a tryptophan effect was denoted after bacterial inoculation, with several immune-related genes up-regulated in the gut at 4 h post-injection, which seems to suggest a neuroendocrine-immune systems interaction. In contrast, skin mucosal immunity was inhibited by tryptophan dietary supplementation. Regarding methionine, results were often statistically non-significant, though increasing trends were denoted in a few parameters. Overall, dietary methionine did not significantly affect neither gut nor skin immunity, whereas tryptophan supplementation seems to induce modulatory mechanisms that might be tissue-specific.
Collapse
Affiliation(s)
- R Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007 Porto, Portugal.
| | - M Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal
| | - F A Guardiola
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - R Cerezuela
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - A Afonso
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal
| | - H Peres
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - A Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007 Porto, Portugal
| | - M A Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - B Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
25
|
Mukherjee S, Maitra SK. Daily profiles of serum and gastrointestinal melatonin in response to daytime or night-time supply of tryptophan-rich diet in carp (Catla catla). BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1361157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sourav Mukherjee
- Department of Zoology, Visva-Bharati University, Santiniketan, India
| | | |
Collapse
|
26
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|
27
|
Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ. Interplay between the endocrine and circadian systems in fishes. J Endocrinol 2017; 232:R141-R159. [PMID: 27999088 DOI: 10.1530/joe-16-0330] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light-darkness and feeding-fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light-darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.
Collapse
Affiliation(s)
- Esther Isorna
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria de Pedro
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I Valenciano
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel L Alonso-Gómez
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Jung SJ, Kim NN, Choi YJ, Choi JY, Choi YU, Heo YS, Choi CY. Effects of melatonin and green-wavelength LED light on the physiological stress and immunity of goldfish, Carassius auratus, exposed to high water temperature. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1335-46. [PMID: 27012684 DOI: 10.1007/s10695-016-0221-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/17/2016] [Indexed: 05/10/2023]
Abstract
This study investigated the effects of increasing water temperature (22-30 °C) on the physiological stress response and immunity of goldfish, Carassius auratus, and the ability of green light-emitting diode (LED) irradiation or melatonin injections to mitigate this temperature-induced stress. To evaluate the effects of either green-wavelength LED light or melatonin on stress in goldfish, we measured plasma triiodothyronine (T3), thyroxine (T4), and thyroid hormone receptor (TR) mRNA expression; plasma cortisol and glucose; and immunoglobulin M (IgM) and lysozyme mRNA expression. The thyroid hormone activities, TR mRNA expression, and plasma cortisol and glucose were higher in goldfish exposed to high-temperature water, but were lower after exposure to melatonin or green-wavelength LED light. Lysozyme mRNA expression and plasma IgM activity and protein expression were lower after exposure to high water temperatures and higher after melatonin or green-wavelength LED light treatments. Therefore, high water temperature induced stress and decreased immunity; however, green-wavelength LED light and melatonin treatments mitigated the effects of stress and enhanced immunity. The benefits of melatonin decreased with time, whereas those of green-wavelength LED treatment did not.
Collapse
Affiliation(s)
- Seo Jin Jung
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Na Na Kim
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Young Jae Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Ji Yong Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Young-Ung Choi
- Biological Oceanography and Marine Biology Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Youn Seong Heo
- LED-Marine Biology Convergence Technology Research Center, Pukyong National University, Busan, 48547, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| |
Collapse
|
29
|
Muñoz-Pérez JL, López-Patiño MA, Álvarez-Otero R, Gesto M, Soengas JL, Míguez JM. Characterization of melatonin synthesis in the gastrointestinal tract of rainbow trout (Oncorhynchus mykiss): distribution, relation with serotonin, daily rhythms and photoperiod regulation. J Comp Physiol B 2016; 186:471-84. [DOI: 10.1007/s00360-016-0966-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
|
30
|
Wilson AL, Downs CT. Light interference and melatonin affects digestion and glucocorticoid metabolites in striped mouse. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1066546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Herrero MJ, Lepesant JMJ. Daily and seasonal expression of clock genes in the pituitary of the European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2014; 208:30-8. [PMID: 25148807 DOI: 10.1016/j.ygcen.2014.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/27/2014] [Accepted: 08/04/2014] [Indexed: 11/20/2022]
Abstract
The expression of select clock genes (clock, bmal, per1, per2, cry1, cry2) was investigated throughout the day and across the four seasons for two consecutive years in the pituitary of adult sea bass (Dicentrarchus labrax). A rhythmic pattern of daily expression was consistently observed in summer and autumn, while arrhythmicity was observed for some clock genes during spring and winter, concomitant with low water temperatures. The expression of clock and bmal showed highest values at the end of the day and during the night, while that of per and cry was mostly antiphasic, with high values during the day. Melatonin affects clock-gene expression in the pituitary of mammals. We therefore sought to test the effect of melatonin on clock-gene expression in the pituitary of sea bass both in vivo and in vitro. Melatonin modestly affected the expression of some clock genes (in particular cry genes) when added to the fish diet or the culture medium of pituitary glands. Our data show that clock genes display rhythmic daily expression in the pituitary of adult sea bass, which are profoundly modified according to the season. We suggest that the effect of photoperiod on clock gene expression may be mediated, at least in part, by melatonin, and that temperature may have a key role adjusting seasonal variations.
