1
|
Ehab M, Omran N, Handoussa H. The modulatory effect of oat on brain-derived neurotrophic factor, orexigenic neuropeptides, and dopaminergic signaling in obesity-induced rat model: a comparative study to orlistat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1251-1262. [PMID: 39314063 DOI: 10.1002/jsfa.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Obesity is a non-communicable complex disease that is the fifth leading cause of death worldwide. According to a novel viewpoint, the brain plays a significant role in the central regulation of satiety and energy homeostasis. Because of its rich nutritional profile and versatile uses, oat (Avena sativa) is one of the most popular functional foods recommended by many nutritionists. The anti-obesity effect of oat was hypothesized, focusing on the brain as the target organ. In the current study, the interplay between brain biomarkers, obesity, and its related complications was evaluated in diet-induced obese rats for 25 weeks, in which 60 adult male white albino Wistar rats were divided into three control and seven treatment groups given oat extracts in a dose-dependent manner. RESULTS Oat significantly improved obesity-related metabolic complications. In terms of brain function, oat significantly increased dopaminergic signaling, brain-derived neurotrophic factor levels, vaspin, irisin, and uncoupling protein-1 brain levels, while decreasing the expression of agouti-related peptide and neuropeptide Y (P-value < 0.05). CONCLUSION The current study proposes oat supplementation as a new conceptual framework with numerous implications for hedonic and homeostatic mechanisms that control satiety. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Madonna Ehab
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nayra Omran
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- School of Life and Medicinal Sciences, University of Hertfordshire, Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
2
|
Bazzer SK, Oliveira G, Fiedler JD, Nandety RS, Jannink JL, Caffe M. Genomic strategies to facilitate breeding for increased β-Glucan content in oat (Avena sativa L.). BMC Genomics 2025; 26:35. [PMID: 39810135 PMCID: PMC11731539 DOI: 10.1186/s12864-024-11174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Hexaploid oat (Avena sativa L.) is a commercially important cereal crop due to its soluble dietary fiber β-glucan, a hemicellulose known to prevent cardio-vascular diseases. To maximize health benefits associated with the consumption of oat-based food products, breeding efforts have aimed at increasing the β-glucan content in oat groats. However, progress has been limited. To accelerate oat breeding efforts, we leveraged existing breeding datasets (1,230 breeding lines from South Dakota State University oat breeding program grown in multiple environments between 2015 and 2022) to conduct a genome-wide association study (GWAS) to increase our understanding of the genetic control of beta-glucan content in oats and to compare strategies to implement genomic selection (GS) to increase genetic gain for β-glucan content in oat. RESULTS Large variation for β-glucan content was observed with values ranging between 3.02 and 7.24%. An independent GWAS was performed for each breeding panel in each environment and identified 22 loci distributed over fourteen oat chromosomes significantly associated with β-glucan content. Comparison based on physical position showed that 12 out of 22 loci coincided with previously identified β-glucan QTLs, and three loci are in the vicinity of cellulose synthesis genes, Cellulose synthase-like (Csl). To perform a GWAS analysis across all breeding datasets, the β-glucan content of each breeding line was predicted for each of the 26 environments. The overall GWAS identified 73 loci, of which 15 coincided with loci identified for individual environments and 37 coincided with previously reported β-glucan QTLs not identified when performing the GWAS in single years. In addition, 21 novel loci were identified that were not reported in the previous studies. The proposed approach increased our ability to detect significantly associated markers. The comparison of multiple GS scenarios indicated that using a specific set of markers as a fixed effect in GS models did not increase the prediction accuracy. However, the use of multi-environment data in the training population resulted in an increase in prediction accuracy (0.61-0.72) as compared to single-year (0.28-0.48) data. The use of USDA-SoyWheOatBar-3 K genotyping array data resulted in a similar level of prediction accuracy as did genotyping-by-sequencing data. CONCLUSION This study identified and confirmed the location of multiple loci associated with β-glucan content. The proposed genomic strategies significantly increase both our ability to detect significant markers in GWAS and the accuracy of genomic predictions. The findings of this study can be useful to accelerate the genetic improvement of β-glucan content and other traits.
Collapse
Affiliation(s)
- Sumandeep Kaur Bazzer
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University (SDSU), Brookings, SD, 57007, USA
| | - Guilherme Oliveira
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University (SDSU), Brookings, SD, 57007, USA
| | - Jason D Fiedler
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Raja Sekhar Nandety
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Jean-Luc Jannink
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, 14853, USA
| | - Melanie Caffe
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University (SDSU), Brookings, SD, 57007, USA.
| |
Collapse
|
3
|
Teixido-Orries I, Molino F, Castro-Criado B, Jodkowska M, Medina A, Marín S, Verheecke-Vaessen C. Mapping Variability of Mycotoxins in Individual Oat Kernels from Batch Samples: Implications for Sampling and Food Safety. Toxins (Basel) 2025; 17:34. [PMID: 39852987 PMCID: PMC11768576 DOI: 10.3390/toxins17010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Oats are susceptible to contamination by Fusarium mycotoxins, including deoxynivalenol (DON), zearalenone (ZEN), and T-2/HT-2 toxins, posing food safety risks. This study analyses the variation in levels of 14 mycotoxins in 200 individual oat kernels from two DON-contaminated batch samples (mean = 3498 µg/kg) using LC-MS/MS. The samples also contained deoxynivalenol-3-glucoside (DON-3G), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and ZEN. Contamination levels varied notably among individual kernels, with DON detected in 70% of them, followed by DON-3G (24.5%) and 3-ADON (20.5%). Importantly, 8% of kernels exceeded the EU legal limit for DON (1750 µg/kg), and some occasionally surpassed limits for ZEN and T-2/HT-2. Correlation analyses revealed strong associations between DON and its derivatives but weaker correlations with other toxins. Mycotoxin ratios varied widely, indicating that although they often co-occur, their concentrations differ between kernels. Contamination did not significantly impact kernel weight, though a slight trend toward lower weights in contaminated kernels was noted. Additionally, sampling statistics showed that as the percentage of selected kernels increased, the probability of batch sample rejection for DON contamination rose significantly. The study highlights the heterogeneity of mycotoxin contamination in oat batches, emphasising the importance of accurate detection and regulatory compliance to ensure safer oat-based products.
Collapse
Affiliation(s)
- Irene Teixido-Orries
- Applied Mycology Unit, Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Centre, University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain; (I.T.-O.); (F.M.); (B.C.-C.); (S.M.)
| | - Francisco Molino
- Applied Mycology Unit, Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Centre, University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain; (I.T.-O.); (F.M.); (B.C.-C.); (S.M.)
| | - Bianca Castro-Criado
- Applied Mycology Unit, Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Centre, University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain; (I.T.-O.); (F.M.); (B.C.-C.); (S.M.)
| | - Monika Jodkowska
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK; (M.J.); (A.M.)
| | - Angel Medina
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK; (M.J.); (A.M.)
| | - Sonia Marín
- Applied Mycology Unit, Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Centre, University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain; (I.T.-O.); (F.M.); (B.C.-C.); (S.M.)
| | - Carol Verheecke-Vaessen
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK; (M.J.); (A.M.)
| |
Collapse
|
4
|
Lim H, Hwang S, Cho SH, Bak YS, Yang WS, Park D, Kim CH. Compared Inhibitory Activities of Tamoxifen and Avenanthramide B on Liver Esterase and Correlation Based on the Superimposed Structure Between Porcine and Human Liver Esterase. Int J Mol Sci 2024; 25:13291. [PMID: 39769055 PMCID: PMC11675837 DOI: 10.3390/ijms252413291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Exposure to tamoxifen can exert effects on the human liver, and esterases process prodrugs such as antibiotics and convert them to less toxic metabolites. In this study, the porcine liver esterase (PLE)-inhibitory activity of tamoxifen has been investigated. PLE showed inhibition of a PLE isoenzyme (PLE5). In addition, avenanthramides, which have a similar structure to that of tamoxifen, have been used to determine the PLE-inhibitory effect. Among the avenanthramide derivatives, avenanthramide B has been shown to inhibit PLE. Avenanthramide B interacts with Lys284 of PLE, whereas avenanthramide A and C counteract with Lys284. Avenanthramide B has shown a similar inhibitory effect to that of tamoxifen. Given that avenanthramide B can modulate the action of PLE, it can be used in pharmaceutical and industrial applications for modulating the effects of PLE. Based on superimposed structures between PLE and human liver esterase, the impact of tamoxifen use in humans is discussed. In addition, this study can serve as a fundamental basis for future investigations regarding the potential risk of tamoxifen and other drugs. Thus, this study presents an insight into the comparison of structurally similar tamoxifen and avenanthramides on liver esterases, which can have implications for the pharmaceutical and agricultural industries.
