1
|
Lyons SA, McClelland GB. Commentary: Tracing the fate of metabolic substrates during changes in whole-body energy expenditure in mice. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111008. [PMID: 39059702 DOI: 10.1016/j.cbpb.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
For small mammals, such as mice, cannulation procedures can be quite challenging, limiting research associated with tracing isotopically labelled substrates at the whole-animal level. When cannulation in mice is possible, assessment of substrate use is further limited to when mice are either under anesthesia or are at rest, as there are no studies directly quantifying substrate use during exercise in mice. The use of isotopic tracer techniques has greatly advanced our knowledge in understanding how metabolic substrates (carbohydrates, amino acids, and fatty acids) contribute to whole-body metabolism. However, research regarding tissue-specific fuel use contributions to whole-body energy expenditure in mice at varying metabolic intensities (i.e., exercise) is lacking, despite the popularity of using mice in a variety of metabolic models. In this commentary, we briefly discuss the methodologies, advantages, and disadvantages of using radiolabelled, positron emission, and stable isotopes with a specific focus on fatty acids. We highlight recent mouse studies that have used creative experimental designs employing the use of isotopic tracer techniques and we briefly discuss how these methodologies can be further pursued to deepen our understanding of substrate use during exercise. Lastly, we show findings of a recent study we performed using a radiolabelled fatty acid tracer (14C-bromopalmitic acid) to determine fatty acid uptake in 16 muscles, two brown and two white adipose tissue depots during submaximal exercise in deer mice.
Collapse
Affiliation(s)
- Sulayman A Lyons
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
2
|
O'Brien DM, Freedman LS, Rivera P, Merriman S, Sági-Kiss V, Palma-Duran SA, Barrett B, Commins J, Kipnis V, Tasevska N. The carbon isotope ratio of breath is elevated by short-term and long-term added sugar and animal protein intake in a controlled feeding study. Am J Clin Nutr 2024; 120:630-637. [PMID: 39232603 PMCID: PMC11393392 DOI: 10.1016/j.ajcnut.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The breath carbon isotope ratio (CIR) was recently identified as a noninvasive candidate biomarker of short-term added sugars (AS) intake. OBJECTIVES This study aimed to better understand the potential of the breath CIR as a dietary biomarker. We evaluated the effects of short-term and long-term intakes of AS, animal protein (AP), and related variables on breath CIR, in the context of typical dietary intake patterns. METHODS We conducted a 15-d controlled feeding study of 100 adults (age 18-70 y, 55% females) in Phoenix, AZ. Participants were provided individualized diets that approximated habitual food intakes and recorded the timing of food consumption. Three breath samples (fasting, midday, and evening) were collected on each of 3 nonconsecutive study days. We modeled the effects of dietary intake in each of 8 h preceding collection of the breath sample on breath CIR with a linear mixed model, which also included 15-d mean intakes, sex, age, and BMI. RESULTS Median (IQR) intakes of AS and AP in our study were 65 (38) and 67 (33) g/d, respectively. Midday and evening breath CIRs correlated strongly with each other (0.80) and with fasting breath CIR (0.77 and 0.68, respectively). In our linear mixed models, breath CIR increased by AS consumed 1-4 h before sample collection, AP consumed 3-6 h before sample collection, and 15-d intakes of AS and AP, all with similar effect sizes. The breath CIR was also inversely associated with 15-d intakes of intrinsic sugars and plant protein; thus, associations with 15-d intakes were particularly strong when expressed proportionally as the AS ratio (added sugars/total sugars) and AP ratio (animal protein/total protein). CONCLUSIONS The breath CIR is a promising measure of long-term intakes of AS and AP, especially as proportional intakes. Approaches to increase specificity would benefit the further development of this biomarker.
Collapse
Affiliation(s)
- Diane M O'Brien
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States.
| | - Laurence S Freedman
- Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel
| | - Patricia Rivera
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Sean Merriman
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Virág Sági-Kiss
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Susana A Palma-Duran
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Brian Barrett
- Information Management Services, Rockville, MD, United States
| | - John Commins
- Information Management Services, Rockville, MD, United States
| | - Victor Kipnis
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Natasha Tasevska
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
3
|
Rogers EJ, Gerson AR. Water restriction increases oxidation of endogenous amino acids in house sparrows (Passer domesticus). J Exp Biol 2024; 227:jeb246483. [PMID: 38380522 PMCID: PMC11093224 DOI: 10.1242/jeb.246483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Animals can cope with dehydration in a myriad of ways, both behaviorally and physiologically. The oxidation of protein produces more metabolic water per kilojoule than that of fat or carbohydrate, and it is well established that birds increase protein catabolism in response to high rates of water loss. However, the fate of amino acids mobilized in response to water restriction has not been explicitly determined. While protein catabolism releases bound water, we hypothesized that water-restricted birds would also oxidize the resulting amino acids, producing additional water as a product of oxidative phosphorylation. To test this, we fed captive house sparrows (Passer domesticus) 13C-labeled leucine for 9 weeks to label endogenous proteins. We conducted weekly trials during which we measured the physiological response to water restriction as changes in lean mass, fat mass, metabolism and the enrichment of 13C in exhaled CO2 (δ13Cbreath). If water-restricted birds catabolized proteins and oxidized the resulting amino acids, we expected to simultaneously observe greater lean mass loss and elevated δ13Cbreath relative to control birds. We found that water-restricted birds catabolized more lean tissue and also had enriched δ13Cbreath in response to water restriction, supporting our hypothesis. δ13Cbreath, however, varied with metabolic rate and the length of the water restriction period, suggesting that birds may spare protein when water balance can be achieved using other physiological strategies.
Collapse
Affiliation(s)
- Elizabeth J. Rogers
- Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander R. Gerson
- Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Balakrishnan B, Yan X, McCue MD, Bellagamba O, Guo A, Winkler F, Thall J, Crawford L, Dimen R, Chen S, McEnaney S, Wu Y, Zimmer M, Sarkis J, Martini PG, Finn PF, Lai K. Whole-body galactose oxidation as a robust functional assay to assess the efficacy of gene-based therapies in a mouse model of Galactosemia. Mol Ther Methods Clin Dev 2024; 32:101191. [PMID: 38352271 PMCID: PMC10863324 DOI: 10.1016/j.omtm.2024.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Despite the implementation of lifesaving newborn screening programs and a galactose-restricted diet, many patients with classic galactosemia develop long-term debilitating neurological deficits and primary ovarian insufficiency. Previously, we showed that the administration of human GALT mRNA predominantly expressed in the GalT gene-trapped mouse liver augmented the expression of hepatic GALT activity, which decreased not only galactose-1 phosphate (gal-1P) in the liver but also peripheral tissues. Since each peripheral tissue requires distinct methods to examine the biomarker and/or GALT effect, this highlights the necessity for alternative strategies to evaluate the overall impact of therapies. In this study, we established that whole-body galactose oxidation (WBGO) as a robust, noninvasive, and specific method to assess the in vivo pharmacokinetic and pharmacodynamic parameters of two experimental gene-based therapies that aimed to restore GALT activity in a mouse model of galactosemia. Although our results illustrated the long-lasting efficacy of AAVrh10-mediated GALT gene transfer, we found that GALT mRNA therapy that targets the liver predominantly is sufficient to sustain WBGO. The latter could have important implications in the design of novel targeted therapy to ensure optimal efficacy and safety.
Collapse
Affiliation(s)
- Bijina Balakrishnan
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | | | | | - Olivia Bellagamba
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Aaron Guo
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | | | | | | | | | | | | | - Yiman Wu
- Moderna, Cambridge, MA 02139, USA
| | | | | | | | | | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| |
Collapse
|
5
|
Abstract
The measurement of naturally occurring stable isotope ratios of the light elements (C, N, H, O, S) in animal tissues and associated organic and inorganic fractions of associated environments holds immense potential as a means of addressing effects of global change on animals. This paper provides a brief review of studies that have used the isotope approach to evaluate changes in diet, isotopic niche, contaminant burden, reproductive and nutritional investment, invasive species and shifts in migration origin or destination with clear links to evaluating effects of global change. This field has now reached a level of maturity that is impressive but generally underappreciated and involves technical as well as statistical advances and access to freely available R-based packages. There is a need for animal ecologists and conservationists to design tissue collection networks that will best answer current and anticipated questions related to the global change and the biodiversity crisis. These developments will move the field of stable isotope ecology toward a more hypothesis driven discipline related to rapidly changing global events.
Collapse
Affiliation(s)
- Keith A Hobson
- Wildlife Research Division, Environment and Climate Change Canada, Saskatoon, SK, S7N 0X4, Canada.