Collapse
Affiliation(s)
- María Jesús Herrero
- CNRS, UMR7232 BIOM, Laboratoire Arago, Banyuls-sur-Mer, France; Université Pierre et Marie Curie-Paris6, UMR7232, Laboratoire Arago, Banyuls-sur-Mer, France.
| | - Julie M J Lepesant
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université Paul Sabatier Toulouse III, Toulouse, France
| |
Collapse
|
32
|
Millot S, Cerqueira M, Castanheira MF, Øverli Ø, Oliveira RF, Martins CIM. Behavioural stress responses predict environmental perception in European sea bass (Dicentrarchus labrax). PLoS One 2014; 9:e108800. [PMID: 25264870 PMCID: PMC4181860 DOI: 10.1371/journal.pone.0108800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/01/2014] [Indexed: 11/20/2022] Open
Abstract
Individual variation in the response to environmental challenges depends partly on innate reaction norms, partly on experience-based cognitive/emotional evaluations that individuals make of the situation. The goal of this study was to investigate whether pre-existing differences in behaviour predict the outcome of such assessment of environmental cues, using a conditioned place preference/avoidance (CPP/CPA) paradigm. A comparative vertebrate model (European sea bass, Dicentrarchus labrax) was used, and ninety juvenile individuals were initially screened for behavioural reactivity using a net restraining test. Thereafter each individual was tested in a choice tank using net chasing as aversive stimulus or exposure to familiar conspecifics as appetitive stimulus in the preferred or non preferred side respectively (called hereafter stimulation side). Locomotor behaviour (i.e. time spent, distance travelled and swimming speed in each tank side) of each individual was recorded and analysed with video software. The results showed that fish which were previously exposed to appetitive stimulus increased significantly the time spent on the stimulation side, while aversive stimulus led to a strong decrease in time spent on the stimulation side. Moreover, this study showed clearly that proactive fish were characterised by a stronger preference for the social stimulus and when placed in a putative aversive environment showed a lower physiological stress responses than reactive fish. In conclusion, this study showed for the first time in sea bass, that the CPP/CPA paradigm can be used to assess the valence (positive vs. negative) that fish attribute to different stimuli and that individual behavioural traits is predictive of how stimuli are perceived and thus of the magnitude of preference or avoidance behaviour.
