1
|
Ni Y, Cao J, Li Y, Qi X. SOX11 Silence Inhibits Atherosclerosis Progression in ApoE-Deficient Mice by Alleviating Endothelial Dysfunction. Exp Cell Res 2025:114422. [PMID: 39805338 DOI: 10.1016/j.yexcr.2025.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS. The expression of SOX11 was found to be elevated in the aortic tissue of AS mice induced by feeding ApoE-deficient mice a high-fat diet. Knockdown of SOX11 using lentiviral-mediated SOX11-specific shRNA via tail vein injection resulted in a reduction in plaque area and lipid deposition within plaques at the aortic root. Furthermore, silencing SOX11 led to decreased expression of cell adhesion factors Intercellular Cell Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1, as well as reduced levels of inflammatory factors Interleukin (IL)-6, IL-1β, and chemokine Monocyte Chemotactic Protein-1. In the human umbilical vein endothelial cells (HUVECs) induced by Tumor Necrosis Factor (TNF)-α, increased inflammation was observed at the cellular level, along with enhanced monocyte adhesion. Infection of HUVECs with lentivirus carrying specific shRNA targeting SOX11 inhibited inflammatory response. Mechanistically, chromatin immunoprecipitation (ChIP)-PCR results revealed that SOX11 bound to the promoters of downstream target genes Tumor Necrosis Factor Receptor-Associated Factor-1 (TRAF1), Cluster of Differentiation (CD)40, and CD36, positively regulating their transcription. In conclusion, SOX11 plays a pivotal role in promoting endothelial cell inflammation. Suppression of SOX11 reduces endothelial cell inflammation by inhibiting the transcription of TRAF1, CD40, and CD36, thereby impeding the progression of atherosclerosis.
Collapse
Affiliation(s)
- Yanhui Ni
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Jingjing Cao
- Department of Rheumatology and Immunology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Yuxuan Li
- Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Xiaoyong Qi
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
2
|
Vedpathak S, Palkar S, Mishra A, Arankalle VA, Shrivastava S. Dengue infection changes the expressions of CD154 and CD148 in human platelets. Virus Res 2024; 351:199519. [PMID: 39710119 DOI: 10.1016/j.virusres.2024.199519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Platelets are essential for hemostasis and vascular integrity. Platelets recognize dengue virus through the DC-SIGN receptor. Upon pathogen recognition, platelets rapidly modulate the expression of adhesion molecules to trigger immune cell interactions and regulate the immune response. In this study, we aimed to examine the expression levels of three molecules, CD151, CD154, and CD148 on platelets in dengue patients. A significantly increased expression of CD154 and reduced expression of CD148 was observed in dengue patients compared to healthy subjects (p < 0.0001). Moreover, a strong positive correlation between CD148 and CD41/CD61 (p < 0.0001) was noted in dengue patients. In summary, we demonstrated the altered expressions of CD154 and CD148 on platelets in dengue patients that may play a crucial role in dengue pathogenesis.
Collapse
Affiliation(s)
- Sayali Vedpathak
- Department of Translational Virology, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune 411043, India
| | - Sonali Palkar
- Department of Community Medicine, Bharati Vidyapeeth (Deemed to be University) Medical College and Hospital, Katraj-Dhankawadi, Pune 411043, India
| | - AkhileshChandra Mishra
- Department of Translational Virology, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune 411043, India
| | - Vidya A Arankalle
- Department of Translational Virology, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune 411043, India
| | - Shubham Shrivastava
- Department of Translational Virology, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Katraj-Dhankawadi, Pune 411043, India.
| |
Collapse
|
3
|
Strohm L, Daiber A, Ubbens H, Krishnankutty R, Oelze M, Kuntic M, Hahad O, Klein V, Hoefer IE, von Kriegsheim A, Kleinert H, Atzler D, Lurz P, Weber C, Wild PS, Münzel T, Knosalla C, Lutgens E, Daub S. Role of inflammatory signaling pathways involving the CD40-CD40L-TRAF cascade in diabetes and hypertension-insights from animal and human studies. Basic Res Cardiol 2024; 119:1-18. [PMID: 38554187 PMCID: PMC11319409 DOI: 10.1007/s00395-024-01045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 03/02/2024] [Indexed: 04/01/2024]
Abstract
CD40L-CD40-TRAF signaling plays a role in atherosclerosis progression and affects the pathogenesis of coronary heart disease (CHD). We tested the hypothesis that CD40L-CD40-TRAF signaling is a potential therapeutic target in hyperlipidemia, diabetes, and hypertension. In mouse models of hyperlipidemia plus diabetes (db/db mice) or hypertension (1 mg/kg/d angiotensin-II for 7 days), TRAF6 inhibitor treatment (2.5 mg/kg/d for 7 or 14 days) normalized markers of oxidative stress and inflammation. As diabetes and hypertension are important comorbidities aggravating CHD, we explored whether the CD40L-CD40-TRAF signaling cascade and their associated inflammatory pathways are expressed in CHD patients suffering from comorbidities. Therefore, we analyzed vascular bypass material (aorta or internal mammary artery) and plasma from patients with CHD with diabetes and/or hypertension. Our Olink targeted plasma proteomic analysis using the IMMUNO-ONCOLOGY panel revealed a pattern of step-wise increase for 13/92 markers of low-grade inflammation with significant changes. CD40L or CD40 significantly correlated with 38 or 56 other inflammatory targets. In addition, specific gene clusters that correlate with the comorbidities were identified in isolated aortic mRNA of CHD patients through RNA-sequencing. These signaling clusters comprised CD40L-CD40-TRAF, immune system, hemostasis, muscle contraction, metabolism of lipids, developmental biology, and apoptosis. Finally, immunological analysis revealed key markers correlated with comorbidities in CHD patients, such as CD40L, NOX2, CD68, and 3-nitrotyrosine. These data indicate that comorbidities increase inflammatory pathways in CHD, and targeting these pathways will be beneficial in reducing cardiovascular events in CHD patients with comorbidities.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany.
- Universitätsmedizin der Johannes Gutenberg-Universität Zentrum für Kardiologie 1, Labor für Molekulare Kardiologie, Geb. 605, Raum 3.262, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Henning Ubbens
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Veronique Klein
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Imo E Hoefer
- Central Diagnostic Laboratory, UMC Utrecht, Utrecht, The Netherlands
| | | | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Philipp Lurz
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- Systems Medicine, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Steffen Daub
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
4
|
Alfaro E, Díaz-García E, García-Tovar S, Galera R, Casitas R, Torres-Vargas M, López-Fernández C, Añón JM, García-Río F, Cubillos-Zapata C. Endothelial dysfunction and persistent inflammation in severe post-COVID-19 patients: implications for gas exchange. BMC Med 2024; 22:242. [PMID: 38867241 PMCID: PMC11170912 DOI: 10.1186/s12916-024-03461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Understanding the enduring respiratory consequences of severe COVID-19 is crucial for comprehensive patient care. This study aims to evaluate the impact of post-COVID conditions on respiratory sequelae of severe acute respiratory distress syndrome (ARDS). METHODS We examined 88 survivors of COVID-19-associated severe ARDS six months post-intensive care unit (ICU) discharge. Assessments included clinical and functional evaluation as well as plasma biomarkers of endothelial dysfunction, inflammation, and viral response. Additionally, an in vitro model using human umbilical vein endothelial cells (HUVECs) explored the direct impact of post-COVID plasma on endothelial function. RESULTS Post-COVID patients with impaired gas exchange demonstrated persistent endothelial inflammation marked by elevated ICAM-1, IL-8, CCL-2, and ET-1 plasma levels. Concurrently, systemic inflammation, evidenced by NLRP3 overexpression and elevated levels of IL-6, sCD40-L, and C-reactive protein, was associated with endothelial dysfunction biomarkers and increased in post-COVID patients with impaired gas exchange. T-cell activation, reflected in CD69 expression, and persistently elevated levels of interferon-β (IFN-β) further contributed to sustained inflammation. The in vitro model confirmed that patient plasma, with altered levels of sCD40-L and IFN-β proteins, has the capacity to alter endothelial function. CONCLUSIONS Six months post-ICU discharge, survivors of COVID-19-associated ARDS exhibited sustained elevation in endothelial dysfunction biomarkers, correlating with the severity of impaired gas exchange. NLRP3 inflammasome activity and persistent T-cell activation indicate on going inflammation contributing to persistent endothelial dysfunction, potentially intensified by sustained viral immune response.
Collapse
Affiliation(s)
- Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
- Biomedical Research Networking Centre On Respiratory Diseases (CIBERES), Madrid, Spain
| | - Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
- Biomedical Research Networking Centre On Respiratory Diseases (CIBERES), Madrid, Spain
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
| | - Raúl Galera
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
- Biomedical Research Networking Centre On Respiratory Diseases (CIBERES), Madrid, Spain
| | - Raquel Casitas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
- Biomedical Research Networking Centre On Respiratory Diseases (CIBERES), Madrid, Spain
| | - María Torres-Vargas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
- Biomedical Research Networking Centre On Respiratory Diseases (CIBERES), Madrid, Spain
| | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain
- Biomedical Research Networking Centre On Respiratory Diseases (CIBERES), Madrid, Spain
| | - José M Añón
- Department of Intensive Medicine, La Paz University Hospital, Madrid, Spain
| | - Francisco García-Río
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain.
- Biomedical Research Networking Centre On Respiratory Diseases (CIBERES), Madrid, Spain.
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de La Castellana 261, 28046, Madrid, Spain.
- Biomedical Research Networking Centre On Respiratory Diseases (CIBERES), Madrid, Spain.
| |
Collapse
|
5
|
Masset C, Branchereau J, Buron F, Karam G, Rabeyrin M, Renaudin K, Le Borgne F, Badet L, Matillon X, Legendre C, Glotz D, Antoine C, Giral M, Dantal J, Cantarovich D. The role of donor hypertension and angiotensin II in the occurrence of early pancreas allograft thrombosis. Front Immunol 2024; 15:1359381. [PMID: 38873595 PMCID: PMC11170105 DOI: 10.3389/fimmu.2024.1359381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
Background About 10-20% of pancreas allografts are still lost in the early postoperative period despite the identification of numerous detrimental risk factors that correlate with graft thrombosis. Methods We conducted a multicenter study including 899 pancreas transplant recipients between 2000 and 2018. Early pancreas failure due to complete thrombosis, long-term pancreas, kidney and patient survivals were analyzed and adjusted to donor, recipient and perioperative variables using a multivariate cause-specific Cox model stratified to transplant centers. Results Pancreas from donors with history of hypertension (6.7%), as well as with high body mass index (BMI), were independently associated with an increased risk of pancreas failure within the first 30 post-operative days (respectively, HR= 2.57, 95% CI from 1.35 to 4.89 and HR= 1.11, 95% CI from 1.04 to 1.19). Interaction term between hypertension and BMI was negative. Donor hypertension also impacted long-term pancreas survival (HR= 1.88, 95% CI from 1.13 to 3.12). However, when pancreas survival was calculated after the postoperative day 30, donor hypertension was no longer a significant risk factor (HR= 1.22, 95% CI from 0.47 to 3.15). A lower pancreas survival was observed in patients receiving a pancreas from a hypertensive donor without RAAS (Renin Angiotensin Aldosterone System) blockers compared to others (50% vs 14%, p < 0.001). Pancreas survival was similar among non-hypertensive donors and hypertensive ones under RAAS blockers. Conclusion Donor hypertension was a significant and independent risk factor of pancreas failure. The well-known pathogenic role of renin-angiotensin-aldosterone system seems to be involved in the genesis of this immediate graft failure.