Collapse
Affiliation(s)
- Hakseong Lim
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Sungbo Hwang
- Division of Advanced Predictive Research, Center for Biomimetic Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea;
| | - Seung-Hak Cho
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju 28159, Republic of Korea;
| | - Young-Seok Bak
- Department of Emergency Medical Services, Sun Moon University, Asan-si 31460, Republic of Korea;
| | - Woong-Suk Yang
- National Institute for Nanomaterials Technology (NINT), POSTECH, Pohang 37673, Republic of Korea;
| | - Daeui Park
- Division of Advanced Predictive Research, Center for Biomimetic Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea;
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
5
|
Wojtacki M, Żuk-Gołaszewska K, Duliński R, Giza-Gołaszewska J, Kalisz B, Gołaszewski J. Fatty Acid Composition, Oxidative Status, and Content of Biogenic Elements in Raw Oats Modified Through Agricultural Practices. Foods 2024; 13:3622. [PMID: 39594037 PMCID: PMC11594249 DOI: 10.3390/foods13223622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The chemical composition of raw oat grain is responsible for the high dietary value and health-promoting properties of oat products. This article presents the results of a study investigating the biofortification of grain in two oat genotypes-hulless and hulled-through agronomic treatments: chemical plant protection against weeds and fungi and mineral nitrogen fertilization. The applied agronomic treatments induced different changes in the fatty acid profiles, content of tocopherols, macronutrients, and micronutrients in the grain of hulled and hulless oats. Plant health contributed to higher concentrations of unsaturated fatty acids and potassium in oat grain. In turn, nitrogen fertilization decreased the content of unsaturated fatty acids, potassium, and copper and increased the content of saturated fatty acids, calcium, and manganese in oat grain. At the same time, agronomic treatments reduced the tocopherol content of the grain, which implies that the nutritional value of oats increases in the absence of chemical plant protection agents. The correlations between the content of desirable chemical compounds and agronomic treatments were stronger in hulless oat grain, which may suggest that the agronomic modification of oat-based foods is more effective in this genotype. The content of exogenous alpha-linoleic acid C18:3 n-3 and alpha-tocopherol was higher in grain harvested from the control treatment (without chemical plant protection), whereas grain harvested from fully protected treatments accumulated more essential gamma-linolenic acid C18:3 n-6. The content of gamma-tocopherol and copper in oat grain was higher in the absence of nitrogen fertilization.
Collapse
Affiliation(s)
- Michał Wojtacki
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 8, 10-718 Olsztyn, Poland; (M.W.); (K.Ż.-G.)
| | - Krystyna Żuk-Gołaszewska
- Department of Agrotechnology and Agribusiness, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 8, 10-718 Olsztyn, Poland; (M.W.); (K.Ż.-G.)
| | - Robert Duliński
- Department of Biotechnology and General Food Technology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland;
| | - Joanna Giza-Gołaszewska
- Department of Midwifery, Centre of Postgraduate Medical Education, ul. Żelazna 90, 01-004 Warszawa, Poland;
| | - Barbara Kalisz
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-719 Olsztyn, Poland;
| | - Janusz Gołaszewski
- Department of Genetics, Plant Breeding and Bioresource Engineering, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-724 Olsztyn, Poland
| |
Collapse
|
6
|
Jing R, Fu M, Huang Y, Zhang K, Ye J, Gong F, Jihea Ali Naji Nasser AB, Xu X, Xiao J, Yu G, Lin S, Zhao W, Xu N, Li X, Li Z, Gao S. Oat β-glucan repairs the epidermal barrier by upregulating the levels of epidermal differentiation, cell-cell junctions and lipids via Dectin-1. Br J Pharmacol 2024; 181:1596-1613. [PMID: 38124222 DOI: 10.1111/bph.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Oat β-glucan could ameliorate epidermal hyperplasia and accelerate epidermal barrier repair. Dectin-1 is one of the receptors of β-glucan and many biological functions of β-glucan are mediated by Dectin-1. Dectin-1 promotes wound healing through regulating the proliferation and migration of skin cells. Thus, this study aimed to investigate the role of oat β-glucan and Dectin-1 in epidermal barrier repair. EXPERIMENTAL APPROACH To investigate the role of Dectin-1 in the epidermal barrier, indicators associated with the recovery of a damaged epidermal barrier, including histopathological changes, keratinization, proliferation, apoptosis, differentiation, cell-cell junctions and lipid content were compared between WT and Dectin-1-/- mice. Further, the effect of oat β-glucan on the disruption of the epidermal barrier was also compared between WT and Dectin-1-/- mice. KEY RESULTS Dectin-1 deficiency resulted in delayed recovery and marked keratinization, as well as abnormal levels of keratinocyte differentiation, cell-cell junctions and lipid synthesis during the restoration of the epidermal barrier. Oat β-glucan significantly reduces epidermal hyperplasia, promotes epidermal differentiation, increases cell-cell junction expression, promotes lipid synthesis and ultimately accelerates the recovery of damaged epidermal barriers via Dectin-1. Oat β-glucan could promote CaS receptor expression and activate the PPAR-γ signalling pathway via Dectin-1. CONCLUSION AND IMPLICATIONS Oat β-glucan promote the recovery of damaged epidermal barriers through promoting epidermal differentiation, increasing the expression of cell-cell junctions and lipid synthesis through Dectin-1. Dectin-1 deficiency delay the recovery of epidermal barriers, which indicated that Dectin-1 may be a potential target in epidermal barrier repair.
Collapse
Affiliation(s)
- Rongrong Jing
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Mengli Fu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Yuhan Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaini Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jiabin Ye
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Xiashun Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jiali Xiao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Guangdong Yu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shisheng Lin
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Wengang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Fogacci F, ALGhasab NS, Di Micoli V, Giovannini M, Cicero AFG. Cholesterol-Lowering Bioactive Foods and Nutraceuticals in Pediatrics: Clinical Evidence of Efficacy and Safety. Nutrients 2024; 16:1526. [PMID: 38794764 PMCID: PMC11123713 DOI: 10.3390/nu16101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Long-term exposure to even slightly elevated plasma cholesterol levels significantly increases the risk of developing cardiovascular disease. The latest evidence recommends an improvement in plasma lipid levels, even in children who are not affected by severe hypercholesterolemia. The risk-benefit profile of pharmacological treatments in pediatric patients with moderate dyslipidemia is uncertain, and several cholesterol-lowering nutraceuticals have been recently tested. In this context, the available randomized clinical trials are small, short-term and mainly tested different types of fibers, plant sterols/stanols, standardized extracts of red yeast rice, polyunsaturated fatty acids, soy derivatives, and some probiotics. In children with dyslipidemia, nutraceuticals can improve lipid profile in the context of an adequate, well-balanced diet combined with regular physical activity. Of course, they should not be considered an alternative to conventional lipid-lowering drugs when necessary.
Collapse
Affiliation(s)
- Federica Fogacci
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Naif Saad ALGhasab
- Department of Internal Medicine, Medical College, Ha’il University, Ha’il 55476, Saudi Arabia
- Department of Cardiology, Libin Cardiovascular Institute, Calgary University, Calgary, AB T2N 1N4, Canada
| | - Valentina Di Micoli
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, Via Albertoni 15, 40138 Bologna, Italy; (F.F.); (V.D.M.); (M.G.)
- Cardiovascular Medicine Unit, Heart, Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
8
|
Moreau ELP, Riddle JM, Nazareno ES, Kianian SF. Three Decades of Rust Surveys in the United States Reveal Drastic Virulence Changes in Oat Crown Rust. PLANT DISEASE 2024; 108:1298-1307. [PMID: 37953229 DOI: 10.1094/pdis-09-23-1956-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
To better understand how the pathogenicity of the oat crown rust pathogen Puccinia coronata f. sp. avenae (Pca) has changed in the United States, 30 years of United States Department of Agriculture (USDA) survey isolates (n = 5,456) tested on 30 to 40 differential lines were analyzed for overall and Pc-resistance-gene-specific virulence trends and correlations. Pca is incredibly pathologically diverse, with 88% of races represented by a single isolate. There are a slightly higher proportion of unique races from the Northern region of the United States, and for one fourth of the years, Northern region isolates were significantly more virulent than Southern isolates, which supports the idea that sexual recombination in this region is mediated by the alternate host as a major factor in creating new races. However, there is also support for regular isolate movement between North and South regions as isolates in the United States are steadily accumulating virulences at a rate of 0.35 virulences per year. Virulence significantly increased for 23 and decreased for four of the 40 differential lines. In the past few years, virulence has reached 90% or greater for 16 differential lines. There were also strong correlations in virulence for certain Pc genes that are likely identical, allelic, or target the same or closely linked pathogen effectors (e.g., Pc39, Pc55, and Pc71), and the results were largely in concordance with recent genome-wide association study (GWAS) effector studies using USDA isolate subsets. Understanding changes in Pca pathogenicity is essential for the responsible deployment and management of Pc resistance genes for sustainable and profitable oat production.
Collapse
Affiliation(s)
- Erin L P Moreau
- Cereal Disease Laboratory, USDA-Agricultural Research Service, St. Paul, MN 55108
| | - Jakob M Riddle
- Cereal Disease Laboratory, USDA-Agricultural Research Service, St. Paul, MN 55108
| | - Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Shahryar F Kianian
- Cereal Disease Laboratory, USDA-Agricultural Research Service, St. Paul, MN 55108
| |
Collapse
|
9
|
Li D, Chen M, Meng X, Sun Y, Liu R, Sun T. Extraction, purification, structural characteristics, bioactivity and potential applications of polysaccharides from Avena sativa L.: A review. Int J Biol Macromol 2024; 265:130891. [PMID: 38493821 DOI: 10.1016/j.ijbiomac.2024.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Avena sativa L. (A. sativa L.), commonly known as oat, is a significant cereal grain crop with excellent edible and medicinal value. Oat polysaccharides (OPs), the major bioactive components of A. sativa L., have received considerable attention due to their beneficial bioactivities. However, the isolation and purification methods of OPs lack innovation, and the structure-activity relationship remains unexplored. This review emphatically summarized recent progress in the extraction and purification methods, structural characteristics, biological activities, structure-to-function associations and the potential application status of OPs. Different materials and isolation methods can result in the differences in the structure and bioactivity of OPs. OPs are mainly composed of various monosaccharide constituents, including glucose, arabinose and mannose, along with galactose, xylose and rhamnose in different molar ratios and types of glycosidic bonds. OPs exhibited a broad molecular weight distribution, ranging from 1.34 × 105 Da to 4.1 × 106 Da. Moreover, structure-activity relationships demonstrated that the monosaccharide composition, molecular weight, linkage types, and chemical modifications are closely related to their multiple bioactivities, including immunomodulatory activity, antioxidant effect, anti-inflammatory activity, antitumor effects etc. This work can provide comprehensive knowledge, update information and promising directions for future exploitation and application of OPs as therapeutic agents and multifunctional food additives.