Collapse
Affiliation(s)
- Sandie Millot
- CCMAR-CIMAR L.A., Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- * E-mail:
| | - Marco Cerqueira
- CCMAR-CIMAR L.A., Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | | | - Øyvind Øverli
- Norwegian University of Life Sciences, Department of Animal and Aquacultural Sciences, Ås, Norway
| | - Rui F. Oliveira
- ISPA Unidade de Investigação em Eco-Etologia Integrative Behavioural Biology Group, Lisboa, Portugal
- Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
33
|
Mukherjee S, Moniruzzaman M, Maitra SK. Impact of artificial lighting conditions on the diurnal profiles of gut melatonin in a surface dwelling carp (Catla catla). BIOL RHYTHM RES 2014. [DOI: 10.1080/09291016.2014.923618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Fatira E, Papandroulakis N, Pavlidis M. Diel changes in plasma cortisol and effects of size and stress duration on the cortisol response in European sea bass (Dicentrarchus labrax). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:911-919. [PMID: 24343759 DOI: 10.1007/s10695-013-9896-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
European sea bass (Dicentrarchus labrax), one of the most economically important fish in Mediterranean mariculture, shows high basal cortisol concentrations compared with other teleosts. The present study aims (a) to identify cortisol diel variation in fish held under a 12L:12D cycle and minimum handling stress, and (b) to establish the effect of fish size and stressor duration on the cortisol response. The results indicate high intrapopulation variability in plasma cortisol and a significant diel fluctuation with a peak value at dusk (18 h). Stressors of different intensity and/or duration affected the cortisol stress response in a differential manner according to fish size (and/or age). Maximum cortisol values in small-size fish were found at 1 and 2 h post-stress, depending on the duration of the stressor, while at 0.5 h post-stress in large fish regardless stress duration.
Collapse
Affiliation(s)
- E Fatira
- Department of Biology, University of Crete, 70013, Heraklion, Crete, Greece
| | | | | |
Collapse
|
35
|
Conde-Sieira M, Muñoz JLP, López-Patiño MA, Gesto M, Soengas JL, Míguez JM. Oral administration of melatonin counteracts several of the effects of chronic stress in rainbow trout. Domest Anim Endocrinol 2014; 46:26-36. [PMID: 24411181 DOI: 10.1016/j.domaniend.2013.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/12/2013] [Accepted: 10/04/2013] [Indexed: 01/16/2023]
Abstract
To assess a possible antistress role of melatonin in fish, we orally administered melatonin to rainbow trout for 10 d and then kept the fish under normal or high stocking density conditions during the last 4 d. Food intake; biochemical parameters in plasma (cortisol, glucose, and lactate concentrations); liver (glucose and glycogen concentrations, and glycogen synthase activity); enzyme activities of amylase, lipase, and protease in foregut and midgut; and content of the hypothalamic neurotransmitters dopamine and serotonin, as well as their oxidized metabolites, 3,4-dihydroxyphenylacetic acid and 5-hydroxy-3-indoleacetic acid, were evaluated under those conditions. High stocking density conditions alone induced changes indicative of stress conditions in plasma cortisol concentrations, liver glycogenolytic potential, the activities of some digestive enzymes, and the 3,4-dihydroxyphenylacetic acid-to-dopamine and 5-hydroxy-3-indoleacetic acid-to-serotonin ratios in the hypothalamus. Melatonin treatment in nonstressed fish induced an increase in liver glycogenolytic potential, increased the activity of some digestive enzymes, and enhanced serotoninergic and dopaminergic metabolism in hypothalamus. The presence of melatonin in stressed fish resulted in a significant interaction with cortisol concentrations in plasma, glycogen content, and glycogen synthase activity in liver and dopaminergic and serotoninergic metabolism in the hypothalamus. In general, the presence of melatonin mitigated several of the effects induced by stress, supporting an antistress role for melatonin in rainbow trout.
Collapse
Affiliation(s)
- M Conde-Sieira
- Animal Physiology Laboratory, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, E-36310 Vigo, Spain
| | - J L P Muñoz
- I-Mar Center, University of Lagos, Puerto Montt, Casilla 557, Chile
| | - M A López-Patiño
- Animal Physiology Laboratory, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, E-36310 Vigo, Spain
| | - M Gesto
- Animal Physiology Laboratory, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, E-36310 Vigo, Spain
| | - J L Soengas
- Animal Physiology Laboratory, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, E-36310 Vigo, Spain
| | - J M Míguez
- Animal Physiology Laboratory, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, E-36310 Vigo, Spain.