Collapse
Affiliation(s)
- Christophe Masset
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Julien Branchereau
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Fanny Buron
- Groupement Hospitalier Edouard Herriot Service d’urologie chirurgie de la transplantation, Lyon, France
| | - Georges Karam
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Maud Rabeyrin
- Groupement Hospitalier Edouard Herriot, Service d’anatomie et pathologie, Lyon, France
| | - Karine Renaudin
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service d’anatomie et pathologie, CHU de Nantes, Nantes, France
| | | | - Lionel Badet
- Groupement Hospitalier Edouard Herriot Service d’urologie chirurgie de la transplantation, Lyon, France
| | - Xavier Matillon
- Groupement Hospitalier Edouard Herriot Service d’urologie chirurgie de la transplantation, Lyon, France
| | - Christophe Legendre
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Denis Glotz
- Institut de Recherche Saint Louis, INSERM U976, Paris, France
| | - Corinne Antoine
- Institut de Recherche Saint Louis, INSERM U976, Paris, France
| | - Magali Giral
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jacques Dantal
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Diego Cantarovich
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| |
Collapse
|
6
|
Kij A, Bar A, Czyzynska-Cichon I, Przyborowski K, Proniewski B, Mateuszuk L, Kurylowicz Z, Jasztal A, Buczek E, Kurpinska A, Suraj-Prazmowska J, Marczyk B, Matyjaszczyk-Gwarda K, Daiber A, Oelze M, Walczak M, Chlopicki S. Vascular protein disulfide isomerase A1 mediates endothelial dysfunction induced by angiotensin II in mice. Acta Physiol (Oxf) 2024; 240:e14116. [PMID: 38400621 DOI: 10.1111/apha.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
AIM Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | - Andreas Daiber
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
7
|
Kumar K, Rawat P, Kaur S, Singh N, Yadav HN, Singh D, Jaggi AS, Sethi D. Unveiling Wide Spectrum Therapeutic Implications and Signaling Mechanisms of Valsartan in Diverse Disorders: A Comprehensive Review. Curr Drug Res Rev 2024; 16:268-288. [PMID: 37461345 DOI: 10.2174/2589977515666230717120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2024]
Abstract
Valsartan is an orally active non-peptide angiotensin receptor antagonist, an effective and well-tolerated anti-hypertensive drug. Besides its antihypertensive action, it has clinical implications in many other disorders, like heart failure (HF), arrhythmia, chronic kidney disease (CKD), diabetic complications (DM), atherosclerosis, etc. Besides angiotensin receptor blocking activity, valsartan reduces circulating levels of biochemical markers, such as hs-CRP, which is responsible for its anti-inflammatory and anti-oxidant activity. Moreover, valsartan also acts by inhibiting or inducing various signalling pathways, such as inducing autophagy via the AKT/mTOR/S6K pathway or inhibiting the TLR/NF-kB pathway. The current review exhaustively discusses the therapeutic implications of valsartan with specific emphasis on the mechanism of action in various disorders. The article provides a detailed spectrum of the therapeutic profile of valsartan and will likely be very useful to researchers working in the relevant research areas.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Pooja Rawat
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Simrat Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Dimple Sethi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
8
|
Cui X, Xuan T, Chen S, Guo X. Causal associations between CD40/CD40L and aortic diseases: A mendelian randomization study. Front Genet 2022; 13:998525. [PMID: 36437950 PMCID: PMC9681816 DOI: 10.3389/fgene.2022.998525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/28/2022] [Indexed: 09/08/2024] Open
Abstract
Background: CD40 and CD40L have been reported as associated with aortic dissection (AD) and aortic aneurysm (AA), but the causality of the associations has not been established yet. Methods: We conducted a two-sample Mendelian randomization (MR) study to assess the causal inference between CD40/CD40L and aortic diseases including AD and AA. The instrumental variables (IVs) for CD40 and CD40L were selected from a high-quality protein quantitative trait loci dataset released by a genomic study involving 30,931 individuals of European ancestry. The genome-wide association studies summary statistics for AD and AA were from the FinnGen Release 7, with 288638 controls for all outcomes of interests, 680 cases for AD and 6,092 cases for AA, also from European ancestry. For AA subtypes, there were 5,881 cases of thoracic AA (TAA) and 2,434 cases of abdominal AA (AAA) respectively. Inverse-variance weighted and Wald ratio were applied for calculating causal estimates. Horizontal pleiotropy and heterogeneity were assessed using MR-Egger regression analysis and Cochran Q test, respectively. Leave-one-out analyses were further performed. Results: Three single-nucleotide polymorphisms (SNPs) for CD40 and one SNP for CD40L were selected as IVs. We found genetic proxied CD40 levels inversely associated with the risk of AD (odds ratio [OR]: 0.777, 95% confidence interval [CI]: 0.618-0.978, p = 0.031) and AA (OR: 0.905, 95% CI: 0.837-0.978, p = 0.012), consistent across TAA (both p < 0.050). There were trends of increased risks of AD and AA in the presence of CD40L while not reaching statistical significance. No significant horizontal pleiotropy or heterogeneity was observed. Conclusion: Our MR study provides evidence supporting the causal association between CD40 and the reduced risks of both AD and AA.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianming Xuan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyuan Chen
- Graduate School, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Strohm L, Ubbens H, Münzel T, Daiber A, Daub S. Role of CD40(L)-TRAF signaling in inflammation and resolution-a double-edged sword. Front Pharmacol 2022; 13:995061. [PMID: 36267276 PMCID: PMC9577411 DOI: 10.3389/fphar.2022.995061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Cardiovascular diseases (CVD) and cardiovascular risk factors are the leading cause of death in the world today. According to the Global Burden of Disease Study, hypertension together with ischemic heart and cerebrovascular diseases is responsible for approximately 40% of all deaths worldwide. The major pathomechanism underlying almost all CVD is atherosclerosis, an inflammatory disorder of the vascular system. Recent large-scale clinical trials demonstrated that inflammation itself is an independent cardiovascular risk factor. Specific anti-inflammatory therapy could decrease cardiovascular mortality in patients with atherosclerosis (increased markers of inflammation). Inflammation, however, can also be beneficial by conferring so-called resolution, a process that contributes to clearing damaged tissue from cell debris upon cell death and thereby represents an essential step for recovery from, e.g., ischemia/reperfusion damage. Based on these considerations, the present review highlights features of the detrimental inflammatory reactions as well as of the beneficial process of immune cell-triggered resolution. In this context, we discuss the polarization of macrophages to either M1 or M2 phenotype and critically assess the role of the CD40L-CD40-TRAF signaling cascade in atherosclerosis and its potential link to resolution. As CD40L can bind to different cellular receptors, it can initiate a broad range of inflammatory processes that may be detrimental or beneficial. Likewise, the signaling of CD40L downstream of CD40 is mainly determined by activation of TRAF1-6 pathways that again can be detrimental or beneficial. Accordingly, CD40(L)-based therapies may be Janus-faced and require sophisticated fine-tuning in order to promote cardioprotection.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Henning Ubbens
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Cardiology I—Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Angiotensin II Exaggerates SARS-CoV-2 Specific T-Cell Response in Convalescent Individuals following COVID-19. Int J Mol Sci 2022; 23:ijms23158669. [PMID: 35955801 PMCID: PMC9368904 DOI: 10.3390/ijms23158669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022] Open
Abstract
Dysregulation of renin−angiotensin systems during coronavirus disease 2019 (COVID-19) infection worsens the symptoms and contributes to COVID-19 severity and mortality. This study sought to investigate the effect of exogenous angiotensin II (Ang-II) on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cells response in recovered COVID-19 patients. Human peripheral blood mononuclear cells (PBMCs) were treated with Ang II and then stimulated with a SARS-CoV-2 peptide pool. T-cell responses were measured using flow cytometry, while enzyme-linked immunosorbent assay (ELISA) and intracellular cytokine staining (ICS) assays determined functional capability and polarization. Additionally, the relative level of protein phosphorylation was measured using a phosphokinase array. Our results showed that Ang II treatment significantly increased the magnitude of SARS-CoV-2-specific T-cell response in stimulated PBMCs with a SARS-CoV-2 peptide pool. Moreover, the phosphorylation levels of numerous proteins implicated in cardiovascular diseases, inflammation, and viral infection showed significant increases in the presence of Ang II. The mitogenic stimulation of PBMCs after Ang II and SARS-CoV-2 peptide pool stimulation showed functional polarization of T-cells toward Th1/Th17 and Th17 phenotypes, respectively. Meanwhile, ELISA showed increased productions of IL-1β and IL-6 in Ang II-stimulated PBMCs without affecting the IL-10 level. To our knowledge, this study is the first to demonstrate that Ang II exaggerates SARS-CoV-2-specific T-cells response. Therefore, during COVID-19 infection, Ang II may aggravate the inflammatory response and change the immune response toward a more inflammatory profile against SARS-CoV-2 infection.
Collapse
|
11
|
Mohammadi P, Hesari M, Chalabi M, Salari F, Khademi F. An overview of immune checkpoint therapy in autoimmune diseases. Int Immunopharmacol 2022; 107:108647. [DOI: 10.1016/j.intimp.2022.108647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/06/2023]
|
12
|
Frenis K, Kalinovic S, Ernst BP, Kvandova M, Al Zuabi A, Kuntic M, Oelze M, Stamm P, Bayo Jimenez MT, Kij A, Keppeler K, Klein V, Strohm L, Ubbens H, Daub S, Hahad O, Kröller-Schön S, Schmeisser MJ, Chlopicki S, Eckrich J, Strieth S, Daiber A, Steven S, Münzel T. Long-Term Effects of Aircraft Noise Exposure on Vascular Oxidative Stress, Endothelial Function and Blood Pressure: No Evidence for Adaptation or Tolerance Development. Front Mol Biosci 2022; 8:814921. [PMID: 35174211 PMCID: PMC8841864 DOI: 10.3389/fmolb.2021.814921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Transportation noise is recognized as an important cardiovascular risk factor. Key mechanisms are noise-triggered vascular inflammation and oxidative stress with subsequent endothelial dysfunction. Here, we test for adaptation or tolerance mechanisms in mice in response to chronic noise exposure. C57BL/6J mice were exposed to aircraft noise for 0, 4, 7, 14 and 28d at a mean sound pressure level of 72 dB(A) and peak levels of 85 dB(A). Chronic aircraft noise exposure up to 28d caused persistent endothelial dysfunction and elevation of blood pressure. Likewise, reactive oxygen species (ROS) formation as determined by dihydroethidium (DHE) staining and HPLC-based measurement of superoxide formation in the aorta/heart/brain was time-dependently increased by noise. Oxidative burst in the whole blood showed a maximum at 4d or 7d of noise exposure. Increased superoxide formation in the brain was mirrored by a downregulation of neuronal nitric oxide synthase (Nos3) and transcription factor Foxo3 genes, whereas Vcam1 mRNA, a marker for inflammation was upregulated in all noise exposure groups. Induction of a pronounced hearing loss in the mice was excluded by auditory brainstem response audiometry. Endothelial dysfunction and inflammation were present during the entire 28d of aircraft noise exposure. ROS formation gradually increases with ongoing exposure without significant adaptation or tolerance in mice in response to chronic noise stress at moderate levels. These data further illustrate health side effects of long-term noise exposure and further strengthen a consequent implementation of the WHO noise guidelines in order to prevent the development of noise-related future cardiovascular disease.
