1
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Michel M, Renaud D, Schmidt R, Einkemmer M, Laser LV, Michel E, Dubowy KO, Karall D, Laser KT, Scholl-Bürgi S. Altered Serum Proteins Suggest Inflammation, Fibrogenesis and Angiogenesis in Adult Patients with a Fontan Circulation. Int J Mol Sci 2024; 25:5416. [PMID: 38791454 PMCID: PMC11121818 DOI: 10.3390/ijms25105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Previous omics research in patients with complex congenital heart disease and single-ventricle circulation (irrespective of the stage of palliative repair) revealed alterations in cardiac and systemic metabolism, inter alia abnormalities in energy metabolism, and inflammation, oxidative stress or endothelial dysfunction. We employed an affinity-proteomics approach focused on cell surface markers, cytokines, and chemokines in the serum of 20 adult Fontan patients with a good functioning systemic left ventricle, and we 20 matched controls to reveal any specific processes on a cellular level. Analysis of 349 proteins revealed 4 altered protein levels related to chronic inflammation, with elevated levels of syndecan-1 and glycophorin-A, as well as decreased levels of leukemia inhibitory factor and nerve growth factor-ß in Fontan patients compared to controls. All in all, this means that Fontan circulation carries specific physiological and metabolic instabilities, including chronic inflammation, oxidative stress imbalance, and consequently, possible damage to cell structure and alterations in translational pathways. A combination of proteomics-based biomarkers and the traditional biomarkers (uric acid, γGT, and cholesterol) performed best in classification (patient vs. control). A metabolism- and signaling-based approach may be helpful for a better understanding of Fontan (patho-)physiology. Syndecan-1, glycophorin-A, leukemia inhibitory factor, and nerve growth factor-ß, especially in combination with uric acid, γGT, and cholesterol, might be interesting candidate parameters to complement traditional diagnostic imaging tools and the determination of traditional biomarkers, yielding a better understanding of the development of comorbidities in Fontan patients, and they may play a future role in the identification of targets to mitigate inflammation and comorbidities in Fontan patients.
Collapse
Affiliation(s)
- Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David Renaud
- Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France;
- Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
| | | | - Matthias Einkemmer
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Lea Valesca Laser
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, 32545 Bad Oeynhausen, Germany; (L.V.L.); (K.O.D.); (K.T.L.)
| | - Erik Michel
- Clinic for Pediatrics, Medizin Campus Bodensee, 88048 Friedrichshafen, Germany;
| | - Karl Otto Dubowy
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, 32545 Bad Oeynhausen, Germany; (L.V.L.); (K.O.D.); (K.T.L.)
| | - Daniela Karall
- Department of Child and Adolescent Health, Division Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria (S.S.-B.)
| | - Kai Thorsten Laser
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, 32545 Bad Oeynhausen, Germany; (L.V.L.); (K.O.D.); (K.T.L.)
| | - Sabine Scholl-Bürgi
- Department of Child and Adolescent Health, Division Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria (S.S.-B.)
| |
Collapse
|
3
|
Barrett MS, Bauer TC, Li MH, Hegarty DM, Mota CMD, Amaefuna CJ, Ingram SL, Habecker BA, Aicher SA. Ischemia-reperfusion myocardial infarction induces remodeling of left cardiac-projecting stellate ganglia neurons. Am J Physiol Heart Circ Physiol 2024; 326:H166-H179. [PMID: 37947434 PMCID: PMC11213476 DOI: 10.1152/ajpheart.00582.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Neurons in the stellate ganglion (SG) provide sympathetic innervation to the heart, brown adipose tissue (BAT), and other organs. Sympathetic innervation to the heart becomes hyperactive following myocardial infarction (MI). The impact of MI on the morphology of cardiac sympathetic neurons is not known, but we hypothesized that MI would stimulate increased cell and dendritic tree size in cardiac neurons. In this study, we examined the effects of ischemia-reperfusion MI on sympathetic neurons using dual retrograde tracing methods to allow detailed characterization of cardiac- and BAT-projecting neurons. Different fluorescently conjugated cholera toxin subunit B (CTb) tracers were injected into the pericardium and the interscapular BAT pads, respectively. Experimental animals received a 45-min occlusion of the left anterior descending coronary artery and controls received sham surgery. One week later, hearts were collected for assessment of MI infarct and SGs were collected for morphological or electrophysiological analysis. Cardiac-projecting SG neurons from MI mice had smaller cell bodies and shorter dendritic trees compared with sham animals, specifically on the left side ipsilateral to the MI. BAT-projecting neurons were not altered by MI, demonstrating the subpopulation specificity of the response. The normal size and distribution differences between BAT- and cardiac-projecting stellate ganglion neurons were not altered by MI. Patch-clamp recordings from cardiac-projecting left SG neurons revealed increased spontaneous excitatory postsynaptic currents despite the decrease in cell and dendritic tree size. Thus, increased dendritic tree size does not contribute to the enhanced sympathetic neural activity seen after MI.NEW & NOTEWORTHY Myocardial infarction (MI) causes structural and functional changes specifically in stellate ganglion neurons that project to the heart, but not in cells that project to brown adipose fat tissue.
Collapse
Affiliation(s)
- Madeleine S Barrett
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Temerity C Bauer
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Ming-Hua Li
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Deborah M Hegarty
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Clarissa M D Mota
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Chimezie J Amaefuna
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Susan L Ingram
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - Sue A Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
4
|
van de Haterd B, Verboven K, Vandenabeele F, Agten A. The Role of Skeletal Muscle Mitochondria in Colorectal Cancer Related Cachexia: Friends or Foes? Int J Mol Sci 2022; 23:14833. [PMID: 36499157 PMCID: PMC9737299 DOI: 10.3390/ijms232314833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Up to 60% of colorectal cancer (CRC) patients develop cachexia. The presence of CRC related cachexia is associated with more adverse events during systemic therapy, leading to a high mortality rate. The main manifestation in CRC related cachexia is the loss of skeletal muscle mass, resulting from an imbalance between skeletal muscle protein synthesis and protein degradation. In CRC related cachexia, systemic inflammation, oxidative stress, and proteolytic systems lead to mitochondrial dysfunction, resulting in an imbalanced skeletal muscle metabolism. Mitochondria fulfill an important function in muscle maintenance. Thus, preservation of the skeletal muscle mitochondrial homeostasis may contribute to prevent the loss of muscle mass. However, it remains elusive whether mitochondria play a benign or malignant role in the development of cancer cachexia. This review summarizes current (mostly preclinical) evidence about the role of skeletal muscle mitochondria in the development of CRC related cachexia. Future human research is necessary to determine the physiological role of skeletal muscle mitochondria in the development of human CRC related cachexia.
Collapse
Affiliation(s)
- Britt van de Haterd
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| | - Kenneth Verboven
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
- BIOMED—Biomedical Research Center, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| | - Frank Vandenabeele
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| | - Anouk Agten
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
- U-RISE—Uhasselt Research Group on Innovative and Society-Engaged Education, School for Educational Studies, Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| |
Collapse
|
5
|
Robison NJ, Su JA, Fang MJ, Malvar J, Menteer J. Cardiac Function in Children and Young Adults Treated with MEK Inhibitors: A Retrospective Cohort Study. Pediatr Cardiol 2022; 43:1223-1228. [PMID: 35233653 PMCID: PMC10284303 DOI: 10.1007/s00246-022-02842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
Abstract
MEK inhibitors (MEKi) have shown efficacy in pediatric low-grade glioma as well as plexiform neurofibroma. MEKi have been associated with acute cardiac dysfunction in adults. Cardiac consequences in children are unknown. We performed a single center retrospective cohort study evaluating cardiac function by echocardiography (echo) in children and young adults < 21 years receiving MEKi between October 2013 and May 2018. Blinded assessment of left ventricular function by fractional shortening (FS) and ejection fraction (EF) was performed on all available echocardiograms performed before, during, and following therapy, as well as after re-initiation of therapy. Twenty-six patients underwent MEKi therapy with echo follow-up during the study period. Twenty-four of these had complete echo data. Median follow-up was 12 months. Borderline EF (EF 53-57.9%) occurred in 12 (50%) patients; and 3 (12.5%) progressed to abnormal EF (EF < 53%). Cardiac dysfunction, when it occurred, was mild (lowest documented EF was 45%, and lowest FS was 24.4%). EF abnormalities typically fluctuated during therapy, resolved off therapy, and recurred with MEKi re-initiation. No clinical or demographic differences were detected between those who maintained normal cardiac function and those who developed borderline or overt cardiac dysfunction. Symptomatic heart failure did not occur. In this cohort of children and young adults, MEKi use was associated with a high (50%) incidence of borderline or mildly decreased left ventricular function. There was no evidence of permanent cardiac dysfunction. Further evaluation in larger prospective trials is needed.
Collapse
Affiliation(s)
- Nathan J Robison
- Division of Hematology and Oncology, Children's Hospital Los Angeles, 4650 W. Sunset Blvd, MS#54, Los Angeles, CA, 90027, USA.
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Jennifer A Su
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Melody J Fang
- Chicago Medical School at Rosalind Franklin University, North Chicago, IL, USA
| | - Jemily Malvar
- Division of Hematology and Oncology, Children's Hospital Los Angeles, 4650 W. Sunset Blvd, MS#54, Los Angeles, CA, 90027, USA
| | - Jondavid Menteer
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
7
|
Ho TJ, Chi-Kang Tsai B, Kuo CH, Luk HN, Day CH, Jine-Yuan Hsieh D, Chen RJ, Kuo WW, Kumar VB, Yao CH, Huang CY. Arecoline induces cardiotoxicity by upregulating and activating cardiac hypertrophy-related pathways in Sprague-Dawley rats. Chem Biol Interact 2022; 354:109810. [PMID: 34999050 DOI: 10.1016/j.cbi.2022.109810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/13/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022]
Abstract
Habitual chewing of the areca nut increases the risk of mortality owing to cardiovascular disease, but few reports have revealed the cardiotoxicity mechanism of the areca nut. Arecoline has been reported to be the primary toxic constituent in the areca nut. In order to study the acute cardiotoxicity of the areca nut in the development of pathologic heart hypertrophy, we induced heart injury in rats using arecoline. Arecoline at a low dosage (5 mg/kg/day) or a high dosage (50 mg/kg/day) was intraperitoneally injected to Sprague-Dawley rats for 21 days. The change of heart function and biochemical pathways were investigated with echocardiography and Western blot. The results were presented that heart functions were weakened by arecoline stimulation, and western blotting analysis revealed an elevation in BNP levels in the heart after arecoline exposure. Arecoline induced IL-6-mediated activation of the MEK5/ERK5 and JAK2/STAT3 pathways, as well as mitogen-activated protein kinase signaling cascades. Further, arecoline increased the calcineurin and NFATc3 levels in the heart. In summary, our results suggest that arecoline causes significantly cardiotoxicity and heart damage by inducing several hypertrophy-related signaling pathways, including IL-6-induced MEK5/ERK5, JAK2/STAT3, mitogen-activated protein kinases, and calcineurin signaling pathways. The study elucidated, for the first time, the possible cardiac hypertrophy mechanisms underlying the cardiotoxicity of the areca nut.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Hualien, Taiwan; Department of Chinese Medicine,Hualien Tzu Chi Hospital, Hualien, Taiwan; School of Post-Baccalaure-ate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan; Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Hsiang-Ning Luk
- Department of Anesthesia, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - V Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Tang Y, Kline KT, Zhong XS, Xiao Y, Lian H, Peng J, Liu X, Powell DW, Tang G, Li Q. Chronic colitis upregulates microRNAs suppressing brain-derived neurotrophic factor in the adult heart. PLoS One 2021; 16:e0257280. [PMID: 34543287 PMCID: PMC8452076 DOI: 10.1371/journal.pone.0257280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 08/28/2021] [Indexed: 01/08/2023] Open
Abstract
Ulcerative colitis and Crohn's disease are classified as chronic inflammatory bowel diseases (IBD) with known extraintestinal manifestations. The interplay between heart and gut in IBD has previously been noted, but the mechanisms remain elusive. Our objective was to identify microRNAs mediating molecular remodeling and resulting cardiac impairment in a rat model of colitis. To induce chronic colitis, dextran sodium sulfate (DSS) was given to adult rats for 5 days followed by 9 days with normal drinking water for 4 cycles over 8 weeks. Echocardiography was performed to evaluate heart function. DSS-induced colitis led to a significant decrease in ejection fraction, increased left ventricular mass and size, and elevated B-type natriuretic protein. MicroRNA profiling showed a total of 56 miRNAs significantly increased in the heart by colitis, 8 of which are predicted to target brain-derived neurotrophic factor (BDNF). RT-qPCR validated the increases of miR-1b, Let-7d, and miR-155. Transient transfection revealed that miR-155 significantly suppresses BDNF in H9c2 cells. Importantly, DSS colitis markedly decreased BDNF in both myocardium and serum. Levels of various proteins critical to cardiac homeostasis were also altered. Functional studies showed that BDNF increases cell viability and mitigates H2O2-induced oxidative damage in H9c2 cells, demonstrating its protective role in the adult heart. Mechanistically, cellular experiments identified IL-1β as the inflammatory mediator upregulating cardiac miR-155; this effect was confirmed in adult rats. Furthermore, IL-1β neutralizing antibody ameliorated the DSS-induced increase in miR-155 and concurrent decrease in BDNF in the adult heart, showing therapeutic potential. Our findings indicate that chronic colitis impairs heart function through an IL-1β→miR-155→BDNF signaling axis.