| |
Collapse
|
36
|
Mukherjee S, Moniruzzaman M, Maitra SK. Daily and seasonal profiles of gut melatonin and their temporal relationship with pineal and serum melatonin in carpCatla catlaunder natural photo-thermal conditions. BIOL RHYTHM RES 2013. [DOI: 10.1080/09291016.2013.817139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Ma H, Zhang W, Song WH, Sun P, Jia ZH. Effects of tryptophan supplementation on cashmere fiber characteristics, serum tryptophan, and related hormone concentrations in cashmere goats. Domest Anim Endocrinol 2012; 43:239-50. [PMID: 22541934 DOI: 10.1016/j.domaniend.2012.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 11/26/2022]
Abstract
This study was designed to investigate the effects of tryptophan (Trp) supplementation on cashmere fiber characteristics and on serum Trp, melatonin (MEL), prolactin (PRL), insulin-like growth factor 1 (IGF-1), triiodothyronine (T3), and thyroxine (T4) concentrations in cashmere goats during the cashmere fast-growth period. Thirty-six Liaoning cashmere wether goats were stratified on the basis of body weight (28±0.8 kg) and assigned randomly to 1 of the following 4 rumen-protected Trp treatments: 0, 2.0, 4.0, and 6.0 g per goat per day. The experimental period lasted 137 d. Blood samples were collected monthly during the daytime (8:00 AM) and at night (8:00 PM). Tryptophan supplementation improved cashmere growth rates, cashmere weight, and body weight (P=0.001) and increased serum Trp levels, nighttime MEL concentrations, IGF-1, and T3 and T4 concentrations (P<0.05). Across the treatments and sampling months, a highly positive correlation between cashmere growth rate and nighttime serum MEL concentrations was observed (r=0.879, P=0.001). A moderately negative correlation between cashmere growth rates and serum PRL concentrations during the day and at night (rday=-0.645, P=0.007; rnight=-0.583, P=0.018) was observed. A moderately positive correlation between the cashmere growth rate and the daytime serum IGF-1 concentration (r=0.536, P=0.032) was observed, and no correlation was found between the cashmere growth rate and the other serum hormone concentrations. These data indicate that changes in serum concentrations of MEL, IGF-1, and PRL are related to cashmere growth in Liaoning cashmere goats during the cashmere fast-growth period. Under the experimental conditions of the current trial, we suggest that Trp may promote cashmere growth by increasing daytime IGF-1 and nighttime MEL secretion.
Collapse
Affiliation(s)
- H Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Conde-Sieira M, Librán-Pérez M, López Patiño MA, Soengas JL, Míguez JM. Melatonin treatment alters glucosensing capacity and mRNA expression levels of peptides related to food intake control in rainbow trout hypothalamus. Gen Comp Endocrinol 2012; 178:131-8. [PMID: 22569117 DOI: 10.1016/j.ygcen.2012.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 01/17/2023]
Abstract
As demonstrated in previous studies, the functioning of brain glucosensing systems in rainbow trout is altered under stress conditions in a way that they are unable to respond properly to changes in glucose levels. Melatonin has been postulated as necessary for homeostatic control of energy metabolism in several vertebrate groups, and in fish it has been suggested as an anti-stress molecule. To evaluate the possible effects of melatonin on glucosensing, we have incubated hypothalamus and hindbrains of rainbow trout at different glucose concentrations in the presence of increased doses (0.01, 1, and 100nM) of melatonin assessing whether or not the responses to changes in glucose levels of parameters related to glucosensing (glucose, glycogen and glucose 6-phosphate levels, activities of GK, GSase and PK, and mRNA content of GK, GLUT2, Kir6.x-like, and SUR-like) are modified in the presence of melatonin. While no effects of melatonin were observed in hindbrain, in hypothalamus melatonin treatment up-regulated glucosensing parameters, especially under hypo- and normo-glycaemic conditions. The effects of melatonin in hypothalamus occurred apparently through MT(1) receptors since most effects were counteracted by the presence of luzindole but not by the presence of 4-P-PDOT. Moreover, melatonin treatment induced in hypothalamus increased mRNA expression levels of NPY and decreased mRNA levels of POMC, CART, and CRF. A role of the hormone in daily re-adjustment of hypothalamic glucosensor machinery is discussed.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | | | | | | | | |
Collapse
|
39
|