Collapse
Affiliation(s)
- Katie Frenis
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Boston Children’s Hospital and Harvard Medical School, Department of Hematology/Oncology, Boston, MA, United States
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Benjamin P. Ernst
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Miroslava Kvandova
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ahmad Al Zuabi
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Paul Stamm
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Karin Keppeler
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Veronique Klein
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Lea Strohm
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Henning Ubbens
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Medical College of the Jagiellonian University, Krakow, Poland
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Andreas Daiber, ; Thomas Münzel,
| | - Sebastian Steven
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Andreas Daiber, ; Thomas Münzel,
| |
Collapse
|
13
|
Gokina NI, Fairchild RI, Prakash K, DeLance NM, Bonney EA. Deficiency in CD4 T Cells Leads to Enhanced Postpartum Internal Carotid Artery Vasoconstriction in Mice: The Role of Nitric Oxide. Front Physiol 2021; 12:686429. [PMID: 34220551 PMCID: PMC8242360 DOI: 10.3389/fphys.2021.686429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The risk of postpartum (PP) stroke is increased in complicated pregnancies. Deficiency in CD4 T cell subsets is associated with preeclampsia and may contribute to PP vascular disease, including internal carotid artery (ICA) stenosis and stroke. We hypothesized that CD4 T cell deficiency in pregnancy would result in ICA dysregulation, including enhanced ICA vasoconstriction. We characterized the function, mechanical behavior, and structure of ICAs from C57BL/6 (WT) and CD4 deficient (CD4KO) mice, and assessed the role of NO in the control of ICA function at pre-conception and PP. WT and CD4KO mice were housed under pathogen-free conditions, mated to same-strain males, and allowed to litter or left virgin. At 3 days or 4 weeks PP, mice were euthanized. The responses to phenylephrine (PE), high K+ and acetylcholine (ACh) were assessed in pressurized ICAs before and after NOS inhibition. Passive lumen diameters were measured at 3–140 mmHg. eNOS and iNOS expression as well as the presence of T cells were evaluated by immunohistochemistry. Constriction of WT ICAs to PE was not modified PP. In contrast, responses to PE were significantly increased in ICAs from PP as compared to virgin CD4KO mice. Constriction to high K+ was not enhanced PP. ICAs from WT and CD4KO mice were equally sensitive to ACh with a significant rightward shift of dose-response curves after L-NNA treatment. NOS inhibition enhanced PE constriction of ICAs from WT virgin and PP mice. Although a similar effect was detected in ICAs of virgin CD4KO mice, no such changes were observed in vessels from PP CD4KO mice. Passive arterial distensibility at physiological levels of pressure was not modified at PP. ICA diameters were significantly increased in PP with no change in vascular wall thickness. Comparison of eNOS expression in virgin, 3 days and 4 weeks PP revealed a reduced expression in ICA from CD4 KO vs. WT PP vessels which reached significance at 4 weeks PP. iNos expression was similar and decreased over the PP period in vessels from WT and CD4KO mice. Dysregulation of the CD4 T cell population in pregnancy may make ICA vulnerable to vasospasm due to decreased NO-dependent control of ICA constriction. This may lead to cerebral hypoperfusion and increase the risk of maternal PP stroke.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Rebecca I Fairchild
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Kirtika Prakash
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Nicole M DeLance
- Microscopy Imaging Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
14
|
Stamm P, Oelze M, Steven S, Kröller-Schön S, Kvandova M, Kalinovic S, Jasztal A, Kij A, Kuntic M, Bayo Jimenez MT, Proniewski B, Li H, Schulz E, Chlopicki S, Daiber A, Münzel T. Direct comparison of inorganic nitrite and nitrate on vascular dysfunction and oxidative damage in experimental arterial hypertension. Nitric Oxide 2021; 113-114:57-69. [PMID: 34091009 DOI: 10.1016/j.niox.2021.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 01/17/2023]
Abstract
Arterial hypertension is one of the major health risk factors leading to coronary artery disease, stroke or peripheral artery disease. Dietary uptake of inorganic nitrite (NO2-) and nitrate (NO3-) via vegetables leads to enhanced vascular NO bioavailability and provides antihypertensive effects. The present study aims to understand the underlying vasoprotective effects of nutritional NO2- and NO3- co-therapy in mice with angiotensin-II (AT-II)-induced arterial hypertension. High-dose AT-II (1 mg/kg/d, 1w, s. c.) was used to induce arterial hypertension in male C57BL/6 mice. Additional inorganic nitrite (7.5 mg/kg/d, p. o.) or nitrate (150 mg/kg/d, p. o.) were administered via the drinking water. Blood pressure (tail-cuff method) and endothelial function (isometric tension) were determined. Oxidative stress and inflammation markers were quantified in aorta, heart, kidney and blood. Co-treatment with inorganic nitrite, but not with nitrate, normalized vascular function, oxidative stress markers and inflammatory pathways in AT-II treated mice. Of note, the highly beneficial effects of nitrite on all parameters and the less pronounced protection by nitrate, as seen by improvement of some parameters, were observed despite no significant increase in plasma nitrite levels by both therapies. Methemoglobin levels tended to be higher upon nitrite/nitrate treatment. Nutritional nitric oxide precursors represent a non-pharmacological treatment option for hypertension that could be applied to the general population (e.g. by eating certain vegetables). The more beneficial effects of inorganic nitrite may rely on superior NO bioactivation and stronger blood pressure lowering effects. Future large-scale clinical studies should investigate whether hypertension and cardiovascular outcome in general can be influenced by dietary inorganic nitrite therapy.
Collapse
Affiliation(s)
- Paul Stamm
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Miroslava Kvandova
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Huige Li
- Department of Pharmacology, University Medical Center Mainz, Mainz, Germany
| | - Eberhard Schulz
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany; Department of Cardiology, Celle General Hospital, Celle, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Department of Pharmacology, Medical College of the Jagiellonian University, Krakow, Poland
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
15
|
Frenis K, Helmstädter J, Ruan Y, Schramm E, Kalinovic S, Kröller-Schön S, Bayo Jimenez MT, Hahad O, Oelze M, Jiang S, Wenzel P, Sommer CJ, Frauenknecht KBM, Waisman A, Gericke A, Daiber A, Münzel T, Steven S. Ablation of lysozyme M-positive cells prevents aircraft noise-induced vascular damage without improving cerebral side effects. Basic Res Cardiol 2021; 116:31. [PMID: 33929610 PMCID: PMC8087569 DOI: 10.1007/s00395-021-00869-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022]
Abstract
Aircraft noise induces vascular and cerebral inflammation and oxidative stress causing hypertension and cardiovascular/cerebral dysfunction. With the present studies, we sought to determine the role of myeloid cells in the vascular vs. cerebral consequences of exposure to aircraft noise. Toxin-mediated ablation of lysozyme M+ (LysM+) myeloid cells was performed in LysMCreiDTR mice carrying a cre-inducible diphtheria toxin receptor. In the last 4d of toxin treatment, the animals were exposed to noise at maximum and mean sound pressure levels of 85 and 72 dB(A), respectively. Flow cytometry analysis revealed accumulation of CD45+, CD11b+, F4/80+, and Ly6G-Ly6C+ cells in the aortas of noise-exposed mice, which was prevented by LysM+ cell ablation in the periphery, whereas brain infiltrates were even exacerbated upon ablation. Aircraft noise-induced increases in blood pressure and endothelial dysfunction of the aorta and retinal/mesenteric arterioles were almost completely normalized by ablation. Correspondingly, reactive oxygen species in the aorta, heart, and retinal/mesenteric vessels were attenuated in ablated noise-exposed mice, while microglial activation and abundance in the brain was greatly increased. Expression of phagocytic NADPH oxidase (NOX-2) and vascular cell adhesion molecule-1 (VCAM-1) mRNA in the aorta was reduced, while NFκB signaling appeared to be activated in the brain upon ablation. In sum, we show dissociation of cerebral and peripheral inflammatory reactions in response to aircraft noise after LysM+ cell ablation, wherein peripheral myeloid inflammatory cells represent a dominant part of the pathomechanism for noise stress-induced cardiovascular effects and their central nervous counterparts, microglia, as key mediators in stress responses.
Collapse
Affiliation(s)
- Katie Frenis
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Johanna Helmstädter
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Schramm
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Katrin B M Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Thomas Münzel
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Sebastian Steven
- Department of Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Building 605, Langenbeckstr. 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
16
|
Ponticelli C, Campise MR. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation. Kidney Int 2021; 100:536-545. [PMID: 33932457 DOI: 10.1016/j.kint.2021.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Several factors, such as donor brain death, ischemia-reperfusion injury, rejection, infection, and chronic allograft dysfunction, may induce an inflammatory state in kidney transplantation. Furthermore, inflammatory cells, cytokines, growth factors, complement and coagulation cascade create an unbalanced interaction with innate and adaptive immunity, which are both heavily involved in atherogenesis. The crosstalk between inflammation and thrombosis may lead to a prothrombotic state and impaired fibrinolysis in kidney transplant recipients increasing the risk of cardiovascular disease. Inflammation is also associated with elevated levels of fibroblast growth factor 23 and low levels of Klotho, which contribute to major adverse cardiovascular events. Hyperuricemia, glucose intolerance, arterial hypertension, dyslipidemia, and physical inactivity may create a condition called metaflammation that concurs in atherogenesis. Another major consequence of the inflammatory state is the development of chronic hypoxia that through the mediation of interleukins 1 and 6, angiotensin II, and transforming growth factor beta can result in excessive accumulation of extracellular matrix, which can disrupt and replace functional parenchyma, leading to interstitial fibrosis and chronic allograft dysfunction. Lifestyle and regular physical activity may reduce inflammation. Several drugs have been proposed to control the graft inflammatory state, including low-dose aspirin, statins, renin-angiotensin inhibitors, xanthine-oxidase inhibitors, vitamin D supplements, and interleukin-6 blockade. However, no prospective controlled trial with these measures has been conducted in kidney transplantation.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, Ospedale Maggiore Policlinico, Milano, Italy (retired).
| | - Maria Rosaria Campise
- Division of Nephrology and Dialysis, Ca' Granda Foundation, Scientific Institute Ospedale Maggiore Policlinico di Milano, Milano, Italy
| |
Collapse
|
17
|
Feng Z, Wang J. Soluble CD40 ligand inhibits the growth of non-Hodgkin's lymphoma cells through the JNK signaling pathway. Oncol Lett 2021; 21:56. [PMID: 33281967 PMCID: PMC7709545 DOI: 10.3892/ol.2020.12318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022] Open
Abstract
The incidence of non-Hodgkin's lymphoma (NHL) has been increasing annually and has become a serious threat to human health. However, the pathogenesis of NHL remains unclear. The present study aimed to investigate the effect of soluble CD40 ligand (sCD40L) on NHL cells and its underlying mechanism. Cell Counting kit-8 assay and flow cytometry apoptosis experiments were conducted to investigate the effects of sCD40L on cell proliferation and apoptosis. Western blotting was performed to detect the protein expression levels of BAX, Bcl-2, ERK, p-ERK, JNK, p-JNK, p38, p-p38 and c-JUN. The results of the present study demonstrated that exogenous sCD40L significantly inhibited the proliferation and promoted the apoptosis of Raji and CA46 cells. Additionally, exogenous sCD40L promoted the apoptosis of lymphoma cells by activating the JNK signaling pathway.
Collapse
Affiliation(s)
- Zhongxin Feng
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang, Guizhou 550004, P.R. China
| | - Jishi Wang
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Department of Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
18
|
Daub S, Lutgens E, Münzel T, Daiber A. CD40/CD40L and Related Signaling Pathways in Cardiovascular Health and Disease-The Pros and Cons for Cardioprotection. Int J Mol Sci 2020; 21:E8533. [PMID: 33198327 PMCID: PMC7697597 DOI: 10.3390/ijms21228533] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
The CD40-CD40 ligand (CD40L) dyad represents a scientific and clinical field that has raised many controversies in the past and cannot be clearly defined as being an either beneficial or harmful pathway. Being crucially involved in physiological immunological processes as well as pathological inflammatory reactions, the signaling pathway has been recognized as a key player in the development of both autoimmune and cardiovascular disease. Even though the possibilities of a therapeutic approach to the dyad were recognized decades ago, due to unfortunate events, detailed in this review, pharmacological treatment targeting the dyad, especially in patients suffering from atherosclerosis, is not available. Despite the recent advances in the treatment of classical cardiovascular risk factors, such as arterial hypertension and diabetes mellitus, the treatment of the associated low-grade inflammation that accounts for the progression of atherosclerosis is still challenging. Low-grade inflammation can be detected in a significant portion of patients that suffer from cardiovascular disease and it is therefore imperative to develop new therapeutic strategies in order to combat this driver of atherosclerosis. Of note, established cardiovascular drugs such as angiotensin-converting enzyme inhibitors or statins have proven beneficial cardiovascular effects that are also related to their pleiotropic immunomodulatory properties. In this review, we will discuss the setbacks encountered as well as new avenues discovered on the path to a different, inflammation-centered approach for the treatment of cardiovascular disease with the CD40-CD40L axis as a central therapeutic target.