- Department of Biology, Western University, London, ON, N6A 5B7, Canada.
| |
Collapse
|
6
|
Wolf N, Smeltz TS, Cook C, Martinez del Rio C. Using stable isotopes in hummingbird breath to estimate reliance on supplemental feeders. Ecol Evol 2023; 13:e9799. [PMID: 36789347 PMCID: PMC9905664 DOI: 10.1002/ece3.9799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Understanding the ecological consequences of supplemental feeding to both hummingbirds and the plants they pollinate is complicated by logistical challenges associated with assessing relative dietary resource use with commonly applied observational methods. Here, we describe the results of research conducted to assess the relative use of feeder and flower nectar by Broad-tailed (Selasphorus platycercus) and Rufous hummingbirds (Selasphorus rufus) using two distinct methodological variations to measure the δ13C values of exhaled CO2. Because of the relatively quick time in which both species switch from exogenous to endogenous resources to fuel metabolism, our experiment allowed us to assess resource use at two timescales. Our results suggest variability in the relative contributions of the two dietary sources within and among species and timescales, with most birds employing a mixture of feeder and flower sugars as fuel sources. This diversity in relative resource use may mitigate potential negative effects of supplemental feeding on hummingbirds and their plant symbionts.
Collapse
Affiliation(s)
- Nathan Wolf
- FAST LaboratoryAlaska Pacific UniversityAnchorageAlaskaUSA
| | | | - Craig Cook
- University of Wyoming Stable Isotope Facility, University of WyomingLaramieWyomingUSA
| | | |
Collapse
|
7
|
Kuwae T, Hosoya J, Ichimi K, Watanabe K, Drever MC, Moriya T, Elner RW, Hobson KA. Using stable isotope (δ 13C, δ 15N) values from feces and breath to infer shorebird diets. Oecologia 2022; 200:23-35. [PMID: 36123584 PMCID: PMC9547797 DOI: 10.1007/s00442-022-05257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/05/2022] [Indexed: 12/03/2022]
Abstract
The use of stable isotopes of carbon (δ13C) and nitrogen (δ15N) from feces and breath offers potential as non-destructive tools to assess diets and nutrition. How stable isotope values derived from breath and feces compare with those from commonly used tissues, such as blood fractions and liver, remains uncertain, including understanding the metabolic routing of dietary nutrients. Here, we measured δ13C and δ15N from feces and δ13C of breath from captive Red-necked Stints (Calidris ruficollis) and 26 species of wild-caught migratory shorebirds (n = 259 individuals) and compared them against isotopic values from blood and feathers. For captive birds fed either cereal- or fish-based diets, differences in δ13C between feces and lipid-free diet were small, - 0.2 ± 0.5‰ and 0.1 ± 0.3‰, respectively, and differences in δ15N, - 0.7 ± 0.5‰ and - 0.5 ± 0.5‰, respectively. Hence, δ13C and δ15N values from feces can serve as proxies for ingested proteinaceous tissues and non-soluble carbohydrates because isotopic discrimination can be considered negligible. Stable isotope values in plasma and feces were strongly correlated in wild-caught shorebirds, indicating feces can be used to infer assimilated macronutrients. Breath δ13C was 1.6 ± 0.8‰ to 5.6 ± 1.2‰ lower than bulk food sources, and breath C derived from lipids was estimated at 47.5% (cereal) to 96.1% (fish), likely underlining the importance of dietary lipids for metabolism. The findings validate the use of stable isotope values of feces and breath in isotopic assays to better understand the dietary needs of shorebirds.
Collapse
Affiliation(s)
- Tomohiro Kuwae
- Coastal and Estuarine Environment Research Group, Port and Airport Research Institute, 3-1-1, Nagase, Yokosuka, 239-0826, Japan.
| | - Jun Hosoya
- Japanese Bird Banding Association, 115, Konoyama, Abiko, 270-1145, Japan
| | - Kazuhiko Ichimi
- Seto Inland Sea Regional Research Center, Kagawa University, 4511-15, Kamano, Aji, Takamatsu, 761-0130, Japan
| | - Kenta Watanabe
- Coastal and Estuarine Environment Research Group, Port and Airport Research Institute, 3-1-1, Nagase, Yokosuka, 239-0826, Japan
| | - Mark C Drever
- Environment and Climate Change Canada, Pacific Wildlife Research Centre, 5421 Robertson Road, Delta, BC, V4K 3N2, Canada
| | - Toshifumi Moriya
- Japan Bird Research Association, 1-29-9, Sumiyoshi-Cho, Fuchu, 183-0034, Japan
| | - Robert W Elner
- Environment and Climate Change Canada, Pacific Wildlife Research Centre, 5421 Robertson Road, Delta, BC, V4K 3N2, Canada
| | - Keith A Hobson
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Wildlife Research Division, Environment and Climate Change Canada, Saskatoon, SK, S7N 3H5, Canada
| |
Collapse
|
8
|
Holden KG, Hedrick AR, Gangloff EJ, Hall SJ, Bronikowski AM. Temperature-dependence of metabolism and fuel selection from cells to whole organisms. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:199-205. [PMID: 34855309 DOI: 10.1002/jez.2564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Temperature affects nearly every aspect of how organisms interact with and are constrained by their environment. Measures of organismal energetics, such as metabolic rate, are highly temperature-dependent and governed through temperature effects on rates of biochemical reactions. Characterizing the relationships among levels of biological organization can lend insight into how temperature affects whole-organism function. We tested the temperature dependence of cellular oxygen consumption and its relationship to whole-animal metabolic rate in garter snakes (Thamnophis elegans). Additionally, we tested whether thermal responses were linked to shifts in the fuel source oxidized to support metabolism with the use of carbon stable isotopes. Our results demonstrate temperature dependence of metabolic rates across levels of biological organization. Cellular (basal, adenosine triphosphate-linked) and whole-animal rates of respiration increased with temperature but were not correlated within or among individuals, suggesting that variation in whole-animal metabolic rates is not due simply to variation at the cellular level, but rather other interacting factors across scales of biological organization. Counter to trends observed during fasting, elevated temperature did not alter fuel selection (i.e., natural-abundance stable carbon isotope composition in breath, δ13 Cbreath ). This consistency suggests the maintenance and oxidation of a single fuel source supporting metabolism across a broad range of metabolic demands.
Collapse
Affiliation(s)
- Kaitlyn G Holden
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Ashley R Hedrick
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Eric J Gangloff
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Steven J Hall
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
9
|
Hobson KA, Kuwae T, Drever MC, Easton WE, Elner RW. Biofilm and invertebrate consumption by western sandpipers ( Calidris mauri) and dunlin ( Calidris alpina) during spring migratory stopover: insights from tissue and breath CO 2 isotopic ( δ 13C, δ 15N) analyses. CONSERVATION PHYSIOLOGY 2022; 10:coac006. [PMID: 35198213 PMCID: PMC8857455 DOI: 10.1093/conphys/coac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 06/01/2023]
Abstract
Shorebirds use key migratory stopover habitats in spring and fall where body proteins are replenished and lipids stored as fuel for the remaining journey. The Fraser River estuary, British Columbia, Canada, is a critical spring stopover site for hundreds of thousands of migrating western sandpiper, Calidris mauri, and dunlin, Calidris alpina. Intertidal biofilm in spring is an important nutritional source for western sandpiper, with previous isotopic research predicting 45-59% of total diet and 50% of total energy needs. However, these studies relied on isotopic mixing models that did not consider metabolic routing of key dietary macromolecules. Complexity arises due to the mixed macromolecular composition of biofilm that is difficult to characterize isotopically. We expanded on these earlier findings by considering a protein pathway from diet to the body protein pool represented by liver tissue, using a Bayesian mixing model based on δ 13C and δ 15N. We used δ 13C measurements of adipose tissue and breath CO2 to provide an estimate of the carbohydrate and protein δ 13C values of microphytobenthos and used these derived values to better inform the isotopic mixing models. Our results reinforce earlier estimates of the importance of biofilm to staging shorebirds in predicting that assimilated nutrients from biofilm contribute ~35% of the protein budgets for staging western sandpipers (n = 13) and dunlin (n = 11) and at least 41% of the energy budget of western sandpiper (n = 69). Dunlin's ingestion of biofilm appeared higher than anticipated given their expected reliance on invertebrate prey compared to western sandpiper, a biofilm specialist. Isotopic analyses of bulk tissues that consider metabolic routing and that make use of breath CO2 and adipose lipid assays can provide new insights into avian physiology. We advocate further isotopic research to better understand biofilm use by migratory shorebirds in general and as a critical requirement for more effective conservation.