Conde-Sieira M, Patiño MAL, Míguez JM, Soengas JL. Glucosensing capacity in rainbow trout liver displays day-night variations possibly related to melatonin action. ACTA ACUST UNITED AC 2012; 215:3112-9. [PMID: 22660781 DOI: 10.1242/jeb.069740] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To assess whether the glucosensing capacity in peripheral (liver and Brockmann bodies) and central (hypothalamus and hindbrain) locations of rainbow trout displays day-night variations in its response to changes in circulating glucose levels, we evaluated the response of parameters related to glucosensing [glucose, glycogen and glucose 6-phosphate levels, activities of glucokinase (GK), glycogen synthetase (GSase) and pyruvate kinase (PK), and mRNA abundance of GK, glucose transporter 2 (GLUT2), and K(ATP) channel subunits Kir6.x-like and sulfonylurea receptor (SUR)-like] in fish subjected to hyperglycemic treatment under night or day conditions. No day-night significant variations were noticed in the glucosensing capacity of the hypothalamus, hindbrain and Brockmann bodies. In contrast, a clear differential response was noticed in the liver, where glucose levels, GK activity (and mRNA levels) and GSase activity displayed increased values during the day in hyperglycemic fish compared with controls, and lower (GK mRNA levels) or non-existent (glucose, GK and GSase activities, and Kir6.x-like mRNA levels) values during the night. A similar decrease in parameters related to glucosensing in the liver was observed when fish under day conditions were treated with melatonin, suggesting a modulatory role of melatonin in day-night changes of the glucosensing response in the same tissue.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | | | | | | |
Collapse
|
40
|
Ellis T, Yildiz HY, López-Olmeda J, Spedicato MT, Tort L, Øverli Ø, Martins CIM. Cortisol and finfish welfare. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:163-188. [PMID: 22113503 DOI: 10.1007/s10695-011-9568-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
Previous reviews of stress, and the stress hormone cortisol, in fish have focussed on physiology, due to interest in impacts on aquaculture production. Here, we discuss cortisol in relation to fish welfare. Cortisol is a readily measured component of the primary (neuroendocrine) stress response and is relevant to fish welfare as it affects physiological and brain functions and modifies behaviour. However, we argue that cortisol has little value if welfare is viewed purely from a functional (or behavioural) perspective-the cortisol response itself is a natural, adaptive response and is not predictive of coping as downstream impacts on function and behaviour are dose-, time- and context-dependent and not predictable. Nevertheless, we argue that welfare should be considered in terms of mental health and feelings, and that stress in relation to welfare should be viewed as psychological, rather than physiological. We contend that cortisol can be used (with caution) as a tractable indicator of how fish perceive (and feel about) their environment, psychological stress and feelings in fish. Cortisol responses are directly triggered by the brain and fish studies do indicate cortisol responses to psychological stressors, i.e., those with no direct physicochemical action. We discuss the practicalities of using cortisol to ask the fish themselves how they feel about husbandry practices and the culture environment. Single time point measurements of cortisol are of little value in assessing the stress level of fish as studies need to account for diurnal and seasonal variations, and environmental and genetic factors. Areas in need of greater clarity for the use of cortisol as an indicator of fish feelings are the separation of (physiological) stress from (psychological) distress, the separation of chronic stress from acclimation, and the interactions between feelings, cortisol, mood and behaviour.
Collapse
Affiliation(s)
- Tim Ellis
- Cefas Weymouth Laboratory, Weymouth, Dorset, UK.
| | | | | | | | | | | | | |
Collapse
|
41
|
Conceição LEC, Aragão C, Dias J, Costas B, Terova G, Martins C, Tort L. Dietary nitrogen and fish welfare. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:119-41. [PMID: 22212981 DOI: 10.1007/s10695-011-9592-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/16/2011] [Indexed: 05/12/2023]
Abstract
Little research has been done in optimizing the nitrogenous fraction of the fish diets in order to minimize welfare problems. The purpose of this review is to give an overview on how amino acid (AA) metabolism may be affected when fish are under stress and the possible effects on fish welfare when sub-optimal dietary nitrogen formulations are used to feed fish. In addition, it intends to evaluate the current possibilities, and future prospects, of using improved dietary nitrogen formulations to help fish coping with predictable stressful periods. Both metabolomic and genomic evidence show that stressful husbandry conditions affect AA metabolism in fish and may bring an increase in the requirement of indispensable AA. Supplementation in arginine and leucine, but also eventually in lysine, methionine, threonine and glutamine, may have an important role in enhancing the innate immune system. Tryptophan, as precursor for serotonin, modulates aggressive behaviour and feed intake in fish. Bioactive peptides may bring important advances in immunocompetence, disease control and other aspects of welfare of cultured fish. Fishmeal replacement may reduce immune competence, and the full nutritional potential of plant-protein ingredients is attained only after the removal or inactivation of some antinutritional factors. This review shows that AA metabolism is affected when fish are under stress, and this together with sub-optimal dietary nitrogen formulations may affect fish welfare. Furthermore, improved dietary nitrogen formulations may help fish coping with predictable stressful events.