Collapse
Affiliation(s)
- Dan Li
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce, Harbin 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Gu Y, Zhang X, Song S, Wang Y, Sun B, Wang X, Ma S. Structural modification of starch and protein: From the perspective of gelatinization degree of oat flour. Int J Biol Macromol 2024; 260:129406. [PMID: 38224797 DOI: 10.1016/j.ijbiomac.2024.129406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
To clarify the relationship between gelatinization degree and structure characteristics, oat kernels were roasted to different gelatinization degree of 15 %-90 % based on tempering water content of 22.5 %-35 %, and the structure characteristics of starch and protein were evaluated. The results showed that the increased gelatinization degree dependent on tempering water content promoted protein aggregation on the surface of starch particles, forming larger aggregates with molecular weight >100 kDa. Oat kernels presented a dense starch gel network structure induced by gelatinized starch. Partial gelatinization of starch led to a decrease in pasting viscosities (setback viscosity, 3.91 Pa·s-1.59 Pa·s) and enthalpy (5.12 J/g-0.11 J/g). With the increase of gelatinization degree, the starch crystal structure conversed from A + V type to V type, accompanied by the formation of starch-lipid complexes and a decrease of relative crystallinity (22.28 %-8.72 %). Moreover, 50 % gelatinized oat flour possessed the highest β-sheet structure (38.04 %), but a decrease in surface hydrophobicity and an increase in endogenous fluorescence intensity were found in oat flour of gelatinization degree >50 %. This study provided a theoretical reference for the application of oat flour with different gelatinization degrees to match suitable products.
Collapse
Affiliation(s)
- Yujuan Gu
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Xiaoyan Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Shuya Song
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Ying Wang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
11
|
Pandey NK, Murmu A, Banjare P, Matore BW, Singh J, Roy PP. Integrated predictive QSAR, Read Across, and q-RASAR analysis for diverse agrochemical phytotoxicity in oat and corn: A consensus-based approach for risk assessment and prioritization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12371-12386. [PMID: 38228952 DOI: 10.1007/s11356-024-31872-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
In the modern fast-paced lifestyle, time-efficient and nutritionally rich foods like corn and oat have gained popularity for their amino acids and antioxidant contents. The increasing demand for these cereals necessitates higher production which leads to dependency on agrochemicals, which can pose health risks through residual present in the plant products. To first report the phytotoxicity for corn and oat, our study employs QSAR, quantitative Read-Across and quantitative RASAR (q-RASAR). All developed QSAR and q-RASAR models were equally robust (R2 = 0.680-0.762, Q2Loo = 0.593-0.693, Q2F1 = 0.680-0.860) and find their superiority in either oat or corn model, respectively, based on MAE criteria. AD and PRI had been performed which confirm the reliability and predictability of the models. The mechanistic interpretation reveals that the symmetrical arrangement of electronegative atoms and polar groups directly influences the toxicity of compounds. The final phytotoxicity and prioritization are performed by the consensus approach which results into selection of 15 most toxic compounds for both species.
Collapse
Affiliation(s)
- Nilesh Kumar Pandey
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Anjali Murmu
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | | | - Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
12
|
Jiménez-Pulido IJ, Rico D, De Luis D, Martín-Diana AB. Combined Strategy Using High Hydrostatic Pressure, Temperature and Enzymatic Hydrolysis for Development of Fibre-Rich Ingredients from Oat and Wheat By-Products. Foods 2024; 13:378. [PMID: 38338514 PMCID: PMC10855855 DOI: 10.3390/foods13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Wheat bran (WB) and oat hull (OH) are two interesting undervalued cereal processing sources rich in total dietary fibre (TDF) and other associated bioactive compounds, such as β-glucans and polyphenols. The aim of this study was to optimise a combination chemical (enzymes) and physical (high hydrostatic pressure-temperature) strategies to increase the bioaccessibility of bioactive compounds naturally bound to the bran and hull outer layers. WB and OH were hydrolysed using food-grade enzymes (UltraFloXL and Viscoferm, for WB and OH, respectively) in combination with HPP at different temperatures (40, 50, 60 and 70 °C) and hydrolysis either before or after HPP. Proximal composition, phytic acid, β-glucans, total phenolics (TPs) and total antioxidant activity (TAC) were evaluated to select the processing conditions for optimal nutritional and bioactive properties of the final ingredients. The application of the hydrolysis step after the HPP treatment resulted in lower phytic acid levels in both matrices (WB and OH). On the other hand, the release of β-glucan was more effective at the highest temperature (70 °C) used during pressurisation. After the treatment, the TP content ranged from 756.47 to 1395.27 µmol GAE 100 g-1 in WB, and OH showed values from 566.91 to 930.45 µmol GAE 100 g-1. An interaction effect between the temperature and hydrolysis timing (applied before or after HPP) was observed in the case of OH. Hydrolysis applied before HPP was more efficient in releasing OH TPs at lower HPP temperatures (40-50 °C); meanwhile, at higher HPP temperatures (60-70 °C), hydrolysis yielded higher TP values when applied after HPP. This effect was not observed in WB, where the hydrolysis was more effective before HPP. The TP results were significantly correlated with the TAC values. The results showed that the application of optimal process conditions (hydrolysis before HPP at 60 or 70 °C for WB; hydrolysis after HPP at 70 °C for OH) can increase the biological value of the final ingredients obtained.
Collapse
Affiliation(s)
- Iván Jesús Jiménez-Pulido
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (I.J.J.-P.); (A.B.M.-D.)
| | - Daniel Rico
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (I.J.J.-P.); (A.B.M.-D.)
| | - Daniel De Luis
- Endocrinology and Nutrition Research Centre, Medicine School, Service of Endocrinology and Nutrition, Universitary Clinic Hospital of Valladolid, University of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain;
| | - Ana Belén Martín-Diana
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (I.J.J.-P.); (A.B.M.-D.)
| |
Collapse
|
13
|
Ghorbel M, Zribi I, Chihaoui M, Alghamidi A, Mseddi K, Brini F. Genome-Wide Investigation and Expression Analysis of the Catalase Gene Family in Oat Plants ( Avena sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3694. [PMID: 37960051 PMCID: PMC10650400 DOI: 10.3390/plants12213694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Through the degradation of reactive oxygen species (ROS), different antioxidant enzymes, such as catalase (CAT), defend organisms against oxidative stress. These enzymes are crucial to numerous biological functions, like plant development and defense against several biotic and abiotic stresses. However, despite the major economic importance of Avena sativa around the globe, little is known about the CAT gene's structure and organization in this crop. Thus, a genome-wide investigation of the CAT gene family in oat plants has been carried out to characterize the potential roles of those genes under different stressors. Bioinformatic approaches were used in this study to predict the AvCAT gene's structure, secondary and tertiary protein structures, physicochemical properties, phylogenetic tree, and expression profiling under diverse developmental and biological conditions. A local Saudi oat variety (AlShinen) was used in this work. Here, ten AvCAT genes that belong to three groups (Groups I-III) were identified. All identified CATs harbor the two conserved domains (pfam00199 and pfam06628), a heme-binding domain, and a catalase activity motif. Moreover, identified AvCAT proteins were located in different compartments in the cell, such as the peroxisome, mitochondrion, and cytoplasm. By analyzing their promoters, different cis-elements were identified as being related to plant development, maturation, and response to different environmental stresses. Gene expression analysis revealed that three different AvCAT genes belonging to three different subgroups showed noticeable modifications in response to various stresses, such as mannitol, salt, and ABA. As far as we know, this is the first report describing the genome-wide analysis of the oat catalase gene family, and these data will help further study the roles of catalase genes during stress responses, leading to crop improvement.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, Ha’il City 81451, Saudi Arabia;
| | - Ikram Zribi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia;
| | - Mejda Chihaoui
- Computer Science Departement, Applied College, University of Ha’il, Ha’il City 81451, Saudi Arabia;
| | - Ahmad Alghamidi
- Department of Biology, College of Sciences, University of Hail, Ha’il City 81451, Saudi Arabia;
- National Center for Vegetation Cover & Combating Desertification, Riyadh 13312, Saudi Arabia
| | - Khalil Mseddi
- Department of Biology, Faculty of Science of Sfax, University of Sfax, Sfax 3000, Tunisia;
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia;
| |
Collapse
|
14
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [PMID: 37797345 DOI: 10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Oat (Avena sativa L.), an annual herbaceous plant belonging to the Gramineae family, is widely grown in various regions including EU, Canada, America, Australia, etc. Due to the nutritional and pharmacological values, oats have been developed into various functional food including fermented beverage, noodle, cookie, etc. Meanwhile, numerous studies have demonstrated that oats may effectively improve metabolic syndrome, such as dyslipidemia, hyperglycemia, atherosclerosis, hypertension, and obesity. However, the systematic pharmacological mechanisms of oats on metabolic syndrome have not been fully revealed. Therefore, in order to fully explore the benefits of oat in food industry and clinic, this review aims to provide up-to-date information on oat and its constituents, focusing on the effects on metabolic syndrome.