Collapse
Affiliation(s)
- Steffen Daub
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (S.D.); (T.M.)
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands;
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, 80336 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany and Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (S.D.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (S.D.); (T.M.)
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
19
|
Steven S, Frenis K, Kalinovic S, Kvandova M, Oelze M, Helmstädter J, Hahad O, Filippou K, Kus K, Trevisan C, Schlüter KD, Boengler K, Chlopicki S, Frauenknecht K, Schulz R, Sorensen M, Daiber A, Kröller-Schön S, Münzel T. Exacerbation of adverse cardiovascular effects of aircraft noise in an animal model of arterial hypertension. Redox Biol 2020; 34:101515. [PMID: 32345536 PMCID: PMC7327989 DOI: 10.1016/j.redox.2020.101515] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Arterial hypertension is the most important risk factor for the development of cardiovascular disease. Recently, aircraft noise has been shown to be associated with elevated blood pressure, endothelial dysfunction, and oxidative stress. Here, we investigated the potential exacerbated cardiovascular effects of aircraft noise in combination with experimental arterial hypertension. C57BL/6J mice were infused with 0.5 mg/kg/d of angiotensin II for 7 days, exposed to aircraft noise for 7 days at a maximum sound pressure level of 85 dB(A) and a mean sound pressure level of 72 dB(A), or subjected to both stressors. Noise and angiotensin II increased blood pressure, endothelial dysfunction, oxidative stress and inflammation in aortic, cardiac and/or cerebral tissues in single exposure models. In mice subjected to both stressors, most of these risk factors showed potentiated adverse changes. We also found that mice exposed to both noise and ATII had increased phagocytic NADPH oxidase (NOX-2)-mediated superoxide formation, immune cell infiltration (monocytes, neutrophils and T cells) in the aortic wall, astrocyte activation in the brain, enhanced cytokine signaling, and subsequent vascular and cerebral oxidative stress. Exaggerated renal stress response was also observed. In summary, our results show an enhanced adverse cardiovascular effect between environmental noise exposure and arterial hypertension, which is mainly triggered by vascular inflammation and oxidative stress. Mechanistically, noise potentiates neuroinflammation and cerebral oxidative stress, which may be a potential link between both risk factors. The results indicate that a combination of classical (arterial hypertension) and novel (noise exposure) risk factors may be deleterious for cardiovascular health. Noise exposure causes non-auditory cardiovascular/cerebral adverse health effects by oxidative stress and inflammation. Aircraft noise causes exacerbated adverse effects on blood pressure and endothelial dysfunction in hypertensive mice. Aircraft noise and hypertension potentiate inflammation, ROS formation and oxidative damage in the brain, vessels and heart. Aircraft noise and hypertension seem to have enhanced adverse effects on stress responses in different organs.
Collapse
Affiliation(s)
- Sebastian Steven
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Katie Frenis
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sanela Kalinovic
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Miroslava Kvandova
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Oelze
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Johanna Helmstädter
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Omar Hahad
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Konstantina Filippou
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Chiara Trevisan
- Institute of Neuropathology, University Hospital, Zurich, Switzerland
| | | | - Kerstin Boengler
- Department of Physiology, Justus-Liebig University Gießen, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Rainer Schulz
- Department of Physiology, Justus-Liebig University Gießen, Germany
| | - Mette Sorensen
- Danish Cancer Society, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Andreas Daiber
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
20
|
Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, Nosalski R, Pelka P, Nowakowski D, Wilk G, Mikolajczyk TP, Schramm-Luc A, Furtak A, Matusik P, Koziol J, Drozdz M, Munoz-Aguilera E, Tomaszewski M, Evangelou E, Caulfield M, Grodzicki T, D'Aiuto F, Guzik TJ. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur Heart J 2019; 40:3459-3470. [PMID: 31504461 PMCID: PMC6837161 DOI: 10.1093/eurheartj/ehz646] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/25/2019] [Accepted: 08/21/2019] [Indexed: 01/07/2023] Open
Abstract
AIMS Inflammation is an important driver of hypertension. Periodontitis is a chronic inflammatory disease, which could provide a mechanism for pro-hypertensive immune activation, but evidence of a causal relationship in humans is scarce. We aimed to investigate the nature of the association between periodontitis and hypertension. METHODS AND RESULTS We performed a two-sample Mendelian randomization analysis in the ∼750 000 UK-Biobank/International Consortium of Blood Pressure-Genome-Wide Association Studies participants using single nucleotide polymorphisms (SNPs) in SIGLEC5, DEFA1A3, MTND1P5, and LOC107984137 loci GWAS-linked to periodontitis, to ascertain their effect on blood pressure (BP) estimates. This demonstrated a significant relationship between periodontitis-linked SNPs and BP phenotypes. We then performed a randomized intervention trial on the effects of treatment of periodontitis on BP. One hundred and one hypertensive patients with moderate/severe periodontitis were randomized to intensive periodontal treatment (IPT; sub- and supragingival scaling/chlorhexidine; n = 50) or control periodontal treatment (CPT; supragingival scaling; n = 51) with mean ambulatory 24-h (ABPM) systolic BP (SBP) as primary outcome. Intensive periodontal treatment improved periodontal status at 2 months, compared to CPT. This was accompanied by a substantial reduction in mean SBP in IPT compared to the CPT (mean difference of -11.1 mmHg; 95% CI 6.5-15.8; P < 0.001). Systolic BP reduction was correlated to periodontal status improvement. Diastolic BP and endothelial function (flow-mediated dilatation) were also improved by IPT. These cardiovascular changes were accompanied by reductions in circulating IFN-γ and IL-6 as well as activated (CD38+) and immunosenescent (CD57+CD28null) CD8+T cells, previously implicated in hypertension. CONCLUSION A causal relationship between periodontitis and BP was observed providing proof of concept for development of clinical trial in a large cohort of hypertensive patients. ClinicalTrials.gov: NCT02131922.
Collapse
Affiliation(s)
- Marta Czesnikiewicz-Guzik
- Department of Periodontology and Oral Sciences Research Group, University of Glasgow Dental School, Glasgow, UK
- Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University Medical College, Krakow, 31-107 Poland
| | - Grzegorz Osmenda
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, 31-107, Krakow, Poland
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, 31-107, Krakow, Poland
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Richard Nosalski
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, 31-107, Krakow, Poland
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Piotr Pelka
- Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University Medical College, Krakow, 31-107 Poland
| | - Daniel Nowakowski
- Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University Medical College, Krakow, 31-107 Poland
| | - Grzegorz Wilk
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, 31-107, Krakow, Poland
| | - Tomasz P Mikolajczyk
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, 31-107, Krakow, Poland
| | - Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, 31-107, Krakow, Poland
| | - Aneta Furtak
- Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University Medical College, Krakow, 31-107 Poland
| | - Pawel Matusik
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, 31-107, Krakow, Poland
| | - Joanna Koziol
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, 31-107, Krakow, Poland
| | | | | | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Mark Caulfield
- William Harvey Research Institute, NIHR Biomedical Research Centre at Barts, Queen Mary University of London, London, UK
| | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, 31-107 Krakow, Poland
| | | | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, 31-107, Krakow, Poland
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Kalinovic S, Oelze M, Kröller-Schön S, Steven S, Vujacic-Mirski K, Kvandová M, Schmal I, Al Zuabi A, Münzel T, Daiber A. Comparison of Mitochondrial Superoxide Detection Ex Vivo/In Vivo by mitoSOX HPLC Method with Classical Assays in Three Different Animal Models of Oxidative Stress. Antioxidants (Basel) 2019; 8:E514. [PMID: 31661873 PMCID: PMC6912540 DOI: 10.3390/antiox8110514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Reactive oxygen and nitrogen species (RONS such as H2O2, nitric oxide) are generated within the organism. Whereas physiological formation rates confer redox regulation of essential cellular functions and provide the basis for adaptive stress responses, their excessive formation contributes to impaired cellular function or even cell death, organ dysfunction and severe disease phenotypes of the entire organism. Therefore, quantification of RONS formation and knowledge of their tissue/cell/compartment-specific distribution is of great biological and clinical importance. METHODS Here, we used a high-performance/pressure liquid chromatography (HPLC) assay to quantify the superoxide-specific oxidation product of the mitochondria-targeted fluorescence dye triphenylphosphonium-linked hydroethidium (mitoSOX) in biochemical systems and three animal models with established oxidative stress. Type 1 diabetes (single injection of streptozotocin), hypertension (infusion of angiotensin-II for 7 days) and nitrate tolerance (infusion of nitroglycerin for 4 days) was induced in male Wistar rats. RESULTS The usefulness of mitoSOX/HPLC for quantification of mitochondrial superoxide was confirmed by xanthine oxidase activity as well as isolated stimulated rat heart mitochondria in the presence or absence of superoxide scavengers. Vascular function was assessed by isometric tension methodology and was impaired in the rat models of oxidative stress. Vascular dysfunction correlated with increased mitoSOX oxidation but also classical RONS detection assays as well as typical markers of oxidative stress. CONCLUSION mitoSOX/HPLC represents a valid method for detection of mitochondrial superoxide formation in tissues of different animal disease models and correlates well with functional parameters and other markers of oxidative stress.
Collapse
Affiliation(s)
- Sanela Kalinovic
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Matthias Oelze
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Sebastian Steven
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Ksenija Vujacic-Mirski
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Miroslava Kvandová
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Isabella Schmal
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Ahmad Al Zuabi
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Andreas Daiber
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany.
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
22
|
Grosdidier C, Blanz KD, Deharo P, Bernot D, Poggi M, Bastelica D, Wolf D, Duerschmied D, Grino M, Cuisset T, Alessi M, Canault M. Platelet CD40 ligand and bleeding during P2Y12 inhibitor treatment in acute coronary syndrome. Res Pract Thromb Haemost 2019; 3:684-694. [PMID: 31624788 PMCID: PMC6781928 DOI: 10.1002/rth2.12244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
Antiplatelet therapy through inhibition of the adenosine diphosphate (ADP)/P2Y12 pathway is commonly used in the treatment of acute coronary syndrome (ACS). Although efficient in preventing platelet activation and thrombus formation, it increases the risk of bleeding complications. In patients with ACS receiving platelet aggregation inhibitors, that is, P2Y12 blockers (n = 923), we investigated the relationship between plasma and platelet-associated CD40L levels and bleeding events (n = 71). Treatment with P2Y12 inhibitors in patients with ACS did not affect plasma-soluble CD40L levels, but decreased platelet CD40L surface expression (pCD40L) and platelet-released CD40L (rCD40L) levels in response to stimulation as compared to healthy controls. In vitro inhibition of the ADP pathway in healthy control platelets reduced both pCD40L and rCD40L levels. In a multivariable analysis, the reduced pCD40L level observed in ACS patients was significantly associated with the risk of bleeding occurrence (adjusted odds ratio = 0.15; 95% confidence interval = 0.034-0.67). P2Y12 inhibitor-treated (ticagrelor) mice exhibited a 2.5-fold increase in tail bleeding duration compared with controls. A significant reduction in bleeding duration was observed on CD40L+/+ but not CD40L-/- platelet infusion. In addition, CD40L blockade in P2Y12 inhibitor-treated blood samples from a healthy human reduced thrombus growth over immobilized collagen under arterial flow. In conclusion, measurement of pCD40L may offer a novel approach to assessing bleeding risk in patients with ACS who are being treated with P2Y12 inhibitors.