Collapse
Affiliation(s)
- Luis E C Conceição
- CCMAR-CIMAR L.A., Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal,
| | | | | | | | | | | | | |
Collapse
|
42
|
Velarde E, Delgado MJ, Alonso-Gómez AL. Serotonin-induced contraction in isolated intestine from a teleost fish (Carassius auratus): characterization and interactions with melatonin. Neurogastroenterol Motil 2010; 22:e364-73. [PMID: 20939846 DOI: 10.1111/j.1365-2982.2010.01605.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Serotonin (5-HT) plays a critical role in several gastrointestinal functions in vertebrates. In teleosts lacking enterochromaffin cells, intestinal 5-HT originates from serotonergic enteric neurons. In the present study, the foregut of a stomachless teleost, the goldfish (Carassius auratus), was used to evaluate the in vitro effect of 5-HT on fish intestinal motility. We also studied the role of melatonin (MEL), an indoleamine sharing the biosynthetic pathway with 5-HT, as regulator of serotonergic activity. METHODS An organ bath system, with longitudinal strips from the goldfish intestinal bulb attached to an isometric transducer was used to record foregut smooth muscle contractions. KEY RESULTS Concentration-dependent curves of the contractile response exerted by 5-HT and its agonists, 5-methoxytryptamine (5-MT) and 5-carboxamidotryptamine (5-CT), suggest a receptor-mediated action, supported by the blockade by a general 5-HT antagonist, methysergide. The 5-HT-induced contraction was abolished in the presence of atropine, revealing the involvement of cholinergic transmission in gut actions of 5-HT. Furthermore, MEL inhibited the contractile effect of 5-HT and its agonists by up to 50%, which was counteracted by MEL antagonists. CONCLUSIONS & INFERENCES We can provisionally propose that at least two different 5-HT receptor subtypes are involved in fish intestinal motility, a 5-HT₄-like (5-MT-preferring) and a 5-HT₇-like (5-CT- and fluphenazine-sensitive) receptor. In summary, our results indicate that 5-HT regulates the contractile activity of goldfish foregut through specific receptors located in cholinergic neurons, and that MEL can modulate these serotonergic actions through high-affinity membrane receptors.
Collapse
Affiliation(s)
- E Velarde
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
43
|
Bertrand PP, Bertrand RL, Camello PJ, Pozo MJ. Simultaneous measurement of serotonin and melatonin from the intestine of old mice: the effects of daily melatonin supplementation. J Pineal Res 2010; 49:23-34. [PMID: 20374441 DOI: 10.1111/j.1600-079x.2010.00760.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ageing is associated with important changes in gastrointestinal function and in the levels of intestinal hormones secreted. Enterochromaffin (EC) cells containing serotonin (5-HT) and melatonin may play a major role in maintaining gut function during ageing. Our aim was to characterise the mucosal availability of 5-HT and melatonin in the ileum and colon of a mouse model of ageing. Female young mice (2-5 month; n = 6), aged mice (22-24 months; n = 6) and aged mice treated with melatonin (n = 6; 10 mg/kg/day) were examined. Electrochemical methods were used to measure 5-HT and melatonin concentrations near the mucosal surface of ileum and distal colon. Amperometry studies showed that steady state levels of 5-HT from ileum and colon were decreased in aged mice treated with melatonin when compared to aged mice, while compression-evoked 5-HT release was unchanged. Differential pulse voltammetry studies showed that young mice had concentrations of 5-HT of 4.8 +/- 0.8 mum in the ileum and 4.9 +/- 1.0 mum in the colon. Concentrations of melatonin were 5.7 +/- 1.4 mum in the ileum and 5.6 +/- 1.9 mum in the colon. Compared to young mice, the levels of 5-HT and melatonin were increased in aged mice (combined ileum and colon: 5-HT = 130% and melatonin = 126% of young mice) and decreased in melatonin-treated mice (5-HT = 94% and melatonin = 82%). In conclusion, our data show that the availability of gut 5-HT and melatonin is increased in aged mice and melatonin treatment suppresses natural gastrointestinal production of 5-HT and melatonin in the aged mouse intestine.