Collapse
Affiliation(s)
- Yanbo Tang
- Department of Gastroenterology, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Kevin T. Kline
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Xiaoying S. Zhong
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Ying Xiao
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Don W. Powell
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Guodu Tang
- Department of Gastroenterology, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Qingjie Li
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| |
Collapse
|
9
|
Su JH, Luo MY, Liang N, Gong SX, Chen W, Huang WQ, Tian Y, Wang AP. Interleukin-6: A Novel Target for Cardio-Cerebrovascular Diseases. Front Pharmacol 2021; 12:745061. [PMID: 34504432 PMCID: PMC8421530 DOI: 10.3389/fphar.2021.745061] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cardio-Cerebrovascular Disease is a collective term for cardiovascular disease and cerebrovascular disease, being a serious threat to human health. A growing number of studies have proved that the content of inflammatory factors or mediators determines the stability of vascular plaque and the incidence of cardio-cerebrovascular event, and involves in the process of Cardio-Cerebrovascular Diseases. Interleukin-6 is a widely used cytokine that causes inflammation and oxidative stress, which would further result in cardiac and cerebral injury. The increased expression of interleukin-6 is closely related to atherosclerosis, myocardial infarction, heart failure and ischemic stroke. It is a key risk factor for these diseases by triggering inflammatory reaction and inducing other molecules release. Therefore, interleukin-6 may become a potential target for Cardio-Cerebrovascular Diseases in the future. This paper is aimed to discuss the expression changes and pathological mechanisms of interleukin-6 in Cardio-Cerebrovascular Diseases, and to provide a novel strategy for the prevention and treatment of Cardio-Cerebrovascular Diseases.
Collapse
Affiliation(s)
- Jian-Hui Su
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Meng-Yi Luo
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Na- Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Chen
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
10
|
Inhibition of interleukin-6 signaling attenuates aortitis, left ventricular hypertrophy and arthritis in interleukin-1 receptor antagonist deficient mice. Clin Sci (Lond) 2021; 134:2771-2787. [PMID: 33064141 DOI: 10.1042/cs20201036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to examine whether inhibition of Interleukin (IL)-6 signaling by MR16-1, an IL-6 receptor antibody, attenuates aortitis, cardiac hypertrophy, and arthritis in IL-1 receptor antagonist deficient (IL-1RA KO) mice. Four weeks old mice were intraperitoneally administered with either MR16-1 or non-immune IgG at dosages that were adjusted over time for 5 weeks. These mice were stratified into four groups: MR16-1 treatment groups, KO/MR low group (first 2.0 mg, following 0.5 mg/week, n=14) and KO/MR high group (first 4.0 mg, following 2.0 mg/week, n=19) in IL-1RA KO mice, and IgG treatment groups, KO/IgG group (first 2.0 mg, following 1.0 mg/week, n=22) in IL-1RA KO mice, and wild/IgG group (first 2.0 mg, following 1.0 mg/week, n=17) in wild mice. Aortitis, cardiac hypertrophy and arthropathy were histologically analyzed. Sixty-eight percent of the KO/IgG group developed aortitis (53% developed severe aortitis). In contrast, only 21% of the KO/MR high group developed mild aortitis, without severe aortitis (P<0.01, vs KO/IgG group). Infiltration of inflammatory cells, such as neutrophils, T cells, and macrophages, was frequently observed around aortic sinus of the KO/IgG group. Left ventricle and cardiomyocyte hypertrophy were observed in IL-1RA KO mice. Administration of high dosage of MR16-1 significantly suppressed cardiomyocyte hypertrophy. MR16-1 attenuated the incidence and severity of arthritis in IL-1RA KO mice in a dose-dependent manner. In conclusion, blockade of IL-6 signaling may exert a beneficial effect to attenuate severe aortitis, left ventricle hypertrophy, and arthritis.
Collapse
|
11
|
Sun K, Li YY, Jin J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduct Target Ther 2021; 6:79. [PMID: 33612829 PMCID: PMC7897720 DOI: 10.1038/s41392-020-00455-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
The response of immune cells in cardiac injury is divided into three continuous phases: inflammation, proliferation and maturation. The kinetics of the inflammatory and proliferation phases directly influence the tissue repair. In cardiac homeostasis, cardiac tissue resident macrophages (cTMs) phagocytose bacteria and apoptotic cells. Meanwhile, NK cells prevent the maturation and transport of inflammatory cells. After cardiac injury, cTMs phagocytose the dead cardiomyocytes (CMs), regulate the proliferation and angiogenesis of cardiac progenitor cells. NK cells prevent the cardiac fibrosis, and promote vascularization and angiogenesis. Type 1 macrophages trigger the cardioprotective responses and promote tissue fibrosis in the early stage. Reversely, type 2 macrophages promote cardiac remodeling and angiogenesis in the late stage. Circulating macrophages and neutrophils firstly lead to chronic inflammation by secreting proinflammatory cytokines, and then release anti-inflammatory cytokines and growth factors, which regulate cardiac remodeling. In this process, dendritic cells (DCs) mediate the regulation of monocyte and macrophage recruitment. Recruited eosinophils and Mast cells (MCs) release some mediators which contribute to coronary vasoconstriction, leukocyte recruitment, formation of new blood vessels, scar formation. In adaptive immunity, effector T cells, especially Th17 cells, lead to the pathogenesis of cardiac fibrosis, including the distal fibrosis and scar formation. CMs protectors, Treg cells, inhibit reduce the inflammatory response, then directly trigger the regeneration of local progenitor cell via IL-10. B cells reduce myocardial injury by preserving cardiac function during the resolution of inflammation.
Collapse
Affiliation(s)
- Kang Sun
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
12
|
Yasmeen F, Seo H, Javaid N, Kim MS, Choi S. Therapeutic Interventions into Innate Immune Diseases by Means of Aptamers. Pharmaceutics 2020; 12:pharmaceutics12100955. [PMID: 33050544 PMCID: PMC7600108 DOI: 10.3390/pharmaceutics12100955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 12/25/2022] Open
Abstract
The immune system plays a crucial role in the body's defense system against various pathogens, such as bacteria, viruses, and parasites, as well as recognizes non-self- and self-molecules. The innate immune system is composed of special receptors known as pattern recognition receptors, which play a crucial role in the identification of pathogen-associated molecular patterns from diverse microorganisms. Any disequilibrium in the activation of a particular pattern recognition receptor leads to various inflammatory, autoimmune, or immunodeficiency diseases. Aptamers are short single-stranded deoxyribonucleic acid or ribonucleic acid molecules, also termed "chemical antibodies," which have tremendous specificity and affinity for their target molecules. Their features, such as stability, low immunogenicity, ease of manufacturing, and facile screening against a target, make them preferable as therapeutics. Immune-system-targeting aptamers have a great potential as a targeted therapeutic strategy against immune diseases. This review summarizes components of the innate immune system, aptamer production, pharmacokinetic characteristics of aptamers, and aptamers related to innate-immune-system diseases.
Collapse
|
13
|
Avalle L, Marino F, Camporeale A, Guglielmi C, Viavattene D, Bandini S, Conti L, Cimino J, Forni M, Zanini C, Ghigo A, Bogorad RL, Cavallo F, Provero P, Koteliansky V, Poli V. Liver-Specific siRNA-Mediated Stat3 or C3 Knockdown Improves the Outcome of Experimental Autoimmune Myocarditis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:62-72. [PMID: 32577433 PMCID: PMC7301178 DOI: 10.1016/j.omtm.2020.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/19/2020] [Indexed: 11/15/2022]
Abstract
Myocarditis can lead to autoimmune disease, dilated cardiomyopathy, and heart failure, which is modeled in the mouse by cardiac myosin immunization (experimental autoimmune myocarditis [EAM]). Signal transducer and activator of transcription 3 (STAT3) systemic inhibition exerts both preventive and therapeutic effects in EAM, and STAT3 constitutive activation elicits immune-mediated myocarditis dependent on complement C3 and correlating with activation of the STAT3-interleukin 6 (IL-6) axis in the liver. Thus, liver-specific STAT3 inhibition may represent a therapeutic option, allowing to bypass the heart toxicity, predicted by systemic STAT3 inhibition. We therefore decided to explore the effectiveness of silencing liver Stat3 and C3 in preventing EAM onset and/or the recovery of cardiac functions. We first show that complement C3 and C5 genetic depletion significantly prevents the onset of spontaneous myocarditis, supporting the complement cascade as a viable target. In order to interfere with complement production and STAT3 activity specifically in the liver, we took advantage of liver-specific Stat3 or C3 small interfering (si)RNA nanoparticles, demonstrating that both siRNAs can significantly prevent myocarditis onset and improve the recovery of heart functions in EAM. Our data demonstrate that liver-specific Stat3/C3 siRNAs may represent a therapeutic option for autoimmune myocarditis and suggest that complement levels and activation might be predictive of progression to dilated cardiomyopathy.