Collapse
Affiliation(s)
- Charlotte Grosdidier
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
- Hematology LaboratoryAPHM, CHU TimoneMarseilleFrance
| | - Kelly D. Blanz
- Spemann Graduate School of Biology and MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Pierre Deharo
- Department of CardiologyAPHM, CHU TimoneMarseilleFrance
| | - Denis Bernot
- Hematology LaboratoryAPHM, CHU TimoneMarseilleFrance
| | - Marjorie Poggi
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
| | | | - Dennis Wolf
- Department of Cardiology and Angiology IHeart Center Freiburg UniversityFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology IHeart Center Freiburg UniversityFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Michel Grino
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
| | | | - Marie‐Christine Alessi
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
- Hematology LaboratoryAPHM, CHU TimoneMarseilleFrance
| | | |
Collapse
|
23
|
Steven S, Dib M, Hausding M, Kashani F, Oelze M, Kröller-Schön S, Hanf A, Daub S, Roohani S, Gramlich Y, Lutgens E, Schulz E, Becker C, Lackner KJ, Kleinert H, Knosalla C, Niesler B, Wild PS, Münzel T, Daiber A. CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovasc Res 2019; 114:312-323. [PMID: 29036612 DOI: 10.1093/cvr/cvx197] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/25/2017] [Indexed: 01/29/2023] Open
Abstract
Aims CD40 ligand (CD40L) signaling controls vascular oxidative stress and related dysfunction in angiotensin-II-induced arterial hypertension by regulating vascular immune cell recruitment and platelet activation. Here we investigated the role of CD40L in experimental hyperlipidemia. Methods and results Male wild type and CD40L-/- mice (C57BL/6 background) were subjected to high fat diet for sixteen weeks. Weight, cholesterol, HDL, and LDL levels, endothelial function (isometric tension recording), oxidative stress (NADPH oxidase expression, dihydroethidium fluorescence) and inflammatory parameters (inducible nitric oxide synthase, interleukin-6 expression) were assessed. CD40L expression, weight, leptin and lipids were increased, and endothelial dysfunction, oxidative stress and inflammation were more pronounced in wild type mice on a high fat diet, all of which was almost normalized by CD40L deficiency. Similar results were obtained in diabetic db/db mice with CD40/TRAF6 inhibitor (6877002) therapy. In a small human study higher serum sCD40L levels and an inflammatory phenotype were detected in the blood and Aorta ascendens of obese patients (body mass index > 35) that underwent by-pass surgery. Conclusion CD40L controls obesity-associated vascular inflammation, oxidative stress and endothelial dysfunction in mice and potentially humans. Thus, CD40L represents a therapeutic target in lipid metabolic disorders which is a leading cause in cardiovascular disease.
Collapse
Affiliation(s)
- Sebastian Steven
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Mobin Dib
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Michael Hausding
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Fatemeh Kashani
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Matthias Oelze
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Swenja Kröller-Schön
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Alina Hanf
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Steffen Daub
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Siyer Roohani
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Yves Gramlich
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Munich, Germany
| | - Eberhard Schulz
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Christian Becker
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Philipp S Wild
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology 1, Molecular Cardiology; Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
24
|
Feng Z, Chen Q, Ren M, Tian Z, Gong Y. CD40L inhibits cell growth of THP-1 cells by suppressing the PI3K/Akt pathway. Onco Targets Ther 2019; 12:3011-3017. [PMID: 31114244 PMCID: PMC6476227 DOI: 10.2147/ott.s175347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Introduction Acute myeloid leukemia (AML), the hematological malignant tumor with high mortality, is still difficult to treat. CD40L is a type II transmembrane protein, which has been reported to have the potential to inhibit growth of some cancer cells. Materials and methods In order to determine the role of CD40L on AML-M5 cell line THP-1, we overexpressed CD40L in the cells using a lentiviral vector system (pHBLV-CMVIE-Zs Green-T2A-puro vector); overexpression was confirmed by the detection of green fluorescent protein and CD40L protein expression. Results Cellular apoptosis, proliferation, and cycle assays showed that CD40L could promote the apoptosis of, suppress the proliferation of, and stimulate the arrest of the G1/S phase of THP-1 cells. Finally, the protein expression of P53, Bax/Bcl-2, cyclinD1, PCNA, PTEN, and p-Akt illustrated that CD40L may partly influence cell growth of THP-1 cells through those genes, which was confirmed by immunohistochemistry and a PI3K/Akt activator. Conclusion Taken together, CD40L could inhibit cell growth of THP-1 cells through the PI3K/Akt pathway, indicating that the overexpression of CD40L may be a potential target to treat the AML-M5 disease.
Collapse
Affiliation(s)
- Zhongxin Feng
- Department of Hematology, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China, .,Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi Chen
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mingqiang Ren
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zuguo Tian
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuping Gong
- Department of Hematology, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China,
| |
Collapse
|
25
|
Bosch L, de Haan J, Seijkens T, van Tiel C, Brans M, Pasterkamp G, Lutgens E, de Jager S. Small molecule-mediated inhibition of CD40-TRAF6 reduces adverse cardiac remodelling in pressure overload induced heart failure. Int J Cardiol 2019; 279:141-144. [DOI: 10.1016/j.ijcard.2018.12.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/08/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
|
26
|
Tariket S, Hamzeh-Cognasse H, Arthaud CA, Laradi S, Bourlet T, Berthelot P, Garraud O, Cognasse F. Inhibition of the CD40/CD40L complex protects mice against ALI-induced pancreas degradation. Transfusion 2019; 59:1090-1101. [DOI: 10.1111/trf.15206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sofiane Tariket
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Établissement Français du Sang Auvergne-Rhône-Alpes; Saint-Etienne France
| | | | | | - Sandrine Laradi
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Établissement Français du Sang Auvergne-Rhône-Alpes; Saint-Etienne France
| | | | | | - Olivier Garraud
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Institut National de Transfusion Sanguine (INTS); Paris France
| | - Fabrice Cognasse
- Université de Lyon; GIMAP-EA3064; Saint-Etienne France
- Établissement Français du Sang Auvergne-Rhône-Alpes; Saint-Etienne France
| |
Collapse
|
27
|
Xu X, Shi L, Ma X, Su H, Ma G, Wu X, Ying K, Zhang R. RhoA-Rho associated kinase signaling leads to renin-angiotensin system imbalance and angiotensin converting enzyme 2 has a protective role in acute pulmonary embolism. Thromb Res 2019; 176:85-94. [PMID: 30784777 DOI: 10.1016/j.thromres.2019.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Acute pulmonary embolism (APE) is a cardiovascular disease with high morbidity and mortality. Although the anatomical obstruction of the pulmonary vascular bed initiates APE, recent studies have suggested that vasoconstrictors in the renin-angiotensin system (RAS) play a role in the severity of APE. MATERIALS AND METHODS We performed a 5-year retrospective clinical study to analyze the key RAS components in APE patients, including angiotensin converting enzyme (ACE), ACE2, angiotensin II (Ang II) and angiotensin 1-7(Ang(1-7)). The role of RhoA-Rho associated kinase (ROCK) signaling in regulating RAS vasoconstrictors was detected in rat pulmonary artery endothelial cells and in an APE rat model. RESULTS In clinical study, we found that the levels of RAS vasoconstrictors were correlated with the clinical classification of APE patients, ACE and Ang II were unregulated, whereas ACE2 and Ang(1-7) were downregulated in the high-risk group compared to the healthy volunteers. In animal study, we found that activated RhoA-ROCK signaling was responsible for the imbalance in RAS vasoconstrictors both in vitro and in vivo, and further evidence indicated that ROCK inhibitors (Y27632 or HA1077) and an ACE2 activator (Resorcinol naphthalein) restored the dysregulated RAS vasoconstrictors significantly and had a protective role in an APE rat model. CONCLUSIONS Our study revealed that RhoA-ROCK signaling leads to RAS imbalance in APE patients, and ACE2 activation might be a novel therapeutic target in APE treatment.
Collapse
Affiliation(s)
- Xiaoling Xu
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Liuhong Shi
- Department of Ultrasound, the Second Affiliated Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xiuqing Ma
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hua Su
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guofeng Ma
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xiaohong Wu
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Kejing Ying
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Ruifeng Zhang
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
The Endothelin Receptor Antagonist Macitentan Improves Isosorbide-5-Mononitrate (ISMN) and Isosorbide Dinitrate (ISDN) Induced Endothelial Dysfunction, Oxidative Stress, and Vascular Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2018:7845629. [PMID: 30687454 PMCID: PMC6327264 DOI: 10.1155/2018/7845629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/17/2018] [Indexed: 11/18/2022]
Abstract
Objective Organic nitrates such as isosorbide-5-mononitrate (ISMN) and isosorbide dinitrate (ISDN) are used for the treatment of patients with chronic symptomatic stable coronary artery disease and chronic congestive heart failure. Limiting side effects of these nitrovasodilators include nitrate tolerance and/or endothelial dysfunction mediated by oxidative stress. Here, we tested the therapeutic effects of the dual endothelin (ET) receptor antagonist macitentan in ISMN- and ISDN-treated animals. Methods and Results Organic nitrates (ISMN, ISDN, and nitroglycerin (GTN)) augmented the oxidative burst and interleukin-6 release in cultured macrophages, whereas macitentan decreased the oxidative burst in isolated human leukocytes. Male C57BL/6j mice were treated with ISMN (75 mg/kg/d) or ISDN (25 mg/kg/d) via s.c. infusion for 7 days and some mice in addition with 30 mg/kg/d of macitentan (gavage, once daily). ISMN and ISDN in vivo therapy caused endothelial dysfunction but no nitrate (or cross-)tolerance to the organic nitrates, respectively. ISMN/ISDN increased blood nitrosative stress, vascular/cardiac oxidative stress via NOX-2 (fluorescence and chemiluminescence methods), ET1 expression, ET receptor signaling, and markers of inflammation (protein and mRNA level). ET receptor signaling blockade by macitentan normalized endothelial function, vascular/cardiac oxidative stress, and inflammatory phenotype in both nitrate therapy groups. Conclusion ISMN/ISDN treatment caused activation of the NOX-2/ET receptor signaling axis leading to increased vascular oxidative stress and inflammation as well as endothelial dysfunction. Our study demonstrates for the first time that blockade of ET receptor signaling by the dual endothelin receptor blocker macitentan improves adverse side effects of the organic nitrates ISMN and ISDN.
Collapse
|
29
|
Jiang L, Zhou X, Yang H, Guan R, Xin Y, Wang J, Shen L, Zhu D, Ma S, Wang J. Upregulation of AT 1 Receptor Mediates a Pressor Effect Through ROS-SAPK/JNK Signaling in Glutamatergic Neurons of Rostral Ventrolateral Medulla in Rats With Stress-Induced Hypertension. Front Physiol 2019; 9:1860. [PMID: 30670978 PMCID: PMC6331519 DOI: 10.3389/fphys.2018.01860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022] Open
Abstract
The present study examined whether angiotensin II (Ang II) mediates the pressor effect through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS)-mitogen-activated protein kinase (MAPK) signaling in the glutamatergic neurons of the rostral ventrolateral medulla (RVLM) in stress-induced hypertensive rats (SIHR). The SIHR model was established using electric foot-shocks combined with noises for 15 days. We observed that Ang II type 1 receptor (AT1R) and the glutamatergic neurons co-localized in the RVLM of SIHR. Furthermore, glutamate levels in the intermediolateral column of the spinal cord were higher in SIHR than in controls. Microinjection of Ang II into the RVLM of SIHR activated stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK), extracellular signal-regulated protein kinase (ERK) 1/2, and p38MAPK. Compared with controls, the activation of SAPK/JNK, ERK1/2, p38MAPK, and ROS in the RVLM were higher in SIHR, an effect that was blocked by an NADPH oxidase inhibitor (apocynin) and an AT1R antagonist (candesartan). RVLM microinjection of apocynin or a SAPK/JNK inhibitor (SP600125), but not an ERK1/2 inhibitor (U0126) or a p38MAPK inhibitor (SB203580), decreased AT1R mRNA and mean arterial blood pressure (MABP) in SIHR. The increase of AT1R protein expression and MABP was inhibited by intracerebroventricular infusion (ICV), for 14 days, of SP600125, but not U0126 or SB203580 in SIHR. We conclude that Ang II modulates the pressor effect through AT1R-dependent ROS-SAPK/JNK signaling in glutamatergic neurons in the RVLM of SIHR.