Collapse
Affiliation(s)
- Keith A Hobson
- Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, Saskatchewan, S7N 3H5, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 3K7, Canada
| | - Tomohiro Kuwae
- Coastal and Estuarine Environment Research Group, 3-1-1, Nagase, Yokosuka 239-0826, Japan
| | - Mark C Drever
- Environment and Climate Change Canada, 5421 Robertson Rd., Delta, British Columbia, V4K 3Y3, Canada
| | - Wendy E Easton
- Coastal and Estuarine Environment Research Group, 3-1-1, Nagase, Yokosuka 239-0826, Japan
| | - Robert W Elner
- Environment and Climate Change Canada, 5421 Robertson Rd., Delta, British Columbia, V4K 3Y3, Canada
| |
Collapse
|
10
|
Smith ME, Cisbani G, Metherel AH, Bazinet RP. The Majority of Brain Palmitic Acid is Maintained by Lipogenesis from Dietary Sugars and is Augmented in Mice fed Low Palmitic Acid Levels from Birth. J Neurochem 2021; 161:112-128. [PMID: 34780089 DOI: 10.1111/jnc.15539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
Previously, results from studies investigating if brain palmitic acid (16:0; PAM) was maintained by either dietary uptake or lipogenesis de novo (DNL) varied. Here, we utilize naturally occurring carbon isotope ratios (13 C/12 C; δ13 C) to uncover the origin of brain PAM. Additionally, we explored brain and liver fatty acid concentration, total brain metabolomic profile, and behaviour. BALB/c dams were equilibrated onto either a low PAM diet (LP; <2%) or high PAM diet (HP; >95%) prior to producing one generation of offspring. Offspring stayed on the respective diet of the dam until 15-weeks of age, at which time the Open Field test was conducted in the offspring, prior to euthanasia and tissue lipid extraction. Although liver PAM was lower in offspring fed the LP diet, as well as female offspring, brain PAM was not affected by diet or sex. Across offspring of either sex on both diets, brain 13 C-PAM revealed compared to dietary uptake, DNL from dietary sugars contributed 68.8%-79.5% and 46.6%-58.0% to the total brain PAM pool by both peripheral and local brain DNL, and local brain DNL alone, respectively. DNL was augmented in offspring fed the LP diet, and the ability to upregulate DNL in the liver or the brain depended on sex. Anxiety-like behaviours were decreased in offspring fed the LP diet and were correlated with markers of LP diet consumption including increased liver 13 C-PAM, warranting further investigation. Altogether, our results indicate that DNL from dietary sugars is a compensatory mechanism to maintain brain PAM in response to a LP diet.
Collapse
Affiliation(s)
| | - Giulia Cisbani
- University of Toronto, Department of Nutritional Sciences, Toronto
| | - Adam H Metherel
- University of Toronto, Department of Nutritional Sciences, Toronto
| | | |
Collapse
|
11
|
Ouyang X, Lee CY, Lee SY. Effects of food and feeding regime on CO 2 fluxes from mangrove consumers - Do marine benthos breathe what they eat? MARINE ENVIRONMENTAL RESEARCH 2021; 169:105352. [PMID: 33991937 DOI: 10.1016/j.marenvres.2021.105352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Intertidal benthos link tertiary predators and primary producers in marine food webs as well as directly contribute to sediment CO2 emission. However, current methods for studying food sources of marine benthos are time-consuming and does not allow direct estimates on feeding regime-related (including different diets, active versus dormant) CO2 production. We examined the food sources of mangrove crabs and gastropods as well as their corresponding CO2 production using cavity-ring down spectroscopy to measure the δ13C-CO2 respiration for consumers, considering the effects of feeding regime, benthos taxa, and dominant feeding habit. Benthos taxa and feeding habit have significant impact on δ13C-CO2 respiration. Particularly, the δ13C-CO2 respiration for crabs (-23.9 ± 0.4‰) was significantly lower than that for gastropods (-17.5 ± 1.3‰). The δ13C-CO2 respiration for deposit-feeders was significantly higher than that for detritivores. There are significant differences in the amount of CO2 emitted and δ13C-CO2 respiration for crabs under different feeding regimes. The differences reflect diet-switching and fuel-switching by the crabs, i.e. 'you breathe what you eat'. Significant differences in CO2 production of crabs also exist between those feeding on microphytobenthos in the laboratory (0.13 ± 0.02 mmol g-1 day-1) and on field collection (i.e. just collected from the field) (0.31 ± 0.03 mmol g-1 day-1). CO2 production of crabs is strongly related to carapace width and length. The δ13C-CO2 respiration for mangrove crabs reflects their diet while crab-respired CO2 flux is related to crab size. These relationships enable partitioning the feeding habit and food sources of key benthos, and help incorporate their contribution into the overall sediment-atmosphere CO2 fluxes in mangrove forests.
Collapse
Affiliation(s)
- Xiaoguang Ouyang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Cheuk Yan Lee
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Shing Yip Lee
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
12
|
Urca T, Levin E, Ribak G. Insect flight metabolic rate revealed by bolus injection of the stable isotope 13C. Proc Biol Sci 2021; 288:20211082. [PMID: 34187193 PMCID: PMC8242924 DOI: 10.1098/rspb.2021.1082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Measuring metabolic rate (MR) poses a formidable challenge in free-flying insects who cannot breathe into masks or be trained to fly in controlled settings. Consequently, flight MR has been predominantly measured on hovering or tethered insects flying in closed systems. Stable isotopes such as labelled water allow measurement of MR in free-flying animals but integrates the measurement over long periods exceeding the average flight duration of insects. Here, we applied the 'bolus injection of isotopic 13C Na-bicarbonate' method to insects to measure their flight MR and report a 90% accuracy compared to respirometry. We applied the method on two beetle species, measuring MR during free flight and tethered flight in a wind tunnel. We also demonstrate the ability to repeatedly use the technique on the same individual. Therefore, the method provides a simple, reliable and accurate tool that solves a long-lasting limitation on insect flight research by enabling the measurement of MR during free flight.
Collapse
Affiliation(s)
- Tomer Urca
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Levin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.,Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv 6997801, Israel
| | - Gal Ribak
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.,Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
Lyons SA, Tate KB, Welch KC, McClelland GB. Lipid oxidation during thermogenesis in high-altitude deer mice ( Peromyscus maniculatus). Am J Physiol Regul Integr Comp Physiol 2021; 320:R735-R746. [PMID: 33729020 DOI: 10.1152/ajpregu.00266.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When at their maximum thermogenic capacity (cold-induced V̇o2max), small endotherms reach levels of aerobic metabolism as high, or even higher, than running V̇o2max. How these high rates of thermogenesis are supported by substrate oxidation is currently unclear. The appropriate utilization of metabolic fuels that could sustain thermogenesis over extended periods may be important for survival in cold environments, like high altitude. Previous studies show that high capacities for lipid use in high-altitude deer mice may have evolved in concert with greater thermogenic capacities. The purpose of this study was to determine how lipid utilization at both moderate and maximal thermogenic intensities may differ in high- and low-altitude deer mice, and strictly low-altitude white-footed mice. We also examined the phenotypic plasticity of lipid use after acclimation to cold hypoxia (CH), conditions simulating high altitude. We found that lipids were the primary fuel supporting both moderate and maximal rates of thermogenesis in both species of mice. Lipid oxidation increased threefold in mice from 30°C to 0°C, consistent with increases in oxidation of [13C]palmitic acid. CH acclimation led to an increase in [13C]palmitic acid oxidation at 30°C but did not affect total lipid oxidation. Lipid oxidation rates at cold-induced V̇o2max were two- to fourfold those at 0°C and increased further after CH acclimation, especially in high-altitude deer mice. These are the highest mass-specific lipid oxidation rates observed in any land mammal. Uncovering the mechanisms that allow for these high rates of oxidation will aid our understanding of the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Sulayman A Lyons
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Kevin B Tate
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth C Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
van Gastelen S, Mens AJW, Binnendijk GP, Ellis JL, Powell CD, Gerrits WJJ. Effect of solid feed level and types of roughage on passage kinetics of milk replacer, concentrate, and roughage in veal calves. J Dairy Sci 2021; 104:7871-7887. [PMID: 33896626 DOI: 10.3168/jds.2020-19932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 11/19/2022]
Abstract
This study aimed (1) to provide estimates of total mean retention times of milk replacer (MR), concentrates, and roughage in veal calves fed a mixed diet; (2) to determine the effect of level and type of solid feed (SF) on passage kinetics of MR, concentrates, and roughages in veal calves; and (3) to compare passage kinetics in veal calves using the fecal excretion curves of indigestible markers and a noninvasive 13C tracer breath test approach to determine whether the latter technique can serve as an alternative. At the start of the trial, 48 Holstein-Friesian calves (6 wk of age; 68 ± 7.7 kg of body weight; BW) were assigned to 1 of 4 dietary treatments (for statistical analysis, only 39 calf observations were used). Three treatments contained chopped wheat straw as roughage in the SF mixture in a concentrate:roughage ratio of 90:10 (dry matter basis). The SF level was 20 g/kg of metabolic BW per day (low straw), 30 g/kg of metabolic BW per day (middle straw), or 40 g/kg of metabolic BW per day (high straw). The fourth treatment (high hay) contained long perennial ryegrass hay as roughage in the SF mixture in a concentrate:roughage ratio of 70:30 (dry matter basis, at 40 g/kg of metabolic BW per day). The quantity of MR was fixed for the high straw treatment, whereas the amount of MR for the other treatments during the adaptation period was adjusted based on a pair gain strategy (i.e., exchanging ration components but keeping similar net energy). At the end of the adaptation period, calves ranged from 12 to 15 wk of age with an average BW of 123 ± 8.6 kg. Passage kinetics of concentrates were estimated by measuring 13C enrichment excess of CO2 in breath from a pulsed-dose of [1-13C]octanoate. Passage kinetics of roughage, concentrates, and MR were also estimated using fecal excretion curves obtained after ingestion of chromium-mordanted roughage, Yb2O3, and Co-EDTA, respectively. We conclude that [1-13C]octanoate cannot serve as a measure for oro-duodenal transit of concentrates because of unrealistic estimates. Based on the fecal excretion curves, we concluded that the total mean retention time of MR (i.e., time to peak; the moment that the excretion curve reaches peak concentration) was, on average, 12.4 h, and that the passage kinetics of MR was not affected by the level or type of SF. The mean retention time of concentrates was shorter (21.4 h) than that of both straw (59.1 h) and hay (36.8 h), and was not affected by the level or type of SF. Also, the mean retention time of the slowest compartment (i.e., the rumen) was shorter for concentrates (39.6 h) than that of straw (110.0 h) and hay (59.2 h). Contrary, the passage of roughage was affected by level and type of SF. Long hay increased time to peak by 22.3 h and decreased ruminal mean retention time by 50.8 h relative to chopped straw, indicating that the passage rate of long hay is faster than that of chopped straw. We conclude that the level and type of SF only affects the passage kinetics of roughage and not that of MR and concentrates.