Collapse
Affiliation(s)
- Lidia Avalle
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Francesca Marino
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Annalisa Camporeale
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Chiara Guglielmi
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Daniele Viavattene
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Silvio Bandini
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - James Cimino
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Marco Forni
- EuroClone S.p.A Research Laboratory, Molecular Biotechnology Center, University of Turin, Torino 10126, Italy
| | - Cristina Zanini
- EuroClone S.p.A Research Laboratory, Molecular Biotechnology Center, University of Turin, Torino 10126, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Roman L. Bogorad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Victor Koteliansky
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow 121205, Russia
- Department of Chemistry, MV Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy
- Corresponding author Valeria Poli, Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
14
|
Mehrabi Z, Firouzbakhsh F, Rahimi-Mianji G, Paknejad H. Immunity and growth improvement of rainbow trout (Oncorhynchus mykiss) fed dietary nettle (Urtica dioica) against experimental challenge with Saprolegnia parasitica. FISH & SHELLFISH IMMUNOLOGY 2020; 104:74-82. [PMID: 32446965 DOI: 10.1016/j.fsi.2020.05.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
In this study, effects of nettle (Urtica dioica) on growth, immunity, and gene expressions were examined in rainbow trout after an 8-week feeding period. A total of 264 juvenile rainbow trout (10.72 ± 0.55 g) were selected and stocked randomly in 12 aquaria. Nettle powder was added to the fish feed at three doses, 0.5,1 and 1.5% served as treatments. At the end of 8-week feeding period, the fish were exposed to Saprolegnia parasitica for 3 weeks. Results showed that all treatments fed with nettle diets exhibited significant increases in weight gain and SGR, and decreased FCR compared to the control. Feeding the fish with dietary nettle resulted in significant rises in blood indices and non-specific immunity in comparison with the control. Furthermore, fish fed 0.5% of dietary nettle showed significantly increased expressions of TNF-α, IL-1b, IL-6 and IL-8 genes following 8 weeks of feeding. A significant reduction in mortality rate was observed in the fish treated with 0.5% of nettle compared to the control following challenging with S. parasitica. Our observations indicate that the use of 0.5% nettle powder in rainbow trout diet can improve growth and immunity parameters as well as fish resistance against S. parasitica contamination.
Collapse
Affiliation(s)
- Zibandeh Mehrabi
- Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Farid Firouzbakhsh
- Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Ghodrat Rahimi-Mianji
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hamed Paknejad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
15
|
Tarasiuk E, Bonda TA, Dziemidowicz M, Winnicka MM, Bernaczyk P, Kamiński KA. The effect of interleukin 6 deficiency on myocardial signal transduction pathways activation induced by bacterial lipopolysaccharide in young and old mice. Adv Med Sci 2020; 65:386-393. [PMID: 32693349 DOI: 10.1016/j.advms.2020.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/13/2020] [Accepted: 06/20/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Exaggerated release of proinflammatory mediators during sepsis contributes to inadequate vasodilatation and depressed myocardial contractility, which lead to development of shock and circulatory collapse. The aim of the study was to evaluate the effect of IL-6 and aging on activation of intracellular signaling pathways in the myocardium induced by bacterial lipopolysaccharide (LPS) administration. MATERIAL/METHODS LPS was injected intraperitoneally to male 3- and 24-month old mice with systemic IL-6 gene knock-out (IL-6KO) and the reference strain (WT). LPS was given intraperitoneally in single low (0.1 mg/kg) or high (10 mg/kg) dose, or in two doses (0.1 + 10 mg/kg) with 24-h delay. The expression and phosphorylation of STAT3, ERK1/2, Akt1/2/3 proteins in the left ventricular myocardium was evaluated after 24 h using Western blotting. RESULTS Low LPS dose induced higher STAT3 phosphorylation only in old IL-6KO mice, not affecting ERK1/2 and Akt1/2/3 phosphorylation in any group. High LPS dose upregulated STAT3 phosphorylation similarly in all groups, reduced ERK1/2 expression in young WT mice and upregulated Akt1/2/3 expression and phosphorylation in young IL-6KO mice. Pretreatment with low LPS dose attenuated phosphorylation of STAT3 in both old groups and phosphorylation of Akt1/2/3 in young IL-6KO group. Two-dose approach also significantly potentiated ERK1/2 phosphorylation in both old groups. CONCLUSIONS Obtained results show that IL-6 deficiency alters the activity of intracellular signaling pathways: JAK/STAT in old and Akt in young LPS-treated mice. This may indicate that lack of IL-6 attenuates Akt-related cytoprotective effect of pretreatment with low LPS dose in young but not in aged animals.
Collapse
Affiliation(s)
- Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz A Bonda
- Department of General and Experimental Pathology, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Dziemidowicz
- Department of General and Experimental Pathology, Medical University of Bialystok, Bialystok, Poland
| | - Maria M Winnicka
- Department of General and Experimental Pathology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Bernaczyk
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Karol A Kamiński
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland; Department of Population Medicine and Civilization Diseases Prevention, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
16
|
Cappelletti C, Tramacere I, Cavalcante P, Schena E, Politano L, Carboni N, Gambineri A, D’Amico A, Ruggiero L, Ricci G, Siciliano G, Boriani G, Mongini TE, Vercelli L, Biagini E, Ziacchi M, D’Apice MR, Lattanzi G, Mantegazza R, Maggi L, Bernasconi P. Cytokine Profile in Striated Muscle Laminopathies: New Promising Biomarkers for Disease Prediction. Cells 2020; 9:cells9061532. [PMID: 32585971 PMCID: PMC7348753 DOI: 10.3390/cells9061532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022] Open
Abstract
Laminopathies are a wide and heterogeneous group of rare human diseases caused by mutations of the LMNA gene or related nuclear envelope genes. The variety of clinical phenotypes and the wide spectrum of histopathological changes among patients carrying an identical mutation in the LMNA gene make the prognostic process rather difficult, and classical genetic screens appear to have limited predictive value for disease development. The aim of this study was to evaluate whether a comprehensive profile of circulating cytokines may be a useful tool to differentiate and stratify disease subgroups, support clinical follow-ups and contribute to new therapeutic approaches. Serum levels of 51 pro- and anti-inflammatory molecules, including cytokines, chemokines and growth factors, were quantified by a Luminex multiple immune-assay in 53 patients with muscular laminopathy (Musc-LMNA), 10 with non-muscular laminopathy, 22 with other muscular disorders and in 35 healthy controls. Interleukin-17 (IL-17), granulocyte colony-stimulating factor (G-CSF) and transforming growth factor beta (TGF-β2) levels significantly discriminated Musc-LMNA from controls; interleukin-1β (IL-1β), interleukin-4 (IL-4) and interleukin-8 (IL-8) were differentially expressed in Musc-LMNA patients compared to those with non-muscular laminopathies, whereas IL-17 was significantly higher in Musc-LMNA patients with muscular and cardiac involvement. These findings support the hypothesis of a key role of the immune system in Musc-LMNA and emphasize the potential use of cytokines as biomarkers for these disorders.
Collapse
Affiliation(s)
- Cristina Cappelletti
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.C.); (R.M.); (L.M.); (P.B.)
- Correspondence: ; Tel.: +39-02-23944503/4511
| | - Irene Tramacere
- Department of Research and Clinical Development, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy;
| | - Paola Cavalcante
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.C.); (R.M.); (L.M.); (P.B.)
| | - Elisa Schena
- CNR Institute of Molecular Genetics, Unit of Bologna, 40136 Bologna, Italy; (E.S.); (G.L.)
- Endocrinology Unit, Department of Medical & Surgical Sciences, Alma Mater Studiorum University of Bologna, S Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Luigi Vanvitelli, 80138 Naples, Italy;
| | - Nicola Carboni
- Neurology Department, Hospital San Francesco of Nuoro, 08100 Nuoro, Italy;
| | - Alessandra Gambineri
- Endocrinology Unit, Department of Clinical and Medical Science, S. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy;
| | - Adele D’Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Lucia Ruggiero
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, 80137 Naples, Italy;
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, 56126 Pisa, Italy; (G.R.); (G.S.)
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, 56126 Pisa, Italy; (G.R.); (G.S.)
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, 41121 Modena, Italy;
| | - Tiziana Enrica Mongini
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy; (T.E.M.); (L.V.)
| | - Liliana Vercelli
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy; (T.E.M.); (L.V.)
| | - Elena Biagini
- Azienda Ospedaliero Universitaria - Policlinico di St. Orsola, Cardiology Unit, Cardio-Thoracic-Vascular Department, 40138 Bologna, Italy; (E.B.); (M.Z.)
| | - Matteo Ziacchi
- Azienda Ospedaliero Universitaria - Policlinico di St. Orsola, Cardiology Unit, Cardio-Thoracic-Vascular Department, 40138 Bologna, Italy; (E.B.); (M.Z.)
| | - Maria Rosaria D’Apice
- Medical Genetics Unit, Policlinico Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, Unit of Bologna, 40136 Bologna, Italy; (E.S.); (G.L.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Renato Mantegazza
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.C.); (R.M.); (L.M.); (P.B.)
| | - Lorenzo Maggi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.C.); (R.M.); (L.M.); (P.B.)
| | - Pia Bernasconi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (P.C.); (R.M.); (L.M.); (P.B.)
| |
Collapse
|
17
|
Takahashi M, Kinugawa S, Takada S, Kakutani N, Furihata T, Sobirin MA, Fukushima A, Obata Y, Saito A, Ishimori N, Iwabuchi K, Tsutsui H. The disruption of invariant natural killer T cells exacerbates cardiac hypertrophy and failure caused by pressure overload in mice. Exp Physiol 2020; 105:489-501. [PMID: 31957919 DOI: 10.1113/ep087652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? We questioned whether the disruption of invariant natural killer T (iNKT) cells exacerbates left ventricular (LV) remodelling and heart failure after transverse aortic constriction in mice. What are the main findings and their importance? Pressure overload induced by transverse aortic constriction increased the infiltration of iNKT cells in mouse hearts. The disruption of iNKT cells exacerbated LV remodelling and hastened the transition from hypertrophy to heart failure, in association with the activation of mitogen-activated protein kinase signalling. Activation of iNKT cells modulated the immunological balance in this process and played a protective role against LV remodelling and failure. ABSTRACT Chronic inflammation is involved in the development of cardiac remodelling and heart failure (HF). Invariant natural killer T (iNKT) cells, a subset of T lymphocytes, have been shown to produce various cytokines and orchestrate tissue inflammation. The pathophysiological role of iNKT cells in HF caused by pressure overload has not been studied. In the present study, we investigated whether the disruption of iNKT cells affected this process in mice. Transverse aortic constriction (TAC) and a sham operation were performed in male C57BL/6J wild-type (WT) and iNKT cell-deficient Jα18 knockout (KO) mice. The infiltration of iNKT cells was increased after TAC. The disruption of iNKT cells exacerbated left ventricular (LV) remodelling and hastened the transition to HF after TAC. Histological examinations also revealed that the disruption of iNKT cells induced greater myocyte hypertrophy and a greater increase in interstitial fibrosis after TAC. The expressions of interleukin-10 and tumour necrosis factor-α mRNA and their ratio in the LV after TAC were decreased in the KO compared with WT mice, which might indicate that the disruption of iNKT cells leads to an imbalance between T-helper type 1 and type 2 cytokines. The phosphorylation of extracellular signal-regulated kinase was significantly increased in the KO mice. The disruption of iNKT cells exacerbated the development of cardiac remodelling and HF after TAC. The activation of iNKT cells might play a protective role against HF caused by pressure overload. Targeting the activation of iNKT cells might thus be a promising candidate as a new therapeutic strategy for HF.