Collapse
Affiliation(s)
- Liping Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanlei Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shulan Ma
- Training Center of Medical Experiments, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Idris CAC, Sundram K, Razis AFA. Effect of Consumption Heated Oils with or without Dietary Cholesterol on the Development of Atherosclerosis. Nutrients 2018; 10:nu10101527. [PMID: 30336600 PMCID: PMC6213572 DOI: 10.3390/nu10101527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 01/22/2023] Open
Abstract
Heating oils and fats for a considerable length of time results in chemical reactions, leading to the aggravation of a free radical processes, which ultimately contributes to atherosclerosis. Our study focused on elucidating the effect of feeding heated oils with or without dietary cholesterol on the development of atherosclerosis in rabbits. We heated palm olein and corn oil at 180 °C for 18 h and 9 h per day, respectively, for two consecutive days. Next, 20 male rabbits were divided into four groups and fed the following diet for 12 weeks: (i) heated palm olein (HPO); (ii) HPO with cholesterol (HPOC); (iii) heated corn oil (HCO); and (iv) HCO with cholesterol (HCOC). Plasma total cholesterol (TC) was significantly lower in the HCO group compared to the HCOC group. Atherosclerotic lesion scores for both fatty plaques and fatty streaks were significantly higher in the HCO and HCOC groups as compared to the HPO and HPOC groups. Additionally, fibrous plaque scores were also higher in the HCO and HCOC groups as compared to the HPO and HPOC groups. These results suggest that heated palm oil confers protection against the onset of atherosclerosis compared to heated polyunsaturated oils in a rabbit model.
Collapse
Affiliation(s)
- Che Anishas Che Idris
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia.
| | - Kalyana Sundram
- Malaysian Palm Oil Council, 2nd Floor, Wisma Sawit, Lot 6, SS6, Jalan Perbandaran, Kelana Jaya 47301, Selangor, Malaysia.
| | - Ahmad Faizal Abdull Razis
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
- Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
31
|
Qiao J, Arthur JF, Gardiner EE, Andrews RK, Zeng L, Xu K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol 2018; 14:126-130. [PMID: 28888895 PMCID: PMC5596263 DOI: 10.1016/j.redox.2017.08.021] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) are generated within activated platelets and play an important role in regulating platelet responses to collagen and collagen-mediated thrombus formation. As a major collagen receptor, platelet-specific glycoprotein (GP)VI is a member of the immunoglobulin (Ig) superfamily, with two extracellular Ig domains, a mucin domain, a transmembrane domain and a cytoplasmic tail. GPVI forms a functional complex with the Fc receptor γ-chain (FcRγ) that, following receptor dimerization, signals via an intracellular immunoreceptor tyrosine-based activation motif (ITAM), leading to rapid activation of Src family kinase signaling pathways. Our previous studies demonstrated that an unpaired thiol in the cytoplasmic tail of GPVI undergoes rapid oxidation to form GPVI homodimers in response to ligand binding, indicating an oxidative submembranous environment in platelets after GPVI stimulation. Using a redox-sensitive fluorescent dye (H2DCF-DA) in a flow cytometric assay to measure changes in intracellular ROS, we showed generation of ROS downstream of GPVI consists of two distinct phases: an initial Syk-independent burst followed by additional Syk-dependent generation. In this review, we will discuss recent findings on the regulation of platelet function by ROS, focusing on GPVI-dependent platelet activation and thrombus formation.
Collapse
Affiliation(s)
- Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
| | - Jane F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
32
|
Senchenkova EY, Russell J, Vital SA, Yildirim A, Orr AW, Granger DN, Gavins FNE. A critical role for both CD40 and VLA5 in angiotensin II-mediated thrombosis and inflammation. FASEB J 2018; 32:3448-3456. [PMID: 29452567 DOI: 10.1096/fj.201701068r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Angiotensin II (Ang-II)-induced hypertension is associated with accelerated thrombus formation in arterioles and leukocyte recruitment in venules. The mechanisms that underlie the prothrombotic and proinflammatory responses to chronic Ang-II administration remain poorly understood. We evaluated the role of CD40/CD40 ligand (CD40L) signaling in Ang-II-mediated microvascular responses and assessed whether and how soluble CD40L (sCD40L) contributes to this response. Intravital video microscopy was performed to analyze leukocyte recruitment and dihydrorhodamine-123 oxidation in postcapillary venules. Thrombus formation in cremaster muscle arterioles was induced by using the light/dye endothelial cell injury model. Wild-type (WT), CD40-/-, and CD40L-/- mice received Ang-II for 14 d via osmotic minipumps. Some mice were treated with either recombinant sCD40L or the VLA5 (very late antigen 5; α5β1) antagonist, ATN-161. Our results demonstrate that CD40-/-, CD40L-/-, and WT mice that were treated with ATN-161 were protected against the thrombotic and inflammatory effects of Ang-II infusion. Infusion of sCD40L into CD40-/- or CD40L-/- mice restored the prothrombotic effect of Ang-II infusion. Mice that were treated with ATN-161 and infused with sCD40L were protected against accelerated thrombosis. Collectively, these novel findings suggest that the mechanisms that underlie Ang-II-dependent thrombotic and inflammatory responses link to the signaling of CD40L via both CD40 and VLA5.-Senchenkova, E. Y., Russell, J., Vital, S. A., Yildirim, A., Orr, A. W., Granger, D. N., Gavins, F. N. E. A critical role for both CD40 and VLA5 in angiotensin II-mediated thrombosis and inflammation.
Collapse
Affiliation(s)
- Elena Y Senchenkova
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Janice Russell
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Shantel A Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Alper Yildirim
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA.,Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - D Neil Granger
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Felicity N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA.,Department of Neurology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
33
|
Steven S, Dib M, Roohani S, Kashani F, Münzel T, Daiber A. Time Response of Oxidative/Nitrosative Stress and Inflammation in LPS-Induced Endotoxaemia-A Comparative Study of Mice and Rats. Int J Mol Sci 2017; 18:ijms18102176. [PMID: 29057830 PMCID: PMC5666857 DOI: 10.3390/ijms18102176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a severe and multifactorial disease with a high mortality rate. It represents a strong inflammatory response to an infection and is associated with vascular inflammation and oxidative/nitrosative stress. Here, we studied the underlying time responses in the widely used lipopolysaccharide (LPS)-induced endotoxaemia model in mice and rats. LPS (10 mg/kg; from Salmonella Typhosa) was intraperitoneally injected into mice and rats. Animals of every species were divided into five groups and sacrificed at specific points in time (0, 3, 6, 9, 12 h). White blood cells (WBC) decreased significantly in both species after 3 h and partially recovered with time, whereas platelet decrease did not recover. Oxidative burst and iNOS-derived nitrosyl-iron hemoglobin (HbNO) increased with time (maxima at 9 or 12 h). Immune cell infiltration (CD68 and F4/80 content) showed an increase with time, which was supported by increased vascular mRNA expression of VCAM-1, P-selectin, IL-6 and TNF-α. We characterized the time responses of vascular inflammation and oxidative/nitrosative stress in LPS-induced endotoxaemic mice and rats. The results of this study will help to interpret and compare data from different animal species in LPS-induced endotoxaemia models for the identification of new drug targets.
Collapse
Affiliation(s)
- Sebastian Steven
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| | - Mobin Dib
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| | - Siyer Roohani
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| | - Fatemeh Kashani
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| | - Thomas Münzel
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| | - Andreas Daiber
- Center for Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, D-55131 Mainz, Germany.
| |
Collapse
|
34
|
Daiber A, Oelze M, Steven S, Kröller-Schön S, Münzel T. Taking up the cudgels for the traditional reactive oxygen and nitrogen species detection assays and their use in the cardiovascular system. Redox Biol 2017; 12:35-49. [PMID: 28212522 PMCID: PMC5312509 DOI: 10.1016/j.redox.2017.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS such as H2O2, nitric oxide) confer redox regulation of essential cellular functions (e.g. differentiation, proliferation, migration, apoptosis), initiate and catalyze adaptive stress responses. In contrast, excessive formation of RONS caused by impaired break-down by cellular antioxidant systems and/or insufficient repair of the resulting oxidative damage of biomolecules may lead to appreciable impairment of cellular function and in the worst case to cell death, organ dysfunction and severe disease phenotypes of the entire organism. Therefore, the knowledge of the severity of oxidative stress and tissue specific localization is of great biological and clinical importance. However, at this level of investigation quantitative information may be enough. For the development of specific drugs, the cellular and subcellular localization of the sources of RONS or even the nature of the reactive species may be of great importance, and accordingly, more qualitative information is required. These two different philosophies currently compete with each other and their different needs (also reflected by different detection assays) often lead to controversial discussions within the redox research community. With the present review we want to shed some light on these different philosophies and needs (based on our personal views), but also to defend some of the traditional assays for the detection of RONS that work very well in our hands and to provide some guidelines how to use and interpret the results of these assays. We will also provide an overview on the "new assays" with a brief discussion on their strengths but also weaknesses and limitations.
Collapse
Affiliation(s)
- Andreas Daiber
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Steven
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Münzel
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
35
|
Steven S, Oelze M, Hanf A, Kröller-Schön S, Kashani F, Roohani S, Welschof P, Kopp M, Gödtel-Armbrust U, Xia N, Li H, Schulz E, Lackner KJ, Wojnowski L, Bottari SP, Wenzel P, Mayoux E, Münzel T, Daiber A. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol 2017; 13:370-385. [PMID: 28667906 PMCID: PMC5491464 DOI: 10.1016/j.redox.2017.06.009] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022] Open
Abstract
Hyperglycemia associated with inflammation and oxidative stress is a major cause of vascular dysfunction and cardiovascular disease in diabetes. Recent data reports that a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), empagliflozin (Jardiance®), ameliorates glucotoxicity via excretion of excess glucose in urine (glucosuria) and significantly improves cardiovascular mortality in type 2 diabetes mellitus (T2DM). The overarching hypothesis is that hyperglycemia and glucotoxicity are upstream of all other complications seen in diabetes. The aim of this study was to investigate effects of empagliflozin on glucotoxicity, β-cell function, inflammation, oxidative stress and endothelial dysfunction in Zucker diabetic fatty (ZDF) rats. Male ZDF rats were used as a model of T2DM (35 diabetic ZDF‐Leprfa/fa and 16 ZDF-Lepr+/+ controls). Empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 6 weeks. Treatment with empagliflozin restored glycemic control. Empagliflozin improved endothelial function (thoracic aorta) and reduced oxidative stress in the aorta and in blood of diabetic rats. Inflammation and glucotoxicity (AGE/RAGE signaling) were epigenetically prevented by SGLT2i treatment (ChIP). Linear regression analysis revealed a significant inverse correlation of endothelial function with HbA1c, whereas leukocyte-dependent oxidative burst and C-reactive protein (CRP) were positively correlated with HbA1c. Viability of hyperglycemic endothelial cells was pleiotropically improved by SGLT2i. Empagliflozin reduces glucotoxicity and thereby prevents the development of endothelial dysfunction, reduces oxidative stress and exhibits anti-inflammatory effects in ZDF rats, despite persisting hyperlipidemia and hyperinsulinemia. Our preclinical observations provide insights into the mechanisms by which empagliflozin reduces cardiovascular mortality in humans (EMPA-REG trial). Hyperglycemia induces vascular complications and cardiovascular disease. Empagliflozin reduces hyperglycemia and cardiovascular mortality (EMPA-REG trial). Here, empagliflozin normalized vascular function and oxidative stress in ZDF rats. Here, empagliflozin reduced AGE/RAGE signaling, inflammation and oxidative stress. Here, empagliflozin conferred glycemic control, epigenetic and pleiotropic effects.