Collapse
Affiliation(s)
- Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands.
| | - Annemarie J W Mens
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Gisabeth P Binnendijk
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Jennifer L Ellis
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Christopher D Powell
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Walter J J Gerrits
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
15
|
Denommé M, Deakin JE, Morbey YE, Guglielmo CG. Using breath δ 13C analysis to determine the effects of dietary carbohydrate and protein on glucose and leucine oxidation at rest in the yellow-rumped warbler (Setophaga coronata). Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110936. [PMID: 33713811 DOI: 10.1016/j.cbpa.2021.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Fat is the major fuel for migratory flight of birds, but protein is also catabolized. Flight range could be reduced if protein is used too quickly from muscles and organs, and it is important to understand factors that influence protein catabolism. Previous correlative studies suggested high protein diets may increase protein use in flight, although a wind tunnel study with yellow-rumped warblers (Setophaga coronata) did not support this relationship. We tested the hypothesis that diet composition affects nutrient oxidation in resting, fasted yellow-rumped warblers. For method development, we gavaged or subcutaneously injected warblers with 13C labelled glucose or leucine, and measured δ13C of breath CO2 in real time using infrared laser spectrometry. Regardless of route of administration, leucine had greater instantaneous and cumulative oxidation than glucose. Compared to subcutaneous injection, gavaged birds reached maximum oxidation rate faster for leucine and glucose, respectively, had a higher maximum oxidation rate, and reached final cumulative oxidation approximately faster for leucine or glucose, respectively, indicating immediate oxidation of the substrates by the digestive system. Warblers (N = 10 each) were fed isocaloric 60% carbohydrate or 60% protein diets for minimum 2 weeks, and subcutaneously injected with 13C labelled glucose or leucine. Diet composition had little effect on oxidation kinetics except that warblers fed high-carbohydrate reached final cumulative oxidation of leucine more quickly than those fed high-protein. The findings do not support the hypothesis that high protein diets increase the oxidation of protein during negative energy states in migratory birds, and provide methodology that could be applied to test it in flight.
Collapse
Affiliation(s)
- Melanie Denommé
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A5B7, Canada.
| | - Jessica E Deakin
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A5B7, Canada
| | - Yolanda E Morbey
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A5B7, Canada
| | - Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON N6A5B7, Canada
| |
Collapse
|
16
|
Anparasan L, Hobson KA. Tracing sources of carbon and hydrogen to stored lipids in migratory passerines using stable isotope (δ 13C, δ 2H) measurements. Oecologia 2021; 195:37-49. [PMID: 33389017 DOI: 10.1007/s00442-020-04827-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
Using measurements of naturally occurring stable isotopes in feathers to determine avian origin and migratory patterns is well established. However, isotopically determining nutritional origins of lipids, a major migratory fuel, has not been attempted. This study explores isotopic links between diet and stored lipids in captive white-throated sparrows (Zonotrichia albicollis) by providing isotopically distinct mixtures of carbohydrates/oils and drinking water and assessing the δ13C and δ2H values of stored lipid, breath CO2 (δ13C) and breath water vapour (δ2H). Stored lipid δ13C and δ2H values correlated with the isotopic values found in dietary carbohydrates/oils and drinking water treatments, respectively, indicating a clear traceable transfer of environmental dietary isotopic signals into body lipids. Dietary oils and carbohydrates contributed 80-82% of carbon and 44-46% of hydrogen, respectively, to stored lipids. Drinking water contributed 18-28% of hydrogen to stored lipids. Isotopic relationships were quantifiable using linear calibration algorithms which provide the basis for the construction of tissue isoscapes for migratory passerines. Breath CO2 δ13C values and breath water vapour δ2H values for fed and fasted birds reflected dietary sources. Breath CO2 δ13C values were higher for fasted birds than for fed birds by an average of 4.5‰ while breath water vapour δ2H values were lower for fasted birds by an average of 48.9‰. These results indicate that lipids and metabolites from their subsequent breakdown for fuel isotopically reflect dietary sources but complicate interpretation of such data, especially for wild migrating birds. Applications and limitations of these findings to the creation of "liposcapes" are examined.
Collapse
Affiliation(s)
- Libesha Anparasan
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| | - Keith A Hobson
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.,Environment and Climate Change Canada, Saskatoon, SK, S7N 3H5, Canada
| |
Collapse
|
17
|
Changes in exhaled 13CO2/12CO2 breath delta value as an early indicator of infection in intensive care unit patients. J Trauma Acute Care Surg 2020; 86:71-78. [PMID: 30575683 DOI: 10.1097/ta.0000000000002097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We have developed a new, noninvasive predictive marker for onset of infection in surgical intensive care unit (ICU) patients. The exhaled CO2/CO2 ratio, or breath delta value (BDV), has been shown to be an early marker for infection in a proof of concept human study and in animal models of bacterial peritonitis. In these studies, the BDV changes during onset and progression of infection, and these changes precede physiological changes associated with infection. Earlier diagnosis and treatment will significantly reduce morbidity, mortality, hospitalization costs, and length of stay. The objective of this prospective, observational, multicenter study was to determine the predictive value of the BDV as an early diagnostic marker of infection. METHODS Critically ill adults after trauma or acute care surgery with an expected length of stay longer than 5 days were enrolled. The BDV was obtained every 4 hours for 7 days and correlated to clinical infection diagnosis, serum C-reactive protein, and procalcitonin levels. Clinical infection diagnosis was made by an independent endpoint committee. This trial was registered at the US National Institutes of Health (ClinicalTrials.gov) NCT02327130. RESULTS Groups were demographically similar (n = 20). Clinical infection diagnosis was confirmed on day 3.9 ± 0.63. Clinical suspicion of infection (defined by SIRS criteria and/or new antibiotic therapy) was on day 2.1 ± 0.5 in all infected patients. However, 5 (56%) of 9 noninfected subjects also met clinical suspicion criteria. The BDV significantly increased by 1‰ to 1.7‰ on day 2.1 after enrollment (p < 0.05) in subjects who developed infections, while it remained at baseline (± 0.5‰) for subjects without infections. CONCLUSION A BDV greater than 1.4‰ accurately differentiates subjects who develop infections from those who do not and predicts the presence of infection up to 48 hours before clinical confirmation. The BDV may predict the onset of infection and aid in distinguishing SIRS from infection, which could prompt earlier diagnosis, earlier appropriate treatment, and improve outcomes. LEVEL OF EVIDENCE Diagnostic test, level III.
Collapse
|
18
|
Baloun DE, Hobson KA, Guglielmo CG. Temporal patterns of foraging by silver-haired bats during migratory stopover revealed by isotopic analyses (δ 13C) of breath CO 2. Oecologia 2020; 193:67-75. [PMID: 32306117 DOI: 10.1007/s00442-020-04650-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/08/2020] [Indexed: 11/26/2022]
Abstract
The extent to which migratory bats forage at stopover sites or while in migratory flight is poorly understood. Endogenous fat stores have lower δ13C values relative to the dietary substrates from which they were synthesized, and so, the fed versus fasted state of bats should be discernable by comparing their breath δ13C at capture to that after a known period of fasting. We captured silver-haired bats (Lasionycteris noctivagans) at a stopover site at Long Point, Ontario, Canada, during spring and fall migration. We collected breath samples at capture and after fasting in captivity for 12 h, providing a fasted-state δ13C value corresponding to metabolism of fat stores. We also collected and weighed fecal pellets produced while in captivity. Breath δ13C values at capture were positively correlated with mass of feces produced. During spring migration, δ13C values of breath CO2 at capture were low and similar to fasting values, but increased with date consistent with increased foraging at stopover and reliance on exogenous dietary nutrients as the season progressed. The opposite temporal pattern was found during fall migration. Our findings suggest that bats forage during migratory stopover when environmental conditions permit despite potential time trade-offs between feeding and travel, and the energy savings resulting from torpor during roosting. This study provides insight into the eco-physiology of bat migration and shows the importance of foraging habitat for migratory bats.