Collapse
Affiliation(s)
- Masashige Takahashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akimichi Saito
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Ishimori
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuya Iwabuchi
- Department of Immunobiology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Harhous Z, Booz GW, Ovize M, Bidaux G, Kurdi M. An Update on the Multifaceted Roles of STAT3 in the Heart. Front Cardiovasc Med 2019; 6:150. [PMID: 31709266 PMCID: PMC6823716 DOI: 10.3389/fcvm.2019.00150] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a signaling molecule and transcription factor that plays important protective roles in the heart. The protection mediated by STAT3 is attributed to its genomic actions as a transcription factor and other non-genomic roles targeting mitochondrial function and autophagy. As a transcription factor, STAT3 upregulates genes that are anti-oxidative, anti-apoptotic, and pro-angiogenic, but suppresses anti-inflammatory and anti-fibrotic genes. Its suppressive effects on gene expression are achieved through competing with other transcription factors or cofactors. STAT3 is also linked to the modification of mRNA expression profiles in cardiac cells by inhibiting or inducing miRNA. In addition to these genomic roles, STAT3 is suggested to function protectively in mitochondria, where it regulates ROS production, in part by regulating the activities of the electron transport chain complexes, although our recent evidence calls this role into question. Nonetheless, STAT3 is a key player known to be activated in the cardioprotective ischemic conditioning protocols. Through these varied roles, STAT3 participates in various mechanisms that contribute to cardioprotection against different heart pathologies, including myocardial infarction, hypertrophy, diabetic cardiomyopathy, and peripartum cardiomyopathy. Understanding how STAT3 is involved in the protective mechanisms against these different cardiac pathologies could lead to novel therapeutic strategies to treat them.
Collapse
Affiliation(s)
- Zeina Harhous
- Laboratory of Experimental and Clinical Pharmacology, Faculty of Sciences, Doctoral School of Sciences and Technology, Lebanese University, Beirut, Lebanon
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France
- IHU OPeRa, Groupement Hospitalier EST, Bron, France
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France
- IHU OPeRa, Groupement Hospitalier EST, Bron, France
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France
- IHU OPeRa, Groupement Hospitalier EST, Bron, France
| | - Mazen Kurdi
- Laboratory of Experimental and Clinical Pharmacology, Faculty of Sciences, Doctoral School of Sciences and Technology, Lebanese University, Beirut, Lebanon
| |
Collapse
|
19
|
Data on left ventricular expression of STAT3 and AKT in transgenic mouse models with B16F10 melanoma. Data Brief 2019; 26:104508. [PMID: 31667271 PMCID: PMC6811954 DOI: 10.1016/j.dib.2019.104508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
The dataset describes protein expression of phosphorylated and total signal transducer and activator of transcription 3 (STAT3), protein kinase B (AKT) and suppressor of cytokine signalling 3 (SOCS3) in left ventricular tissue (LV) from healthy and B16F10 melanoma tumour-bearing (B16F10-TM) wildtype (WT) mice, mice with cardiomyocyte-specific constitutively active AKT transgene (AKTtg) and mice with cardiomyocyte-restricted deletion of STAT3 (CKO) analysed in Western blot and/or fluorescence microscopy experiments. The data presented in this article are related to the research paper entitled "Modulation of cardiac AKT and STAT3 signalling in preclinical cancer models and their impact on the heart", available in Biochim. Biophys. Acta Mol. Cell Res. (1).
Collapse
|
20
|
Bhatt M, Kumar S, Garg N, Siddiqui MH, Mittal B. Influence of IL-1β, STAT3 & 5 and TLR-5 gene polymorphisms on rheumatic heart disease susceptibility in north Indian population. Int J Cardiol 2019; 291:89-95. [DOI: 10.1016/j.ijcard.2019.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022]
|
21
|
Patel DI, Wallace D, Abuchowski K, Rivas P, Gallegos A, Musi N, Kumar AP. Nexrutine ® preserves muscle mass similar to exercise in prostate cancer mouse model. Physiol Rep 2019; 7:e14217. [PMID: 31456341 PMCID: PMC6712237 DOI: 10.14814/phy2.14217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
Muscle loss is a debilitating side effect to prostate cancer (PCa) experienced by nearly 60% of men. The purpose of this study was to test the hypothesis that Nexrutine® , a bark extract from the Phellodendrum amurense, can protect against prostate cancer induced muscle loss in a similar manner as exercise, using the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Forty-five, 8- to 10-week old TRAMP mice were randomized to either control, Nexrutine® (600 mg/kg pelleted in chow) or exercise (voluntary wheel running). Mice were serially sacrificed at weeks 4, 8, 12, and 20, at which time either the left or right gastrocnemius muscle was harvested, weighted, and frozen. Proteolysis inducing factor (PIF), ubiquitin, and NF-κB concentrations were quantified using ELISA kits. Nexrutine® and exercise were equally able to protect TRAMP mice against PCa-induced muscle loss (P = 0.04). Both interventions decreased intramuscular PIF concentrations at 20 weeks compared to control (P < 0.05). A treatment effect was also observed when all time points were combined with exercise significantly lowering PIF concentrations (P < 0.01). Exercise significantly lowered intramuscular ubiquitin concentrations in weeks 4, 8, and 20 compared to control mice (P < 0.001). A treatment effect was also observed with exercise significantly lowering ubiquitin compared to control mice (P < 0.001). No significant changes were observed for NF-κB. The results of this investigation demonstrate that PCa-induced muscle loss can be attenuated with the herbal supplement Nexrutine® . This investigation provides preliminary evidence to support continued research into Nexrutine® as a potential exercise analog in protecting against muscle loss.
Collapse
Affiliation(s)
- Darpan I. Patel
- School of NursingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
- Barshop Institute for AgingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
- Mays Cancer Center at UT Health San AntonioSan AntonioTexas
| | - Derek Wallace
- School of NursingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Kira Abuchowski
- School of NursingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Paul Rivas
- Department of Urology, School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Amber Gallegos
- School of NursingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Nicolas Musi
- Barshop Institute for AgingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Addanki Pratap. Kumar
- Mays Cancer Center at UT Health San AntonioSan AntonioTexas
- Department of Urology, School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| |
Collapse
|
22
|
Pietzsch S, Ricke-Hoch M, Stapel B, Hilfiker-Kleiner D. Modulation of cardiac AKT and STAT3 signalling in preclinical cancer models and their impact on the heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118519. [PMID: 31374232 DOI: 10.1016/j.bbamcr.2019.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Advanced cancer induces fundamental cardiac changes and promotes body wasting and heart failure. We evaluated the impact of cancer on major cardiac signalling pathways, and resulting consequences for the heart. METHODS AND RESULTS Metastatic melanoma disease was induced in male C57BL/6 N mice by intraperitoneal injection of the melanoma cell line B16F10 and lead to cardiac atrophy and heart failure. Analyses of key cardiac signalling pathways in left ventricular tissue revealed increased activation of STAT3 and reduced activation of AKT, p38 and ERK1/2. Markers of the ubiquitin proteasomal system (UPS: Atrogin-1) and of mitophagy/autophagy (LC3b, BNIP3) were upregulated. Tumour-bearing C57BL/6 N mice with a cardiomyocyte-specific overexpression of a constitutively active AKT transgene (AKTtg) displayed less cardiac atrophy and dysfunction and normalized Atrogin-1, LC3b and BNIP3 expression while the cardiomyocyte-specific knockout of STAT3 (CKO) had no major effect on these parameters compared to WT. CONCLUSION Cancer alters major cardiac signalling pathways and subsequently the UPS, mitophagy and autophagy. The present study suggests that cancer-induced reduction of cardiomyocyte AKT contributes to these alterations as they were attenuated in tumour-bearing AKTtg mice. In turn, increased cardiomyocyte STAT3 activation appears less relevant, as tumour-induced impairment on the heart was largely similar in CKO and WT mice. Since oncologic therapies frequently target AKT and/or STAT3, their impact on the heart might be different in tumour-bearing mice compared to healthy mice, a feature suggesting to test tumour therapies also in tumour disease models and not only under healthy conditions. This article is part of a Special Issue entitled: Cardiomyocyte biology: new pathways of differentiation and regeneration edited by Marijke Brink, Marcus C. Schaub, and Christian Zuppinger.
Collapse
Affiliation(s)
- Stefan Pietzsch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Britta Stapel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
23
|
Bucindolol Modulates Cardiac Remodeling by Attenuating Oxidative Stress in H9c2 Cardiac Cells Exposed to Norepinephrine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6325424. [PMID: 31360296 PMCID: PMC6652037 DOI: 10.1155/2019/6325424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/12/2019] [Accepted: 06/15/2019] [Indexed: 11/18/2022]
Abstract
The increased circulation of norepinephrine, found in the diseased heart as a result of sympathetic nervous system overactivation, is responsible for its cardiotoxic effects including pathological hypertrophy, cell death, and oxidative stress. Bucindolol is a third generation adrenergic blocker, which acts on the β1 and β2 receptors, and has additional α1 antagonist activity. Thus, the aim of this study was to investigate the action of bucindolol on oxidative stress, hypertrophy, cell survival, and cell death signaling pathways in H9c2 cardiac cells exposed to norepinephrine. H9c2 cells were incubated with 10 μM norepinephrine for 24 h in the presence or absence of bucindolol (10 μM) treatment for 8 h. Western blot was used to determine the expression of proteins for hypertrophy/survival and death signaling pathways. Flow cytometry was used to assess cell death via caspase-3/7 activity and propidium iodide and reactive oxygen species via measuring the fluorescence of CM-H2DCFDA. Norepinephrine exposure resulted in an increase in oxidative stress as well as cell death. This was accompanied by an increased protein expression of LC3B-II/I. The protein kinase B/mammalian target of the rapamycin (Akt/mTOR) pathway which is involved in cardiac remodeling process was activated in response to norepinephrine and was mitigated by bucindolol. In conclusion, bucindolol was able to modulate cardiac remodeling which is mediated by oxidative stress.
Collapse
|
24
|
Han J, Ye S, Zou C, Chen T, Wang J, Li J, Jiang L, Xu J, Huang W, Wang Y, Liang G. Angiotensin II Causes Biphasic STAT3 Activation Through TLR4 to Initiate Cardiac Remodeling. Hypertension 2019; 72:1301-1311. [PMID: 30571233 DOI: 10.1161/hypertensionaha.118.11860] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence indicates that Ang II (angiotensin II) activates STAT3 (signal transducer and activator of transcription 3) in cardiomyocytes. However, the mechanisms underlying STAT3 activation and downstream responses are not fully known. In this study, we show that Ang II caused biphasic STAT3 activation in cardiomyocytes. A rapid and early activation was mediated by direct association between TLR4 (toll-like receptor-4) and STAT3. This early activation increased IL-6 (interleukin-6) production, which in turn, induced the second STAT3 activation through the IL-6/gp130 (glycoprotein 130)/JAK2 (Janus-family tyrosine kinases 2) pathway, resulting in unregulated expression of genes for cardiac remodeling. Moreover, STAT3 inhibition or TLR4 knockout in mice protected against Ang II-induced hypertrophy, fibrosis, and cardiac functional deficits. Thus, Ang II-induced STAT3 activation in cardiomyocytes was biphasic, providing a sequential induction of IL-6 and myocardial remodeling genes, respectively. This work supports a novel mechanism on STAT3 activation in Ang II-induced cardiac dysfunction and remodeling.