Collapse
Affiliation(s)
- Sebastian Steven
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Oelze
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alina Hanf
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Fatemeh Kashani
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Siyer Roohani
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Welschof
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maximilian Kopp
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ute Gödtel-Armbrust
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ning Xia
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eberhard Schulz
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Karl J Lackner
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR 5309, Grenoble-Alps University and Institute for Biology and Pathology, CHU, Grenoble, France
| | - Leszek Wojnowski
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Serge P Bottari
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Philip Wenzel
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Center for Thrombosis and Hemostasis, Medical Center of the Johannes Gutenberg University, Mainz, Germany, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eric Mayoux
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thomas Münzel
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Andreas Daiber
- Center for Cardiology, Cardiology I - Laboratory of Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
36
|
Napoleão P, Potapova E, Moleirinho S, Saldanha C, Messias A. Soluble CD40 ligand profiles in patients with septic shock. Clin Hemorheol Microcirc 2017; 64:965-970. [PMID: 27767979 DOI: 10.3233/ch-168026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM Soluble CD40 ligand (sCD40L) has been considered as a marker of thrombosis and inflammation in several diseases, including sepsis. Recent studies challenge this view and point to a role of sCD40L in vascular and endothelial function. An indication of that association in sepsis has not been obtained so far. Therefore, herein we evaluated association between sCD40L and markers of hemorheology and inflammation on context of septic shock. METHODS Time-changes of sCD40L levels over 72 hours of Intensive Care Unit (ICU) internment were assessed in 22 patients with septic shock and compared with 36 healthy volunteers. Association of sCD40L levels with erythrocyte deformability and aggregation (as markers of hemorheology), plasma concentrations of haemoglobin (Hb, as markers of endothelial function) and white blood cells (WBC) count (as marker of low-grade inflammation) were assessed in patients with septic shock. RESULTS At ICU admission, sCD40L concentrations in patients with septic shock were lower (p = 0.024) than levels of healthy volunteers. However, sCD40L did not change over 72 hours of internment (F = 2.1, p = 0.137). Soluble CD40L levels in patients with septic shock at ICU admission correlate with concentrations of Hb (r = 0.61, p = 0.00) and WBC count (r = 0.63, p = 0.00), but not to erythrocyte deformability (r≥0.157, p≤0.235) and aggregation (r≥-0.109, p≤0.192). CONCLUSIONS These results seem to highlight a possible association of sCD40L to endothelial function and inflammation in septic shock context.
Collapse
Affiliation(s)
- Patrícia Napoleão
- Carlota Saldanha Lab, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Ekaterina Potapova
- Carlota Saldanha Lab, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Moleirinho
- Carlota Saldanha Lab, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Carlota Saldanha
- Carlota Saldanha Lab, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Bioquímica Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - António Messias
- Unidade de Cuidados Intensivos, Hospital Beatriz Ângelo, Loures, Portugal
| |
Collapse
|
37
|
Pentaerythritol Tetranitrate In Vivo Treatment Improves Oxidative Stress and Vascular Dysfunction by Suppression of Endothelin-1 Signaling in Monocrotaline-Induced Pulmonary Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4353462. [PMID: 28337251 PMCID: PMC5350298 DOI: 10.1155/2017/4353462] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
Abstract
Objective. Oxidative stress and endothelial dysfunction contribute to pulmonary arterial hypertension (PAH). The role of the nitrovasodilator pentaerythritol tetranitrate (PETN) on endothelial function and oxidative stress in PAH has not yet been defined. Methods and Results. PAH was induced by monocrotaline (MCT, i.v.) in Wistar rats. Low (30 mg/kg; MCT30), middle (40 mg/kg; MCT40), or high (60 mg/kg; MCT60) dose of MCT for 14, 28, and 42 d was used. MCT induced endothelial dysfunction, pulmonary vascular wall thickening, and fibrosis, as well as protein tyrosine nitration. Pulmonary arterial pressure and heart/body and lung/body weight ratio were increased in MCT40 rats (28 d) and reduced by oral PETN (10 mg/kg, 24 d) therapy. Oxidative stress in the vascular wall, in the heart, and in whole blood as well as vascular endothelin-1 signaling was increased in MCT40-treated rats and normalized by PETN therapy, likely by upregulation of heme oxygenase-1 (HO-1). PETN therapy improved endothelium-dependent relaxation in pulmonary arteries and inhibited endothelin-1-induced oxidative burst in whole blood and the expression of adhesion molecule (ICAM-1) in endothelial cells. Conclusion. MCT-induced PAH impairs endothelial function (aorta and pulmonary arteries) and increases oxidative stress whereas PETN markedly attenuates these adverse effects. Thus, PETN therapy improves pulmonary hypertension beyond its known cardiac preload reducing ability.
Collapse
|
38
|
Napoleão P, Carmo MM, Pinheiro T. Prognostic evaluation of soluble CD40L in acute myocardial infarction: is not fancy, is science! ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:90. [PMID: 28275635 DOI: 10.21037/atm.2017.01.58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Patrícia Napoleão
- Carlota Saldanha Lab, Instituto Medicina Molecular (IMM), Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Mota Carmo
- Serviço Cardiologia, Hospital Santa Marta, Centro Hospitalar Lisboa Central (CHLC), Lisboa, Portugal; ; Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School, Lisboa, Portugal
| | - Teresa Pinheiro
- Instituto de Bioengenharia e Biociências (IBB), Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
39
|
Zhan Y, Lu R, Meng H, Wang X, Sun X, Hou J. The role of platelets in inflammatory immune responses in generalized aggressive periodontitis. J Clin Periodontol 2017; 44:150-157. [PMID: 27883202 DOI: 10.1111/jcpe.12657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Yalin Zhan
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Ruifang Lu
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Huanxin Meng
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Xian'e Wang
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| | - Xiaojun Sun
- Department of Stomatology; The First Hospital of Shanxi Medical University; Taiyuan Shanxi China
| | - Jianxia Hou
- Department of Periodontology; Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology; Beijing China
| |
Collapse
|
40
|
Ameer OZ, Butlin M, Kaschina E, Sommerfeld M, Avolio AP, Phillips JK. Long-Term Angiotensin II Receptor Blockade Limits Hypertension, Aortic Dysfunction, and Structural Remodeling in a Rat Model of Chronic Kidney Disease. J Vasc Res 2016; 53:216-229. [DOI: 10.1159/000452411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/08/2016] [Indexed: 11/19/2022] Open
|
41
|
Stratification of ST-elevation myocardial infarction patients based on soluble CD40L longitudinal changes. Transl Res 2016; 176:95-104. [PMID: 27172386 DOI: 10.1016/j.trsl.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/22/2016] [Accepted: 04/12/2016] [Indexed: 12/31/2022]
Abstract
Involvement of soluble CD40 ligand (sCD40L) in thrombosis and inflammation on the context of coronary artery disease is currently being revised. In that perspective, we had studied the association of sCD40L with markers of platelet activation and markers of endothelial and vascular function. On that cohort, a stratification of patients with acute myocardial infarction (AMI) 1 month after percutaneous coronary intervention (PCI) was observed based on concentrations of sCD40L. The study intended to identify the groups of AMI patients with different profiles of sCD40L concentrations and verify how medication, clinical evolution, biochemical data, and markers of regulation of endothelial function at genetic (endothelial nitric oxide synthase polymorphisms) and post-transcriptional levels (circulating microRNAs) affect sCD40L serum levels. Lower quartiles of sCD40L (<2.3 ng/mL) were associated with higher concentrations of N-terminal pro-brain natriuretic peptide (NT-proBNP), high frequency of G894T polymorphism, and altered expression of a set of microRNAs assumed to be involved in the regulation of endothelial and cardiac function and myocardium hypertrophy, relative to patients in sCD40L upper quartiles. A characteristic sCD40L variation pattern in STEMI patients was identified. Low levels of sCD40L 1 month after PCI distinguish STEMI patients with worse prognosis, a compromised cardiac healing, and a persistent endothelial dysfunction, as given by the association between sCD40L, NT-proBNP, G894T polymorphism, and specific profile of miRNA expression. These results suggest sCD40L could have a prognostic value in STEMI patients.
Collapse
|
42
|
Steven S, Jurk K, Kopp M, Kröller-Schön S, Mikhed Y, Schwierczek K, Roohani S, Kashani F, Oelze M, Klein T, Tokalov S, Danckwardt S, Strand S, Wenzel P, Münzel T, Daiber A. Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice. Br J Pharmacol 2016; 174:1620-1632. [PMID: 27435156 DOI: 10.1111/bph.13549] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/01/2016] [Accepted: 07/08/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Excessive inflammation in sepsis causes microvascular thrombosis and thrombocytopenia associated with organ dysfunction and high mortality. The present studies aimed to investigate whether inhibition of dipeptidyl peptidase-4 (DPP-4) and supplementation with glucagon-like peptide-1 (GLP-1) receptor agonists improved endotoxaemia-associated microvascular thrombosis via immunomodulatory effects. EXPERIMENTAL APPROACH Endotoxaemia was induced in C57BL/6J mice by a single injection of LPS (17.5 mg kg-1 for survival and 10 mg kg-1 for all other studies). For survival studies, treatment was started 6 h after LPS injection. For all other studies, drugs were injected 48 h before LPS treatment. KEY RESULTS Mice treated with LPS alone showed severe thrombocytopenia, microvascular thrombosis in the pulmonary circulation (fluorescence imaging), increased LDH activity, endothelial dysfunction and increased markers of inflammation in aorta and whole blood (leukocyte-dependent oxidative burst, nitrosyl-iron haemoglobin, a marker of nitrosative stress, and expression of inducible NOS). Treatment with the DPP-4 inhibitor linagliptin or the GLP-1 receptor agonist liraglutide, as well as genetic deletion of DPP-4 (DPP4-/- mice) improved all these parameters. In GLP-1 receptor-deficient mice, both linagliptin and liraglutide lost their beneficial effects and improvement of prognosis. Incubation of platelets and cultured monocytes (containing GLP-1 receptor protein) with GLP-1 receptor agonists inhibited the monocytic oxidative burst and platelet activation, with a GLP-1 receptor-dependent elevation of cAMP levels and PKA activation. CONCLUSIONS AND IMPLICATIONS GLP-1 receptor activation in platelets by linagliptin and liraglutide strongly attenuated endotoxaemia-induced microvascular thrombosis and mortality by a cAMP/PKA-dependent mechanism, preventing systemic inflammation, vascular dysfunction and end organ damage. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Sebastian Steven
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Maximilian Kopp
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Yuliya Mikhed
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Kathrin Schwierczek
- Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Siyer Roohani
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Fatemeh Kashani
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Oelze
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Sergey Tokalov
- Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Susanne Strand
- I. Department of Internal Medicine, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Philip Wenzel
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Münzel
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- Centre for Cardiology, Cardiology I, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
43
|
CXCL10 Is a Circulating Inflammatory Marker in Patients with Advanced Heart Failure: a Pilot Study. J Cardiovasc Transl Res 2016; 9:302-14. [PMID: 27271043 DOI: 10.1007/s12265-016-9703-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/30/2016] [Indexed: 01/06/2023]
Abstract
Chemokines are involved in the remodeling of the heart; however, their significance as biomarkers in heart failure is unknown. We observed that circulating CXCR3 receptor chemokines CXCL9 and CXCL10 in a rat model of heart failure were increased 1 week after myocardial infarction. CXCL10 was also increased in both remote and infarcted regions of the heart and remained elevated at 16 weeks; CXCL9 was elevated in the remote area at 1 week. In humans, hierarchical clustering and principal component analysis revealed that circulating CXCL10, MIP-1α, and CD40 ligand were the best indicators for differentiating healthy and heart failure subjects. Serum CXCL10 levels were increased in patients with symptomatic heart failure as indexed by NYHA classification II through IV. The presence of CXCL10, MIP-1α, and CD40 ligand appears to be dominant in patients with advanced heart failure. These findings identify a distinct profile of inflammatory mediators in heart failure patients.