Collapse
Affiliation(s)
- Dylan E Baloun
- Department of Biology and Advanced Facility for Avian Research (AFAR), University of Western Ontario, London, ON, Canada.
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Keith A Hobson
- Department of Biology and Advanced Facility for Avian Research (AFAR), University of Western Ontario, London, ON, Canada
| | - Christopher G Guglielmo
- Department of Biology and Advanced Facility for Avian Research (AFAR), University of Western Ontario, London, ON, Canada
| |
Collapse
|
19
|
McCue MD, Javal M, Clusella‐Trullas S, Le Roux JJ, Jackson MC, Ellis AG, Richardson DM, Valentine AJ, Terblanche JS. Using stable isotope analysis to answer fundamental questions in invasion ecology: Progress and prospects. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marshall D. McCue
- Sable Systems International Las Vegas NV USA
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| | - Marion Javal
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| | - Susana Clusella‐Trullas
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
- Department of Biological Sciences Macquarie University NSW Australia
| | - Michelle C. Jackson
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
- Department of Life Sciences Imperial College London Ascot UK
- Department of Zoology Oxford University Oxford UK
| | - Allan G. Ellis
- Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - David M. Richardson
- Centre for Invasion Biology Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - Alex J. Valentine
- Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| |
Collapse
|
20
|
Extended indirect calorimetry with isotopic CO 2 sensors for prolonged and continuous quantification of exogenous vs. total substrate oxidation in mice. Sci Rep 2019; 9:11507. [PMID: 31395916 PMCID: PMC6687832 DOI: 10.1038/s41598-019-47977-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022] Open
Abstract
Indirect calorimetry (InCa) estimates whole-body energy expenditure and total substrate oxidation based on O2 consumption and CO2 production, but does not allow for the quantification of oxidation of exogenous substrates with time. To achieve this, we incorporated 13CO2 and 12CO2 gas sensors into a commercial InCa system and aimed to demonstrate their performance and added value. As a performance indicator, we showed the discriminative oscillations in 13CO2 enrichment associated with food intake in mice fed diets containing naturally low (wheat) vs high (maize) 13C enrichment. To demonstrate the physiological value, we quantified exogenous vs total carbohydrate and fat oxidation continuously, in real time in mice varying in fat mass. Diet-induced obese mice were fed a single liquid mixed meal containing 13C-isotopic tracers of glucose or palmitate. Over 13 h, ~70% glucose and ~48% palmitate ingested were oxidised. Exogenous palmitate oxidation depended on body fat mass, which was not the case for exogenous glucose oxidation. We conclude that extending an InCa system with 13CO2 and 12CO2 sensors provides an accessible and powerful technique for real-time continuous quantification of exogenous and whole-body substrate oxidation in mouse models of human metabolic physiology.
Collapse
|
21
|
Regan MD, Chiang E, Martin SL, Porter WP, Assadi-Porter FM, Carey HV. Shifts in metabolic fuel use coincide with maximal rates of ventilation and body surface rewarming in an arousing hibernator. Am J Physiol Regul Integr Comp Physiol 2019; 316:R764-R775. [PMID: 30969844 DOI: 10.1152/ajpregu.00379.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is well established that hibernating mammals rely predominantly on lipid stores to fuel metabolism throughout the hibernation season. However, it is unclear if other endogenous fuels contribute to the rapid, ~400-fold increase in metabolic rate during the early phase of arousal from torpor. To investigate this issue, we used cavity ring-down spectroscopy, a technique that provides a real-time indication of fuel use by measuring the ratio of 13C to 12C in the exhaled CO2 of arousing 13-lined ground squirrels (Ictidomys tridecemlineatus). We used infrared thermography to simultaneously measure ventilation and surface temperature change in various body regions, and we interpreted these data in light of changing plasma metabolite abundances at multiple stages of arousal from torpor. We found that hibernating squirrels use a combination of lipids and, likely, carbohydrates to fuel the initial ~60 min of arousal before switching to predominantly lipid oxidation. This fuel switch coincided with times of maximal rates of ventilation and rewarming of different body surface regions, including brown adipose tissue. Infrared thermography revealed zonal rewarming, whereby the brown adipose tissue region was the first to warm, followed by the thoracic and head regions and, finally, the posterior half of the body. Consistent with the results from cavity ring-down spectroscopy, plasma metabolite dynamics during early arousal suggested a large reliance on fatty acids, with a contribution from carbohydrates and glycerol. Because of their high oxidative flux rates and efficient O2 use, carbohydrates might be an advantageous metabolic fuel during the early phase of arousal, when metabolic demands are high but ventilation rates and, thus, O2 supply are relatively low.
Collapse
Affiliation(s)
- Matthew D Regan
- Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Edna Chiang
- Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin.,Department of Bacteriology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine , Aurora, Colorado
| | - Warren P Porter
- Deparment of Integrative Biology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Fariba M Assadi-Porter
- Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin.,Deparment of Integrative Biology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Hannah V Carey
- Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
22
|
Plasman M, McCue MD, Reynoso VH, Terblanche JS, Clusella-Trullas S. Environmental temperature alters the overall digestive energetics and differentially affects dietary protein and lipid use in a lizard. J Exp Biol 2019; 222:222/6/jeb194480. [DOI: 10.1242/jeb.194480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
Abstract
ABSTRACT
Processing food (e.g. ingestion, digestion, assimilation) requires energy referred to as specific dynamic action (SDA) and is at least partially fuelled by oxidation of the nutrients (e.g. proteins and lipids) within the recently ingested meal. In ectotherms, environmental temperature can affect the magnitude and/or duration of the SDA, but is likely to also alter the mixture of nutrients that are oxidized to cover these costs. Here, we examined metabolic rate, gut passage time, assimilation efficiency and fuel use in the lizard Agama atra digesting cricket meals at three ecologically relevant temperatures (20, 25 and 32°C). Crickets were isotopically enriched with 13C-leucine or 13C-palmitic-acid tracers to distinguish between protein and lipid oxidation, respectively. Our results show that higher temperatures increased the magnitude of the SDA peak (by 318% between 32 and 20°C) and gut passage rate (63%), and decreased the duration of the SDA response (by 20% for males and 48% for females). Peak rate of dietary protein oxidation occurred sooner than peak lipid oxidation at all temperatures (70, 60 and 31 h earlier for 20, 25 and 32°C, respectively). Assimilation efficiency of proteins, but not lipids, was positively related to temperature. Interestingly, the SDA response exhibited a notable circadian rhythm. These results show that temperature has a pronounced effect on digestive energetics in A. atra, and that this effect differs between nutrient classes. Variation in environmental temperatures may thus alter the energy budget and nutrient reserves of these animals.
Collapse
Affiliation(s)
- Melissa Plasman
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | - Víctor Hugo Reynoso
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7600, South Africa
- Instituto de Biología, Departamento de Zoología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - John S. Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Susana Clusella-Trullas
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
23
|
Gordon G, Rhoads A. Field-deployable measurements of free-living individuals to determine energy balance: fuel substrate usage through δ 13C in breath CO 2 and diet through hair δ 13C and δ 15N values. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2019; 55:70-79. [PMID: 30602299 DOI: 10.1080/10256016.2018.1562448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Carbon isotopes of breath CO2 vary depending on diet and fuel substrate used. This study examined if exercise-induced δ13C-CO2 changes in substrate utilization were distinguishable from baseline δ13C-CO2 variations in a population with uncontrolled diet, and compared hair isotope values and food logs to develop an isotope model of diet. Study participants included nine women with diverse Body Mass Index (BMI), age, ancestry, exercise history, and diet. Breath samples were collected prior to and up to 12 h after a 5- or 10 K walk/run. Indirect calorimetry was measured with a smartphone-enabled mobile colorimetric device, and a field-deployable isotope analyzer measured breath δ13C-CO2 values. Diet was assessed by food logs and δ13C, δ15N of hair samples. Post-exercise δ13C-CO2 values increased by 0.54 ± 1.09‰ (1 sd, n = 9), implying enhanced carbohydrate burning, while early morning δ13C-CO2 values were lower than daily averages (p = 0.0043), indicating lipid burning during overnight fasting. Although diurnal δ13C-CO2 variation (1.90 ± 0.77‰) and participant baseline range (3.06‰) exceeded exercise-induced variation, temporal patterns distinguished exercise from dietary isotope effects. Hair δ13C and δ15N values were consistent with a new dietary isotope model. Notwithstanding the small number of participants, this study introduces a novel combination of techniques to directly monitor energy balance in free-living individuals.