Collapse
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People's Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
15
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [DOI: https:/doi.org/10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People’s Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
16
|
Konieczna W, Mierek-Adamska A, Chojnacka N, Antoszewski M, Szydłowska-Czerniak A, Dąbrowska GB. Characterization of the Metallothionein Gene Family in Avena sativa L. and the Gene Expression during Seed Germination and Heavy Metal Stress. Antioxidants (Basel) 2023; 12:1865. [PMID: 37891944 PMCID: PMC10603854 DOI: 10.3390/antiox12101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Metallothioneins (MTs) are a family of small proteins rich in cysteine residues. The sulfhydryl group of metallothioneins can bind to metal ions, maintaining metal homeostasis and protecting the cells from damage caused by toxic heavy metals. Moreover, MTs can function as reactive oxygen species scavengers since cysteine thiols undergo reversible and irreversible oxidation. Here, we identified 21 metallothionein genes (AsMTs) in the oat (Avena sativa L.) genome, which were divided into four types depending on the amino acid sequences of putative proteins encoded by identified genes. Analysis of promoter sequences showed that MTs might respond to a variety of stimuli, including biotic and abiotic stresses and phytohormones. The results of qRT-PCR showed that all four types of AsMTs are differentially expressed during the first 48 hours of seed germination. Moreover, stress induced by the application of zinc, cadmium, and a mixture of zinc and cadmium affects the expression of oat MTs variously depending on the MT type, indicating that AsMT1-4 fulfil different roles in plant cells.
Collapse
Affiliation(s)
- Wiktoria Konieczna
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Natalia Chojnacka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Marcel Antoszewski
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (W.K.); (M.A.)
| |
Collapse
|
17
|
Zhang J, Zheng M, Zhou L, Li X, Yu Y, Wang J, Sun B. Oat β-glucan alleviates muscle atrophy via promoting myotube formation and suppressing protein degradation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6252-6262. [PMID: 37160715 DOI: 10.1002/jsfa.12696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND The dangerous inducers of muscle atrophy are inflammatory reaction, oxidative stress, and cachexia, etc. β-Glucan, an important food derived active ingredient, has been reported to exert anti-inflammatory effects, however, its effects on regulating myoblast differentiation and protein degradation are unclear. This study is aimed to investigate the mechanism of oat β-glucan on alleviating muscle atrophy. RESULTS The results showed that oat β-glucan treatment reversed tumor necrosis factor-α (TNF-α) induced abnormal myoblast differentiation and reduced muscle atrophy related MuRF-1 and Atrogin-1 protein expression. The similar phenomenon was observed after using MCC950 (NLRP3 specific inhibitor) or AS1842856 (FoxO1 specific inhibitor) to suppress NLRP3 and FoxO1 expression, respectively. Exposure to β-glucan or AS1842856 also inhibited TNF-α induced the activation of TLR4/NF-κB pathway by inactivating FoxO1, and subsequently suppressed the expression of NLRP3. CONCLUSION Our results indicate that oat β-glucan exerts essential roles in promoting myoblast differentiation and alleviating muscle atrophy via inactivating FoxO1 and NLRP3 inflammasome signal pathway. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing, China
| | - Mengjun Zheng
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing, China
| | - Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
18
|
Anli EA, Gursel A, Gursoy A, Mert B. Assessment of the Quality Attributes of Oat β-glucan Fortified Reduced-Fat Goat Milk Yogurt Supported by Microfluidization. Foods 2023; 12:3457. [PMID: 37761166 PMCID: PMC10527872 DOI: 10.3390/foods12183457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, goat milk blends (1.5% fat) fortified with 0%, 0.25%, and 0.50% oat β-glucan were coded as YC, Y1, and Y2 and MFYC, MFY1, and MFY2. Microfluidization was applied at 103.4 MPa pressure in a 100 µm-process chamber at one stage for MFYC, MFY1, and MFY2 prior to yogurt making. Phase separation occurred due to the casein-β-glucan interaction observed at the oat β-glucan ratio (≥0.25%) but was more distinct at 0.50%. Microfluidization solved the textural instability at all ratios of β-glucan; a creamy and less cohesive structure was maintained in all yogurt samples. Among the samples, Y2 and MFY2 were the least viscous (p < 0.05), and syneresis was the highest and the lowest for Y2 and MFY1, respectively (p < 0.01). Lightness (L*) decreased, and yellowness (b*) and greenness (a*) increased with oat β-glucan concentration (p < 0.01) and MFYC. MFY1 and MFY2 were brighter and less green (p < 0.05). Microfluidization enhanced sensory attributes and oat β-glucan suppressed the goaty and salty taste, but the cereal taste became more obvious with the increase in the oat β-glucan ratio. Y1 and MFY1 were generally acceptable, and Y2 was less (p < 0.01). A liquid-like structure was observed in Y2 and this affected the sensorial perception in Y2.
Collapse
Affiliation(s)
- Elif Ayse Anli
- Department of Dairy Technology, Agricultural Faculty, Ankara University, 06110 Ankara, Turkey; (A.G.); (A.G.)
| | - Asuman Gursel
- Department of Dairy Technology, Agricultural Faculty, Ankara University, 06110 Ankara, Turkey; (A.G.); (A.G.)
| | - Ayse Gursoy
- Department of Dairy Technology, Agricultural Faculty, Ankara University, 06110 Ankara, Turkey; (A.G.); (A.G.)
| | - Behic Mert
- Department of Food Engineering, Middle East Technical University, 06531 Ankara, Turkey;
| |
Collapse
|
19
|
Al-Taher F, Nemzer B. Effect of Germination on Fatty Acid Composition in Cereal Grains. Foods 2023; 12:3306. [PMID: 37685238 PMCID: PMC10487171 DOI: 10.3390/foods12173306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Sprouted grains are gaining popularity as functional food ingredients. This study aimed to evaluate the lipid and fatty acid composition of eight sprouted grains (millet, amaranth, quinoa, wheat, rye, barley, buckwheat, and oat). The method used was germination for up to 72 h at temperatures ranging from 19-23 °C. In general, the lipid content increased in the various grains sprouted, providing a rich source of polyunsaturated fatty acids. The % oil yield ranged from 1.17 ± 0.02% in sprouted rye to 5.71 ± 0.26% in sprouted amaranth. Germinated oat showed the greatest increase in fat content, 54.3%, compared to the control. Polyunsaturated fatty acids were more prevalent in whole grains (46.9-75.6%) than saturated fatty acids (10.1-25.9%) and increased with sprouting. The primary fatty acids detected in the grains, in order of abundance, were linoleic, oleic, palmitic, linolenic, and stearic acids. Millet sprouts contained the lowest total saturated fatty acids and the highest polyunsaturated fatty acids. Amaranth had the highest amount of saturated fatty acids, while buckwheat contained the lowest quantity of polyunsaturated fatty acids. The lowest omega-6/omega-3 ratio was 7 to 1 in sprouted rye and 8 to 1 in sprouted barley.
Collapse
Affiliation(s)
| | - Boris Nemzer
- VDF FutureCeuticals, Inc., Momence, IL 60954, USA;
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Iskakov B, Kakimov M, Kudelski R, Mursalykova M, Kassenov A, Satayeva Z, Kardenov S, Kalibekkyzy Z, Mustafayeva A, Igenbayev A, Bembenek M. Improving the Technology of Primary Purification of the Safflower Oil Using Secondary Products of Processing on a Biological Basis. Foods 2023; 12:3275. [PMID: 37685208 PMCID: PMC10486502 DOI: 10.3390/foods12173275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Safflower oil is a very valuable product for the body and human health. It is rich in macro- and microelements, vitamins and minerals, and also has antioxidant properties. The primary purification of safflower oil is an important stage of its production and directly affects the quality of the final product and its storage ability. Purifying safflower oil using a combination of filtration and sedimentation processes in an experimental cone-shaped centrifuge is a new direction in its processing. The purpose of this study was to determine the effects of flax fiber as a filter material for safflower oil. The Akmai variety of the safflower was tested. The results showed that the quality indicators of safflower oil before and after filtration through flax fiber are different. The amount of unsaturated fatty acids such as oleic (18.31 ± 0.874%) and cis-linoleic acid (82.52 ± 1.854%) increased, as well as the content of arginine (2.1), tyrosine (0.57), methionine (0.4), cystine (2.5), tryptophan (2.6), and other amino acids (in oil g per 100 g of protein). The increase in the total amount of phenols (322.12 ± 6 mgEAG/kg of oil) was observed, which directly caused the higher antioxidant activity (42.65 ± 8%) of the safflower oil. These results demonstrate that flax fiber can enrich safflower oil. To find the optimal conditions for safflower oil centrifugation in a cone-shaped sedimentary-filtering centrifuge, the thickness of the flax fiber and the distance between the inner and outer perforated filter rotor were tested. It was found that the optimal and effective thickness of the flax fiber is 1.5 × 107 nm, while the thickness of the sediment is 0.5 × 107 nm.
Collapse
Affiliation(s)
- Bauyrzhan Iskakov
- The Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Mukhtarbek Kakimov
- The Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Rafał Kudelski
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Maigul Mursalykova
- The Department of Technological Equipment and Machine Engineering, NJSC Shakarim University of Semey, St. Glinka 20A, Semey 071412, Kazakhstan
| | - Amirzhan Kassenov
- The Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Zhuldyz Satayeva
- The Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Serik Kardenov
- The Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Zhanar Kalibekkyzy
- The Department of Food Production Technology and Biotechnology, NJSC Shakarim University of Semey, St. Glinka 20A, Semey 071412, Kazakhstan
| | - Ayaulym Mustafayeva
- The Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Aidyn Igenbayev
- The Department of Food Technology and Processing Products, S. Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue 62, Astana 010011, Kazakhstan
| | - Michał Bembenek
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
21
|
Fabiano GA, Shinn LM, Antunes AEC. Relationship between Oat Consumption, Gut Microbiota Modulation, and Short-Chain Fatty Acid Synthesis: An Integrative Review. Nutrients 2023; 15:3534. [PMID: 37630725 PMCID: PMC10459712 DOI: 10.3390/nu15163534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota consists of a set of microorganisms that colonizes the intestine and ferment fibers, among other nutrients, from the host's diet. A healthy gut microbiota, colonized mainly by beneficial microorganisms, has a positive effect on digestion and plays a role in disease prevention. However, dysregulation of the gut microbiota can contribute to various diseases. The nutrition of the host plays an important role in determining the composition of the gut microbiota. A healthy diet, rich in fiber, can beneficially modulate the gut microbiota. In this sense, oats are a source of both soluble and insoluble fiber. Oats are considered a functional ingredient with prebiotic potential and contain plant proteins, unsaturated fats, and antioxidant compounds. The impact of oat consumption on the gut microbiota is still emerging. Associations between oat consumption and the abundance of Akkermansia muciniphila, Roseburia, Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii have already been observed. Therefore, this integrative review summarizes the findings from studies on the relationship between oat consumption, the gut microbiota, and the metabolites, mainly short-chain fatty acids, it produces.