Collapse
Affiliation(s)
- Jibo Han
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.).,Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., W.H.).,Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Zhejiang, China (J.H., L.J., J.X.)
| | - Shiju Ye
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.).,Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., W.H.)
| | - Chunpeng Zou
- Department of Ultrasonography, the Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (C.Z.)
| | - Taiwei Chen
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.).,Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., W.H.)
| | - Jingying Wang
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.)
| | - Jieli Li
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.)
| | - Liqin Jiang
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Zhejiang, China (J.H., L.J., J.X.)
| | - Jianjiang Xu
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Zhejiang, China (J.H., L.J., J.X.)
| | - Weijian Huang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., W.H.)
| | - Yi Wang
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.)
| | - Guang Liang
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.)
| |
Collapse
|
25
|
Tawara K, Scott H, Emathinger J, Ide A, Fox R, Greiner D, LaJoie D, Hedeen D, Nandakumar M, Oler AJ, Holzer R, Jorcyk C. Co-Expression of VEGF and IL-6 Family Cytokines is Associated with Decreased Survival in HER2 Negative Breast Cancer Patients: Subtype-Specific IL-6 Family Cytokine-Mediated VEGF Secretion. Transl Oncol 2018; 12:245-255. [PMID: 30439625 PMCID: PMC6234768 DOI: 10.1016/j.tranon.2018.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer cell-response to inflammatory cytokines such as interleukin-6 (IL-6) and oncostatin M (OSM) may affect the course of clinical disease in a cancer subtype-dependent manner. Furthermore, vascular endothelial growth factor A (VEGF) secretion induced by IL-6 and OSM may also be subtype-dependent. Utilizing datasets from Oncomine, we show that poor survival of invasive ductal carcinoma (IDC) breast cancer patients is correlated with both high VEGF expression and high cytokine or cytokine receptor expression in tumors. Importantly, epidermal growth factor receptor-negative (HER2-), but not HER2-positive (HER2+), patient survival is significantly lower with high tumor co-expression of VEGF and OSM, OSMRβ, IL-6, or IL-6Rα compared to low co-expression. Furthermore, assessment of HER2- breast cancer cells in vitro identified unique signaling differences regulating cytokine-induced VEGF secretion. The levels of VEGF secretion were analyzed by ELISA with siRNAs for hypoxia inducible factor 1 α (HIF1α) and signal transducer and activator of transcription 3 (STAT3). Specifically, we found that estrogen receptor-negative (ER-) MDA-MB-231 cells respond only to OSM through STAT3 signaling, while ER+ T47D cells respond to both OSM and IL-6, though to IL-6 to a lesser extent. Additionally, in the ER+ T47D cells, OSM signals through both STAT3 and HIF1α. These results highlight that the survival of breast cancer patients with high co-expression of VEGF and IL-6 family cytokines is dependent on breast cancer subtype. Thus, the heterogeneity of human breast cancer in relation to IL-6 family cytokines and VEGF may have important implications in clinical treatment options, disease progression, and ultimately patient prognosis.
Collapse
Affiliation(s)
- Ken Tawara
- Boise State University, Biomolecular Sciences Program, 1910 University Drive, MS1515, Boise, ID, 83725, USA
| | - Hannah Scott
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Jacqueline Emathinger
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Alex Ide
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Ryan Fox
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Daniel Greiner
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Dollie LaJoie
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA; University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Danielle Hedeen
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA; University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Madhuri Nandakumar
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA
| | - Andrew J Oler
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA; Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID/NIH, Bethesda, MD, USA
| | - Ryan Holzer
- Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA; Rosetta Institute of Biomedical Research, San Jose, CA, USA
| | - Cheryl Jorcyk
- Boise State University, Biomolecular Sciences Program, 1910 University Drive, MS1515, Boise, ID, 83725, USA; Boise State University, Department of Biological Sciences, 1910 University Drive, MS1515, Boise, ID, USA.
| |
Collapse
|
26
|
Pipicz M, Demján V, Sárközy M, Csont T. Effects of Cardiovascular Risk Factors on Cardiac STAT3. Int J Mol Sci 2018; 19:ijms19113572. [PMID: 30424579 PMCID: PMC6274853 DOI: 10.3390/ijms19113572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Nuclear, mitochondrial and cytoplasmic signal transducer and activator of transcription 3 (STAT3) regulates many cellular processes, e.g., the transcription or opening of mitochondrial permeability transition pore, and its activity depends on the phosphorylation of Tyr705 and/or Ser727 sites. In the heterogeneous network of cardiac cells, STAT3 promotes cardiac muscle differentiation, vascular element formation and extracellular matrix homeostasis. Overwhelming evidence suggests that STAT3 is beneficial for the heart, plays a role in the prevention of age-related and postpartum heart failure, protects the heart against cardiotoxic doxorubicin or ischaemia/reperfusion injury, and is involved in many cardioprotective strategies (e.g., ischaemic preconditioning, perconditioning, postconditioning, remote or pharmacological conditioning). Ischaemic heart disease is still the leading cause of death worldwide, and many cardiovascular risk factors contribute to the development of the disease. This review focuses on the effects of various cardiovascular risk factors (diabetes, aging, obesity, smoking, alcohol, depression, gender, comedications) on cardiac STAT3 under non-ischaemic baseline conditions, and in settings of ischaemia/reperfusion injury with or without cardioprotective strategies.
Collapse
Affiliation(s)
- Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér. 9., H-6720 Szeged, Hungary.
| | | | | | | |
Collapse
|
27
|
Ayoub KF, Pothineni NVK, Rutland J, Ding Z, Mehta JL. Immunity, Inflammation, and Oxidative Stress in Heart Failure: Emerging Molecular Targets. Cardiovasc Drugs Ther 2018; 31:593-608. [PMID: 28956198 DOI: 10.1007/s10557-017-6752-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Heart failure (HF) remains a major cause of morbidity and mortality worldwide. Although various therapies developed over the last two decades have shown improved long term outcomes in patients with established HF, there has been little progress in preventing the adverse cardiac remodeling that initiates HF. To fill the gap in treatment, current research efforts are focused on understanding novel mechanisms and signaling pathways. Immune activation, inflammation, oxidative stress, alterations in mitochondrial bioenergetics, and autophagy have been postulated as important pathophysiological events in this process. An improved understanding of these complex processes could facilitate a therapeutic shift toward molecular targets that can potentially alter the course of HF. METHODS In this review, we address the role of immunity, inflammation, and oxidative stress as well as other novel emerging concepts in the pathophysiology of HF that may have therapeutic implications. CONCLUSION Based on the experimental and clinical studies presented here, we anticipate that a better understanding of the pathophysiology of HF will open the door for new therapeutic targets. A one-size-fits-all approach may not be appropriate for all patients with HF, and further clinical trials utilizing molecular targeting in HF may result in improved outcomes.
Collapse
Affiliation(s)
- Karam F Ayoub
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Naga Venkata K Pothineni
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Joshua Rutland
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zufeng Ding
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jawahar L Mehta
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Street, #532, Little Rock, AR, 72205, USA.
| |
Collapse
|
28
|
CRLF1 promotes malignant phenotypes of papillary thyroid carcinoma by activating the MAPK/ERK and PI3K/AKT pathways. Cell Death Dis 2018. [PMID: 29515111 PMCID: PMC5841418 DOI: 10.1038/s41419-018-0352-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Papillary thyroid carcinoma (PTC) is the one of the most common types of endocrine cancer and has a heterogeneous prognosis. Tumors from patients with poor prognosis may differentially express specific genes. Therefore, an analysis of The Cancer Genome Atlas (TCGA) database was performed and revealed that cytokine receptor-like factor 1 (CRLF1) may be a potential novel target for PTC treatment. The objective of the current study was to explore the expression of CRLF1 in PTC and to investigate the main functions and mechanisms of CRLF1 in PTC. PTC tissues exhibited higher CRLF1 expression at both the mRNA and protein levels than it did with normal thyroid tissues. High CRLF1 levels were associated with aggressive clinicopathological features and poor disease-free survival rates. By using loss-of-function and gain-of-function assays, we found that CRLF1 not only increased cell migration and invasion in vitro but also promoted tumor growth both in vitro and in vivo. In addition, CRLF1 induced epithelial–mesenchymal transitions. Overexpression of CRLF1 activated the ERK1/2 and AKT pathways. The oncogenic effects induced by CRLF1 were suppressed by treating the cells with the MEK inhibitor U0126 or the AKT inhibitor MK-2206. These results suggest that CRLF1 enhances cell proliferation and metastasis in PTC and thus may therefore be a potential therapeutic target for PTC.
Collapse
|
29
|
Eid RA, Alkhateeb MA, Eleawa S, Al-Hashem FH, Al-Shraim M, El-Kott AF, Zaki MSA, Dallak MA, Aldera H. Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling. Basic Res Cardiol 2018; 113:13. [PMID: 29392420 DOI: 10.1007/s00395-018-0671-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/22/2018] [Indexed: 11/27/2022]
Abstract
The molecular mechanisms through which ghrelin exerts its cardioprotective effects during cardiac remodeling post-myocardial infarction (MI) are poorly understood. The aim of this study was to investigate whether the cardioprotection mechanisms are mediated by modulation of JAK/STAT signaling and what triggers this modulation. Rats were divided into six groups (n = 12/group): control, sham, sham + ghrelin (100 µg/kg, s.c., daily, starting 1 day post-MI), MI, MI+ ghrelin, and MI+ ghrelin+ AG490, a potent JAK2 inhibitor (5 mg/kg, i.p., daily). All treatments were administered for 3 weeks. Administration of ghrelin to MI rats improved left ventricle (LV) architecture and restored cardiac contraction. In remote non-infarcted areas of MI rats, ghrelin reduced cardiac inflammation and lipid peroxidation and enhanced antioxidant enzymatic activity. In addition, independent of the growth factor/insulin growth factor-1 (GF/IGF-1) axis, ghrelin significantly increased the phosphorylation of JAK2 and Tyr702 and Ser727 residues of STAT3 and inhibited the phosphorylation of JAK1 and Tyr701 and Ser727 residues of STAT1, simultaneously increasing the expression of BCL-2 and decreasing in the expression of BAX, cleaved CASP3, and FAS. This effect coincided with decreased expression of SOCS3. All these beneficial effects of ghrelin, except its inhibitory action on IL-6 expression, were partially and significantly abolished by the co-administration of AG490. In conclusion, the cardioprotective effect of ghrelin against MI-induced LV injury is exerted via activation of JAK2/STAT3 signaling and inhibition of STAT1 signaling. These effects were independent of the GF/IGF-1 axis and could be partially mediated via inhibition of cardiac IL-6.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cardiovascular Agents/administration & dosage
- Disease Models, Animal
- Ghrelin/administration & dosage
- Heart Ventricles/drug effects
- Heart Ventricles/enzymology
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Interleukin-6/metabolism
- Janus Kinase 2/metabolism
- Male
- Myocardial Infarction/drug therapy
- Myocardial Infarction/enzymology
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- STAT1 Transcription Factor/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Suppressor of Cytokine Signaling 3 Protein/metabolism
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia.