Collapse
|
44
|
Liu M, Dickinson-Copeland C, Hassana S, Stiles JK. Plasmodium-infected erythrocytes (pRBC) induce endothelial cell apoptosis via a heme-mediated signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1009-18. [PMID: 27042002 PMCID: PMC4780719 DOI: 10.2147/dddt.s96863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Heme is cytotoxic to the plasmodium parasite, which converts it to an insoluble crystalline form called hemozoin (malaria pigment) in erythrocytes during replication. The increased serum levels of free heme cause tissue damage, activation of microvascular endothelial and glial cells, focal inflammation, activation of apoptotic pathways, and neuronal tissue damage. Several hypotheses have been proposed to explain how these causative factors exacerbate fatal malaria. However, none of them fully explain the detailed mechanisms leading to the high morbidity and mortality associated with malaria. We have previously reported that heme-induced brain microvascular endothelial cell (HBVEC) apoptosis is a major contributor to severe malaria pathogenesis. Here, we hypothesized that heme (at clinically relevant levels) induces inflammation and apoptosis in HBVEC, a process that is mediated by independent proinflammatory and proapoptotic signaling pathways. In this study, we determined the key signaling molecules associated with heme-mediated apoptosis in HBVEC in vitro using RT2 profiler polymerase chain reaction array technology and confirmed results using immunostaining techniques. While several expressed genes in HBVEC were altered upon heme stimulation, we determined that the apoptotic effects of heme were mediated through p73 (tumor protein p73). The results provide an opportunity to target heme-mediated apoptosis therapeutically in malaria-infected individuals.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Carmen Dickinson-Copeland
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Salifu Hassana
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jonathan K Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
45
|
Jabs A, Oelze M, Mikhed Y, Stamm P, Kröller-Schön S, Welschof P, Jansen T, Hausding M, Kopp M, Steven S, Schulz E, Stasch JP, Münzel T, Daiber A. Effect of soluble guanylyl cyclase activator and stimulator therapy on nitroglycerin-induced nitrate tolerance in rats. Vascul Pharmacol 2015; 71:181-91. [DOI: 10.1016/j.vph.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/20/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
|
46
|
Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. Int J Mol Sci 2015; 16:15918-53. [PMID: 26184181 PMCID: PMC4519931 DOI: 10.3390/ijms160715918] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023] Open
Abstract
The prevalence of cardiovascular diseases is significantly increased in the older population. Risk factors and predictors of future cardiovascular events such as hypertension, atherosclerosis, or diabetes are observed with higher frequency in elderly individuals. A major determinant of vascular aging is endothelial dysfunction, characterized by impaired endothelium-dependent signaling processes. Increased production of reactive oxygen species (ROS) leads to oxidative stress, loss of nitric oxide (•NO) signaling, loss of endothelial barrier function and infiltration of leukocytes to the vascular wall, explaining the low-grade inflammation characteristic for the aged vasculature. We here discuss the importance of different sources of ROS for vascular aging and their contribution to the increased cardiovascular risk in the elderly population with special emphasis on mitochondrial ROS formation and oxidative damage of mitochondrial DNA. Also the interaction (crosstalk) of mitochondria with nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases is highlighted. Current concepts of vascular aging, consequences for the development of cardiovascular events and the particular role of ROS are evaluated on the basis of cell culture experiments, animal studies and clinical trials. Present data point to a more important role of oxidative stress for the maximal healthspan (healthy aging) than for the maximal lifespan.
Collapse
|
47
|
Szostak J, Ansari S, Madan S, Fluck J, Talikka M, Iskandar A, De Leon H, Hofmann-Apitius M, Peitsch MC, Hoeng J. Construction of biological networks from unstructured information based on a semi-automated curation workflow. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015. [PMID: 26200752 PMCID: PMC5630939 DOI: 10.1093/database/bav057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Capture and representation of scientific knowledge in a structured format are essential to improve the understanding of biological mechanisms involved in complex diseases. Biological knowledge and knowledge about standardized terminologies are difficult to capture from literature in a usable form. A semi-automated knowledge extraction workflow is presented that was developed to allow users to extract causal and correlative relationships from scientific literature and to transcribe them into the computable and human readable Biological Expression Language (BEL). The workflow combines state-of-the-art linguistic tools for recognition of various entities and extraction of knowledge from literature sources. Unlike most other approaches, the workflow outputs the results to a curation interface for manual curation and converts them into BEL documents that can be compiled to form biological networks. We developed a new semi-automated knowledge extraction workflow that was designed to capture and organize scientific knowledge and reduce the required curation skills and effort for this task. The workflow was used to build a network that represents the cellular and molecular mechanisms implicated in atherosclerotic plaque destabilization in an apolipoprotein-E-deficient (ApoE(-/-)) mouse model. The network was generated using knowledge extracted from the primary literature. The resultant atherosclerotic plaque destabilization network contains 304 nodes and 743 edges supported by 33 PubMed referenced articles. A comparison between the semi-automated and conventional curation processes showed similar results, but significantly reduced curation effort for the semi-automated process. Creating structured knowledge from unstructured text is an important step for the mechanistic interpretation and reusability of knowledge. Our new semi-automated knowledge extraction workflow reduced the curation skills and effort required to capture and organize scientific knowledge. The atherosclerotic plaque destabilization network that was generated is a causal network model for vascular disease demonstrating the usefulness of the workflow for knowledge extraction and construction of mechanistically meaningful biological networks.
Collapse
Affiliation(s)
- Justyna Szostak
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland and
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland and
| | - Sumit Madan
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin, Germany
| | - Juliane Fluck
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin, Germany
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland and
| | - Anita Iskandar
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland and
| | - Hector De Leon
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland and
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin, Germany
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland and
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland and
| |
Collapse
|
48
|
Steven S, Hausding M, Kröller-Schön S, Mader M, Mikhed Y, Stamm P, Zinßius E, Pfeffer A, Welschof P, Agdauletova S, Sudowe S, Li H, Oelze M, Schulz E, Klein T, Münzel T, Daiber A. Gliptin and GLP-1 analog treatment improves survival and vascular inflammation/dysfunction in animals with lipopolysaccharide-induced endotoxemia. Basic Res Cardiol 2015; 110:6. [PMID: 25600227 DOI: 10.1007/s00395-015-0465-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/22/2014] [Accepted: 01/09/2015] [Indexed: 01/25/2023]
Abstract
Dipeptidyl peptidase (DPP)-4 inhibitors are used to treat hyperglycemia by increasing the incretin glucagon-like peptide-1 (GLP-1). Previous studies showed anti-inflammatory and antiatherosclerotic effects of DPP-4 inhibitors. Here, we compared the effects of linagliptin versus sitagliptin and liraglutide on survival and vascular function in animal models of endotoxic shock by prophylactic therapy and treatment after lipopolysaccharide (LPS) injection. Gliptins were administered either orally or subcutaneously: linagliptin (5 mg/kg/day), sitagliptin (50 mg/kg/day) or liraglutide (200 µg/kg/day). Endotoxic shock was induced by LPS injection (mice 17.5-20 mg/kg i.p., rats 10 mg/kg/day). Linagliptin and liraglutide treatment or DPP-4 knockout improved the survival of endotoxemic mice, while sitagliptin was ineffective. Linagliptin, liraglutide and sitagliptin ameliorated LPS-induced hypotension and vascular dysfunction in endotoxemic rats, suppressed inflammatory parameters such as whole blood nitrosyl-iron hemoglobin (leukocyte-inducible nitric oxide synthase activity) or aortic mRNA expression of markers of inflammation as well as whole blood and aortic reactive oxygen species formation. Hemostasis (tail bleeding time, activated partial thromboplastin time) was impaired in endotoxemic rats and recovered under cotreatment with linagliptin and liraglutide. Finally, the beneficial effects of linagliptin on vascular function and inflammatory parameters in endotoxemic mice were impaired in AMP-activated kinase (alpha1) knockout mice. The improved survival of endotoxemic animals and other data shown here may warrant further clinical evaluation of these drugs in patients with septic shock beyond the potential improvement of inflammatory complications in diabetic individuals with special emphasis on the role of AMP-activated kinase (alpha1) in the DPP-4/GLP-1 cascade.
Collapse
Affiliation(s)
- Sebastian Steven
- Department of Cardiology, 2nd Medical Clinic, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Miguel CD, Rudemiller NP, Abais JM, Mattson DL. Inflammation and hypertension: new understandings and potential therapeutic targets. Curr Hypertens Rep 2015; 17:507. [PMID: 25432899 PMCID: PMC4418473 DOI: 10.1007/s11906-014-0507-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Research studying the role of inflammation in hypertension and cardiovascular disease has flourished in recent years; however, the exact mechanisms by which the activated immune cells lead to the development and maintenance of hypertension remain to be elucidated. The objectives of this brief review are to summarize and discuss the most recent findings in the field, with special emphasis on potential therapeutics to treat or prevent hypertension. This review will cover novel immune cell subtypes recently associated to the disease including the novel role of cytokines, toll-like receptors, and inflammasomes in hypertension.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Justine M. Abais
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - David L. Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
50
|
Oelze M, Kröller-Schön S, Welschof P, Jansen T, Hausding M, Mikhed Y, Stamm P, Mader M, Zinßius E, Agdauletova S, Gottschlich A, Steven S, Schulz E, Bottari SP, Mayoux E, Münzel T, Daiber A. The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One 2014; 9:e112394. [PMID: 25402275 PMCID: PMC4234367 DOI: 10.1371/journal.pone.0112394] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/06/2014] [Indexed: 12/28/2022] Open
Abstract
Objective In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress. Methods Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 7 weeks. Vascular function was assessed by isometric tension recording, oxidative stress parameters by chemiluminescence and fluorescence techniques, protein expression by Western blot, mRNA expression by RT-PCR, and islet function by insulin ELISA in serum and immunohistochemical staining of pancreatic tissue. Advanced glycation end products (AGE) signaling was assessed by dot blot analysis and mRNA expression of the AGE-receptor (RAGE). Results Treatment with empagliflozin reduced blood glucose levels, normalized endothelial function (aortic rings) and reduced oxidative stress in aortic vessels (dihydroethidium staining) and in blood (phorbol ester/zymosan A-stimulated chemiluminescence) of diabetic rats. Additionally, the pro-inflammatory phenotype and glucotoxicity (AGE/RAGE signaling) in diabetic animals was reversed by SGLT2i therapy. Conclusions Empagliflozin improves hyperglycemia and prevents the development of endothelial dysfunction, reduces oxidative stress and improves the metabolic situation in type 1 diabetic rats. These preclinical observations illustrate the therapeutic potential of this new class of antidiabetic drugs.
Collapse
Affiliation(s)
- Matthias Oelze
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Welschof
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Jansen
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Hausding
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Yuliya Mikhed
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Paul Stamm
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Mader
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Elena Zinßius
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Saule Agdauletova
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anna Gottschlich
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Steven
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eberhard Schulz
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Serge P. Bottari
- Laboratory of Fundamental and Applied, Bioenergetics, INSERM U1055, Grenoble-Alpes Université et Pôle de Biologie, CHU, Grenoble, France
| | - Eric Mayoux
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Thomas Münzel
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|