Collapse
Affiliation(s)
- Giovanna Alexandre Fabiano
- School of Applied Sciences (FCA), State University of Campinas, 1300 Pedro Zaccaria St., Limeira 13484-350, SP, Brazil;
| | | | | |
Collapse
|
22
|
Jiang P, Kang Z, Zhao S, Meng N, Liu M, Tan B. Effect of Dynamic High-Pressure Microfluidizer on Physicochemical and Microstructural Properties of Whole-Grain Oat Pulp. Foods 2023; 12:2747. [PMID: 37509839 PMCID: PMC10378919 DOI: 10.3390/foods12142747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
By avoiding the filtration step and utilizing the whole components of oats, the highest utilization rate of raw materials, improving the nutritional value of products and reducing environmental pollution, can be achieved in the production of whole-grain oat drinks. This study innovatively introduced a dynamic high-pressure microfluidizer (DHPM) into the processing of whole-grain oat pulp, which aimed to achieve the efficient crushing, homogenizing and emulsification of starch, dietary fiber and other substances. Due to DHPM processing, the instability index and slope value were reduced, whereas the β-glucan content, soluble protein content and soluble dietary fiber content were increased. In the samples treated with a pressure of 120 MPa and 150 MPa, 59% and 67% more β-glucan content was released, respectively. The soluble dietary fiber content in the samples treated with a pressure of 120 MPa and 150 MPa was increased by 44.8% and 43.2%, respectively, compared with the sample treated with a pressure of 0 MPa. From the perspective of the relative stability of the sample and nutrient enhancement, the processing pressure of 120 MPa was a good choice. In addition, DHPM processing effectively reduced the average particle size and the relaxation time of the water molecules of whole-grain oat pulp, whereas it increased the apparent viscosity of whole-grain oat pulp; all of the above changes alleviated the gravitational subsidence of particles to a certain extent, and thus the overall stability of the system was improved. Furthermore, CLSM and AFM showed that the samples OM-120 and OM-150 had a more uniform and stable structural system as a whole. This study could provide theoretical guidance for the development of a whole-grain oat drink with improved quality and consistency.
Collapse
Affiliation(s)
- Ping Jiang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Ziyue Kang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Su Zhao
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Ning Meng
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Ming Liu
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
23
|
Alemayehu GF, Forsido SF, Tola YB, Amare E. Nutritional and Phytochemical Composition and Associated Health Benefits of Oat ( Avena sativa) Grains and Oat-Based Fermented Food Products. ScientificWorldJournal 2023; 2023:2730175. [PMID: 37492342 PMCID: PMC10365923 DOI: 10.1155/2023/2730175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/27/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Oats (Avena sativa L.) are a popular functional cereal grain due to their numerous health benefits. This review article summarized the information on the chemical composition and phytonutrients of oats grown in different countries. It also reviewed recently developed fermented oat products to highlight their potential for human health. Oats have an interesting nutritional profile that includes high-quality protein, unsaturated fats, soluble fiber, polyphenolic compounds, and micronutrients. Oat grain has a unique protein composition, with globulins serving as the primary storage protein, in contrast to other cereals, where prolamins are the main storage proteins. Oats have the highest fat content of any cereal, with low saturated fatty acids and high essential unsaturated fatty acid content, which can help reduce the risk of cardiovascular diseases. Oats are a good source of soluble dietary fiber, particularly β-glucan, which has outstanding functional properties and is extremely important in human nutrition. β-Glucan has been shown to lower blood cholesterol and glucose absorption in the intestine, thereby preventing diseases such as cardiovascular injury, dyslipidemia, hypertension, inflammatory state, and type 2 diabetes. Oats also contain high concentration of antioxidant compounds. Avenanthramides, which are unique to oats, are powerful antioxidants with high antioxidative activity in humans. Recognizing the nutritional benefits of oats, oat-based fermented food products are gaining popularity as functional foods with high probiotic potential.
Collapse
Affiliation(s)
| | | | - Yetenayet B. Tola
- Department of Post-Harvest Management, Jimma University, Jimma, Ethiopia
| | - Endale Amare
- Food Science and Nutrition Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
24
|
Jaouhari Y, Travaglia F, Giovannelli L, Picco A, Oz E, Oz F, Bordiga M. From Industrial Food Waste to Bioactive Ingredients: A Review on the Sustainable Management and Transformation of Plant-Derived Food Waste. Foods 2023; 12:2183. [PMID: 37297428 PMCID: PMC10252586 DOI: 10.3390/foods12112183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
According to the United Nations, approximately one-third of the food produced for human consumption is wasted. The actual linear "Take-Make-Dispose" model is nowadays obsolete and uneconomical for societies and the environment, while circular thinking in production systems and its effective adoption offers new opportunities and benefits. Following the "Waste Framework Directive" (2008/98/CE), the European Green Deal, and the actual Circular Economy Action Plan, when prevention is not possible, recovering an unavoidable food waste as a by-product represents a most promising pathway. Using last year's by-products, which are rich in nutrients and bioactive compounds, such as dietary fiber, polyphenols, and peptides, offer a wake-up call to the nutraceutical and cosmetic industry to invest and develop value-added products generated from food waste ingredients.
Collapse
Affiliation(s)
- Yassine Jaouhari
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy; (Y.J.); (F.T.); (L.G.)
| | - F. Travaglia
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy; (Y.J.); (F.T.); (L.G.)
| | - L. Giovannelli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy; (Y.J.); (F.T.); (L.G.)
| | - A. Picco
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy; (Y.J.); (F.T.); (L.G.)
| | - E. Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye;
| | - F. Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye;
| | - M. Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy; (Y.J.); (F.T.); (L.G.)
| |
Collapse
|
25
|
Nemzer B, Al-Taher F. Analysis of Fatty Acid Composition in Sprouted Grains. Foods 2023; 12:foods12091853. [PMID: 37174393 PMCID: PMC10178583 DOI: 10.3390/foods12091853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
A whole-grain diet is associated with the prevention of metabolic syndromes, including obesity, diabetes, and cardiovascular diseases. Sprouting improves the nutritional profile and bioactive properties of grains, which are important for use as raw ingredients in the food industry. The aim of this review was to examine the lipid and fatty acid composition of germinated grains. The methods discussed include germination and analytical procedures for determining fat and fatty acid contents of grains. The effects of sprouting on the fat content and storage stability of grains were also assessed. Lipid levels ranged from 1.43% to 6.66% in the sprouted grains. The individual fatty acid content of grains changed depending on the germination conditions (17-37 °C, 1-9 days). Limited findings showed that sprouting grains at higher temperatures (20-25 °C) and longer times generated a healthy balance of omega-6 and omega-3 fatty acids, which is beneficial to humans. Future studies are needed to determine the optimum incubation and germination periods specific to each grain to improve the omega-6/omega-3 ratio. Free fatty acids were produced more slowly and levels of oxidation products were lower in sprouted grains than in the raw ingredients when stored for a year. Additional studies are required to investigate the oxidative stability and shelf life of sprouted grains.
Collapse
Affiliation(s)
- Boris Nemzer
- Research & Development, VDF/FutureCeuticals, Inc., Momence, IL 60954, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fadwa Al-Taher
- Research & Development, VDF/FutureCeuticals, Inc., Momence, IL 60954, USA
| |
Collapse
|
26
|
Gu Y, Qian X, Sun B, Wang X, Ma S. Effects of gelatinization degree and boiling water kneading on the rheology characteristics of gluten-free oat dough. Food Chem 2023; 404:134715. [DOI: 10.1016/j.foodchem.2022.134715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
27
|
Mahmoud NE, Mahdi AA, Barakat AMA, Abdelhameed RM. Boosting vegetation, biochemical constituents, grain yield and anti-cancer performance of cultivated oat (Avena sativa L) in calcareous soil using oat extracts coated inside nanocarriers. BMC PLANT BIOLOGY 2022; 22:544. [PMID: 36434510 PMCID: PMC9700955 DOI: 10.1186/s12870-022-03926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Calcareous soil contains many problems such as the lack of sources of major and minor elements that are useful for plant growth and development. Plant extracts and nanoparticles are very popular as biostimulants in plant production. Here, the effect of aqueous, non-aqueous and alcoholic oat extracts on the growth, biochemical response of oats leaves and grains grown in experimental fields under new reclamation lands were studied. Moreover, different oat extracts were a pathway through the copper-dependent metal-organic framework (MOFs) to separate bioactive molecules from extracts such as salicylic acid, anthraquinone, and triacylglycerol. Additionally, the separated molecules incorporated in Cu-BTC MOFs and oats extracts missed active molecules were spray applied on oat plants. The results showed that the treated plants showed stimulatory responses in growth and physiology. The treatments improved plant growth and biomass, enhanced total protein, water-soluble carbohydrates, free phenolic compounds content in oat leaves, photosynthesis, and chlorophyll contents. The treatments also improved the level of vitamins E and K, phenolic compounds, and avenanthramides C in the oat grains. Moreover, the treatments showed an improvement in the yield of oats (grain and straw) using water and alcoholic oat extracts in which the active molecules were missed. Our findings demonstrate that Cu-BTC and oats extracts can act as a biostimulant to enhance the biological and chemical properties of oats and increase the yield in calcareous soils. The cytotoxicity study of oats (produced from AE, c@Cu-BTC, and AE-c treatments) was conducted using Vero Cell lines. The anticancer activities of different oat grains were carried out using MCF 7cell lines. The results show that the grains produced from the AE, c@Cu-BTC, and AE-c treatments possessed 94.3, 72.3, and 100% activity towards the cancer cell line. Removal of growth inhibitors from spray solutions increases grain yield and anticancer activity.