| | - Mahmoud A Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
| | - Samy Eleawa
- College of Health Sciences, Applied Medical Sciences Department, PAAET, Shuwaikh, Kuwait
| | - Fahaid H Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, P.O. Box 641, Abha, 61421, Saudi Arabia
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| | - Attalla Farag El-Kott
- Department of Biology, College of Science, King Khalid University, P.O. Box 641, Abha, 61421, Saudi Arabia
| | - Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 641, Abha, 61421, Saudi Arabia
| | - Mohammad A Dallak
- Department of Physiology, College of Medicine, King Khalid University, P.O. Box 641, Abha, 61421, Saudi Arabia
| | - Hussain Aldera
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
| |
Collapse
|
30
|
Wang D, Liu X, Liu Y, Li S, Wang C. The Effects of Cardiotrophin-1 on Early Synaptic Mitochondrial Dysfunction and Synaptic Pathology in APPswe/PS1dE9 Mice. J Alzheimers Dis 2017; 59:1255-1267. [DOI: 10.3233/jad-170100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Xiaozhuan Liu
- Department of Immunology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Sanqiang Li
- Department of Biochemistry and Molecular Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Chenying Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| |
Collapse
|
31
|
Abdul-Ghani M, Suen C, Jiang B, Deng Y, Weldrick JJ, Putinski C, Brunette S, Fernando P, Lee TT, Flynn P, Leenen FHH, Burgon PG, Stewart DJ, Megeney LA. Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Res 2017; 27:1195-1215. [PMID: 28785017 PMCID: PMC5630684 DOI: 10.1038/cr.2017.87] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/06/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
The post-natal heart adapts to stress and overload through hypertrophic growth, a process that may be pathologic or beneficial (physiologic hypertrophy). Physiologic hypertrophy improves cardiac performance in both healthy and diseased individuals, yet the mechanisms that propagate this favorable adaptation remain poorly defined. We identify the cytokine cardiotrophin 1 (CT1) as a factor capable of recapitulating the key features of physiologic growth of the heart including transient and reversible hypertrophy of the myocardium, and stimulation of cardiomyocyte-derived angiogenic signals leading to increased vascularity. The capacity of CT1 to induce physiologic hypertrophy originates from a CK2-mediated restraining of caspase activation, preventing the transition to unrestrained pathologic growth. Exogenous CT1 protein delivery attenuated pathology and restored contractile function in a severe model of right heart failure, suggesting a novel treatment option for this intractable cardiac disease.
Collapse
Affiliation(s)
- Mohammad Abdul-Ghani
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Colin Suen
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Baohua Jiang
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada
| | - Yupu Deng
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada
| | - Jonathan J Weldrick
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Charis Putinski
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Steve Brunette
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada
| | - Pasan Fernando
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Tom T Lee
- Fate Therapeutics Inc., 3535 General Atomics Court Suite 200, San Diego, CA 92121, USA
| | - Peter Flynn
- Fate Therapeutics Inc., 3535 General Atomics Court Suite 200, San Diego, CA 92121, USA
| | - Frans H H Leenen
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Medicine (Cardiology), Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Patrick G Burgon
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Medicine (Cardiology), Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Duncan J Stewart
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Medicine (Cardiology), Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Lynn A Megeney
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Medicine (Cardiology), Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This paper aims to discuss the interactions between inflammatory cytokines, immune cells, and heart failure (HF). The association of heart failure with inflammation has led to multiple studies on anti-inflammatory agents in acute and chronic heart failure. RECENT FINDINGS Recent findings have implicated leukocytes subclasses and multiple inflammatory mediators in the progression of heart failure and cardiovascular disease. Studies have discovered further details on the interaction between immune cells-particularly macrophages and lymphocytes-and inflammation. There are both cell-mediated and cytokine-mediated pathways of inflammation, which are interconnected. Additionally, a number of markers have been used and studied in heart failure disease progression. In this review, we discuss inflammatory biomarkers and immune cell mediators involved in HF. We will focus on the correlations and role of these inflammatory mediators in the genesis of HF. We will also discuss the evidence on beneficial effects of anti-inflammatory agents in the setting of chronic HF.
Collapse
Affiliation(s)
- Lily F Shirazi
- Central Arkansas Veterans Healthcare System and the Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, 4301 Markham, Slot 532, Little Rock, AR, 72205, USA
| | - Joe Bissett
- Central Arkansas Veterans Healthcare System and the Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, 4301 Markham, Slot 532, Little Rock, AR, 72205, USA
| | - Francesco Romeo
- Central Arkansas Veterans Healthcare System and the Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, 4301 Markham, Slot 532, Little Rock, AR, 72205, USA.,University of Rome Tor Vergata, Rome, Italy
| | - Jawahar L Mehta
- Central Arkansas Veterans Healthcare System and the Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, 4301 Markham, Slot 532, Little Rock, AR, 72205, USA.
| |
Collapse
|
33
|
Pu CM, Liu CW, Liang CJ, Yen YH, Chen SH, Jiang-Shieh YF, Chien CL, Chen YC, Chen YL. Adipose-Derived Stem Cells Protect Skin Flaps against Ischemia/Reperfusion Injury via IL-6 Expression. J Invest Dermatol 2017; 137:1353-1362. [PMID: 28163069 DOI: 10.1016/j.jid.2016.12.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022]
Abstract
Flap necrosis is the most frequent postoperative complication encountered in reconstructive surgery. We elucidated whether adipose-derived stem cells (ADSCs) and their derivatives might induce neovascularization and protect skin flaps during ischemia/reperfusion (I/R) injury. Flaps were subjected to 3 hours of ischemia by ligating long thoracic vessels and then to blood reperfusion. Qtracker-labeled ADSCs, ADSCs in conditioned medium (ADSC-CM), or ADSC exosomes (ADSC-Exo) were injected into the flaps. These treatments led to significantly increased flap survival and capillary density compared with I/R on postoperative day 5. IL-6 levels in the cell lysates or in conditioned medium were significantly higher in ADSCs than in Hs68 fibroblasts. ADSC-CM and ADSC-Exo increased tube formation. This result was corroborated by a strong decrease in skin repair after adding IL-6-neutralizing antibodies or small interfering RNA for IL-6 ADSCs. ADSC transplantation also increased flap recovery in I/R injury of IL-6-knockout mice. IL-6 was secreted from ADSCs through signal transducer and activator of transcription phosphorylation, and then IL-6 stimulated angiogenesis and enhanced recovery after I/R injury by the classic signaling pathway. The mechanism of skin recovery includes the direct differentiation of ADSCs into endothelial cells and the indirect effect of IL-6 released from ADSCs. ADSC-CM and ADSC-Exo could be used as off-the-shelf products for this therapy.
Collapse
Affiliation(s)
- Chi-Ming Pu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Chen-Wei Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Jung Liang
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsiu Yen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Fen Jiang-Shieh
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Chun Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
The role of local IL6/JAK2/STAT3 signaling in high glucose-induced podocyte hypertrophy. Kidney Res Clin Pract 2016; 35:212-218. [PMID: 27957415 PMCID: PMC5143438 DOI: 10.1016/j.krcp.2016.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Interleukin-6 (IL6) is an important regulator of cellular hypertrophy through the gp130/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. We tested the hypothesis that IL6 and its downstream gp130/JAK2/STAT3 pathway participated in high glucose (HG)-induced podocyte hypertrophy. METHODS IL6 levels in the media and lysates of podocytes were measured by enzyme-linked immunosorbent assay. Western blots were performed to determine the protein expression levels of gp130/JAK2/STAT3 among podocytes cultured with normal glucose (NG), NG + mannitol, NG + recombinant IL6, HG, and HG + IL6-neutralizing antibodies (IL6NAb). Immunoprecipitation was examined to determine whether gp130 interacted with JAK2 in response to HG or IL6. Podocyte hypertrophy was verified using protein/cell counts and flow cytometry. RESULTS IL6 levels were significantly increased in the media and lysates of podocytes cultured in HG compared with the NG groups. The nuclear phospho-STAT3/STAT3 ratio was increased by HG and NG + IL6 and was attenuated in the HG + IL6NAb groups, indicating that nuclear STAT3 was activated following JAK2 and cytosolic STAT3 activation in response to IL6 secreted by HG-stimulated podocytes. Immunoprecipitation showed increased phospho-JAK2 recruitment to gp130 in the HG and NG + IL6 groups, and the addition of IL6NAb in the HG group significantly abrogated these increases. Podocyte hypertrophy was significantly increased in the HG and NG + IL6 compared with the NG condition and was diminished by the addition of IL6NAbs to the HG group. CONCLUSION IL6 might play a prominent role in the local activation of JAK2/STAT3 in podocyte hypertrophy under HG conditions. In vivo studies examining this pathway are warranted.
Collapse
|
35
|
Deng J, Zhong Q. Advanced research on the microRNA mechanism in heart failure. Int J Cardiol 2016; 220:61-4. [PMID: 27372044 DOI: 10.1016/j.ijcard.2016.06.185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Heart failure is the end stage of most cardiac diseases and also an important cardiovascular disease. Ventricular remodeling, a complicated pathophysiological process involving multiple molecular pathways, is a crucial mechanism for the occurrence and development of heart failure. A microRNA (miRNA) is a highly conservative noncoding molecule containing 18-25 nucleotides. miRNA is different from other RNAs. It mainly serves as an endogenous gene-regulating factor, and is a member of the complex regulatory network. It induces gene repression of target transcripts by affecting mRNA at the post-transcriptional level Vasudevan et al. (2007) . This study aimed at determining the mechanism of miRNA action in heart failure.
Collapse
Affiliation(s)
- Jianying Deng
- Daping Hospital, Research Institute of Surgery, Third Military Medical University, No.10 Changjiang Zhilu, Daping, Yuzhong District, Chongqing 400042, China
| | - Qianjin Zhong
- Daping Hospital, Research Institute of Surgery, Third Military Medical University, No.10 Changjiang Zhilu, Daping, Yuzhong District, Chongqing 400042, China.
| |
Collapse
|
36
|
Deng XS, Meng X, Song R, Fullerton D, Jaggers J. Rapamycin Decreases the Osteogenic Response in Aortic Valve Interstitial Cells Through the Stat3 Pathway. Ann Thorac Surg 2016; 102:1229-38. [PMID: 27209607 DOI: 10.1016/j.athoracsur.2016.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 11/10/2015] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is an age-related and slowly progressive valvular disorder. We have previously found that the increased inflammatory and osteogenic responses to Toll-like receptor 4 (TLR4) stimulation is correlated with lower signal transducer and activator of transcription 3 (Stat3) activity in aortic valve interstitial cells (AVICs). Rapamycin, a drug used clinically, induces feedback activation of Akt. Akt in turn may upregulate Stat3. Therefore we hypothesized that rapamycin will decrease TLR4-induced osteogenic response in human AVICs through modulation of Stat3 activity. METHODS AVICs were isolated from normal valves taken from the explanted hearts of patients undergoing transplantation. Cells were treated with TLR4 ligand lipopolysaccharide (LPS) or rapamycin, or both. The osteogenic markers runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and bone morphogenetic protein 2 (BMP-2), as well as activation of Stat3 and its associated signaling molecules, were analyzed. RESULTS LPS induces the expression of RUNX2, ALP, and BMP-2. Rapamycin decreased both the baseline and LPS-induced expression of RUNX2, ALP, and BMP-2. Rapamycin also decreased calcium deposit formation. Rapamycin activated both Stat3 and Akt in AVICs. Suppression of Akt resulted in abolishment of Stat3 activation. Inhibition of Stat3 enhanced expression of RUNX2, ALP, and BMP-2 at baseline and in response to LPS. CONCLUSIONS Rapamycin inhibits TLR4-induced osteogenic responses in AVICs by activation of Stat3 through Akt. Rapamycin may alleviate inflammation-induced initiation and progression of CAVD.