Collapse
Affiliation(s)
- P P Bertrand
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
44
|
Herrera-Pérez P, Del Carmen Rendón M, Besseau L, Sauzet S, Falcón J, Muñoz-Cueto JA. Melatonin receptors in the brain of the European sea bass: An in situ hybridization and autoradiographic study. J Comp Neurol 2010; 518:3495-511. [DOI: 10.1002/cne.22408] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Azpeleta C, Martínez-Alvarez RM, Delgado MJ, Isorna E, De Pedro N. Melatonin reduces locomotor activity and circulating cortisol in goldfish. Horm Behav 2010; 57:323-9. [PMID: 20079741 DOI: 10.1016/j.yhbeh.2010.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 12/21/2009] [Accepted: 01/06/2010] [Indexed: 11/21/2022]
Abstract
The present study focused on the effects of a subchronic melatonin treatment on locomotor activity and cortisol plasma levels in goldfish. We compared two different administration routes: peripheral (10 microg/g body weight) versus central (1 microg/microl) injections of melatonin for 7 or 4 days, respectively. Daily locomotor activity, including both diurnal and nocturnal activities, food anticipatory activity and circulating cortisol at 11:00 (under 24 h of food deprivation and 17 h postinjection) were significantly reduced after repeated intraperitoneal injections with melatonin for 7 days, but not after intracerebroventricular treatment. Taking in mind the anoretic effect of melatonin in this species, we investigated if such feeding reduction is directly responsible for the reduction in motor activity induced by melatonin treatment. Food restriction (50%) for 10 days did not significantly modify either daily locomotor activity or plasma cortisol levels in goldfish, indicating that the peripheral action of melatonin diminishing locomotor activity in goldfish is not a direct consequence of its anoretic action. In summary, our results indicate that, as previously described in other vertebrate species, melatonin can regulate locomotor activity and cortisol levels in goldfish, suggesting a sedative effect of this hormone in this teleost.
Collapse
Affiliation(s)
- Clara Azpeleta
- Departamento Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
46
|
Falcón J, Migaud H, Muñoz-Cueto JA, Carrillo M. Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol 2010; 165:469-82. [PMID: 19409900 DOI: 10.1016/j.ygcen.2009.04.026] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/15/2009] [Accepted: 04/23/2009] [Indexed: 01/27/2023]
Abstract
Melatonin is a much conserved feature in vertebrates that plays a central role in the entrainment of daily and annual physiological rhythms. Investigations aiming at understanding how melatonin mediates the effects of photoperiod on crucial functions and behaviors have been very active in the last decades, particularly in mammals. In fish a clear-cut picture is still missing. Here we review the available data on (i) the sites of melatonin production in fish, (ii) the mechanisms that control its daily and annual rhythms of production and (iii) the characterization of its different receptor subtypes, their location and regulation. The in vivo and in vitro data on melatonin effects on crucial neuroendocrine regulations, including reproduction, growth, feeding and behavioral responses, are also reviewed. Finally we discuss how manipulation of the photic cues impact on fish circannual clock and annual cycle of reproduction, and how this can be used for aquaculture purposes.