Collapse
Affiliation(s)
- Noura E Mahmoud
- Biochemistry Unit, Plant Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Asmaa A Mahdi
- Biochemistry Unit, Plant Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Ashraf M A Barakat
- Zoonotic Diseases Department, National Research Centre, 33 Bohouth Str. Dokki, Giza, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
28
|
Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14588-14599. [PMID: 36376030 DOI: 10.1021/acs.jafc.2c06518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oat is classified as a whole grain and contains high contents of protein, lipids, carbohydrates, vitamins, minerals, and phytochemicals (such as polyphenols, flavonoids, and saponins). In recent years, studies have focused on the effects of oat consumption on reducing the risk of a variety of diseases. Reports have indicated that an oat diet exerts certain biological functions, such as preventing cardiovascular diseases, reducing blood glucose, and promoting intestinal health, along with antiallergy, antioxidation, and cancer preventive effects. At present, cancer is the second leading cause of death worldwide. The natural products of oat are an important breakthrough for developing new strategies of cancer prevention, and their ability to interact with multiple cellular targets helps to combat the complexity of cancer pathogenesis. In addition, the comprehensive study of the cancer prevention activity and potential mechanism of oat nutrients and phytochemicals has become a research hotspot. In this Review, we focused on the potential functions of peptides, dietary fiber, and phytochemicals in oats on cancer prevention and further revealed novel mechanisms and prospects for clinical application. These findings might provide a novel approach to deeply understand the functions and mechanisms for cancer prevention of oat consumption.
Collapse
Affiliation(s)
- Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
29
|
Li X, Oey I, Ying Leong S, Kebede B. Understanding the volatile flavour changes during accelerated shelf-life testing of oats using chemometrics and kinetic modelling. Food Chem 2022; 405:134864. [DOI: 10.1016/j.foodchem.2022.134864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/15/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
|
30
|
Gu Y, Qian X, Sun B, Tian X, Wang X, Ma S. Effect of roasting treatment on the micromorphology, gelatinization, structure, and digestibility of whole oat flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Validation of Appropriate Reference Genes for qRT–PCR Normalization in Oat (Avena sativa L.) under UV-B and High-Light Stresses. Int J Mol Sci 2022; 23:ijms231911187. [PMID: 36232488 PMCID: PMC9570368 DOI: 10.3390/ijms231911187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Oat is a food and forage crop species widely cultivated worldwide, and it is also an important forage grass in plateau regions of China, where there is a high level of ultraviolet radiation and sunlight. Screening suitable reference genes for oat under UV-B and high-light stresses is a prerequisite for ensuring the accuracy of real-time quantitative PCR (qRT–PCR) data used in plant adaptation research. In this study, eight candidate reference genes (sulfite oxidase, SUOX; victorin binding protein, VBP; actin-encoding, Actin1; protein PSK SIMULATOR 1-like, PSKS1; TATA-binding protein 2-like, TBP2; ubiquitin-conjugating enzyme E2, UBC2; elongation factor 1-alpha, EF1-α; glyceraldehyde-3-phosphate dehydrogenase 1, GAPDH1;) were selected based on previous studies and our oat transcriptome data. The expression stability of these reference genes in oat roots, stems, and leaves under UV-B and high-light stresses was first calculated using three frequently used statistical software (geNorm, NormFinder, and BestKeeper), and then the comprehensive stability of these genes was evaluated using RefFinder. The results showed that the most stably expressed reference genes in the roots, stems, and leaves of oat under UV-B stress were EF1-α, TBP2, and PSKS1, respectively; the most stably expressed reference genes in the roots, stems, and leaves under high-light stress were PSKS1, UBC2, and PSKS1, respectively. PSKS1 was the most stably expressed reference gene in all the samples. The reliability of the selected reference genes was further validated by analysis of the expression of the phenylalanine ammonia-lyase (PAL) gene. This study highlights reference genes for accurate quantitative analysis of gene expression in different tissues of oat under UV-B and high-light stresses.
Collapse
|
32
|
Production of fungal biomass from oat flour for the use as a nutritious food source. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Liu S, He T, Rafique H, Zou L, Hu X. Effect of low‐temperature plasma treatment on the microbial inactivation and physicochemical properties of oat grain. Cereal Chem 2022. [DOI: 10.1002/cche.10599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shuyang Liu
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anShaanxiChina710062
| | - Ting He
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anShaanxiChina710062
| | - Hamad Rafique
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anShaanxiChina710062
| | - Liang Zou
- School of Food and Biological EngineeringChengdu UniversityChengduSichuanChina610106
| | - Xinzhong Hu
- College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anShaanxiChina710062
| |
Collapse
|
34
|
Zhang J, Liu M, Zhao Y, Zhu Y, Bai J, Fan S, Zhu L, Song C, Xiao X. Recent Developments in Fermented Cereals on Nutritional Constituents and Potential Health Benefits. Foods 2022; 11:2243. [PMID: 35954011 PMCID: PMC9368413 DOI: 10.3390/foods11152243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022] Open
Abstract
Fermentation is one of the most economical and safe methods to improve the nutritional value, sensory quality and functional characteristics of raw materials, and it is also an important method for cereal processing. This paper reviews the effects of microbial fermentation on cereals, focusing on their nutritional value and health benefits, including the effects of fermentation on the protein, starch, phenolic compounds contents, and other nutrient components of cereals. The bioactive compounds produced by fermented cereals have positive effects on health regulation. Finally, the future market development of fermented cereal products is summarized and prospected.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
- Inspection Quarantine Bureau Inspection and Quarantine Technology Center, Zhenjiang 212000, China
| | - Mengting Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Ci Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| |
Collapse
|
35
|
Chen C, Liu P, Cao J, Ouyang Z, Pang Z. Pasting, Rheological, and Tribological Properties of Rice Starch and Oat Flour Mixtures at Different Proportions. Foods 2022; 11:2115. [PMID: 35885357 PMCID: PMC9324416 DOI: 10.3390/foods11142115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Rice starch (RS) and oat flour (OF) were mixed in different proportions, and the pasting properties, particle size, rheology, and tribological properties of the mixed system were analyzed. According to the RVA results, OF inhibited the starch pasting, and the pasting temperature and peak viscosity of the mixed system increased. The particle size shifted toward the small particle size after the mixing of RS and OF components, and the RS/OF 9/1 particle size is the smallest. All samples exhibited shear dilution behavior and the viscosity of the system could be significantly increased at a 10 wt% RS content. At sliding speeds of >1 mm/s, the friction of the mixture is usually between the two individual components, which also confirmed the association or interaction between the two polymers.
Collapse
Affiliation(s)
| | | | | | | | - Zhihua Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (C.C.); (P.L.); (J.C.); (Z.O.)
| |
Collapse
|
36
|
Effects of Applying Different Doses of Selenite to Soil and Foliar at Different Growth Stage on Selenium Content and Yield of Different Oat Varieties. PLANTS 2022; 11:plants11141810. [PMID: 35890444 PMCID: PMC9324387 DOI: 10.3390/plants11141810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: With the increase in people’s consumption of processed oat products, the production of selenium (Se)-enriched oat has become a possibility to supplement the human body with Se. Therefore, the effects of various factors on the Se-enriched ability and yield of different oat varieties were comprehensively studied. (2) Methods: cv.“Pinyan 5” and cv.“Bayou 18” were applied at the stem-elongation stage and heading stage in the Jinzhong (JZ), and cv.“Bayou 1” and cv.“Jinyan 18” were applied at the heading stage and flowering stage in the northwestern Shanxi (JXB) with different doses of Na2SeO3 (0, 5.48, 10.96, 21.92, 43.84, 65.76, 98.64, 0, 5.48, 10.96, 21.92, 43.84, 65.76, 98.64, 147.96 g hm−2) by soil application and foliar spraying. (3) Results: The grain Se content and yield of oat were affected by the variety, Se application dose, stage and method of Se supplementation. Additionally, the Se content in oat grain was positively correlated with the Se application dose while the yield of oat first increased and then decreased with the Se application dose. (4) Conclusions: In the JZ and JXB, 21.92 g hm−2 and 43.84 g hm−2 Se was sprayed on the leaves of cv.“Bayou 18” and cv.“Bayou 1” at the heading stage, respectively, was the most effective Se biofortification program.