Collapse
Affiliation(s)
- Xin-Sheng Deng
- Department of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xianzhong Meng
- Department of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rui Song
- Department of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Fullerton
- Department of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James Jaggers
- Department of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
37
|
Propofol ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction via heme oxygenase-1/signal transducer and activator of transcription 3 signaling pathway in rats. Crit Care Med 2016; 42:e583-94. [PMID: 24810525 DOI: 10.1097/ccm.0000000000000415] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Heme oxygenase-1 is inducible in cardiomyocytes in response to stimuli such as oxidative stress and plays critical roles in combating cardiac hypertrophy and injury. Signal transducer and activator of transcription 3 plays a pivotal role in heme oxygenase-1-mediated protection against liver and lung injuries under oxidative stress. We hypothesized that propofol, an anesthetic with antioxidant capacity, may attenuate hyperglycemia-induced oxidative stress in cardiomyocytes via enhancing heme oxygenase-1 activation and ameliorate hyperglycemia-induced cardiac hypertrophy and apoptosis via heme oxygenase-1/signal transducer and activator of transcription 3 signaling and improve cardiac function in diabetes. DESIGN Treatment study. SETTING Research laboratory. SUBJECTS Sprague-Dawley rats. INTERVENTIONS In vivo and in vitro treatments. MEASUREMENTS AND MAIN RESULTS At 8 weeks of streptozotocin-induced type 1 diabetes in rats, myocardial 15-F2t-isoprostane was significantly increased, accompanied by cardiomyocyte hypertrophy and apoptosis and impaired left ventricular function that was coincident with reduced heme oxygenase-1 activity and signal transducer and activator of transcription 3 activation despite an increase in heme oxygenase-1 protein expression as compared to control. Propofol infusion (900 μg/kg/min) for 45 minutes significantly improved cardiac function with concomitantly enhanced heme oxygenase-1 activity and signal transducer and activator of transcription activation. Similar to the changes seen in diabetic rat hearts, high glucose (25 mmol/L) exposure for 48 hours led to cardiomyocyte hypertrophy and apoptosis, both in primary cultured neonatal rat cardiomyocytes and in H9c2 cells compared to normal glucose (5.5 mmol/L). Hypertrophy was accompanied by increased reactive oxygen species and malondialdehyde production and caspase-3 activity. Propofol, similar to the heme oxygenase-1 inducer cobalt protoporphyrin, significantly increased cardiomyocyte heme oxygenase-1 and p-signal transducer and activator of transcription protein expression and heme oxygenase-1 activity and attenuated high-glucose-mediated cardiomyocyte hypertrophy and apoptosis and reduced reactive oxygen species and malondialdehyde production (p < 0.05). These protective effects of propofol were abolished by heme oxygenase-1 inhibition with zinc protoporphyrin and by heme oxygenase-1 or signal transducer and activator of transcription 3 gene knockdown. CONCLUSIONS Heme oxygenase-1/signal transducer and activator of transcription 3 signaling plays a critical role in propofol-mediated amelioration of hyperglycemia-induced cardiomyocyte hypertrophy and apoptosis, whereby propofol improves cardiac function in diabetic rats.
Collapse
|
38
|
Cytokine-Like Factor 1, an Essential Facilitator of Cardiotrophin-Like Cytokine:Ciliary Neurotrophic Factor Receptor α Signaling and sorLA-Mediated Turnover. Mol Cell Biol 2016; 36:1272-86. [PMID: 26858303 PMCID: PMC4836274 DOI: 10.1128/mcb.00917-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/01/2016] [Indexed: 01/09/2023] Open
Abstract
Cardiotrophin-like cytokine:cytokine-like factor-1 (CLC:CLF-1) is a heterodimeric neurotropic cytokine that plays a crucial role during neuronal development. Mice lacking CLC:CLF-1 die soon after birth due to a suckling defect and show reduced numbers of motor neurons. Humans carrying mutations in CLC:CLF-1 develop similar disorders, known as Sohar-Crisponi or cold-induced sweating syndrome, and have a high risk of early death. It is well known that CLC binds the ciliary neurotrophic factor receptor α (CNTFRα) and is a prerequisite for signaling through the gp130/leukemia inhibitory factor receptor β (LIFRβ) heterodimer, whereas CLF-1 serves to promote the cellular release of CLC. However, the precise role of CLF-1 is unclear. Here, we report that CLF-1, based on its binding site for CLC and on two additional and independent sites for CNTFRα and sorLA, is a key player in CLC and CNTFRα signaling and turnover. The site for CNTFRα enables CLF-1 to promote CLC:CNTFRα complex formation and signaling. The second site establishes a link between the endocytic receptor sorLA and the tripartite CLC:CLF-1:CNTFRα complex and allows sorLA to downregulate the CNTFRα pool in stimulated cells. Finally, sorLA may bind and concentrate the tripartite soluble CLC:CLF-1:CNTFRα complex on cell membranes and thus facilitate its signaling through gp130/LIFRβ.
Collapse
|
39
|
Huang TQ, Willis MS, Meissner G. IL-6/STAT3 signaling in mice with dysfunctional type-2 ryanodine receptor. JAKSTAT 2016; 4:e1158379. [PMID: 27217982 PMCID: PMC4861591 DOI: 10.1080/21623996.2016.1158379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/12/2016] [Accepted: 02/19/2016] [Indexed: 12/29/2022] Open
Abstract
Mice with genetically modified cardiac ryanodine receptor (Ryr2ADA/ADA mice) are impaired in regulation by calmodulin, develop severe cardiac hypertrophy and die about 2 weeks after birth. We hypothesized that the interleukin 6 (IL-6)/signal transducer and activator of transcription-3 (STAT3) signaling pathway has a role in the development of the Ryr2ADA/ADA cardiac hypertrophy phenotype, and determined cardiac function and protein levels of IL-6, phosphorylation levels of STAT3, and downstream targets c-Fos and c-Myc in wild-type and RyR2ADA/ADA mice, mice with a disrupted IL-6 gene, and mice treated with STAT3 inhibitor NSC74859. IL-6 protein levels were increased at postnatal day 1 but not day 10, whereas pSTAT3-Tyr705/STAT3 ratio and c-Fos and c-Myc protein levels increased in hearts of 10-day but not 1-day old Ryr2ADA/ADA mice compared with wild type. Both STAT3 and pSTAT3-Tyr705 accumulated in the nuclear fraction of 10-day old Ryr2ADA/ADA mice compared with wild type. Ryr2ADA /ADA /IL-6−/− mice lived 1.5 times longer, had decreased heart to body weight ratio, and reduced c-Fos and c-Myc protein levels. The STAT3 inhibitor NSC74859 prolonged life span by 1.3-fold, decreased heart to body weight ratio, increased cardiac performance, and decreased pSTAT-Tyr705/STAT3 ratio and IL-6, c-Fos and c-Myc protein levels of Ryr2ADA /ADA mice. The results suggest that upregulation of IL-6 and STAT3 signaling contributes to cardiac hypertrophy and early death of mice with a dysfunctional ryanodine receptor. They further suggest that STAT3 inhibitors may be clinically useful agents in patients with altered Ca2+ handling in the heart.
Collapse
Affiliation(s)
- Tai-Qin Huang
- Department of Biochemistry & Biophysics; University of North Carolina ; Chapel Hill, NC USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine; University of North Carolina ; Chapel Hill, NC USA
| | - Gerhard Meissner
- Department of Biochemistry & Biophysics; University of North Carolina ; Chapel Hill, NC USA
| |
Collapse
|
40
|
Luo S, Gu X, Ma F, Liu C, Shen Y, Ge R, Zhu Y. ZYZ451 protects cardiomyocytes from hypoxia-induced apoptosis via enhancing MnSOD and STAT3 interaction. Free Radic Biol Med 2016; 92:1-14. [PMID: 26721595 DOI: 10.1016/j.freeradbiomed.2015.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
3,5-dimethoxy-4-(2-amino-3-prop-2-ynylsulfanyl-propionyl)-benzoic acid 4-guanidino-butyl ester (ZYZ451) was found to be an excellent cardio-protective agent in the previous research in our lab. However, its potent therapeutic effects on myocardial infarction and the underlying mechanism remain elusive. In the present study, we demonstrate that ZYZ451 protects neonatal rat ventricular cardiomyocytes (NRVCs) from hypoxia-induced apoptosis via increasing manganese-containing superoxide dismutase (MnSOD) activity and inhibiting mitochondrial reactive oxidative species (mitoROS) production. MnSOD knockdown impairs the anti-apoptotic effects of ZYZ451. We report here for the first time that signal transducer and activator of transcription 3 (STAT3), an important nuclear transcriptional factor also identified in mitochondria, co-localizes with MnSOD and interacts with it, as determined by using methods of co-immunofluorescence and co-immunoprecipitation. Knockdown of STAT3 rather than inhibition of STAT3 phosphorylation results in a significant reduction in MnSOD activity. Furthermore, interaction between MnSOD and STAT3 is diminished in STAT3 deficient H9C2 cells. Its novel subcellular localization and interaction with MnSOD suggest that STAT3 may be involved in regulation of MnSOD activity beyond its transcriptional potential. Consistent with the results in vitro, ZYZ451 reduces myocardial infarct size as well as cardiomyocytes apoptosis, inhibits lactate dehydrogenase (LDH) and malondialchehyche (MDA) release, and restores MnSOD activity in peri-infarct hearts. These benefits appear to be attributed to the enhanced interaction between STAT3 and MnSOD. These findings shed a light on a new role of STAT3 in oxidative stress and suggest that ZYZ451 is likely an effective cardio-protective agent.
Collapse
Affiliation(s)
- Shanshan Luo
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Fenfen Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Chunhua Liu
- Department of Anatomy and Histological Embryology, School of Medicine and Key Laboratory of Tumor Microenvironment and Neuro-vascular Regulation, Nankai University, Tianjin 300071, China.
| | - Yaqi Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | - Yizhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| |
Collapse
|
41
|
Liu SQ, Ma XL, Qin G, Liu Q, Li YC, Wu YH. Trans-system mechanisms against ischemic myocardial injury. Compr Physiol 2015; 5:167-92. [PMID: 25589268 DOI: 10.1002/cphy.c140026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A mammalian organism possesses a hierarchy of naturally evolved protective mechanisms against ischemic myocardial injury at the molecular, cellular, and organ levels. These mechanisms comprise regional protective processes, including upregulation and secretion of paracrine cell-survival factors, inflammation, angiogenesis, fibrosis, and resident stem cell-based cardiomyocyte regeneration. There are also interactive protective processes between the injured heart, circulation, and selected remote organs, defined as trans-system protective mechanisms, including upregulation and secretion of endocrine cell-survival factors from the liver and adipose tissue as well as mobilization of bone marrow, splenic, and hepatic cells to the injury site to mediate myocardial protection and repair. The injured heart and activated remote organs exploit molecular and cellular processes, including signal transduction, gene expression, cell proliferation, differentiation, migration, mobilization, and/or extracellular matrix production, to establish protective mechanisms. Both regional and trans-system cardioprotective mechanisms are mediated by paracrine and endocrine messengers and act in coordination and synergy to maximize the protective effect, minimize myocardial infarction, and improve myocardial function, ensuring the survival and timely repair of the injured heart. The concept of the trans-system protective mechanisms may be generalized to other organ systems-injury in one organ may initiate regional as well as trans-system protective responses, thereby minimizing injury and ensuring the survival of the entire organism. Selected trans-system processes may serve as core protective mechanisms that can be exploited by selected organs in injury. These naturally evolved protective mechanisms are the foundation for developing protective strategies for myocardial infarction and injury-induced disorders in other organ systems.