Collapse
Affiliation(s)
- Gwyneth Gordon
- a School of Earth & Space Exploration , Arizona State University , Tempe , AZ , USA
| | - Amrita Rhoads
- b Peggy Payne Academy , McClintock High School , Tempe , AZ , USA
| |
Collapse
|
24
|
Dick MF, Alcantara-Tangonan A, Shamli Oghli Y, Welch KC. Metabolic partitioning of sucrose and seasonal changes in fat turnover rate in ruby-throated hummingbirds (Archilochus colubris). J Exp Biol 2019; 223:jeb.212696. [DOI: 10.1242/jeb.212696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022]
Abstract
Hummingbirds fuel their high energy needs with the fructose and glucose in their nectar diets. These sugars are used to fuel both immediate energy needs and to build fat stores to fuel future fasting periods. Fasting hummingbirds can deplete energy stores in only hours and need to be continuously replacing these stores while feeding and foraging. If and how hummingbirds partition dietary fructose and glucose towards immediate oxidation versus fat storage is unknown. Using a chronic stable isotope tracer methodology, we examined if glucose or fructose are preferentially used for de novo lipogenesis in ruby-throated hummingbirds (Archilochus colubris.) Potential seasonal changes were correlated with variation in the overall daily energy expenditure. We fed ruby-throated hummingbirds sucrose-based diets enriched with 13C on either the glucose or the fructose portion of the disaccharide for 5 days. Isotopic incorporation into fat stores was measured via the breath 13C signature while fasting (oxidizing fat) during the winter and summer seasons. We found greater isotopic enrichment of fat stores when glucose was labelled compared to fructose, suggesting preference for glucose as a substrate for fatty acid synthesis. We also found a seasonal effect on fat turnover rate. Faster turnover rates occurred during the summer months when birds maintained lower body mass, fat stores and exhibited higher daily nectar intake compared to winter. This demonstrates that fat turnover rate can substantially vary with changing energy expenditure and body composition, however the partitioning of sucrose towards de novo fatty acid synthesis remains constant.
Collapse
Affiliation(s)
- Morag F. Dick
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Antonio Alcantara-Tangonan
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Yazan Shamli Oghli
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Kenneth C. Welch
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
- Department of Cell & Systems Biology, University of Toronto, 27 King's College Circle, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
25
|
Welch KC, Myrka AM, Ali RS, Dick MF. The Metabolic Flexibility of Hovering Vertebrate Nectarivores. Physiology (Bethesda) 2018; 33:127-137. [DOI: 10.1152/physiol.00001.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Foraging hummingbirds and nectar bats oxidize both glucose and fructose from nectar at exceptionally high rates. Rapid sugar flux is made possible by adaptations to digestive, cardiovascular, and metabolic physiology affecting shared and distinct pathways for the processing of each sugar. Still, how these animals partition and regulate the metabolism of each sugar and whether this occurs differently between hummingbirds and bats remain unclear.
Collapse
Affiliation(s)
- Kenneth C. Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alexander M. Myrka
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Raafay Syed Ali
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Morag F. Dick
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Levin E, McCue MD, Davidowitz G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc Biol Sci 2018; 284:rspb.2016.2126. [PMID: 28148746 DOI: 10.1098/rspb.2016.2126] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023] Open
Abstract
The ability to allocate resources, even when limited, is essential for survival and fitness. We examine how nutrients that occur in minute amounts are allocated among reproductive, somatic, and metabolic demands. In addition to sugar, flower nectars contain two macronutrients-amino acids and fatty acids. We created artificial nectars spiked with 13C-labelled amino acids and fatty acids and fed these to adult moths (Manduca sexta: Sphingidae) to understand how they allocate these nutrients among competing sinks (reproduction, somatic tissue, and metabolic fuel). We found that both essential and non-essential amino acids were allocated to eggs and flight muscles and were still detectable in early-instar larvae. Parental-derived essential amino acids were more conserved in the early-instars than non-essential amino acids. All amino acids were used as metabolic fuel, but the non-essential amino acids were oxidized at higher rates than essential amino acids. Surprisingly, the nectar fatty acids were not vertically transferred to offspring, but were readily used as a metabolic fuel by the moth, minimizing losses of endogenous nutrient stores. We conclude that the non-carbohydrate components of nectar may play important roles in both reproductive success and survival of these nectar-feeding animals.
Collapse
Affiliation(s)
- Eran Levin
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Marshall D McCue
- Department of Biological Sciences, St. Mary's University, San Antonio, TX, USA
| | - Goggy Davidowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
27
|
Seven unconfirmed ideas to improve future ICU practice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:315. [PMID: 29297400 PMCID: PMC5751395 DOI: 10.1186/s13054-017-1904-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With imprecise definitions, inexact measurement tools, and flawed study execution, our clinical science often lags behind bedside experience and simply documents what appear to be the apparent faults or validity of ongoing practices. These impressions are later confirmed, modified, or overturned by the results of the next trial. On the other hand, insights that stem from the intuitions of experienced clinicians, scientists and educators-while often neglected-help place current thinking into proper perspective and occasionally point the way toward formulating novel hypotheses that direct future research. Both streams of information and opinion contribute to progress. In this paper we present a wide-ranging set of unproven 'out of the mainstream' ideas of our FCCM faculty, each with a defensible rationale and holding clear implications for altering bedside management. Each proposition was designed deliberately to be provocative so as to raise awareness, stimulate new thinking and initiate lively dialog.
Collapse
|
28
|
McCue MD, Terblanche JS, Benoit JB. Learning to starve: impacts of food limitation beyond the stress period. J Exp Biol 2017; 220:4330-4338. [DOI: 10.1242/jeb.157867] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Starvation is common among wild animal populations, and many individuals experience repeated bouts of starvation over the course of their lives. Although much information has been gained through laboratory studies of acute starvation, little is known about how starvation affects an animal once food is again available (i.e. during the refeeding and recovery phases). Many animals exhibit a curious phenomenon – some seem to ‘get better’ at starving following exposure to one or more starvation events – by this we mean that they exhibit potentially adaptive responses, including reduced rates of mass loss, reduced metabolic rates, and lower costs of digestion. During subsequent refeedings they may also exhibit improved digestive efficiency and more rapid mass gain. Importantly, these responses can last until the next starvation bout or even be inherited and expressed in the subsequent generation. Currently, however, little is known about the molecular regulation and physiological mechanisms underlying these changes. Here, we identify areas of research that can fill in the most pressing knowledge gaps. In particular, we highlight how recently refined techniques (e.g. stable isotope tracers, quantitative magnetic resonance and thermal measurement) as well as next-generation sequencing approaches (e.g. RNA-seq, proteomics and holobiome sequencing) can address specific starvation-focused questions. We also describe outstanding unknowns ripe for future research regarding the timing and severity of starvation, and concerning the persistence of these responses and their interactions with other ecological stressors.
Collapse
Affiliation(s)
- Marshall D. McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
29
|
Muscle mass and physical recovery in ICU: innovations for targeting of nutrition and exercise. Curr Opin Crit Care 2017; 23:269-278. [PMID: 28661414 DOI: 10.1097/mcc.0000000000000431] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW We have significantly improved hospital mortality from sepsis and critical illness in last 10 years; however, over this same period we have tripled the number of 'ICU survivors' going to rehabilitation. Furthermore, as up to half the deaths in the first year following ICU admission occur post-ICU discharge, it is unclear how many of these patients ever returned home or a meaningful quality of life. For those who do survive, recent data reveals many 'ICU survivors' will suffer significant functional impairment or post-ICU syndrome (PICS). Thus, new innovative metabolic and exercise interventions to address PICS are urgently needed. These should focus on optimal nutrition and lean body mass (LBM) assessment, targeted nutrition delivery, anabolic/anticatabolic strategies, and utilization of personalized exercise intervention techniques, such as utilized by elite athletes to optimize preparation and recovery from critical care. RECENT FINDINGS New data for novel LBM analysis technique such as computerized tomography scan and ultrasound analysis of LBM are available showing objective measures of LBM now becoming more practical for predicting metabolic reserve and effectiveness of nutrition/exercise interventions. 13C-Breath testing is a novel technique under study to predict infection earlier and predict over-feeding and under-feeding to target nutrition delivery. New technologies utilized routinely by athletes such as muscle glycogen ultrasound also show promise. Finally, the role of personalized cardiopulmonary exercise testing to target preoperative exercise optimization and post-ICU recovery are becoming reality. SUMMARY New innovative techniques are demonstrating promise to target recovery from PICS utilizing a combination of objective LBM and metabolic assessment, targeted nutrition interventions, personalized exercise interventions for prehabilitation and post-ICU recovery. These interventions should provide hope that we will soon begin to create more 'survivors' and fewer victim's post-ICU care.