Collapse
|
37
|
Effect of industrial processing on the volatiles, enzymes and lipids of wholegrain and rolled oats. Food Res Int 2022; 157:111243. [DOI: 10.1016/j.foodres.2022.111243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
|
38
|
Levinskaitė L, Vaičekauskytė V. Control of fungi isolated from cereals: variations in the susceptibility of fungal species to essential oils, ozone and
UV‐C. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Viktorija Vaičekauskytė
- Lithuanian University of Educational Sciences University Studentų St 39 Vilnius Lithuania
- Vytautas Magnus University Educational Academy T. Ševčenkos St 31 Vilnius Lithuania
| |
Collapse
|
39
|
Meyer JC, Birr T, Hennies I, Wessels D, Schwarz K. Reduction of deoxynivalenol, T-2 and HT-2 toxins and associated Fusarium species during commercial and laboratory de-hulling of milling oats. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1163-1183. [PMID: 35385360 DOI: 10.1080/19440049.2022.2059576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oats (Avena sativa L.) are well known for their nutritional properties but are susceptible to the growth of different Fusarium fungi resulting in mycotoxin contamination of harvested oats. In this study, oat samples from harvest years 2011 to 2017 were preselected for their suitability as milling oats for food purposes with DON contents below 1750 µg/kg. The reduction of DON, T-2 and HT-2 toxins during the commercial de-hulling process was analysed. While the average reduction for the sum of T-2 and HT-2 toxins in large oat kernels was 85%, the reduction for thin kernels was 66%. The reduction for DON was about 60% and did not differ for the two kernel fractions. In laboratory de-hulling experiments, milling oat samples and de-hulled oat kernels with known DON, T-2 and HT-2 toxin content were correlated with the associated DNA amount of Fusarium graminearum, Fusarium culmorum and Fusarium langsethiae. The reduction of the Fusarium DNA amount after de-hulling was comparable to the reduction of the associated mycotoxins. Notably, the correlation between F. langsethiae DNA amounts and the sum of T-2 and HT-2 toxin contents was R2 = 0.69 in milling oats and it rose to R2 = 0.85 in de-hulled oat kernels. In laboratory tests, at least one third of the initial levels of DON and the sum of T-2 and HT-2 toxins could be removed by polishing off the first parts of the outer layers; two thirds remained in the polished oat kernels. These observations indicate that de-hulling alone may not be completely sufficient to remove mycotoxin contamination in oats. These findings are of high importance in the discussion of determining legal maximum levels for DON or the sum of T-2 and HT-2 toxins in intermediate and final products.
Collapse
Affiliation(s)
- Jens C Meyer
- H.&J. Brüggen KG, Lübeck, Germany.,Division of Food Technology, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Tim Birr
- Division of Plant Diseases and Crop Protection, Institute of Phytopathology, Kiel University, Kiel, Germany
| | | | | | - Karin Schwarz
- Division of Food Technology, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| |
Collapse
|
40
|
Bacterially Converted Oat Active Ingredients Enhances Antioxidative and Anti-UVB Photoaging Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1901564. [PMID: 35692582 PMCID: PMC9187468 DOI: 10.1155/2022/1901564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Oat (Avena sativa L.) is one of the most widely consumed cereal grains worldwide and is considered as an important cereal crop with high nutritional value and potential health benefits. With different bacterial strains, fermented oat extracts were examined for the antioxidant and antiaging effects on the skin after optimization of extraction conditions. Fermented oats contained high avenanthramides, and its function was investigated on matrix metalloproteinase-1 and collagen expression with human dermal fibroblast cells. After fractionation, butanol layers showed the highest avenanthramides contents. Therefore, the microbial fermentation of oats enhances the quality and content of functional ingredients of oats, which provide natural dietary supplements, antioxidants, and antiaging agents.
Collapse
|
41
|
Yu J, Xia J, Yang C, Pan D, Xu D, Sun G, Xia H. Effects of Oat Beta-Glucan Intake on Lipid Profiles in Hypercholesterolemic Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022; 14:2043. [PMID: 35631184 PMCID: PMC9147392 DOI: 10.3390/nu14102043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: hyperlipidemia is one of the cardiovascular diseases which becomes a great threat to the health of people worldwide. Oat beta-glucan is reported to have a beneficial effect on lowering blood lipids. To probe the effect of oat beta-glucan consumption on serum lipid profiles (total cholesterol, total triglyceride, high-density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol), we carried out a systematic search on randomized controlled trials of oat beta-glucan intervention on hypercholesterolemic individuals. (2) Methods: the pieces of literature were obtained from PubMed, Scopus, Cochrane Library, Web of Science, and the Embase from inception to 28 February 2022. The results were presented with the weighted mean difference (WMD) with a 95% CI. The random-effects or fixed-effects model was applied according to the heterogeneity. The subgroup analysis and meta-regression were used to identify the source of heterogeneity. (3) Results: thirteen trials with 927 participants were included in our meta-analysis. Overall, oat beta-glucan supplementation significantly reduced levels of TC (pooled WMD = -0.24 mmol/L; 95%CI: -0.28 to -0.20 mmol/L), LDL-c (pooled WMD = -0.27 mmol/L; 95%CI: -0.35 to -0.20 mmol/L). Furthermore, beta-glucan consumption did not show significant effects on TG (pooled WMD = -0.04 mmol/L; 95%CI: -0.13 to 0.05 mmol/L), HDL-c (pooled WMD = 0.00 mmol/L; 95%CI: -0.05 to 0.05 mmol/L). Subgroup analysis indicated that critical factors, such as disease severity of participants, the daily intervention of oat beta-glucan, source of oat beta-glucan, and duration of intervention had impacts on outcomes. (4) Conclusions: oat beta-glucan intake may significantly decrease the level of TC and LDL-c while no significant changes in TG and HDL-c were observed. This meta-analysis supports the health benefits of oat beta-glucan, especially for its cholesterol-lowering features, although it has some inevitable limitations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (J.Y.); (J.X.); (C.Y.); (D.P.); (D.X.); (G.S.)
| |
Collapse
|
42
|
Toward the development of Ac/Ds transposon-mediated gene tagging system for functional genomics in oat (Avena sativa L.). Funct Integr Genomics 2022; 22:669-681. [PMID: 35467221 DOI: 10.1007/s10142-022-00861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/04/2022]
Abstract
Cultivated oat (Avena sativa L.) is an important cereal grown worldwide due to its multifunctional uses for animal feed and human food. Oat has lagged behind other cereals in the genetic and genomic studies attributed to its large and complex genomes. Transposon-based genome characterization has been utilized successfully for identifying and determining gene function in large genome cereals. To develop gene tagging and gene-editing resources for oat, maize Activator (Ac) and Dissociation (Ds) transposons were introduced into the oat genome using the biolistic delivery system. A total of 2035 oat calli were bombarded and twenty-four independent, stable transgenic events were obtained. Transformation frequencies were up to 19.0%, and 1.9% for bialaphos and hygromycin selection, respectively. Re-mobilization of the non-autonomous Ds element, by introducing Ac transposase source, led to a transposition frequency up to 16.8%. The properties of ten unique flanking sequences have been characterized to reveal the Ds-tagged sites in the oat genome. Genes at Ds insertion sites showed homology to gibberellin 20-oxidase 3, (1,3;1,4)-beta-D-glucan synthase, and aspartate kinase. This Ac/Ds transposon-based gene tagging system could facilitate and expedite functional genomic studies in oat.
Collapse
|
43
|
Juzoń K, Warchoł M, Dziurka K, Czyczyło-Mysza IM, Marcińska I, Skrzypek E. The effect of 2,4-dichlorophenoxyacetic acid on the production of oat ( Avena sativa L.) doubled haploid lines through wide hybridization. PeerJ 2022; 10:e12854. [PMID: 35178299 PMCID: PMC8812298 DOI: 10.7717/peerj.12854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Development of new cultivars is one of the vital options for adapting agriculture to climate change, and the production of doubled haploid (DH) plants can make a significant contribution to accelerating the breeding process. Oat is one of the cereals with particular health benefits, but it unfortunately still remains recalcitrant to haploidization. Our previous studies have clearly demonstrated that post-pollination with hormone treatment is a key step in haploid production through wide hybridization and indicated it as the most effective method for this species. Therefore, we subsequently addressed the problem of the influence of 2,4-dichlorophenoxyacetic acid (2,4-D) concentration on consecutive stages of DH production. METHODS Twenty-nine genotypes were tested, 9,465 florets were pollinated with maize pollen 2 days after emasculation and then treated with 2,4-D at 50 mg/L and 100 mg/L. RESULTS The applied treatments did not reveal any differences in the number of obtained haploid embryos. However, almost twice as many haploid plants formed on MS medium after applying a higher auxin concentration and 20% more successfully acclimatized. Moreover, 100 mg/L 2,4-D treatment resulted in twice as many DH lines that produced almost three times more seeds compared to 50 mg/L treatment. Nevertheless, the results have confirmed the existence of strong genotypic variation, which may significantly limit the development of an effective and economically feasible method that could be incorporated into breeding programs.
Collapse
Affiliation(s)
- Katarzyna Juzoń
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | - Marzena Warchoł
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | - Kinga Dziurka
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | | | - Izabela Marcińska
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | - Edyta Skrzypek
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| |
Collapse
|
44
|
Nutraceuticals in Paediatric Patients with Dyslipidaemia. Nutrients 2022; 14:nu14030569. [PMID: 35276928 PMCID: PMC8840379 DOI: 10.3390/nu14030569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Coronary heart disease (CHD) is the main cause of death and morbidity in the world. Childhood is a critical period during which atherosclerosis may begin to develop; in the presence of familial hypercholesterolaemia (FH), the lifelong elevation of LDL cholesterol levels greatly accelerates atherosclerosis. Lowering LDL-C levels is associated with a well-documented reduction in cardiovascular disease risk. Current guidelines support the dietary and lifestyle approach as the primary strategy of intervention in children and adolescents with FH. Nutraceuticals (functional foods or dietary supplements of plant or microbial origin) are included in the EU guidelines as lifestyle interventions and may provide an additional contribution in reducing LDL levels when pharmacological therapy is not yet indicated. Meta-analyses of randomised clinical trials have demonstrated that the same nutraceuticals improve lipid profile, including lowering LDL-C, total cholesterol and triglyceride levels. In this narrative review, starting from current scientific evidence, we analyse the benefits and limitations of the nutraceuticals in children and adolescents with dyslipidaemia, and we try to evaluate their use and safety in clinical practice.