Collapse
Affiliation(s)
- J Falcón
- CNRS, FRE3247 et GDR2821, Modèles en Biologie cellulaire et évolutive, Avenue Fontaulé, BP 44, F-66651 Banyuls-sur-Mer, Cedex, France.
| | | | | | | |
Collapse
|
47
|
López-Olmeda JF, Montoya A, Oliveira C, Sánchez-Vázquez FJ. SYNCHRONIZATION TO LIGHT AND RESTRICTED-FEEDING SCHEDULES OF BEHAVIORAL AND HUMORAL DAILY RHYTHMS IN GILTHEAD SEA BREAM(SPARUS AURATA). Chronobiol Int 2009; 26:1389-408. [DOI: 10.3109/07420520903421922] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Velarde E, Alonso-Gómez AL, Azpeleta C, Isorna E, Delgado MJ. Melatonin attenuates the acetylcholine-induced contraction in isolated intestine of a teleost fish. J Comp Physiol B 2009; 179:951-9. [PMID: 19543897 DOI: 10.1007/s00360-009-0373-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/20/2009] [Accepted: 05/22/2009] [Indexed: 12/15/2022]
Abstract
The present study investigates the possible direct actions of melatonin (N-acetyl-5-methoxytryptamine) on intestinal motility in goldfish (Carassius auratus) using an in vitro system of isolated intestine in an organ bath engaged to an isometric transducer. The longitudinal strips from goldfish intestine in the organ bath showed a resting spontaneous myogenic rhythmic activity which is not altered by melatonin. The addition of acetylcholine (1 nmol l(-1)-10 mmol l(-1)) to the organ bath induces a significant contraction of the intestinal strips in a concentration-dependent manner. The addition of melatonin and its agonist, 2-iodomelatonin, induced a concentration-dependent attenuation of acetylcholine-induced contractile response. The specificity of this effect is tested by the preincubation of the intestine strips in the presence of two melatoninergic antagonists, luzindole (a non-selective MT(1)/MT(2) melatonin receptor antagonist) and 4-P-PDOT (preferred antagonist of MT2 receptor subtype), which counteracted the melatonin-induced relaxation in a concentration-dependent manner. Finally, present results demonstrate that this melatoninergic effect on intestinal strips is a process highly dependent on extracellular calcium. In conclusion, this is the first study demonstrating the role of melatonin in the control of gut motility in a non-mammalian vertebrate. The melatonin effects on isolated intestine from goldfish are mediated by melatoninergic membrane receptors, and could suggest a delay in food transit time, supporting its anorectic effect reported on in vivo studies.
Collapse
Affiliation(s)
- Elena Velarde
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Calle José Antonio Nováis 2, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Ceinos RM, Polakof S, Illamola AR, Soengas JL, Míguez JM. Food deprivation and refeeding effects on pineal indoles metabolism and melatonin synthesis in the rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol 2008; 156:410-7. [PMID: 18275959 DOI: 10.1016/j.ygcen.2008.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/27/2007] [Accepted: 01/02/2008] [Indexed: 11/27/2022]
Abstract
The effects of food deprivation and refeeding on daily rhythms of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and melatonin contents, as well as on arylalkylamine N-acetyltransferase (AANAT) activity were evaluated in the pineal organ of rainbow trout. In addition, changes in circulating melatonin and cortisol levels were tested at one single point at day and night. Immature rainbow trout were distributed in 3 experimental groups: fish fed, fish fasted (7 days), and fish fasted for 7 days and refed for 5 days. All fish were sampled from each treatment group at different times of the day-night cycle. Pineal melatonin levels and AANAT activity showed daily variations in either fed, fasted and refed trout, displaying highest values at night. Fasted trout showed reduced melatonin content throughout the 24-h cycle, which was associated with decreased AANAT activity. Rhythms of pineal 5-HT and 5-HIAA levels were evident in all groups and were negatively correlated to melatonin in fed fish groups, but not in fasted fish. A higher content of 5-HT and 5-HIAA was observed in fasted fish during the night with no apparent changes during daytime for 5-HT and increased 5-HIAA levels. Furthermore, decreased circulating levels of melatonin were observed at midday, but not at night, in food deprived trout. Refeeding for 5 days generally counteracted the effects of food deprivation. Cortisol levels in plasma were reduced after food deprivation and remained low in refed fish. The results show that food deprivation impairs daily rhythms of melatonin content in trout pineal organ by affecting the activity of melatonin synthesizing enzymes rather than by a deficiency in substrate availability.
Collapse
Affiliation(s)
- Rosa M Ceinos
- Departamento de Bioloxía Funcional e Ciencias da Saude, Edificio de Ciencias Experimentais, Facultade de Bioloxía, Universidade de Vigo, Vigo, Pontevedra, Spain
| | | | | | | | | |
Collapse
|