Collapse
Affiliation(s)
- Shu Q Liu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois Department of Emergency Medicine, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois Carbohydrate and Lipid Metabolism Research Laboratory, College of Life Science and Technology, Dalian University, Dalian, China Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Both experimental and clinical evidence accumulated over the last couple of decades has linked inflammatory activation to the initiation and progression of chronic heart failure (HF). Circulating levels of inflammatory mediators are associated with cardiac function and inform risk prediction in patients, but the effect of anti-inflammatory therapy in HF remains uncertain. Interleukin (IL)-6 type cytokines are central to the inflammatory response, and convey their signals through the ubiquitously expressed glycoprotein (gp) 130 receptor subunit. IL-6-type/gp130 signaling therefore represents an inflammatory nexus, with inherent potential for disease modification. This review focuses on the current knowledge of IL-6/gp130 signaling in relation to HF, with a particular emphasis on the role of soluble gp130 (sgp130), a signaling pathway modulator. Biological aspects of sgp130 and IL-6 signaling are discussed, as are potential novel therapeutic approaches to modulate this central inflammatory signaling pathway.
Collapse
|
43
|
Marazzi MG, Galliera E, Vianello E, Dozio E, Stella A, Tettamanti G, Tacchini L, Corsi Romanelli MM. Hypertension in adult Fabry's disease: is cardiotrophin-1 a diagnostic biomarker? IMMUNITY & AGEING 2014; 11:27. [PMID: 25598833 PMCID: PMC4296686 DOI: 10.1186/s12979-014-0027-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cardiotrophin-1 (CT-1), a cytokine produced by cardiomyocytes and non-cardiomyocytes in conditions of stress, can be used as a biomarker of left ventricular hypertrophy and dysfunction in hypertensive patients. Hypertension is one of the main adverse events in the third and last phase of Fabry's disease (FD). We measured CT-1 in order to examine its correlation with the vascular and cardiac alterations at different ages and assess its potential for use as a biomarker of hypertension in FD. FINDINGS The level of CT-1 was clearly higher in hypertensive adults than in adult FD patients. FD patients show a small, non-significant decrease in plasma CT-1 with age, while in hypertensive patients CT-1 in plasma rises strongly and highly significantly with age. CONCLUSIONS CT-1 can be considered a good biomarker of the progression of hypertension with age, but particular care is needed when following hypertension in FD patients, since CT-1 does not correlate the same way with this disease.
Collapse
Affiliation(s)
- Monica Gioia Marazzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Galliera
- Department of Biomedical, Surgical and Oral Sciences, Università degli Studi di Milano, Milan, Italy ; IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Elena Vianello
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Elena Dozio
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Stella
- Department of Sciences for Health, Università degli Studi di Milano - Bicocca, Milan, Italy
| | | | - Lorenza Tacchini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano M Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy ; IRCCS Policlinico San Donato, San Donato, Milano, Italy
| |
Collapse
|
44
|
Human cytomegalovirus-encoded pUL7 is a novel CEACAM1-like molecule responsible for promotion of angiogenesis. mBio 2014; 5:e02035. [PMID: 25352622 PMCID: PMC4217178 DOI: 10.1128/mbio.02035-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Persistent human cytomegalovirus (HCMV) infection has been linked to several diseases, including atherosclerosis, transplant vascular sclerosis (TVS), restenosis, and glioblastoma. We have previously shown that factors secreted from HCMV-infected cells induce angiogenesis and that this process is due, at least in part, to increased secretion of interleukin-6 (IL-6). In order to identify the HCMV gene(s) responsible for angiogenesis promotion, we constructed a large panel of replication-competent HCMV recombinants. One HCMV recombinant deleted for UL1 to UL10 was unable to induce secretion of factors necessary for angiogenesis. Fine mapping using additional HCMV recombinants identified UL7 as a viral gene required for production of angiogenic factors from HCMV-infected cells. Transient expression of pUL7 induced phosphorylation of STAT3 and ERK1/2 MAP kinases and production of proangiogenic factors, including IL-6. Addition of recombinant pUL7 to cells was sufficient for angiogenesis and was again associated with increased IL-6 expression. Analysis of the UL7 structure revealed a conserved domain similar to the immunoglobulin superfamily domain and related to the N-terminal V-like domain of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Our report therefore identifies UL7 as a novel HCMV-encoded molecule that is both structurally and functionally related to cellular CEACAM1, a proangiogenic factor highly expressed during vasculogenesis. IMPORTANCE A hallmark of cytomegalovirus (CMV) infection is its ability to modulate the host cellular machinery, resulting in the secretion of factors associated with long-term diseases such as vascular disorders and cancer. We previously demonstrated that HCMV infection alters the types and quantities of bioactive proteins released from cells (designated the HCMV secretome) that are involved in the promotion of angiogenesis and wound healing. A key proangiogenic and antiapoptotic factor identified from a proteomic-based approach was IL-6. In the present report, we show for the first time that HCMV UL7 encodes a soluble molecule that is a structural and functional homologue of the CEACAM1 proangiogenic cellular factor. This report thereby identifies a critical component of the HCMV secretome that may be responsible, at least in part, for the vascular dysregulation associated with persistent HCMV infection.
Collapse
|
45
|
Savvatis K, Müller I, Fröhlich M, Pappritz K, Zietsch C, Hamdani N, Grote K, Schieffer B, Klingel K, Van Linthout S, Linke WA, Schultheiss HP, Tschöpe C. Interleukin-6 receptor inhibition modulates the immune reaction and restores titin phosphorylation in experimental myocarditis. Basic Res Cardiol 2014; 109:449. [PMID: 25344085 DOI: 10.1007/s00395-014-0449-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 01/18/2023]
Abstract
Increased levels of interleukin-6 (IL-6) have been observed in patients with acute myocarditis and are associated with poor prognosis. This study was designed to examine whether treatment with anti-IL-6 receptor antibody improves cardiac dysfunction and left ventricular (LV) remodeling in experimental Coxsackie virus B3 (CVB3)-induced myocarditis. C57BL6/J mice were subjected to acute CVB3 infection. One day after viral infection mice were treated with a single injection of an anti-IL-6 receptor antibody (MR16-1, tocilizumab) or control IgG. Seven days after viral infection, LV function was examined by conductance catheter technique, cardiac remodeling assessed by estimation of titin phosphorylation, cardiac fibrosis, and inflammatory and antiviral response by immunohistochemistry, RT-PCR and cell culture experiments. Compared to controls, infected mice displayed an impaired systolic and diastolic LV function associated with an increase in cardiac inflammation, fibrosis and impaired titin phosphorylation. IL-6 receptor blockade led to a shift of the immune response to a Th1 direction and significant reduction of viral load. In addition, cardiac immune response, extracellular matrix regulation and titin function improved, resulting in a preserved LV function. IL-6 receptor blockade exerts cardiac beneficial effects by antiviral and immunomodulatory actions after induction of an acute murine CVB3 virus myocarditis.
Collapse
Affiliation(s)
- Konstantinos Savvatis
- Department of Cardiology and Pneumology, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pregnancy differentially regulates the collagens types I and III in left ventricle from rat heart. BIOMED RESEARCH INTERNATIONAL 2014; 2014:984785. [PMID: 25147829 PMCID: PMC4131467 DOI: 10.1155/2014/984785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/19/2023]
Abstract
The pathologic cardiac remodeling has been widely documented; however, the physiological cardiac remodeling induced by pregnancy and its reversion in postpartum are poorly understood. In the present study we investigated the changes in collagen I (Col I) and collagen III (Col III) mRNA and protein levels in left ventricle from rat heart during pregnancy and postpartum. Col I and Col III mRNA expression in left ventricle samples during pregnancy and postpartum were analyzed by using quantitative PCR. Data obtained from gene expression show that Col I and Col III in left ventricle are upregulated during pregnancy with reversion in postpartum. In contrast to gene expression, the protein expression evaluated by western blot showed that Col I is downregulated and Col III is upregulated in left ventricle during pregnancy. In conclusion, the pregnancy differentially regulates collagens types I and III in heart; this finding could be an important molecular mechanism that regulates the ventricular stiffness in response to blood volume overload present during pregnancy which is reversed in postpartum.
Collapse
|
47
|
Abstract
In cardiac and many other systems, chronic stress activates avfamily of structurally and functionally conserved receptors and their downstream signaling molecules that entail tyrosine, serine or threonine phosphorylation to transfer the messages to the genetic machinery. However, the activation of the Janus kinases (JAKs) and their downstream signal transducer and activator of transcription (STATs) proteins is both characteristic of and unique to cytokine and growth factor signaling which plays a central role in heart physiology. Dysregulation of JAK-STAT signaling is associated with various cardiovascular diseases. The molecular signaling and specificity of the JAK-STAT pathway are modulated at many levels by distinct regulatory proteins. Here, we review recent studies on the regulation of the STAT signaling pathway that will enhance our ability to design rational therapeutic strategies for stress-induced heart failure.
Collapse
Affiliation(s)
- Raj Kishore
- Feinberg Cardiovascular Research Institute; Feinberg School of Medicine; Northwestern University; Chicago, IL USA
| | | |
Collapse
|
48
|
Haghikia A, Hoch M, Stapel B, Hilfiker-Kleiner D. STAT3 regulation of and by microRNAs in development and disease. JAKSTAT 2014; 1:143-50. [PMID: 24058763 PMCID: PMC3670237 DOI: 10.4161/jkst.19573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs acting at the post-transcriptional level where they promote mRNA degradation and block protein translation. Recent findings suggest that complex transcriptional and post-transcriptional circuits control miRNAs. STAT3 has emerged as an important regulator of their expression and biogenesis and, in turn, STAT3 signaling pathways are controlled by distinct miRNAs. We summarize the current knowledge on STAT3 mediated processing of individual miRNAs and contrariwise, the modulation of the STAT3 pathway by miRNAs in development and in pathophysiological conditions such as immune processes, infection, cancer, cardiovascular disease and pulmonary hypertension.
Collapse
Affiliation(s)
- Arash Haghikia
- Department of Cardiology and Angiology; Medical School Hannover; Hannover, Germany
| | | | | | | |
Collapse
|
49
|
Abstract
Recently various kinds of cardiac stem/progenitor cells have been identified and suggested to be involved in cardiac repair and regeneration in injured myocardium. In this review, we focus on the roles of JAK-STAT signaling in cardiac stem/progenitor cells in cardiomyogenesis. JAK-STAT signaling plays important roles in the differentiation of stem cells into cardiac lineage cells. The activation of JAK-STAT signal elicits the mobilization of mesenchymal stem cells as well, contributing to the maintenance of cardiac function. Thus we propose that JAK-STAT could be a target signaling pathway in cardiac regenerative therapy.
Collapse
Affiliation(s)
- Tomomi Mohri
- Laboratory of Clinical Science and Biomedicine; Graduate School of Pharmaceutical Sciences; Osaka University; Osaka, Japan
| | | | | | | |
Collapse
|
50
|
Abstract
Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF, several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cyclic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction.
Collapse
|