Collapse
|
30
|
O'Mara MT, Wikelski M, Voigt CC, Ter Maat A, Pollock HS, Burness G, Desantis LM, Dechmann DK. Cyclic bouts of extreme bradycardia counteract the high metabolism of frugivorous bats. eLife 2017; 6. [PMID: 28923167 PMCID: PMC5605195 DOI: 10.7554/elife.26686] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/13/2017] [Indexed: 12/04/2022] Open
Abstract
Active flight requires the ability to efficiently fuel bursts of costly locomotion while maximizing energy conservation during non-flying times. We took a multi-faceted approach to estimate how fruit-eating bats (Uroderma bilobatum) manage a high-energy lifestyle fueled primarily by fig juice. Miniaturized heart rate telemetry shows that they use a novel, cyclic, bradycardic state that reduces daily energetic expenditure by 10% and counteracts heart rates as high as 900 bpm during flight. Uroderma bilobatum support flight with some of the fastest metabolic incorporation rates and dynamic circulating cortisol in vertebrates. These bats will exchange fat reserves within 24 hr, meaning that they must survive on the food of the day and are at daily risk of starvation. Energetic flexibly in U. bilobatum highlights the fundamental role of ecological pressures on integrative energetic networks and the still poorly understood energetic strategies of animals in the tropics. To survive, all animals have to balance how much energy they take in and how much they use. They must find enough food to fuel the chemical processes that keep them alive – known as their metabolism – and store leftover fuel to use when food is not available. Bats, for example, have a fast metabolism and powerful flight muscles, which require a lot of energy. Some bat species, such as the tent-making bats, survive on fruit juice, and their food sources are often far apart and difficult to find. These bats are likely to starve if they go without food for more than 24 hours, and therefore need to conserve energy while they are resting. To deal with potential food shortages, bats and other animals can enter a low-energy resting state called torpor. In this state, animals lower their body temperature and slow down their heart rate and metabolism so that they need less energy to stay alive. However, many animals that live in tropical regions, including tent-making bats, cannot enter a state of torpor, as it is too hot to sufficiently lower their body temperature. Until now, scientists did not fully understand how these bats control how much energy they use. Now, O’Mara et al. studied tent-making bats in the wild by attaching small heart rate transmitters to four wild bats, and measured their heartbeats over several days. Since each heartbeat delivers oxygen and fuel to the rest of the body, measuring the bats’ heart rate indicates how much energy they are using. The experiments revealed for the first time that tent-making bats periodically lower their heart rates while resting (to around 200 beats per minute). This reduces the amount of energy they use each day by up to 10%, and helps counteract heart rates that can reach 900 beats per minute when the bats are flying. Overall, these findings show that animals have evolved in various ways to control their use of energy. Future research should use similar technology to continue uncovering how wild animals have adapted to survive in different conditions. This knowledge will help us to understand how life has become so diverse in the tropics and the strategies that animals may use as climates change.
Collapse
Affiliation(s)
- M Teague O'Mara
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Smithsonian Tropical Research Institute, Panama City, Panama.,Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Andries Ter Maat
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Starnberg, Germany
| | - Henry S Pollock
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, Canada
| | - Lanna M Desantis
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Canada
| | - Dina Kn Dechmann
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
31
|
Keicher L, O'Mara MT, Voigt CC, Dechmann DKN. Stable carbon isotopes in breath reveal fast metabolic incorporation rates and seasonally variable but rapid fat turnover in the common shrew ( Sorex araneus). ACTA ACUST UNITED AC 2017; 220:2834-2841. [PMID: 28546508 DOI: 10.1242/jeb.159947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/21/2017] [Indexed: 11/20/2022]
Abstract
Small non-migratory mammals with Northern distribution ranges apply a variety of behavioural and physiological wintering strategies. A rare energy-saving strategy is Dehnel's phenomenon, involving a reduction and later regrowth of the body size, several organs and parts of the skeleton in red-toothed shrews (Soricidae). The size extremes coincide with major life stages. However, the physiological consequences for the shrew's metabolism remain poorly understood. In keeping with the energetic limitations that may induce the size changes, we hypothesised that metabolic incorporation rates should remain the same across the shrews' lifetimes. In contrast, fat turnover rates should be faster in smaller subadults than in large juveniles and regrown adults, as the metabolic activity of fat tissue increases in winter individuals (subadults). Measuring the changes in the ratio of exhaled stable carbon isotopes, we found that the baseline diet of shrews changed across the season. A diet switch experiment showed that incorporation rates were consistently rapid (t50=38.2±21.1-69.3±53.5 min) and did not change between seasons. As predicted, fat turnover rates were faster in size-reduced subadults (t50=2.1±1.3 h) compared with larger juveniles (t50=5.5±1.7 h) and regrown adults (t50=5.0±4.4 h). In all three age/size classes, all body fat was turned over after 9-24 h. These results show that high levels of nutrient uptake are independent of body size, whereas fat turnover rates are negatively correlated with body size. Thus, the shrews might be under higher pressure to save energy in winter and this may have supported the evolution of Dehnel's phenomenon.
Collapse
Affiliation(s)
- Lara Keicher
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany .,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - M Teague O'Mara
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Christian C Voigt
- Evolutionary Ecology Research Group, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Dina K N Dechmann
- Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
32
|
McCue MD, Sandoval J, Beltran J, Gerson AR. Dehydration Causes Increased Reliance on Protein Oxidation in Mice: A Test of the Protein-for-Water Hypothesis in a Mammal. Physiol Biochem Zool 2017; 90:359-369. [DOI: 10.1086/690912] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Lee TN, Richter MM, Williams CT, Tøien Ø, Barnes BM, O'Brien DM, Buck CL. Stable isotope analysis of CO 2 in breath indicates metabolic fuel shifts in torpid arctic ground squirrels. Comp Biochem Physiol A Mol Integr Physiol 2017; 209:10-15. [PMID: 28396263 DOI: 10.1016/j.cbpa.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022]
Abstract
Stable carbon isotope ratios (δ13C) in breath show promise as an indicator of immediate metabolic fuel utilization in animals because tissue lipids have a lower δ13C value than carbohydrates and proteins. Metabolic fuel consumption is often estimated using the respiratory exchange ratio (RER), which has lipid and carbohydrate boundaries, but does not differentiate between protein and mixed fuel catabolism at intermediate values. Because lipids have relatively low δ13C values, measurements of stable carbon isotopes in breath may help distinguish between catabolism of protein and mixed fuel that includes lipid. We measured breath δ13C and RER concurrently in arctic ground squirrels (Urocitellus parryii) during steady-state torpor at ambient temperatures from -2 to -26°C. As predicted, we found a correlation between RER and breath δ13C values; however, the range of RER in this study did not reach intermediate levels to allow further resolution of metabolic substrate use with the addition of breath δ13C measurements. These data suggest that breath δ13C values are 1.1‰ lower than lipid tissue during pure lipid metabolism. From RER, we determined that arctic ground squirrels rely on nonlipid fuel sources for a significant portion of energy during torpor (up to 37%). The shift toward nonlipid fuel sources may be influenced by adiposity of the animals in addition to thermal challenge.
Collapse
Affiliation(s)
- Trixie N Lee
- Institute of Arctic Biology, 311 Irving I, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | - Melanie M Richter
- Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA
| | - Cory T Williams
- Institute of Arctic Biology, 311 Irving I, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Øivind Tøien
- Institute of Arctic Biology, 311 Irving I, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Brian M Barnes
- Institute of Arctic Biology, 311 Irving I, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Diane M O'Brien
- Institute of Arctic Biology, 311 Irving I, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - C Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA
| |
Collapse
|
34
|
McCue MD, Albach A, Salazar G. Previous Repeated Exposure to Food Limitation Enables Rats to Spare Lipid Stores during Prolonged Starvation. Physiol Biochem Zool 2017; 90:63-74. [PMID: 28051943 DOI: 10.1086/689323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The risk of food limitation and, ultimately, starvation dates back to the dawn of heterotrophy in animals, yet starvation remains a major factor in the regulation of modern animal populations. Researchers studying starvation more than a century ago suggested that animals subjected to sublethal periods of food limitation are somehow more tolerant of subsequent starvation events. This possibility has received little attention over the past decades, yet it is highly relevant to modern science for two reasons. First, animals in natural populations are likely to be exposed to bouts of food limitation once or more before they face prolonged starvation, during which the risk of mortality becomes imminent. Second, our current approach to studying starvation physiology in the laboratory focuses on nourished animals with no previous exposure to nutritional stress. We examined the relationship between previous exposure to food limitation and potentially adaptive physiological responses to starvation in adult rats and found several significant differences. On two occasions, rats were fasted until they lost 20% of their body mass maintained lower body temperatures, and had presumably lower energy requirements when subjected to prolonged starvation than their naive cohort that never experienced food limitation. These rats that were trained in starvation also had lower plasma glucose set -points and reduced their reliance on endogenous lipid oxidation. These findings underscore (1) the need for biologists to revisit the classic hypothesis that animals can become habituated to starvation, using a modern set of research tools; and (2) the need to design controlled experiments of starvation physiology that more closely resemble the dynamic nature of food availability.