Collapse
|
45
|
Yang X, Zheng M, Zhou M, Zhou L, Ge X, Pang N, Li H, Li X, Li M, Zhang J, Huang XF, Zheng K, Yu Y. Lentinan Supplementation Protects the Gut–Liver Axis and Prevents Steatohepatitis: The Role of Gut Microbiota Involved. Front Nutr 2022; 8:803691. [PMID: 35127789 PMCID: PMC8810540 DOI: 10.3389/fnut.2021.803691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota–gut–liver axis has emerged as an important player in developing nonalcoholic steatohepatitis (NASH), a type of nonalcoholic fatty liver disease (NAFLD). Higher mushroom intake is negatively associated with the prevalence of NAFLD. This study examined whether lentinan, an active ingredient in mushrooms, could improve NAFLD and gut microbiota dysbiosis in NAFLD mice induced by a high-fat (HF) diet. Dietary lentinan supplementation for 15 weeks significantly improved gut microbiota dysbiosis in HF mice, evidenced by increased the abundance of phylum Actinobacteria and decreased phylum Proteobacteria and Epsilonbacteraeota. Moreover, lentinan improved intestinal barrier integrity and characterized by enhancing intestinal tight junction proteins, restoring intestinal redox balance, and reducing serum lipopolysaccharide (LPS). In the liver, lentinan attenuated HF diet-induced steatohepatitis, alteration of inflammation–insulin (NFκB-PTP1B-Akt-GSK3β) signaling molecules, and dysregulation of metabolism and immune response genes. Importantly, the antihepatic inflammation effects of lentinan were associated with improved gut microbiota dysbiosis in the treated animals, since the Spearman's correlation analysis showed that hepatic LPS-binding protein and receptor (Lbp and Tlr4) and pro- and antiinflammatory cytokine expression were significantly correlated with the abundance of gut microbiota of phylum Proteobacteria, Epsilonbacteraeota and Actinobacteria. Therefore, lentinan supplementation may be used to mitigate NAFLD by modulating the microbiota–gut–liver axis.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ning Pang
- Tianjin Third Central Hospital, Tianjin, China
| | - Hongchun Li
- Medical Technology Institute, Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mengdi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xu-Feng Huang
- School of Medicine, Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- School of Medicine, Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Yinghua Yu
| |
Collapse
|
46
|
Rosa-Sibakov N, de Oliveira Carvalho MJ, Lille M, Nordlund E. Impact of Enzymatic Hydrolysis and Microfluidization on the Techno-Functionality of Oat Bran in Suspension and Acid Milk Gel Models. Foods 2022; 11:foods11020228. [PMID: 35053960 PMCID: PMC8774640 DOI: 10.3390/foods11020228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Oat bran is a nutritionally rich ingredient, but it is underutilized in semi-moist and liquid foods due to technological issues such as high viscosity and sliminess. The aim of this work was to improve the technological properties of oat bran concentrate (OBC) in high-moisture food applications by enzymatic and mechanical treatments. OBC was hydrolyzed with β-glucanase (OBC-Hyd) and the water-soluble fraction (OBC-Sol) was separated. OBC, OBC-Hyd and OBC-Sol were further microfluidized at 5% dry matter content. Enzymatic treatment and microfluidization of OBC reduced the molecular weight (Mw) of β-glucan from 2748 kDa to 893 and 350 kDa, respectively, as well as the average particle size of OBC (3.4 and 35 times, respectively). Both treatments increased the extractability of the soluble compounds from the OBC samples (up to 80%) and affected their water retention capacity. OBC in suspension had very high viscosity (969 mPa·s) when heated, which decreased after both enzyme and microfluidization treatments. The colloidal stability of the OBC in suspension was improved, especially after microfluidization. The addition of OBC samples to acid milk gels decreased syneresis, improved the water holding capacity and softened the texture. The changes in the suspension and gel characteristics were linked with reduced β-glucan Mw and OBC particle size.
Collapse
|
47
|
Gu Y, Qian X, Sun B, Ma S, Tian X, Wang X. Nutritional composition and physicochemical properties of oat flour sieving fractions with different particle size. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
Du B, Cheng C, Ren X, Yang Y, Xu B. Enhancement of Potential Health Benefits of Insoluble Dietary Fiber from the Fruiting Body of Medicinal Mushroom Schizophyllum commune (Agaricomycetes) Through Superfine Pulverization. Int J Med Mushrooms 2022; 24:73-82. [DOI: 10.1615/intjmedmushrooms.2022045183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Xu D, Feng M, Chu Y, Wang S, Shete V, Tuohy KM, Liu F, Zhou X, Kamil A, Pan D, Liu H, Yang X, Yang C, Zhu B, Lv N, Xiong Q, Wang X, Sun J, Sun G, Yang Y. The Prebiotic Effects of Oats on Blood Lipids, Gut Microbiota, and Short-Chain Fatty Acids in Mildly Hypercholesterolemic Subjects Compared With Rice: A Randomized, Controlled Trial. Front Immunol 2021; 12:787797. [PMID: 34956218 PMCID: PMC8697019 DOI: 10.3389/fimmu.2021.787797] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/22/2021] [Indexed: 01/14/2023] Open
Abstract
Phytochemicals derived from oats are reported to possess a beneficial effect on modulating dyslipidemia, specifically on lowering total and LDL cholesterol. However, deeper insights into its mechanism remain unclear. In this randomized controlled study, we assigned 210 mildly hypercholesterolemic subjects from three study centers across China (Beijing, Nanjing, and Shanghai) to consume 80 g of oats or rice daily for 45 days. Plasma lipid profiles, short chain fatty acids (SCFAs), and fecal microbiota were measured. The results showed that total cholesterol (TC) and non-high-density lipoprotein cholesterol (non-HDL-C) decreased significantly with both oats and rice intake after 30 and 45 days. The reduction in TC and non-HDL-C was greater in the participants consuming oats compared with rice at day 45 (p = 0.011 and 0.049, respectively). Oat consumption significantly increased the abundance of Akkermansia muciniphila and Roseburia, and the relative abundance of Dialister, Butyrivibrio, and Paraprevotella, and decreased unclassified f-Sutterellaceae. In the oat group, Bifidobacterium abundance was negatively correlated with LDL-C (p = 0.01, r = −0.31) and, TC and LDL-C were negatively correlated to Faecalibacterium prausnitzii (p = 0.02, r = −0.29; p = 0.03, r = −0.27, respectively). Enterobacteriaceae, Roseburia, and Faecalibacterium prausnitzii were positively correlated with plasma butyric acid and valeric acid concentrations and negatively correlated to isobutyric acid. HDL-C was negatively correlated with valeric acid (p = 0.02, r = −0.25) and total triglyceride (TG) was positively correlated to isovaleric acid (p = 0.03, r = 0.23). Taken together, oats consumption significantly reduced TC and LDL-C, and also mediated a prebiotic effect on gut microbiome. Akkermansia muciniphila, Roseburia, Bifidobacterium, and Faecalibacterium prausnitzii, and plasma SCFA correlated with oat-induced changes in plasma lipids, suggesting prebiotic activity of oats to modulate gut microbiome could contribute towards its cholesterol-lowering effect.
Collapse
Affiliation(s)
- Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Meiyuan Feng
- Department of R&D Life Science, PepsiCo, Inc., Shanghai, China
| | - YiFang Chu
- Department of R&D Life Science, PepsiCo, Inc., Barrington, IL, United States
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Varsha Shete
- Department of R&D Life Science, PepsiCo, Inc., Barrington, IL, United States
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Feng Liu
- Department of R&D Life Science, PepsiCo, Inc., Shanghai, China
| | - Xirui Zhou
- Department of R&D Life Science, PepsiCo, Inc., Shanghai, China
| | - Alison Kamil
- Department of R&D Life Science, PepsiCo, Inc., Barrington, IL, United States
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Hechun Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Na Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qian Xiong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- Department of Nutrition and Functional Food Research, Beijing Research Institute for Nutritional Resources, Beijing, China
| | - Jianqin Sun
- Department of Clinical Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Yuexin Yang
- National Institute for Nutrition and Health, Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
50
|
Yokosuka A, Ishihara K, Yamada T, Iguchi T, Mimaki Y. Steroidal Glycosides from the Aerial Parts of Avena sativa L. and Their Cytotoxic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14568-14579. [PMID: 34845902 DOI: 10.1021/acs.jafc.1c05782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Twelve steroidal glycosides (1-12) were isolated from the aerial parts of Avena sativa L. (Poaceae). Among the isolated compounds, 1 was directly isolated from the plant for the first time, and 2-6 were new steroidal glycosides. The structures of 1-6 were determined by analysis of their spectroscopic data, chemical transformations, and chromatographic and spectroscopic analyses of the hydrolyzed products. Compounds 5 and 6 were novel steroidal glycosides with a B-ring contracted skeleton (B-nor steroid). Compounds 1, 9, 11, and 12 were cytotoxic to HL-60 human promyelocytic leukemia cells, MIA PaCa-2 human pancreatic carcinoma cells, and A549 human lung adenocarcinoma cells with IC50 values ranging from 0.79 to 13.5 μM. HL-60 cells treated with 1 exhibited apoptotic characteristics, namely, condensed nuclear chromatin, accumulation of sub-G1 cells, and activation of caspase-3. Additionally, the loss of the mitochondrial membrane potential and the release of cytochrome c into the cytoplasm in 1-treated HL-60 cells suggested that 1 induced apoptosis through a mitochondrial-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Akihito Yokosuka
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Keita Ishihara
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Yamada
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tomoki Iguchi
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|