Collapse
|
35
|
Kirschman LJ, McCue MD, Boyles JG, Warne RW. Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis. J Exp Biol 2017; 220:3391-3397. [DOI: 10.1242/jeb.164830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/17/2017] [Indexed: 11/20/2022]
Abstract
Variation in environmental conditions during larval life stages can shape development during critical windows and have lasting effects on the adult organism. Changes in larval developmental rates in response to environmental conditions, for example, can trade-off with growth to determine body size and condition at metamorphosis, which can affect adult survival and fecundity. However, it is unclear how use of energy and nutrients shape trade-offs across life stage transitions because no studies have quantified these costs of larval development and metamorphosis. We used an experimental approach to manipulate physiological stress in larval amphibians, along with respirometry and 13C-breath testing to quantify the energetic and nutritional costs of development and metamorphosis. Central to larval developmental responses to environmental conditions is the hypothalamus pituitary-adrenal/interrenal (HPA/I) axis, which regulates development, as well as energy homeostasis and stress responses across many taxa. Given these pleiotropic effects of HPA/I activity, manipulation of the HPA/I may provide insight into costs of metamorphosis. We measured the energetic and nutritional costs across the entire larval period and metamorphosis in a larval amphibian exposed to exogenous glucocorticoid (GC) hormones- the primary hormone secreted by the HPA/I axis. We measured metabolic rates and dry mass across larval ontogeny, and quantified lipid stores and nutrient oxidation via 13C-breath testing during metamorphosis, under control and GC-exposed conditions. Changes in dry mass match metamorphic states previously reported in the literature, but dynamics of metabolism were influenced by the transition from aquatic to terrestrial respiration. GC-treated larvae had lower dry mass, fat stores, and higher oxygen consumption during stages where controls were conserving energy. GC-treated larvae also oxidized greater amounts of 13C-labelled protein stores. These results provide evidence for a proximate cause of the physiological trade-off between larval growth and development, and provide insight into the energetic and nutrient costs that shape fitness trade-offs across life stages.
Collapse
Affiliation(s)
- Lucas J. Kirschman
- Department of Zoology, Southern Illinois University, Carbondale, IL USA, 62901
| | - Marshall D. McCue
- Department of Biological Sciences, St. Mary's University, San Antonio, TX, 78228, USA
| | - Justin G. Boyles
- Cooperative Wildlife Research Laboratory, Department of Zoology, Southern Illinois University, Carbondale, IL USA, 62901
| | - Robin W. Warne
- Department of Zoology, Southern Illinois University, Carbondale, IL USA, 62901
| |
Collapse
|
36
|
Rosner E, Voigt CC. Oxidation of linoleic and palmitic acid in pre-hibernating and hibernating common noctule bats revealed by 13C breath testing. J Exp Biol 2017; 221:jeb.168096. [DOI: 10.1242/jeb.168096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
Abstract
Mammals fuel hibernation by oxidizing saturated and unsaturated fatty acids from triacylglycerols in adipocytes, yet the relative importance of these two categories as an oxidative fuel may change during hibernation. We studied the selective use of fatty acids as an oxidative fuel in noctule bats (Nyctalus noctula). Pre-hibernating noctule bats that were fed 13C-enriched linoleic acid (LA) showed 12 times higher tracer oxidation rates compared to conspecifics fed 13C-enriched palmitic acid (PA). After this experiment, we supplemented the diet of bats with the same fatty acids on 5 subsequent days to enrich their fat depots with the respective tracer. We then compared the excess 13C enrichment (APE) in breath of bats for torpor and arousal events during early and late hibernation. We observed higher APE values in breath of bats fed 13C-enriched LA than in bats fed 13C-enriched PA for both states, torpor and arousal, and also for both periods. Thus, hibernating bats oxidized selectively endogenous LA instead of PA, most likely because of faster transportation rates of PUFA compared with SFA. We did not observe changes in APE values in the breath of torpid animals between early and late hibernation. Skin temperature of torpid animals increased by 0.7°C between early and late hibernation in bats fed PA, whereas it decreased by -0.8°C in bats fed LA, highlighting that endogenous LA may fulfil two functions when available in excess: serving as an oxidative fuel and supporting cell membrane functionality.
Collapse
Affiliation(s)
- Elisabeth Rosner
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
- Zoological Institute and Museum, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
| | - Christian C. Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
- Institute of Biology, Freie Universität Berlin, Takustr 6 , 14195 Berlin, Germany
| |
Collapse
|
37
|
Timmins GS. Stable isotope biomarker breath tests for human metabolic and infectious diseases: a review of recent patent literature. Expert Opin Ther Pat 2016; 26:1393-1398. [PMID: 27467014 PMCID: PMC5160749 DOI: 10.1080/13543776.2016.1217995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/25/2016] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Stable isotope breath tests can rapidly and quantitatively report metabolic phenotypes and disease in both humans and microbes in situ. The labelled compound is administered and acted upon by human or microbial metabolism, producing a labelled gas that is detected in exhaled breath. Areas covered: This review details the unique advantages (and disadvantages) of phenotypic stable isotope based breath tests. A review of recent US patent applications and prosecutions since 2010 is conducted. Finally, current clinical trials, product pipelines and approved products are discussed. Expert opinion: Stable isotope breath tests offer new approaches for rapid and minimally invasive detection and study of metabolic phenotypes, both human and microbial. The patent literature has developed considerably in the last 6 years, with over 30 patent applications made. Rates of issuance remain high, although rejections citing 35 U.S.C. §101(subject matter eligibility), §102 (novelty), §103 (obviousness) and §112 (description, enablement and best mode) have occurred. The prior art is significantly greater for human metabolism than microbial, and may drive differing rates of future issuance. These biomarker and diagnostic tools can enable optimization of drug doses, diagnosis of metabolic disease and its progression, and detection of infectious disease and optimize its treatment.
Collapse
Affiliation(s)
- Graham S. Timmins
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
38
|
Williams CM, McCue MD, Sunny NE, Szejner-Sigal A, Morgan TJ, Allison DB, Hahn DA. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster. Proc Biol Sci 2016; 283:20161317. [PMID: 27605506 PMCID: PMC5031658 DOI: 10.1098/rspb.2016.1317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/15/2016] [Indexed: 01/24/2023] Open
Abstract
Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories.
Collapse
Affiliation(s)
- Caroline M Williams
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Marshall D McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - Nishanth E Sunny
- Department of Medicine, University of Florida, Gainesville, FL 32601, USA
| | - Andre Szejner-Sigal
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Theodore J Morgan
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - David B Allison
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
39
|
McCue MD, Boardman L, Clusella-Trullas S, Kleynhans E, Terblanche JS. The speed and metabolic cost of digesting a blood meal depends on temperature in a major disease vector. ACTA ACUST UNITED AC 2016; 219:1893-902. [PMID: 27059066 DOI: 10.1242/jeb.138669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/27/2016] [Indexed: 11/20/2022]
Abstract
The energetics of processing a meal is crucial for understanding energy budgets of animals in the wild. Given that digestion and its associated costs may be dependent on environmental conditions, it is necessary to obtain a better understanding of these costs under diverse conditions and identify resulting behavioural or physiological trade-offs. This study examines the speed and metabolic costs - in cumulative, absolute and relative energetic terms - of processing a bloodmeal for a major zoonotic disease vector, the tsetse fly Glossina brevipalpis, across a range of ecologically relevant temperatures (25, 30 and 35°C). Respirometry showed that flies used less energy digesting meals faster at higher temperatures but that their starvation tolerance was reduced, supporting the prediction that warmer temperatures are optimal for bloodmeal digestion while cooler temperatures should be preferred for unfed or post-absorptive flies. (13)C-Breath testing revealed that the flies oxidized dietary glucose and amino acids within the first couple of hours of feeding and overall oxidized more dietary nutrients at the cooler temperatures, supporting the premise that warmer digestion temperatures are preferred because they maximize speed and minimize costs. An independent test of these predictions using a thermal gradient confirmed that recently fed flies selected warmer temperatures and then selected cooler temperatures as they became post-absorptive, presumably to maximize starvation resistance. Collectively these results suggest there are at least two thermal optima in a given population at any time and flies switch dynamically between optima throughout feeding cycles.
Collapse
Affiliation(s)
- Marshall D McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - Leigh Boardman
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Susana Clusella-Trullas
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Elsje Kleynhans
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|